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Abstract

Increasing diversity in language models is a chal-
lenging yet essential objective. A common ap-
proach is to raise the decoding temperature. In
this work, we investigate this approach through
a simplistic yet common case to provide insights
into why decreasing temperature can improve
quality (Precision), while increasing it often fails
to boost coverage (Recall). Our analysis reveals
that for a model to be effectively tunable through
temperature adjustments, it must be trained to-
ward coverage. To address this, we propose re-
thinking loss functions in language models by
leveraging the Precision-Recall framework. Our
results demonstrate that this approach achieves
a substantially better trade-off between Preci-
sion and Recall than merely combining negative
log-likelihood training with temperature scaling.
These findings offer a pathway toward more ver-
satile and robust language modeling techniques.

1. Introduction
Autoregressive language models (LMs) (Bengio et al., 2000)
have demonstrated impressive capabilities in modeling nat-
ural language. By scaling both the data and the number of
parameters, current transformer-based approaches (Touvron
et al., 2023; DeepSeek-AI, 2024) are now able to produce
expressive language models, capable of generating texts
close to human-written ones. With these advances, evalua-
tion has become a critical issue, and new metrics have been
developed to better assess the generative abilities of these
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models. Namely, several works have proposed to study two
kind of errors these models can make (Pillutla et al., 2021;
Shao et al., 2017; Le Bronnec et al., 2024):

1. The LM generates texts unlikely under the true distribu-
tion of language, leading to outputs of limited quality.

2. The LM focuses on producing a limited set of patterns
or phrases, thereby reducing diversity in the outputs.

The analysis of these errors in generative models has been
formalized through the Precision–Recall (P&R) framework,
introduced by Sajjadi et al. (2018). Precision measures the
proportion of generated samples that are plausible under a
reference distribution, thereby assessing the quality of the
model. Recall quantifies the proportion of the reference
distribution that is covered by the generated samples, reflect-
ing the model’s coverage. Recall captures more than just
sample diversity, it evaluates the diversity of samples that
are likely under the reference distribution. This contrasts
with metrics that operate independently of the reference
distribution, such as those based on entropy (Theis et al.,
2016; Friedman & Dieng, 2023) or vocabulary distinctive-
ness (Zhu et al., 2018), which may indicate high diversity
even for random-like samples.

The P&R trade-off is crucial and varies by application do-
main. In code generation, high Precision is essential for
producing runnable code, whereas in open-ended creative
tasks, high Recall is key to generating diverse and engaging
content. Independently of the P&R framework, the need
to tune this trade-off has motivated the development of a
variety of post-training corrective methods (Holtzman et al.,
2020a). Among them, one of the simplest and most widely
used methods is to adjust the decoding temperature (Fan
et al., 2018; Zheng et al., 2024). Increasing the temperature
directly increases the entropy i.e., the diversity of the model,
however its impact on the Recall is not well understood. In
this work, we aim to answer the following question:

Question 1: What is the impact of adjusting the temperature
of a LM in terms of Precision and Recall?

We address this question by showing that temperature ad-
justments have a mixed impact on the P&R trade-off. While
lowering the temperature can improve Precision, increasing
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it often reduces Recall, contrary to the common intuition
that higher temperature improves diversity. Based on this
observation, we argue that achieving a better P&R trade-
off through temperature scaling requires training the model
to prioritize Recall. This naturally leads to the following
question:

Question 2: How can we train models for a higher Recall?

We address Questions 1 and 2 by making the following
contributions:

• Impact of Temperature Scaling: Section 4 presents The-
orem 4.2, which analyzes the effect of temperature scaling
on the P&R trade-off. We further refine this analysis in
Proposition 4.3 by examining specific artificial cases.

• Recall-Oriented Loss Functions: In Section 5 we show
that three existing loss functions fit in the P&R framework
and optimize for Precision. We build upon this and intro-
duce modified versions of these losses to enhance Recall.

• Empirical Trade-off Evaluation: In Section 6, we em-
pirically validate our theoretical findings. Notably, we
demonstrate that in most experiments, our proposed losses
improve Recall and can lead to a model that achieves a
better P&R trade-off through temperature scaling.

Our study suggests that focusing coverage at the training
stage can produce language models that are more versatile
with temperature scaling.

2. Background
2.1. Generative Models

In language models, we consider sequences of L tokens,
x = (x1, . . . , xL) ∈ V

L where V is the vocabulary set of
cardinality V . We denote P(VL) as the set of all probability
distributions over the sequence of L tokens. The objective of
training a generative model is to approximate the true data
distribution P by learning a parameterized distribution Qθ ∈

P(VL), modeled as a product of probabilities conditional
to preceding tokens x<l ∶= (x1, . . . , xl−1):

Qθ(x) =
L

∏
l=1

Qθ(xl ∣ x<l), (1)

where Qθ(xl ∣ x<l) denotes the conditional probability of
token xl given the preceding tokens x<l, modeled as a soft-
max distribution over the output of a neural network Fθ,
parameterized by θ. This network is trained to minimize the
negative log-likelihood (NLL) of the data:

LNLL(θ) = −Ex∼P [
L

∑
l=1

logQθ(xl ∣ x<l)] . (2)

The NLL optimization problem is equivalent to minimizing
DKL(P ∥Qθ), the Kullback-Leibler divergence between the
true distribution P and the learned distribution Qθ.

Notations: For clarity, we omit the dependency on the
parameters θ when it is clear from the context and use Q
instead of Qθ. When the parameters are fixed, meaning the
gradient is detached, we denote this by Q̄, implying that
∇θQ̄ = 0. Probabilities conditioned on the context x<l are
denoted as P<l(⋅) = P (⋅ ∣ x<l) and Q<l(⋅) = Q(⋅ ∣ x<l).

2.2. Temperature and sampling

Once the model has been trained, it can be used to generate
new sequences by repeatedly sampling each token xl from
Q<l using x<l as the context (i.e., xl ∼ Q(⋅ ∣ x<l)). How-
ever, instead of sampling directly from Q<l, practitioners
generally introduce a new distribution Qt

<l which is based
on Q<l, but features an adjustable temperature parameter
t used to increase the entropy of Qt

<l and generate more
diverse samples when necessary. For a given context x<l,
the temperature-adjusted distribution Qt

<l is defined as:

Qt
<l(x) =

Q<l(x)
1/t

∑
xi∈VL

Q<l(xi)
1/t

. (3)

Note that setting the temperature t = 1 recovers the original
distribution Q<t. Setting the temperature to any value t > 1
increases the entropy of Qt

<l (compared to Q<l), and Qt
<l

becomes increasingly close to uniform distribution over VL

as t→∞. Conversely, setting the temperature to any value
t < 1 decreases the entropy of Qt

<l leading to a deterministic
distribution Qt

<l for t = 0.

2.3. Precision and Recall for Generative Models

In practice, increasing the temperature of the model distri-
bution Qt increases the entropy of the generated samples,
but it does not always lead to better coverage of the target
distribution P . To properly assess the effect of temperature
scaling, we adopt Precision and Recall (P&R) metrics for
generative models. Inspired by classification, an intuitive
definition of these metrics for generative models was intro-
duced by Kynkäänniemi et al. (2019), based on comparing
the supports of the two distributions, as follows.

Definition 2.1 (Precision and Recall - (Kynkäänniemi et al.,
2019)). Let P,Q ∈ P(VL). The Precision ᾱ and Recall β̄
of Q with respect to P are defined as:

ᾱ = Q(Supp(P )) and β̄ = P (Supp(Q)). (4)

Computing these metrics requires estimating the supports of
the distributions, which can be achieved through sampling
followed by k-nearest neighbors support estimation. This
approach is practical and has been widely used to assess the
quality and coverage of both image generative models and
language models (Kynkäänniemi et al., 2019; DeVries et al.,
2020; Song et al., 2023; Le Bronnec et al., 2024).
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Figure 1: Examples of PR-Curves. Q1 has a higher Pre-
cision than Q2 but a lower Recall. Values of (αλ, βλ) are
plotted for λ ∈ {0.1,1,10}.

While convenient to compute, these metrics have theoretical
limitations, particularly in the case of tempered distribu-
tions, where adjusting the temperature does not alter the
support of the model distribution. To alleviate these limita-
tions, Sajjadi et al. (2018) have introduced an extension of
Precision and Recall that compares the densities of P and Q
instead of simply comparing their support. To achieve this,
they introduce a new parameter λ ∈ [0,∞], which helps
identify regions where Q is at least λ times denser than P .
When λ is high, the focus is on regions where Q assigns
probability mass while P does not, which characterizes loss
of Precision. Conversely, when λ is low, the focus shifts
to regions where Q assigns very little mass while P does,
which reduces the Recall. The parameter λ thus controls
the trade-off between Precision and Recall, allowing the
definition of the PR-Curve.

Definition 2.2 (PR-Curve—(Sajjadi et al., 2018)). Let
P,Q ∈ P(VL). The PR-Curve is the set PRD(P,Q) de-
fined as:

PRD(P,Q) = {(αλ, βλ) ∣λ ∈ [0,∞]} , (5)

where:
αλ(P ∥Q) = ∑

x∈VL

min (λP (x),Q(x)) , (6)

and βλ(P ∥Q) = ∑
x∈VL

min (P (x),Q(x)/λ) . (7)

The two definitions are related: α∞ = ᾱ and β0 = β̄. The
values of αλ for high λ captures the quality, while the values
of βλ for low λ captures the diversity with respect to the
true distribution. Figure 1 shows examples of PR curves.

3. Related Works
With the rise of models exhibiting remarkable generative
capabilities and the need to assess both their fidelity and
diversity, several works have demonstrated the versatility
of P&R metrics for developing and evaluating generative
models (Sajjadi et al., 2018; Song et al., 2023). To balance

this trade-off, some studies have explored modifications to
the sampling process (Brock et al., 2019). In the case of lan-
guage models, adjusting the decoding process is a common
strategy (Fan et al., 2018), with some methods explicitly
targeting improved diversity (Chang et al., 2023). We focus
specifically on the temperature parameter, whose limitations
have been highlighted in multiple studies (Peeperkorn et al.,
2024; Holtzman et al., 2020b), mainly from an empirical
perspective.

Beyond inference, various training methods have been de-
veloped to address this trade-off. For instance, f -divergence
minimization has shown promising results in image genera-
tion (Nowozin et al., 2016; Grover et al., 2018), with Verine
et al. (2023) explicitly framing their approach within the
P&R paradigm. In text generation, several studies have ex-
amined the role of different f -divergences in RLHF (Wang
et al., 2023; Go et al., 2023; Sun & Schaar, 2024), either for
reward modeling or regularization. For autoregressive mod-
els, various works have proposed training with modified loss
functions (Ji et al., 2023; Kang & Hashimoto, 2020; Pang
& He, 2021). While introduced with different motivations,
we later unify these methods within the P&R framework
and show that they all effectively maximize surrogates of
Precision.

4. Temperature and PR-Curves
In this section, we analyze the impact of temperature on
P&R. First we express a general bound on Precision and
Recall as a function of temperature. Then, in order to gain
deeper insights, we craft a simplified realistic distribution,
and characterize how Precision and Recall change as we
increase the temperature of this distribution.

General case: Our first result relies on the concept of
sparsity defined as follows.
Definition 4.1 (Sparsity of a distribution). Given a context
x<l ∈ V

l−1 the sparsity of a distribution P<l is defined as
∣Supp(P<l)∣/V . We say that a distribution is sparse when
∣Supp(P<l)∣/V ≪ 1. More generally, the sparsity of a distri-
bution P over sequences in VL is defined as ∣Supp(P )∣/V L.
Theorem 4.2 (Impact of sparsity on P&R). Let P,Qθ ∈

P(VL), then for any temperature t, we have:

αλ(P ∥Q
t
θ) ≤

∣Supp(P )∣

V L
eZL/t (8)

and βλ(P ∥Q
t
θ) ≤

1

λ

∣Supp(P )∣

V L
eZL/t, (9)

where Z = maxx∈XK
V

, l∈{1,...L}, i,j∈V Fθ(x<l)i − Fθ(x<l)j
the highest difference between the logits of the model.

The proof of this theorem is provided in Appendix A.1. We
observe that the sparser the target distribution, the harder it
is for Qθ to achieve good Precision and Recall.

3



When Temperature Fails, Change the Loss

0 20 40 60 80 100
0

b/ρK

1/K

a/ρK
0 P̃ (·|xl1)

Q̃θ(·|xl1)

(a) Example of P̃ (⋅ ∣ x<l1) and Q̃θ(⋅ ∣ x<l1).
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Figure 2: Example P̃ and Q̃θ for V = 100, K = 20 and a/ρ = 1.45, and ϵ = 0.15. K/V represent the sparsity of the target
distribution. ρ is the proportion of tokens underrepresented at the level b/ρ in Qθ at l1. ϵ is the noise level at l2.

In practice, the true distribution P<l is sparse for most con-
texts because of the number of grammatical, syntactic, or
semantic rules that apply and force P<l to be null for most
tokens. In contrast, the model distribution Q<l is not sparse
due to the softmax normalization, thus it will assign nonzero
probabilities even for unacceptable tokens. Intuitively, in-
creasing the temperature will increase the probability of
these tokens and introduce a disproportionate number of
unacceptable generations, effectively unlearning the lan-
guage rules, and reducing both Precision and Recall. We
empirically estimate the sparsity of reference distributions
in Section 6.

Artificial Case Analysis: To gain deeper insight on the im-
pact of increasing the model temperature on the PR-Curve,
we analyze a specific case. We choose a target distribu-
tion P̃ where all P̃<i are sparse uniform distributions over
small subset of K tokens, and a model distribution Q̃θ that
matches P̃ everywhere except at the two specific positions
in the sequence l1 and l2, i.e, ∀x ∈ VL, ∀i ∉ {l1, l2}, Q̃θ(⋅ ∣

x<i) = P̃ (⋅ ∣ x<i) . For position l1 and l2, the conditional
distributions are defined as follows:

Q̃θ(x ∣ x<l1) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

a
ρK

, if x < ρK,
b

ρK
, if ρK ≤ x ≤K,

0, otherwise,

(10)

Q̃θ(x ∣ x<l2) =

⎧⎪⎪
⎨
⎪⎪⎩

1−ϵ
K

, if P̃<l2(x) ≠ 0,
ϵ

V −K
, otherwise.

(11)

This is illustrated in Fig. 2 (a) and (b) respectively. This
simple setting allows a full characterization of the PR-
Curve across different temperatures while remaining the-
oretically meaningful. Notably, we can show that the
inequalities (8) and (9) are tight for high temperatures
t ≥ Z+ log(K)− log(λ)/L, demonstrating that Q̃θ achieves
the optimal Precision-Recall tradeoff in this regime. The
exact expressions for the PR-Curve and its rate of change
are provided in Appendix A, Prop. A.2 and A.4. Connec-
tions to real-world behavior are discussed in Section 6. The
results can be summarized in the following proposition:

Proposition 4.3 (Informal—P&R with temperature). Let
P̃ , Q̃θ ∈ P(V

L) as described in the previous paragraph.

• For high values of λ, the Precision αλ decreases as the
temperature t increases.

• For low values of λ, the Recall βλ decreases for tem-
peratures t ≥ t0, provided that any one of the following
mild conditions is met:

– the vocabulary size V is much larger than the
target support size K (K ≪ V ),

– Q̃θ is good approximation of P̃ , (i.e., a ≈ 1, b ≈ 1,
ρ ≈ 1, ϵ≪ 1).

Further details about Q̃θ The formal theorem, its proof and
details on t0 are available in Appendix A.2.

For Recall, a common behavior is an initial increase with
rising temperature, peaking at some value t0. Beyond this
point, Recall tends to decline and eventually converges to a
level that is consistently lower than the value at t = 1. To ob-
tain a model capable of achieving both higher Precision and
higher Recall through temperature scaling, it is beneficial
to train the model with a strong emphasis on Recall. Pre-
cision may then be improved by lowering the temperature.
This motivates the objective of the next section: developing
training strategies that produce a diverse set of models.

5. Training model for diverse output
Training models for specific Precision-Recall trade-offs has
been explored in image generation, notably by minimizing
alternative f -divergences (Verine et al., 2023). However,
these methods depend on assumptions that are incompatible
with the causal structure of language generation, rendering
them unsuitable for direct use in language models. Instead,
existing methods adapt the training loss to weight samples
differently from the standard negative log-likelihood (NLL)
loss. In this section, we focus on three representative meth-
ods: Trunc (Kang & Hashimoto, 2020), GOLD (Pang &
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Figure 3: Illustration of trade-offs targeted by each method
over the model’s PR curve (black). The highlighted parts
represents regions where two c-Div loss functions of oppo-
site effects place more emphasis, red indicates high empha-
sis, blue low. Trunc and TruncR target a specific point on
the PR-Curve, either maximizing it vertically (Precision) or
horizontally (Recall), while λ-PR focuses on improving a
point along the y = λx line.

He, 2021), and TaiLr (Ji et al., 2023). Although originally
introduced with different motivations, we show that these
methods consistently prioritize Precision over Recall. To
address this imbalance, we propose alternative loss func-
tions designed to enhance Recall. All theoretical proofs are
provided in Appendix B. In the next section, we experimen-
tally evaluate which methods are most effective in making
models (1) more diverse and, most importantly, (2) more
versatile.

All losses discussed in this section can be viewed as
reweighted variants of the NLL, with weight computations
detailed in Appendix C. Figure 3 illustrates the trade-offs
each method targets along the model’s PR curve.

5.1. Baseline Methods

Trunc by Kang & Hashimoto (2020). This approach de-
fines a target distribution P trunc, obtained by renormalizing
the original distribution P over a subset Xtrunc ⊂ X , satis-
fying P (Xtrunc) = 1 −∆ for a given constant ∆ ∈ [0,1].
The method minimizes the NLL between this truncated dis-
tribution and the model distribution, resulting in a tighter
upper bound on the total variation distance. In practice, the
model is trained exclusively on samples with the highest
log-likelihood values. This is done by selecting samples
within the top 1 −∆ quantile of the log-likelihood distribu-
tion, i.e., dynamically identifying the threshold δ ∈ R such
that Ex∼P [I{Q̄θ(x) ≥ δ}] = 1 −∆ and then minimizing

the following loss:

L
∆
Trunc(θ) = −Ex∼P [

L

∑
l=1

1{Q̄(x)≥δ} logQ<l(xl)] . (12)

GOLD by Pang & He (2021). GOLD (Generation by
Off-policy Learning from Demonstrations) is a method that
leverages off-policy learning to improve the quality of gener-
ated samples. One specific variant of this method, GOLD-δ,
has been shown to be equivalent to reweighting the gradients
of the training samples’ log-likelihood, thus further promot-
ing highly probable tokens (Li et al., 2022). The authors
propose the following loss:

LGOLD(θ) = −Ex∼P [
L

∑
l=1

Q̄<l(xl)
1
2 logQ<l(xl)] . (13)

TaiLr by Ji et al. (2023). TaiLr (Total Variation Guided
Language Generation) is a method that aims to minimize
the TV distance between the model distribution and the
target distribution. To do so, the authors first propose an
upper bound on the TV distance based the total variation
of the conditional distributions. They then approximate the
unknown conditional target distribution P<l as a mixture of
the model’s own distribution and a one-hot distribution:
Definition 5.1 (γ-proxy distribution). Let xl ∼ P<l be a to-
ken sampled from the conditional target distribution. Given
γ ∈ [0,1], the γ-proxy distribution is defined as:

P̂ xl

<l (⋅) = γ1{xk=⋅} + (1 − γ)Q<l(⋅). (14)

This γ-proxy is used to derive the following loss:

L
γ
TaiLr(θ) = −Ex∼P [

L

∑
l=1

Q̄<l(xl)

γ + (1 − γ)Q̄<l(xl)
logQ<l(xl)] .

(15)

5.2. From Trunc to TruncR

The Trunc method considers only a subset of the target
distribution, meaning it does not penalize the model for
missing samples outside this subset. As a result, it inherently
allows for a loss of Recall. More precisely:
Proposition 5.2 (Trunc optimizes Precision at a given Re-
call). Optimizing θ using the L∆

Trunc loss is equivalent to
optimizing Precision for a fixed value of Recall β = 1 −∆.

This result is derived by minimizing the NLL between the
truncated P and Q. To reverse the trade-off, one might con-
sider inverting P and Q in the loss. However, this approach
is infeasible as it requires sampling from Q and evaluating
P (⋅∣x<l). To address this, we introduce a loss function that
approximates minimizing the NLL between P and Qtrunc:

L
1−∆
TruncR(θ) = −Ex∼P [

L

∑
l=1

1{Q̄θ(x)≤δ}
logQ<l(xl)] (16)
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such that Ex∼Q[1{Q̄θ(x)≤δ}
] = 1 − ∆. Note that this ap-

proach requires the same quantile approach to estimate the
threshold δ. We can show that this proposed loss achieves
the opposite effect of the Trunc method:
Proposition 5.3 (TruncR optimizes Recall at a given Preci-
sion). Optimizing θ using L1−∆

TruncR is equivalent to optimiz-
ing Recall for a fixed value of Precision α = 1 −∆.

Training for a limited subset of the model distribution is
not a new idea. In fact, Verine et al. (2024) train image
generative models on limited subset of generated samples
and also observe that this leads to increased Recall.

5.3. From GOLD to c-Div

By reweighting the log-likelihood of training samples, the
GOLD method increases the likelihood of highly probable
tokens. However, this reweighting can be generalized:
Theorem 5.4 (Conditional Tsallis α-Divergence Minimiza-
tion). Using Definition 5.1 with γ = 1, minimizing the
conditional α-divergence between P̂ xl

<l and Q<l for all
l ∈ {1, . . . , L} and for all x ∼ P is equivalent to minimizing

L
α
cDiv(θ) = −Ex∼P [

L

∑
l=1

Q̄<l(xl)
1−α logQ<l(xl)] . (17)

In particular, GOLD minimizes Lα
cDiv(θ) with α = 1/2. It

is well established that adjusting the α parameter in the min-
imization of α-divergence significantly influences the trade-
off between quality and diversity (Minka, 2005; Labeau &
Cohen, 2019; Go et al., 2023). The relationship between
α-divergence and the PR-Curve has been analyzed in Verine
(2024). Higher values of α lead to divergences that are more
mass-covering, favoring Recall. In particular, optimizing
a divergence with α > 1 results in a more Recall-oriented
approach compared to NLL.

5.4. From TaiLr to λ-PR

The TaiLr method aims to optimize the Total Variation (TV)
distance, which corresponds to the point 1−αλ(P ∥Q)/2 for
λ = 1. However, due to practical constraints, the proposed
loss is not a proper loss function and does not directly opti-
mize the TV distance. Instead, it solves a different problem:
Proposition 5.5. The optimal distribution Qθ∗ using the
TaiLr method, i.e., Lγ

TaiLr(θ) with γ > 0, is given for every
context x<l ∈ V l−1 by:

∀x ∈ V, Qθ∗(x ∣ x<l) =
P<l(x)(1 − γ + V γ) − γ

1 − γ
. (18)

In other words, Q<l(x) > P<l(x) if P<l(x) > 1/V , and
Q<l(x) ≤ P<l(x) otherwise.

The loss Lγ
TaiLr is not a proper loss since its optimal distribu-

tion is not P . However, it effectively reduces the likelihood

of less probable tokens, likely increasing Precision. We pro-
pose to generalize this reasoning and propose the following
non-proper loss function:

L
γ
λ−PR(θ) = −Ex∼P [

L

∑
l=1

w(l, λ, γ) logQ<l(xl)] , (19)

where

w(l, λ, γ) = λ
l−1
L 1

{Q̄<l(xl)≤δλ1/L}
Q̄<l(xl)

γ + (1 − γ)Q̄<l(xl)
,

and δλ1/L =
λ1/Lγ

1−(1−γ)λ1/L . We show that under the same
assumptions than Ji et al. (2023), this loss can be used to
optimize any point (αλ, βλ) on the PR-Curve for λ ≤ 1:

Theorem 5.6 (λ-PR optimizes the PR-Curve at λ). Opti-
mizing θ using the Lλ−PR loss is equivalent to maximizing
a lower bound on (αλ, βλ) on the PR-Curve for λ ≤ 1.

This loss generalizes Lγ
TaiLr to any point on the PR-Curve

for λ ≤ 1. Notably, for λ = 1, the loss is equivalent to
the TaiLr loss, as δλ = 1 and λ = 1. For λ < 1, the λ-
PR loss retains the effect described in Proposition 5.5 but
additionally enforces the likelihood to remain below δλ1/L .

6. Experiments
In this section, we empirically assess the theoretical insights
on temperature scaling (Section 4) and training methods
(Section 5). Our experiments aim to address the following
questions:

• To what extent do our simplified theoretical settings align
with real-world language modeling scenarios?

• What is the impact of temperature scaling on the Precision-
Recall trade-off in language models?

• How do the proposed training methods affect Recall?

To answer these questions, we conduct experiments on mul-
tiple tasks at different scales.

6.1. Evaluation Tasks and Metrics

We consider four tasks where quality and coverage can be
measured in a meaningful way: two tasks of code gener-
ation, integer multiplication, and open ended generation.
Full details regarding the different evaluation methods are
detailed in Appendix D.2.

CodeContests (Li et al., 2022). We use the test set com-
prising 165 challenging problems. We propose to evaluate
P&R using the widely used pass@k metrics, (Chen et al.,
2021), which is the expectation that at least one code sample
is correct given a budget of k samples. In this setup, we
naturally consider pass@1 as a proxy for Precision, since
it measures exactly the portion of the outputs generated by
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Figure 4: Effect of tuning t between 0.2 (smaller
dots) and 2 (larger dots) on P&R for Llama3.1
models on the CodeContests dataset.
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Figure 5: Effect of the temperature on the P&R for the integers multi-
plication task, at different levels of underrepresentation b in the training
data. Recall increases with the temperature, then drops.

the model that are correct. Then, the boost from pass@1 to
pass@k depends largely on the diversity of the code sam-
ples, which is why we use pass@100 - pass@1 as Recall.

MathQA-Python (Chen et al., 2021). We evaluate the
P&R trade-off on the MathQA-Python dataset, which con-
sists of simple Python code generation tasks. We use the
same evaluation as in CodeContests, using pass@k metrics.

Integers multiplication. The goal is to generate pairs of
positive two-digit integers along with their product modulo
97, in the format a1a2 × b1b2 = c1c2 (Papadopoulos et al.,
2024). The reference distribution is uniform over the in-
put integers and deterministic over the result. The model
Qθ is trained on synthetically sampled examples from P .
Although this example is simple, we believe it models key
characteristics of real-world patterns in natural language,
where certain words exhibit a spread probability distribution
or highly skewed distributions depending on the position.
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Figure 6: P&R for t ∈ [0.1,5] for the integer multiplication
task for models trained with cDiv for different α. By tuning
t on models with high Recall, we improve the P&R trade-off.
The PR-Curves for high α dominate the curves for lower α.

When training models over this dataset, we simulate un-
derrepresented integers by adjusting their frequency in the
training data, mimicking imperfect learning by Qθ. Specifi-
cally, the first digit of the first token is drawn with proportion
b from the first five digits and 1 − b from the last five. This
setup closely matches the artificial cases, allowing us to
validate their relevance empirically. As the reference distri-
bution is known, we can compute the P&R metrics directly.

Writing Prompts (Fan et al., 2018). This task involves
generating creative stories from given prompts. We analyze
how different training losses and temperature settings im-
pact the learned distribution Qθ in generating text. Using the
P&R metrics from Le Bronnec et al. (2024), we assess the
trade-offs between fidelity and diversity in text generation.

6.2. Models

We use the following models in our experiments: Llama3.1-
8B/70B Instruct/RLEF (Grattafiori et al., 2024) are general
instruction-tuned models. These models are used for the
CodeContests generation tasks and for the support sparsity
estimation. Olmo-1B (Groeneveld et al., 2024), is a smaller
pre-trained model. We finetune this model on the Writing-
Prompts and MathQA-Python datasets using the proposed
losses. Llama3.2-3B is finetuned on the WritingPrompts
dataset. Llama-Alpaca is a Llama3.1-8B instruction tuned
on the Alpaca dataset (Taori et al., 2023). This model is
used to on WritingPrompts and MathQA-Python tasks. For
Llama3.1-8B and Llama3.2-3B, we omit Trunc and TruncR
results due to incompatibility of the original code with multi-
GPU parallelism, which is required for training. Further
training implementations are detailed in Appendix D.

6.3. Assumptions for the Theoretical Limits of P&R

Sparsity of P . In Theorem 4.2, we establish the limit of
the PR-Curve as a function of the sparsity of P . To gain a
practical insight on the actual sparsity of P , we compute an

7
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Table 1: P&R of Olmo-1B trained
on WritingPrompts dataset. Values
higher than NLL are highlighted in
bold. We report the MAUVE (Pillutla
et al., 2021) score for reference.

Method MAUVE P R

NLL 0.104 81.4 8.9

Trunc
(∆ = 0.25) 0.074 85.5 8.9
Trunc-R
(∆ = 0.25) 0.073 85.5 9.3
GOLD
(α = 0.5) 0.005 99.3 0.2
c-Div
(α = 1.4) 0.068 54.2 11.9
TaiLr
λ = 1, γ = 10−5 0.087 83.9 9.3
λ-PR
λ = 0.1, γ = 10−5 0.096 81.3 12.6
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Recall

Trunc: ∆ = 0.25
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NLL
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(c) NLL vs. λ-PR

Figure 7: P&R trade-off for t ∈ [0.1, 1.8] for various training methods on the
WritingPrompts dataset with Olmo-1B. Existing losses such as Trunc, GOLD and
TaiLr tend to favor Precision over Recall. In contrast, our proposed losses improve
Recall while maintaining comparable Precision when adjusting the temperature.

estimate of the sparsity of the distribution for two datasets:
CodeContests and WritingPrompts. Our estimation is based
number of unique tokens within the support of the condi-
tional distribution P (⋅ ∣ x<l). We approximate this by con-
sidering the truncated conditional distribution obtained from
a strong pretrained model Pθ, specifically counting the to-
kens that constitute the top-p probability mass of Pθ(⋅ ∣ x<l).
Full details are provided in Appendix D.2. Our experiments
reveal significant sparsity in the conditional distributions
relative to the vocabulary size V . Specifically, for Code-
Contests, the estimated support size is less than 0.1% of
V when p = 0.9, and remains under 8% when p = 0.99.
These observations confirm the high sparsity of the target
distribution, empirically validating that the PR-Curve of Qθ

deteriorates significantly when t≫ 1.

Connection with artificial case. These observations sug-
gest that the artificial case in Theorem 4.2 captures features
relevant to practice: the target distribution P is highly sparse,
and the pretrained model, viewed as Qθ, concentrates mass
on a few tokens, with low residual spread across the rest,
reflecting the theoretical structure.

6.4. Effect of Temperature on P&R

Results are shown in Figures 4, 5, 6 and 7. Results with
other decoding methods are discussed in Appendix D.3.

Table 2: Sparsity of the target distribution (approximated
upper bound on ∣Supp(P )∣/V ) for various top-p truncation
thresholds of the approximate distribution, on the CodeCon-
tests and WritingPrompts datasets.

Task
p

0.9 0.95 0.99

CodeContests 0.03% 0.08% 8.08%
WritingPrompts 3.86% 7.80% 24.9%

Lowering the temperature improves Precision but re-
duces Recall. In Figure 4, Llama3.1-8B RLEF is the only
set-up when the temperature has no effect on the Precision.
Across all other tasks, decreasing the temperature (t < 1)
leads to higher Precision, but always at the cost of lower
Recall. This aligns with our analysis in Section 4.

Increasing the temperature has a limited or negative
impact on Recall.

As the temperature increases, we observe the expected be-
havior in the toy multiplicative task: Recall initially im-
proves, but beyond a certain threshold, it begins to decline
and eventually drops to zero. In the more complex Writ-
ingPrompts and CodeContests tasks, this effect is less pro-
nounced: Recall exhibits little or no improvement before
ultimately decreasing. These observations are consistent
with the theoretical findings in Section 4, and in particular
with Proposition 4.3, which shows that while higher tem-
peratures may temporarily enhance Recall, they eventually
cause it to decline to zero..

6.5. Training for Recall

Figure 8 presents the P&R of the integer multiplication task
for different training methods at different parameter settings.
Table 1 and 3 presents the P&R of various models trained
with different losses on the WritingPrompts and MathQA
dataset. As predicted, baseline losses favor Precision at the
expense of Recall, whereas our proposed losses success-
fully improve Recall. This is consistent with our theoretical
analysis in Section 5.

6.6. Enhancing the Temperature P&R Trade-off

Recall-optimal point. On all tasks, when the baseline
NLL is temperature-tuned to maximize Recall, we can tune
our methods to reach a superior Recall level with the same
Precision. This is verified on Figure 6 for integers multipli-
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Figure 8: P&R trade-off at t = 1 with the proposed losses on the integer multiplication task. Baselines Trunc, GOLD, and
TaiLr improve Precision. In contrast, our proposed losses improve Recall.

cation, on Figure 7 for the WritingPrompts dataset. This
is also verified on MathQA dataset on Table 4a, where we
report c-Div-trained models achieving a higher Recall than
NLL at the same Precision level.

Precision-optimal point. We identify scenarios in which
our approach consistently achieves higher Recall across the
entire spectrum of Precision levels attainable by NLL. This
is demonstrated on Figures 6 and 7b, and for Llama-Alpaca,
with the c-Div loss in Table 4b.

Figures 6 and 7 illustrate the evolution of P&R as tem-
perature varies. Beyond improving Recall at t = 1, our
proposed losses achieve a better overall P&R trade-off.
Notably, they allow for slightly better Precision at the same
Recall level as NLL by adjusting the temperature, but also
allow for a significantly better Recall at the same Precision
level. This suggests that training for Recall can make tem-

perature scaling more effective in balancing P&R. However,
we observe that these loss functions can be less stable than
NLL in practice.

7. Conclusion
Our study highlights the limitations of temperature scaling
as a mean to improve diversity in language models. While
lowering the temperature enhances Precision, increasing it
often fails to significantly boost Recall. Through theoretical
analysis and empirical evidence, we show that models must
be trained explicitly for Recall to make temperature tuning
more effective. To this end, we propose alternative loss func-
tions that achieve a better trade-off between Precision and
Recall. Our results suggest that refining training objectives
is a more effective approach than relying solely on decoding
strategies, and can make models more versatile.

Table 3: Comparison of training methods on the WritingPrompts dataset. All generations were sampled with temperature
t = 1, except for Llama-Alpaca, where a lower temperature t = 0.5 was used to mitigate degenerate outputs.

Task WritingPrompts MathQA-Python
Model Olmo-1B Llama-Alpaca Llama3.2-3B Olmo-1B Llama-Alpaca

Method P R P R P R P R P R

NLL - 81.4 8.9 - 83.3 4.4 - 77.4 8.1 - 42.0 36.6 - 8.8 39.0
Trunc-R ∆ = 0.25 85.5 9.3 - - - - - - ∆ = 0.1 29.8 43.3 - - -
c-Div α = 1.4 54.2 11.9 α = 1.4 82.2 12.6 α = 1.3 72.5 17.5 α = 1.4 30.1 46.1 α = 1.4 8.2 43.4
λ-PR λ = 0.1

γ = 10−5 81.3 12.6 λ = 0.5
γ = 10−7 57.1 26.9 λ = 0.9

γ = 10−5 59.9 19.0 λ = 0.1
γ = 10−7 6.4 48.1 λ = 0.1

γ = 10−5 8.3 42.1

Table 4: c-Div trained models achieving better tradeoffs than NLL on MathQA-Python.

(a) Achieving higher Precision than NLL at highest Recall

Model Olmo-1B Llama-Alpaca

Method P R P R

NLL t = 1.6 0.20 0.47 t = 1 0.067 0.49
c-Div α = 1.4, t = 1 0.21 0.50 α = 1.4, t = 0.8 0.087 0.49

(b) Achieving higher Recall than NLL at highest Precision

Model Llama-Alpaca

Method P R

NLL t = 1.6 0.10 0.10
c-Div α = 1.4, t = 1 0.10 0.14
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A. Proof of results in Section 4
A.1. Proof of Theorem 4.2

For improved clarity and readability, we introduce the concept of acceptable tokens.

Definition A.1 (Set of acceptable tokens). Given a context x<l ∈ V l−1 the set of acceptable tokens is S(x<l) ∶= Supp(P<l),
i.e., the set of tokens with non-zero probabilities in P<l.

Let us first recall the theorem:

Theorem. Let P,Qθ ∈ P(X
K
V ), then for any temperature t, we have:

αλ(P ∥Q
t
θ) ≤

∣Supp(P )∣

V L
eZL/t (20)

and βλ(P ∥Q
t
θ) ≤

1

λ

∣Supp(P )∣

V L
eZL/t, (21)

where Z = maxx∈XK
V
maxl∈{1,...L}maxi,j∈V Fθ(x<l)i − Fθ(x<l)j the highest difference between the logits of the model

and ∣Supp(P )∣ = ∑x1∈S(∅)∑x2∈S(x1)
. . .∑xL∈S(x<L) 1.

Proof. Recall that βλ = αλ/λ therefore we will study the behavior of αλ with t and λ:

αλ(P ∥Q
t
θ) = ∑

x∈XL
V

min (λP (x),Qt
θ(x)) , (22)

= ∑
x∈XL

V

min(λP (x),
L

∏
l=1

Qt
θ(xl ∣ x<l)) , (23)

Since P (x) = 0 if x ∉ Supp(Pθ) by definition then we can restrict the sum to x ∈ Supp(Pθ):

αλ(P ∥Q
t
θ) = ∑

x∈Supp(Pθ)

min(λP (x),
L

∏
l=1

Qt
θ(xl ∣ x<l)) . (24)

If we denote ∆l,x<l,j =maxi Fθ(x<l)i − Fθ(x<l)j , we can write the conditional probability as:

Qt
θ(xj ∣ x<l) =

exp(Fθ(xj ∣ x<l)/t)

∑
V
k=1 exp(Fθ(xk ∣ x<l)/t)

(25)

=
exp(−∆l,x<l,j/t)

∑
V
k=1 exp(−∆l,x<l,k/t)

. (26)

Thus, we can upper-bound the conditional probability by the probability for the most probable token:

Qt
θ(xj ∣ x<l) ≤

1

∑
V
k=1 exp(−∆l,x<l,k)/t

. (27)

We denote Z = maxx∈XK
V
maxl∈{1,...L}maxi,j∈V Fθ(x<l)i − Fθ(x<l)j the highest difference between the logits of the

model on the target distribution. We can then upper-bound the conditional probability by:

Qt
θ(xj ∣ x<l) ≤

1

∑
V
k=1 exp(−Z/t)

=
1

V exp(−Z/t)
=
exp(Z/t)

V
. (28)
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Therefore, we can upper-bound the Precision by:

αλ(P ∥Q
t
θ) ≤ ∑

x∈Supp(P )

min(λP (x),
L

∏
l=1

exp(Z/t)

V
) (29)

= ∑
x∈Supp(P )

min
⎛

⎝
λP (x),(

exp(Z/t)

V
)

L
⎞

⎠
(30)

≤ ∑
x∈Supp(P )

exp(ZL/t)

V L
(31)

= ∣Supp(P )∣
exp(ZL/t)

V L
, (32)

which concludes the proof for the Precision.

A.2. Artificial case: Proof of Proposition A.2 and Proposition A.4

We recall the artificial case presented in Section 4 where we consider the distributions P̃ and Q̃θ defined as follows.

We choose a target distribution P̃ =∏
L
i=1 P̃<i where all factors P̃<i are sparse uniform distributions over small subset of K

tokens, and a model distribution Q̃θ that matches P̃ everywhere except at the two specific positions in the sequence l1 and
l2, i.e, ∀x ∈ VL, ∀i ∉ {l1, l2}, Q̃θ(⋅ ∣ x<i) = P̃ (⋅ ∣ x<i) . For position l1 and l2, the conditional distrbutions are defined as
follows:

Q̃θ(x ∣ x<l1) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

a
ρK

, if x < ρK,
b

ρK
, if ρK ≤ x ≤K,

0, otherwise,

Q̃θ(x ∣ x<l2) =

⎧⎪⎪
⎨
⎪⎪⎩

1−ϵ
K

, if P̃<l2(x) ≠ 0,
ϵ

V −K
, otherwise,

where ρ ∈ [0,1] controls the number of tokens that will have extra-mass assigned under Q̃θ, 0 ≤ a ≤ ⌊ρK⌋ controls the
excess mass assigned to the these tokens, and b ≥ 0 is chosen to ensure normalization. ϵ ∈ [0,1/2] determines the level of
noise introduced outside the support of P̃<l2 .

We first present the proposition that fully characterizes the PR-Curve of Q̃θ, along with its evolution under temperature
scaling. We drop the ̃ notation for simplicity, and we denote P = P̃ and Qθ = Q̃θ.

Proposition A.2 (PR-Curve under Temperature Scaling). Let P,Qθ ∈ P(X
K
V ) respectively defined in the artifical case in

Section 4. Then, for any temperature t ∈ R, there exists a trade-off λmin and λmax, with µ = ρ/(1 − ρ):

λt
min =

1

1 − ρ

(1 − a)1/t

(1 − a)1/t + µ1−1/ta1/t
(1 − ϵ)1/t

(1 − ϵ)1/t + (V /K − 1)1−1/tϵ1/t
(33)

and

λt
max =

µ−1/t

1 − ρ

a1/t

(1 − a)1/t + µ1−1/ta1/t
(1 − ϵ)1/t

(1 − ϵ)1/t + (V /K − 1)1−1/tϵ1/t
, (34)

such that the Precision αλ(P ∥Q
t
θ) and Recall βλ(P ∥Q

t
θ) can be written as:

• For all λ ≥ λmax:

αλ(P ∥Q
t
θ) =

(1 − ϵ)1/t

(1 − ϵ)1/t + (V /K − 1)1−1/tϵ1/t
. (35)

βλ(P ∥Q
t
θ) =

1

λ

(1 − ϵ)1/t

(1 − ϵ)1/t + (V /K − 1)1−1/tϵ1/t
. (36)
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Figure 9: PR-Curve for different temperatures t with V = 100, K = 50, a/ρ = 1.45, ϵ = 0.15 and ρ = 0.5. The PR-Curve at
t = 1 is represented in dashed line.
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Figure 10: PR-Curve for different temperatures t with V = 100, K = 10, a/ρ = 1.05, ϵ = 0.05 and ρ = 0.5.

• For all λmax ≥ λ ≥ λmin:

αλ(P ∥Q
t
θ) = ρλ +

(1 − a)1/t

(1 − a)1/t + µ1−1/ta1/t
(1 − ϵ)1/t

(1 − ϵ)1/t + (V /K − 1)1−1/tϵ1/t
. (37)

βλ(P ∥Q
t
θ) = ρ +

1

λ

(1 − a)1/t

(1 − a)1/t + µ1−1/ta1/t
(1 − ϵ)1/t

(1 − ϵ)1/t + (V /K − 1)1−1/tϵ1/t
. (38)

• For all λ ≤ λmin:

αλ(P ∥Q
t
θ) = λ. (39)

βλ(P ∥Q
t
θ) = 1. (40)

We can visualize the PR-Curve for different temperatures in Figures 9 and 10 with different parameters V , K, a, ϵ and ρ.

Proof. We begin by computing the PR-Curves for the original distribution Q̃θ at temperature t = 1. We then apply
temperature scaling to obtain the tempered distributions and compute the corresponding PR curve.
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PR-Curve for t = 1. Let’s first compute Precision and Recall for extreme values of the trade-off parameter λ, i.e., λ = +∞
and λ = 0.

• λ = +∞:

α∞(P ∥Qθ) = Qθ(Supp(P )) (41)

= ∑
x∈Supp(P )

Qθ(x) (42)

= ∑
(x1,...,xL)∈Supp(P )

L

∏
l

Qθ(xl ∣ x<l) (43)

= ∑
x1∈S(x<l1),...,xl1−1∈S(x<l1−1)

l1−1

∏
l=1

Qθ(xl ∣ x<l) × ∑
xl1
∈S(x<l1)

Qθ(xl1 ∣ x<l1)

× ∑
xl1+1∈S(x<l1+1),...,xl2−1∈S(x<l2−1)

l2−1

∏
l=l1+1

Qθ(xl ∣ x<l) × ∑
xl2
∈S(x<l2)

Qθ(xl2 ∣ x<l2)

× ∑
xl2+1∈S(x<l2+1),...,xL∈S(x<L)

L

∏
l=l2+1

Qθ(xl ∣ x<l)

(44)

= ∑
x1,...xl1−1

l1−1

∏
l=1

P (xl ∣ x<l) × ∑
xl1
∈S(x<l1)

Qθ(xl1 ∣ x<l1)

× ∑
xl1+1∈S(x<l1+1),...,xl2−1∈S(x<l2−1)

l2−1

∏
l=l1+1

P (xl ∣ x<l) × ∑
xl2
∈S(x<l2)

Qθ(xl2 ∣ x<l2)

× ∑
xl2+1∈S(x<l2+1),...,xL∈S(x<L)

L

∏
l=l2+1

P (xl ∣ x<l)

(45)

= ∑
x1,...xl1−1

l1−1

∏
l=1

P (xl ∣ x<l) ×
K

∑
l=1

cl
ρK

where cl is either a or b

× ∑
xl1+1∈S(x<l1+1),...,xl2−1∈S(x<l2−1)

l2−1

∏
l=l1+1

P (xl ∣ x<l) × ∑
xl2
∈S(x<l2)

1 − ϵ

K

× ∑
xl2+1∈S(x<l2+1),...,xL∈S(x<L)

L

∏
l=l2+1

P (xl ∣ x<l)

(46)

=
K

∑
l=1

cl
ρK
(1 − ϵ) (47)

= 1 − ϵ. (48)

Equation (45) is obtained under the assumption that Qθ perfectly matches all conditional distributions of P except
P (⋅ ∣ x<l1) and P (⋅ ∣ x<l2). Equation (46) is derived by substituting the expression of Qθ. Equation (47) is obtained
by iteratively marginalizing over the values of x1, . . . , xl1−1, xl1+1, . . . , xl2−1, and xl2+1, . . . , xL.

• λ = 0:

β0(P ∥Qθ) = P (Supp(Qθ)) = 1 (49)

since Supp(Qθ) ⊂ Supp(P ).

• λ ∈]]]0,+∞[[[:

In the following, since αλ = λβλ, we focus our analysis on αλ.
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αλ(P ∥Qθ) = ∑
x∈XL

V

min (λP (x), Qθ(x)) (50)

= ∑
x1...xL

min(λ
L

∏
l=1

P (xl ∣ x<l),
L

∏
l=1

Qθ(xl ∣ x<l)) (51)

= ∑
x1...xL

L

∏
l=1
l≠l1
l≠l2

P (xl ∣ x<l)min (λP (xl1 ∣ x<l1)P (xl2 ∣ x<l2), Qθ(xl1 ∣ x<l1)Qθ(xl2 ∣ x<l2)) (52)

= ∑
x1...xl2

l2−1

∏
l=1
l≠l1

P (xl ∣ x<l)

×min(λ(
1

K
1{xl1

≤K})(
1

K
1{xl2

∈S(x<l2)}
) ,

(
c

ρK
1{xl1

≤K})(1{xl2
∈S(x<l2)}

1 − ϵ

K
+ 1{xl2

∉S(x<l2)}
ϵ

V −K
)),

(53)

where c is either a or b depending on the value of xl1 . When xl2 ∉ S(x<l2), the minimum is reached for λ 1
V
1{x2∈S(x<l2)}

= 0.
Therefore, the only terms that contribute to the sum are those for which xl2 ∈ S(x<l2), i.e., the K acceptable tokens at
position l2.

αλ(P ∥Qθ) = ∑
x1...xl1

l1−1

∏
l=1

P (xl ∣ x<l)Kmin(
λ

K2
1{xl1

≤K},
cl

ρK2
1{xl1

≤K}(1 − ϵ)) (54)

= ∑
x1...xl1−1

l1−1

∏
l=1

P (xl ∣ x<l)
K

∑
l

min(
λ

K
,

cl
ρK
(1 − ϵ)) . (55)

And finally by marginalizing over x1, . . . , xl1−1, we have:

αλ(P ∥Qθ) =
1

K

K

∑
i

min (λ, cl(1 − ϵ)/ρ) . (56)

Three regimes can be distinguished:

1. For λ ≥ a(1 − ϵ)/ρ, we have:

αλ(P ∥Qθ) =
1

K

K

∑
i

cl(1 − ϵ) = (1 − ϵ)
K

∑
i

cl
ρK
= 1 − ϵ. (57)

In this regime, that is, for large values of λ, αλ reflects the model’s quality, as it converges to Precision when λ→ +∞.

2. For b(1 − ϵ)/ρ ≤ λ < a(1 − ϵ)/ρ, we have:

αλ(P ∥Qθ) =
1

K

ρK

∑
l=1

λ +
1

K

K

∑
l=ρK

b(1 − ϵ)/ρ (58)

= ρλ + b(1 − ϵ)
1 − ρ

ρ
. (59)

We will denote µ = ρ/(1 − ρ) in the following, and since ρK a
ρK
+ (1 − ρ)K b

ρK
= 1, we have:

b
1 − ρ

ρ
= 1 − a. (60)

Thus, we have:

αλ(P ∥Qθ) = ρλ + (1 − ϵ)(1 − a) (61)
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3. For λ < b(1 − ϵ)/ρ, we have:

αλ(P ∥Qθ) =
1

K

K

∑
l=1

λ = λ, (62)

and therefore:

βλ(P ∥Qθ) = 1. (63)

In that regime, Recall is maximal since the model generates all tokens.

PR-Curve for Tempered distributions.

• Tempered distribution Qt
θ: To simplify the notation, we define the inverse temperature τ = 1/t and set µ = ρ/(1 − ρ).

We define the tempered distribution Qt
θ as follows:

Qt
θ(xl1 ∣ x<l1) =

(
cl
ρK
)
τ

∑
K
j=1 (

cj
Kρ
)
τ
+∑

V
j=K+1 (0)

τ
where cl is a for l ≤ ρK and b otherwise, (64)

=
( 1
ρK
)
τ
cτl

∑
ρK
j=1 (

1
ρK
)
τ
aτ +∑

K
j=ρK (

1
ρK
)
τ
bτ

, (65)

=
1

K

cτl
ρaτ + (1 − ρ)bτ

(66)

=
1

(1 − ρ)K

cτl
µaτ + bτ

, (67)

Moreover, since ρK × a
ρK
+ (1 − ρ)K × b

ρK
= 1, we have:

b =
ρ

1 − ρ
−

ρ

1 − ρ
a = µ(1 − a). (68)

Thus:

Qt
θ(xl1 ∣ x<l1) =

1

(1 − ρ)K

cτl
µaτ + µτ(1 − a)τ

(69)

=
1

(1 − ρ)K

cτl
µτ(1 − a)τ + µaτ

(70)

=
1

(1 − ρ)Kµτ

cτl
(1 − a)τ + µ1−τaτ

. (71)

Therefore, we have:

Qt
θ(xl1 ∣ x<l1) =

⎧⎪⎪
⎨
⎪⎪⎩

1
(1−ρ)Kµτ

aτ

(1−a)τ+µ1−τaτ if xl1 ≤ ρK,
1

(1−ρ)K
(1−a)τ

(1−a)τ+µ1−τaτ otherwise.
(72)

For xl2 ∈ S(x<l2):

Qt
θ(xl2 ∣ x<l2) =

( 1−ϵ
K
)
τ

K ( 1−ϵ
K
)
τ
+ (V −K) ( ϵ

V −K
)
τ (73)

=
1

K

( 1
K
)
τ
(1 − ϵ)τ

( 1
K
)
τ
(1 − ϵ)τ + (V /K − 1) ( ϵ

V −K
)
τ (74)

=
1

K

(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ (ϵ)
τ . (75)
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• PR-Curve for P and Qt
θ: With these expressions, we can compute the PR-Curve for different values of τ . By analogy

with the previous computations at t = 1, we marginalize over all tokens for which P t(⋅ ∣ x<l) = Q
t
θ(⋅ ∣ x<l), yielding:

αλ(P ∥Q
t
θ) = ∑

x∈XL
V

min (λP (xl), Q
t
θ(x)) (76)

=
K

∑
l=1

Kmin(
λ

K2
,

1

(1 − ρ)K2µτ

cτl
(1 − a)τ + µ1−τaτ

(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ ϵτ
) (77)

=
1

K

K

∑
l=1

min(λ,
1

(1 − ρ)µτ

cτl
(1 − a)τ + µ1−τaτ

(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ ϵτ
) . (78)

Let us define:

λt
min =

1

1 − ρ

(1 − a)τ

(1 − a)τ + µ1−τaτ
(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ ϵτ
(79)

and

λt
max =

µ−τ

1 − ρ

aτ

(1 − a)τ + µ1−τaτ
(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ ϵτ
. (80)

We can show that there exists three regimes for the Precision and Recall dependent on the value of λ compared to λt
min

and λt
max:

1. For λ ≥ λt
max, we have:

min(λ,
1

(1 − ρ)µτ

cτl
(1 − a)τ + µ1−τaτ

(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ ϵτ
)

=
1

(1 − ρ)µτ

cτl
(1 − a)τ + µ1−τaτ

(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ ϵτ
.

Therefore:

αλ(P ∥Q
t
θ) =

1

K

K

∑
l

cτl
ρaτ + (1 − ρ)bτ

(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ ϵτ
(81)

=
1

K

(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ ϵτ

K

∑
l

cτl
ρaτ + (1 − ρ)bτ

(82)

=
(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ ϵτ
. (83)

In particular:

α∞(P ∥Q
t
θ) =

(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ ϵτ
.

We can observe that both:

µ−τ

1 − ρ

aτ

(1 − a)τ + µ1−τaτ
=

aτ

ρaτ + (1 − ρ)bτ

and

(1 − ϵ)τ

(1 − ϵ)τ + (V − 1)1−τ ϵτ
,

are strictly decreasing functions of t = 1/τ , since a > b and 1 − ϵ > ϵ. Therefore, in this regime, αλ(P ∥Q
t
θ) is

strictly decreasing with t. Moreover, the range of λ values defining this regime is also strictly increasing, as λt
max

decreases with t.
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We can also observe that:

lim
t→0

αλ(P ∥Q
t
θ) = 1 and lim

t→+∞
αλ(P ∥Q

t
θ) =

K

V
. (84)

Therefore, the range of λ for which the Precision is constant is increases as the temperature increasing and the
constant value of the αλ is decreasing. Thus, the Precision is strictly decreasing from 1 to K/V as the temperature
increases.

2. For λ ∈ [λt
min, λ

t
max], we have:

αλ(P ∥Q
t
θ) =

ρK

∑
l=1

λ

K

+
K

∑
l=ρK

1

(1 − ρ)K

(1 − a)τ

(1 − a)τ + µ1−τaτ
(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ ϵτ

(85)

= ρλ +
(1 − ρ)K

(1 − ρ)K

(1 − a)τ

(1 − a)τ + µ1−τaτ
(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ ϵτ
(86)

= ρλ +
(1 − a)τ

(1 − a)τ + µ1−τaτ
(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ ϵτ
. (87)

We can note that:

αλ(P ∥Q
t
θ) = ρλ + (1 − ρ)λ

t
min. (88)

In that regime, to know the behavior of the PR-Curve, we need to know if λt
min =

(1−a)τ

(1−a)τ+µ1−τaτ

(1−ϵ)τ

(1−ϵ)τ+(V /K−1)1−τ ϵτ is increasing or decreasing with t. However, we can observe that:

lim
t→0

α(P ∥Qt
θ) = ρλ and lim

t→+∞
α(P ∥Qt

θ) = ρλ + (1 − ρ)K/V (89)

3. For λ ≤ λt
min, we have:

αλ(P ∥Q
t
θ) =

K

∑
l=1

1

K
λ = λ and thus βλ(P ∥Q

t
θ) = 1. (90)

This concludes the proof.

Analysis of the PR-Curve. To analyze the behavior of the PR-curve, we study the dependence of the expression

(1 − a)τ

(1 − a)τ + µ1−τaτ
⋅

(1 − ϵ)τ

(1 − ϵ)τ + (V /K − 1)1−τ ϵτ
, (91)

on the temperature parameter t.

We first introduce the function:

fγ,ν(τ) ∶=
(1 − γ)τ

ν1−τγτ + (1 − γ)τ
, (92)

which allows us to rewrite the above expression as fa,µ(τ) ⋅ fϵ,V /K−1(τ).

Therefore, we focus on analyzing the behavior of the function g(τ) ∶= fa,µ(τ) ⋅ fϵ,V /K−1(τ) as τ varies.
Lemma A.3 (Rate for change of g). Let K,L ∈ N∗ with K ≤ L, ϵ ∈]0,1[, ρ ∈]0,1[, µ = ρ/(1−ρ), b ∈ [0,1] and a = 1− b/µ.
Then, we can define:

ϵ0 ∶=
V /K − 1

V /K − 1 + (a
b
)

ρ
(1−K/V )

, (93)

such that:
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• For all ϵ < ϵ0, g is strictly decreasing with τ .

• For all ϵ > ϵ0, g is first decreasing then increasing with τ .

Proof. First, we can show that:

f ′γ,ν(τ) =
log(1 − γ)(1 − γ)τ [ν1−τγτ + (1 − γ)τ ]

(ν1−τγτ + (1 − γ)τ)
2

−
(1 − γ)τ [log(γ)ν1−τγτ − log(ν)ν1−τγτ + log(1 − γ)(1 − γ)τ ]

(ν1−τγτ + (1 − γ)τ)
2

(94)

=
ν1−τγτ(1 − γ)τ log ( 1−γ

γ/ν
)

(ν1−τγτ + (1 − γ)τ)
2

. (95)

(96)

By noting that:

f1−γ,1/ν(τ) =
γτ

γτ + (1/ν)
1−τ
(1 − γ)τ

(97)

=
ν1−τ

ν1−τ
γτ

γτ + (1/ν)
1−τ
(1 − γ)τ

(98)

=
ν1−τγτ

ν1−τγτ + (1 − γ)τ
, (99)

we can write the derivative of g as:

f ′γ,ν(τ) = log(
1 − γ

γ/ν
) fγ,ν(τ)f1−γ,1/ν(τ). (100)

Then:

g′(τ) = f ′a,µ(τ)fϵ,V /K−1(τ) + fa,µ(τ)f
′
ϵ,V −1(τ) (101)

= log(
1 − a

a/µ
) fa,µ(τ)f1−a,1/µ(τ)fϵ,V /K−1(τ)

+ fa,µ(τ) log(
1 − ϵ

ϵ/(V /K − 1)
) fϵ,V /K−1(τ)f1−ϵ,1/(V /K−1)(τ)

(102)

= fa,µ(τ)fϵ,V /K−1(τ)[f1−a,1/µ(τ) log(
1 − a

a/µ
)

+ f1−ϵ,1/(V /K−1)(τ) log(
1 − ϵ

ϵ/(V /K − 1)
) ].

(103)

By observing that 1/f1−γ,1/ν(τ) = (ν1−τγτ +(1−γ)τ)/ν1−τγτ = 1+ντ−1 ( 1−γ
γ
)
τ

, we can show that g′(τ) can be rewritten
as:

g′(τ) = fa,µ(τ)f1−a,1/µ(τ)fϵ,V /K−1(τ)f1−ϵ,1/(V /K−1)(τ) ×

[ [1 + µτ−1
(
µ(1 − a)

a
)

τ

] log(
1 − ϵ

ϵ/(V /K − 1)
)

− [1 + (V /K − 1)τ−1 (
1 − ϵ

ϵ
)

τ

] log(
a

µ(1 − a)
) ]

(104)

= fa,µ(τ)f1−a,1/µ(τ)fϵ,V /K−1(τ)f1−ϵ,1/(V /K−1)(τ) × h(1/τ). (105)
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As fa,µ(τ)f1−a,1/µ(τ)fϵ,V /K−1(τ)f1−ϵ,1/(V /K−1)(τ) > 0, we need to study the sign of h(1/τ) = h(t) with t. We can show
that:

h(t) =

⎡
⎢
⎢
⎢
⎢
⎣

1 +
1

µ
(
1 − a

a/µ
)

1/t⎤
⎥
⎥
⎥
⎥
⎦

log(
1 − ϵ

ϵ/(V /K − 1)
)

−

⎡
⎢
⎢
⎢
⎢
⎣

1 +
1

V /K − 1
(

1 − ϵ

ϵ/(V /K − 1)
)

1/t⎤
⎥
⎥
⎥
⎥
⎦

log(
a

µ(1 − a)
) ,

(106)

where µ(1 − a)/a = b/a < 1 and (1 − ϵ)/ϵ(V /K − 1) > 1/(V /K − 1) > 1. We will show that h is strictly increasing. If we
denote rγ,ν(t) = ((1 − γ)/(γ/ν))

1/t, we have:

r′γ,ν(t) = −
1

t2
log(

1 − γ

γ/ν
) rγ,ν(t). (107)

Therefore, we can compute the derivative of h:

h′(t) = −
1

t2
log(

µ(1 − a)

a
) ra,µ(t) log(

1 − ϵ

ϵ/(V / − 1)
)

+
1

(V /K − 1)t2
log(

1 − ϵ

ϵ/(V /K − 1)
) rϵ,V /K−1(t) log(

a

µ(1 − a)
)

(108)

=
1

t2
log(

1 − ϵ

ϵ/(V /K − 1)
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

log(
a

µ(1 − a)
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

[
rϵ,V /K−1(t)

V − 1
+ ra,µ(t)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

. (109)

Therefore, h is strictly increasing. Considering the limits of h when t goes to 0 and +∞, we can show that:

lim
t→0

h(t) = −∞ since

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

limt→0 (
µ(1−a)

a
)
1/t
= 0,

limt→0 (
1−ϵ

ϵ/(V /K−1)
)
1/t
= +∞

(110)

and

lim
t→+∞

h(t) =
1 + µ

µ
log(

1 − ϵ

ϵ/(V /K − 1)
) +

V

V −K
log(

µ(1 − a)

a
)

since

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

limt→+∞ (
µ(1−a)

a
)
1/t
= 1,

limt→+∞ (
1−ϵ

ϵ(V −1)
)
1/t
= 1.

(111)

To study the variation rate of g(τ), we need to study the sign of limt→+∞ h(t). We can show that:

lim
t→+∞

h(t) ≥ 0⇔
1 + µ

µ
log(V /K − 1) +

1 + µ

µ
log (

1 − ϵ

ϵ
) +

V

V −K
log (

b

a
) ≥ 0 (112)

⇔
1 + µ

µ
log(1/ϵ − 1) ≥

V

V −K
log (

a

b
) −

1 + µ

µ
log(V /K − 1) (113)

⇔ 1/ϵ − 1 ≥ (
a

b
)

µV
(1+µ)(V −K)

(
1

V /K − 1
) (114)

⇔ ϵ ≤
V /K − 1

V /K − 1 + (a
b
)

ρV
(V −K)

, (115)

by noting that µ/(1 + µ) = ρ. Therefore, by defining

ϵ0 =
V /K − 1

V /K − 1 + (a
b
)

ρ
(1−K/V )

, (116)

We can identify two cases for the rate of variation of g:
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Figure 11: Values of ϵ0 for different values of V /K, b, and ρ. We consider different levels of token underrepresentation
by varying b and ρ. Low values of b indicate that the model assigns very low probability to the relevant tokens, while low
values of ρ mean that a large proportion of tokens are underrepresented. We observe that even for small values of V /K,
when b is low and ρ is high, the value of ϵ0 remains relatively large, often above 0.1. We recall that when ϵ < ϵ0, Recall
starts to decrease at some point as temperature increases.

• First when ϵ ≥ ϵ0, then h(t) ≤ 0 for all t and therefore g is increasing with t.

• On the other side, if ϵ < ϵ0, then there exists t0 such that h(t0) = 0 and thus such that h(t) > 0 for t > t0 and h(t) < 0
for t < t0. Therefore, g is first increasing then decreasing.

We can now analyze the behavior of the PR-Curve based on Lemma A.3:

Proposition A.4 (Variation of PR-Curves with Temperature). Let P,Qθ ∈ P(X
K
V ) be the distributions defined in the

artificial setting of Section 4. Then, as the temperature t increases:

• The threshold λt
max decreases strictly with t, satisfying:

lim
t→0

λt
max = +∞ and lim

t→+∞
λt
max =

K

V
. (117)

• For the lower threshold λt
min:

– If ϵ > ϵ0, then λt
min increases strictly with t.

– If ϵ ≤ ϵ0, then λt
min increases for small t, then decreases after a certain point.

In both cases:

lim
t→0

λt
min = 0 and lim

t→+∞
λt
min =

K

V
. (118)

The behavior of the PR-Curve with respect to temperature depends on the regime of λ in relation to λt
min and λt

max:

• High-λ regime (λ ≥ λt
max): The interval {λ ≥ λt

max} widens as t grows. In this case, both Precision αλ(P ∥Q
t
θ) and

Recall βλ(P ∥Q
t
θ) decrease strictly with t, converging respectively to K/V and K/(V λ). More precisely, for any fixed

λ, there exists a temperature t0 such that for all t ≥ t0, Precision and Recall decrease strictly with temperature. The
larger the value of λ, the smaller the corresponding t0.

• Low-λ regime (λ ≤ λt
min):

– If ϵ > ϵ0, this regime expands with increasing t.
– If ϵ ≤ ϵ0, the regime first expands, then contracts.
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In this regime, both Precision and Recall are constant with respect to temperature, taking values αλ = λ and βλ = 1.

• Intermediate-λ regime (λ ∈ [λt
min, λ

t
max]): As t→∞, this range collapses to λ =K/V . In this regime:

– If ϵ > ϵ0, both Precision and Recall increase strictly with temperature.
– If ϵ ≤ ϵ0, both Precision and Recall increase initially with t, then decrease.

In all cases, they converge to αλ →K/V , βλ → 1.

Moreover, if K
V
≤ (1 − a)(1 − ϵ), then there exists a temperature t0 such that for all t ≥ t0:

βλ(P ∥Q
t
θ) < βλ(P ∥Q

1
θ). (119)

Proof. The different regimes follow directly from Lemma A.3 and the characterizations in Theorem A.2:

• The behavior in the high-λ regime is derived from the asymptotic expressions in Eq. 84.

• For the intermediate regime, the PR-Curve values follow Eq. 88, and Lemma A.3 determines the qualitative behavior
based on ϵ0.

• For the regime of low λ, only the Recall and Precision are fixed. Only the range of λ defined by λ < λt
min varies and

follows the same variations observed in Lemma A.3.
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B. Proof of results in Section 5
B.1. Proofs for Subsection 5.2: Trunc

Define P Trunc(⋅) = P (⋅ ∣ Xtrunc), and let H(⋅) denote the entropy. Informally, the following proposition states that if L∆
Trunc

gets arbitrarily close to its minimum value (1 −∆)H(P Trunc) then for a recall arbitrarily close to 1 −∆, the precision will
be arbitrarily close to 1.

Proposition. (Trunc optimizes the precision at a given recall) For any ϵ > 0, if L∆
Trunc(θ) ≤ ϵ + (1 −∆)H(P

Trunc), then
there is a precision-recall pair (α,β) such that β ≥ (1 −∆) −

√
ϵ, and α ≥ 1 −

√
ϵ

2(1−∆)
.

Proof. Let XTrunc = {x ∶ Q(x) ≥ δ} and ∆ = 1 − P (XTrunc). Let us first rewrite the objective function:

L
∆
Trunc(θ) = −Ex∼P [

L

∑
l=1

1{Q(x)≥δ} logQ<l(xl)]

= −Ex∼P [1{Q(x)≥δ} logQ(x)]

= −P (XTrunc) ×Ex∼P (⋅∣Xtrunc) [logQ(x)]

= −(1 −∆)Ex∼P Trunc(⋅) [logQ(x)]

= (1 −∆)DKL (P
Trunc
∥Q) + (1 −∆)H(P Trunc

)

Combining the inequality L∆
Trunc(θ) ≤ ϵ + (1 −∆)H(P

Trunc) with Pinsker inequality, we have

DTV (P
Trunc,Q) ≤

√
DKL (P Trunc ∥Q)

2
≤

√
ϵ

2(1 −∆)

Choosing λ = 1
1−∆

, we are now ready to compute lower bounds on Precision-Recall:

αλ (P ∥Q) =∑
x

min(
1

1 −∆
P (x),Q(x))

≥ ∑
x∈XTrunc

min(
1

1 −∆
P (x),Q(x))

= ∑
x∈X

min (P Trunc
(x),Q(x)) = 1 −DTV(P

Trunc,Q)

≥ 1 −

√
ϵ

2(1 −∆)

βλ (P ∥Q) =
1

λ
αλ (P ∥Q) ≥ (1 −∆) −

√
ϵ(1 −∆)

2

For Proposition 5.3:

Proposition. Optimizing θ using L1−δ
TruncR is equivalent to optimize Recall for a fixed value of Precision α = 1 − δ.

Proof. We consider the family of truncated distribution Qtrunc defined in Kang & Hashimoto (2020), such that there exists
the distribution νQ such that:

Q = (1 − δ)Qtrunc
+ δνQ, (120)

with Supp(Qtrunc) ∩ Supp(νQ) = {∅}. Therefore, there exists a Recall β and a distribution νP such that:

P = βQtrunc
+ (1 − β)νP . (121)
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Therefore, if we want to optimize Recall β for a fixed Precision α = 1 − δ, we can minimize the KL-divergence between P
and Qtrunc, therefore minimizing:

−Ex∼P [log (Q
trunc
θ (x)]] , (122)

with Qtrunc
θ (x) = Qθ(x)

1−δ
1{log Q̄θ(x)≥∆}

. Thus, in order to avoid infinite divergence, we can consider the following loss:

L
1−δ
TruncR(θ) = −Ex∼P [

L

∑
l=1

1{log Q̄θ(x)≤∆}
logQθ(x<l)] . (123)

B.2. Proofs for Subsection 5.3: GOLD

Let us recall the Theorem 5.4:

Theorem (α-Divergence Minimization). Minimizing the α-divergences between P<l and Q<l for all l ∈ {1, . . . , L} is
equivalent to minimizing

L
α
c-Div(θ) = −Ex∼P [

L

∑
l=1

Q̄θ(xl∣x<l)
1−α logQθ(xl∣x<l)] . (124)

Proof. Let us focus on the α-divergence Dα any distributions P<l and Q<l and xl ∼ P<l:

Dα(P<l∥Q<l) =
1

α − 1
[∑
x∈V

P<l(x)
αQ<l(x)

1−α
− 1] (125)

=
1

α − 1
[Q<l(xl)

1−α
− 1] (126)

by assuming that P<l = P̂<l with γ = 1. We can write the gradient of the α-divergence with respect to the model parameters
θ:

∇θDα(P ∥Qθ) =
1

α − 1
∇θ [Qθ(xl)

1−α
− 1] (127)

=
1 − α

α − 1
Qθ(xl)

−α
∇θQθ(xl) by the chain rule, (128)

= −Qθ(xl)
−α+1 1

Qθ(xl)
∇θQθ(xl) (129)

= −Qθ(xl)
−α+1
∇θ logQθ(xl) since ∇θ logQθ(xl) = ∇θQθ(xl)/Qθ(xl) (130)

= Qθ(xl)
−α+1
∇θ [− logQθ(xl)] . (131)

Therefore, minimizing the α-divergence is equivalent to maximizing the loss:

Q̄(xl)
1−α
× [− logQ(xl)] . (132)

B.3. Proofs for Subsection 5.4: TaiLr

First let us recall proposition 5.5:

Proposition. The optimal distribution Qθ using the TaiLr method with γ > 0 satisfies the following property:

∀x ∈ VL, ∀l ∈ 1, . . . , L, Qθ(xl∣x<l) =
P (xl∣x<l)(1 − γ + V γ) − γ

1 − γ
. (133)

In others words, Q(xl∣x<l) > P (xl∣x<l) if P (xl∣x<l) > 1/V and Q(xl∣x<l) ≤ P (xl∣x<l) otherwise.

26



When Temperature Fails, Change the Loss

Proof. The loss minimized by the TaiLr method is:

L
γ
TaiLr(θ) = −Ex∼P [

L

∑
l=1

Q̄<l(xl)

γ + (1 − γ)Q̄<l(xl)
logQθ(xl∣x<l)] . (134)

Differentiating every term with respect to θ, we have:

∇θ [
Q̄<l(xl)

γ + (1 − γ)Q̄<l(xl)
logQθ(xl∣x<l)] =

Q̄<l(xl)∇θ logQθ(xl∣x<l)

γ + (1 − γ)Q̄<l(xl)
(135)

=
1 − γ

1 − γ

∇θQθ(xl∣x<l)

γ + (1 − γ)Q̄<l(xl)
(136)

=
1

1 − γ
∇θ log(γ + (1 − γ)Qθ(xl∣x<l)). (137)

Minimizing Lγ
TaiLr(θ) is equivalent to maximizing the following loss:

Ex∼P [
L

∑
l=1

log(γ + (1 − γ)Qθ(xl∣x<l))] = ∑
x1,...,xL

L

∏
l=1

P<l(xl) log(γ + (1 − γ)Qθ(xl∣x<l)) (138)

=
L

∑
l=1

Ex<l∼P

⎡
⎢
⎢
⎢
⎣
∑
xl∈V

P (xl∣x<l) log(γ + (1 − γ)Qθ(xl∣x<l))
⎤
⎥
⎥
⎥
⎦
. (139)

In others terms, this is equivalent to maximize the following loss for all l ∈ {1, . . . , L} and x<l ∼ P , and denoting
ql = Qθ(xl∣x<l) and pl = P (xl∣x<l):

l(q) =
L

∑
l=1

pl log(γ + (1 − γ)ql). (140)

By using the Lagrange multiplier method, to ensure that the sum of the probabilities is equal to one, we have the optimization
problem:

l(x, µ) =
L

∑
l=1

pl log(γ + (1 − γ)ql) + µ(1 −
L

∑
l=1

ql) . (141)

Using KKT conditions, we have:
⎧⎪⎪
⎨
⎪⎪⎩

∀l, ∇ql l(x, µ) =
pl(1−γ)

γ+(1−γ)ql
− µ = 0,

∑
L
l=1 ql = 1,

(142)

Which is equivalent to:

∀l, pl = µ(
γ

1 − γ
+ ql) (143)

By summing for all l ∈ {1, . . . , L}, we have:

µ =
1 − γ

1 − γ + V γ
. (144)

and thus, for all l ∈ {1, . . . , L}:

ql =
pl
µ
−

γ

1 − γ
=
pl(1 − γ + V γ) − γ

1 − γ
. (145)

Finally, we can show that in that case:

ql ≶ pl⇔
pl(1 − γ + V γ) − γ

1 − γ
≶ pl (146)

⇔ pl(1 − γ + V γ) ≶ pl(1 − γ) + γ (147)

⇔ pl ≶
1

V
, (148)

which concludes the proof.
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First, let us recall that precision αλ can be written as a linear function of a divergence Dλ(P ∥ Q) denoted PR-Divergence
in Verine et al. (2023):

αλ(P ∥Q) =min (λ,1) −Dλ(P ∥ Q). (149)

It can be shown, using Lemma 4.4.1 in Verine (2024) that:

Dλ(P ∥ Q) =
1

2
∑

x∈VL

∣λP (x) −Q(x)∣ −
1

2
∣λ − 1∣ . (150)

Therefore, using similar arguments as Ji et al. (2023), we can bound the divergence between P and Q by the divergence
between the conditional distribution P (⋅ ∣ x<t) and Q(⋅ ∣ x<t):

Dλ(P ∥ Q) =
1

2
∑

x∈VL

∣λP (x) −Q(x)∣ −
1

2
∣λ − 1∣ (151)

=
1

2
∑

x1,...,xL

∣λ
L

∏
l=1

P (xl ∣ x<l) −
L

∏
l=1

Q(xl ∣ x<l)∣ −
1

2
∣λ − 1∣ (152)

=
1

2
∑

x1,...,xL

∣
L

∏
l=1

(λ
1
LP (xl ∣ x<l)) −

L

∏
l=1

Q(xl ∣ x<l)∣ −
1

2
∣λ − 1∣ . (153)

Using the triangular inequality, it can be shown that for every at, bt ∈ R:

∣
L

∏
l=1

ai −
L

∏
l=1

bi∣ ≤
L

∑
l=1

∣ai − bi∣ ×
⎛

⎝

l−1

∏
j=1

aj
⎞

⎠
×
⎛

⎝

L

∏
j=l+1

bj
⎞

⎠
. (154)

Thus, by taking ai = λ
1
LP (xl ∣ x<l) and bi = Q(xl ∣ x<l), the PR-Divergence can be bounded by:

1

2

L

∑
l=1

∑
x1,...,xl

l−1

∏
j=1

(λ
1
LP (xj ∣ x<j))∣λ

1
LP (xl ∣ x<l) −Q(xl ∣ x<l)∣ × ∑

xl+1,...,xL

L

∏
j=l+1

(Q(xj ∣ x<j))

−
1

2
∣λ − 1∣ .

(155)

By marginalizing over the xl+1, . . . , xL, the bound can be expressed as:

1

2

L

∑
l=1

λ
l−1
L ∑

xl

Ex<l∼P ∣λ
1
LP (xl ∣ x<l) −Q(xl ∣ x<l)∣ −

1

2
∣λ − 1∣ . (156)

Finally, we can show that:

Dλ(P ∥ Q) ≤ Ex∼P [
L

∑
l=1

λ
l−1
L D

λ
1
T
(P (⋅ ∣ x<l) ∥ Q(⋅ ∣ x<l))] +

1

2
[∣λ

1
T − 1∣

L

∑
l=1

λ
l−1
L − ∣λ − 1∣] . (157)

Now we need to compute:

Dλ(P (⋅ ∣ x<l) ∥ Q(⋅ ∣ x<l)) =min(λ,1) −Exl∼P (⋅∣x<l) [min(λ,
Q<l(xl)

P<l(xl)
)] (158)

(159)

Now the challenge is that we do not have access to the ground truth distribution P . Thus, we can sample from the xl from
the true distribution P<l and approximate the expectation density using Definition 5.1:

P<l(xl) ≈ P̂
xl

<l (xl) = γ1{xl=xl} + (1 − γ)Q̄<l(xl), (160)
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where Q̄ is the model distribution detached from the computation graph. In other words, ∇θQ̄ = 0. However, to estimate the
expectation, we can either use a one-step Monte Carlo approximation similarly to Ji et al. (2023):

Exl∼P (⋅∣x<l) [min(λ,
Q<l(xl)

P<l(xl)
)] ≈min(λ,

Q<l(xl)

P̂ xl

<l (xl)
) (161)

=min(λ,
Q<l(xl)

γ + (1 − γ)Q̄<l(xl)
) (162)

= 1{Q̄<l(xl)<δλ}

Q<l(xl)

γ + (1 − γ)Q̄<l(xl)
+ 1{Q̄<l(xl)≥δλ}

λ, (163)

with δλ =
λγ

1−(1−γ)λ
. By differentiating the expectation, we can show that the gradient of the expectation is:

∇θ Exl∼P (⋅∣x<l) [min(λ,
Q<l(xl)

P<l(xl)
)] ≈ ∇θ min(λ,

Q<l(xl)

P̂ xl

<l (xl)
) (164)

= 1{Q̄<l(xl)<δλ}

∇θQ<l(xl)

γ + (1 − γ)Q̄<l(xl)
(165)

= 1{Q̄<l(xl)<δλ}

Q̄<l(xl)∇θ logQ<l(xl)

γ + (1 − γ)Q̄<l(xl)
. (166)

Thus, using the Monte Carlo approximation and Assumption 5.1, we can show that minimizing the PR-Divergence is
equivalent to maximizing the following loss:

LPR−λ−MC(θ) = −Ex∼P [
L

∑
l=1

λ
t−1
T 1

{Q̄<l(xl)≤δλ1/T }
Q̄θ(xl∣x<l)

γ + (1 − γ)Q̄θ(xl∣x<l)
logQθ(xl∣x<l)] , (167)

where δλ1/T =
λ1/T γ

1−(1−γ)λ1/T .
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C. Training Algorithms details
In this section, we describe the training algorithm used to minimize a weighted Negative Log-Likelihood (NLL) loss. While
the optimization loop remains the same across all methods, the weight computation w(x, l) varies depending on the chosen
criterion: Trunc, TruncR, c-Div, or λ-PR.

The core idea is to compute importance weights based on a detached estimate of likelihood, denoted Q̄. This value is treated
as a constant during backpropagation, ensuring the weight computation does not interfere with gradient updates.

In Python, this is implemented using the .detach() method. For instance, if logp = model(x), then
logp.detach() returns a tensor with the same values but without gradient tracking. This means Q̄ can be used
for weighting without contributing to the gradient computation itself.

Algorithm 1 Weighted NLL Training Algorithm

Require: Training dataset D = {x(i)}Ni=1, model Qθ, method method ∈ {NLL,Trunc,TruncR, c-Div, λ-PR}, hyperparame-
ters ∆, K for Trunc, α for c-Div, γ and λ for λ − PR, learning rate η

1: for each training step do
2: Sample a batch B ⊂ D
3: if method = NLL then
4: for each x ∈ B and l do
5: w(x, l)← 1
6: end for
7: else if method = Trunc or method = TruncR then
8: Compute log-likelihood Q̄(x) for all x ∈ B
9: Add Q̄(x) for all x ∈ B to a rolling list Q of size K

10: if method = Trunc then
11: Compute threshold δ for the highest δ ×K values in Q
12: for each x ∈ B and l do
13: w(x, l)← 1{Q̄(x)≥δ}
14: end for
15: else if method = TruncR then
16: Compute threshold δ for the lowest δ ×K values in Q
17: for each x ∈ B and l do
18: w(x, l)← 1{Q̄(x)≤δ}
19: end for
20: end if
21: else if method = c-Div then
22: for each x ∈ B and l do
23: Compute Q̄<l(xl)

24: w(x, l)← Q̄<l(xl)
1/2

25: end for
26: else if method = λ-PR then
27: for each x ∈ B and l do
28: Compute Q̄<l(xl)

29: w(x, l)← Q̄<l(xl)

γ+(1−γ)Q̄<l(xl)

30: end for
31: end if
32: Compute gradient:
33: g ← ∇θ (−∑x∈B∑

L
l=1w(x, l) logQ<l(xl))

34: Update parameters: θ ← θ − ηg
35: end for
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D. Experiments
All experiments were conducted using Pytorch and HuggingFace Transformers. For MathQA-Python generation, we used
vLLM library to speed up the generation process. We used both A100-80GB and H100-80GB GPUs for the experiments.

D.1. Models and training details

CodeContests. We benchmarked Llama-3.1 8B/70B Instruct model before/after the RLEF. RLEF (Gehring et al., 2024)
uses rule-based reward to fine-tune LLM with reinforcement learning. An interesting point, is that the increase of the
Precision at the cost of the drop of the Recall after RLEF in Figure 4 echos the finding of Le Bronnec et al. (2024); Kirk
et al. (2024) that RL training could reduce the diversity of the model output.

Integer multiplication. We trained a small replica of a Llama transformer model, with 4 hidden layers, an embedding
dimension of 32, 4 attention heads and a feedforward dimension of 128. We trained the model using 25 000 samples. We
used the Adam optimizer, with a learning rate of 0.001, a weight decay of 1, 500 epochs, and a batch size of 512 sequences.

WritingPrompts & MathQA-Python. We fine-tuned models based on the pre-trained Olmo-1B and Llama3.2-3B models.
All models, regardless of the dataset and the loss function used, were trained for 3 epochs. For non-NLL losses, fine-tuning
started from a checkpoint obtained after one epoch of NLL training. For all training, we used the Adam optimizer, with a
constant learning rate of 1e-6, with 1000 linear warmup steps, a batch size of 8.

Instruction tuning on Alpaca. We fine-tuned Llama3.1-8B on the Alpaca dataset, to get a basic instruction-tuned model,
capable of generalization. We use the same training setup as for the other datasets. For Alpaca generation, we used a
reference temperature of 0.5 on most experiments, since we observed some degeneracies in the generation with a temperature
of 1.0.

D.2. Evaluation Methods

In the evaluation phase in the Section 6, we evaluate the model using different methods.
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Figure 12: Support size of the conditional distribution P (xl ∣ x<l) estimated using a reference model Llama3-8B-Instruct
on the CodeContests dataset. The left plot shows the distribution of the number of tokens needed to cover different mass p
(e.g., 0.9, 0.95, 0.99) for each position l. The right plot shows this numbers and the 10%, 50% and 90% quantiles.

Estimating the Sparsity of P via Token-Level Conditionals. In this experiment, we aim to provide an empirical proxy
for the sparsity of the true target distribution P . By quantifying how many tokens carry most of the probability mass under a
strong reference model, we can validate the assumption that P is indeed sparse in real-world settings. We approximate the
sparsity of the target distribution P using a reference model Q assumed to approximate P reasonably well. Specifically, we
assume that Q fits P correctly in structure but remains noisy in estimation. This reflects realistic modeling conditions, where
Q captures the general shape of the target distribution but with limited precision due to model size or training noise. An
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illustrative histogram of support sizes across examples is shown in Figure 12. We refer to this estimate as an upper bound on
the true sparsity of P , as the method only considers local conditionals Q(xl ∣ x<l) and may include spurious high-entropy
predictions not representative of the true support.

Regarding the use of the geometric mean to estimate sparsity: we rely on it because it is well suited to multiplicative or
exponential behaviors, which naturally arise in token-level conditional probabilities in language models. At each position
in a sequence, we compute the number of tokens needed to cover a fixed portion (e.g., 90%) of the total probability mass.
Taking the maximum per sample, and then aggregating across the dataset using the geometric mean, allows us to capture
a robust notion of sparsity that penalizes extremely large values less than the arithmetic mean would (which is desirable
since these are rare), preserves scale-invariance (if all values are scaled by a constant factor, the geometric mean scales
accordingly), reflects the multiplicative nature of uncertainty across positions in sequence models. This approach aligns
with best practices in probabilistic modeling, such as those discussed in Murphy (2013) and other works on log-loss and
information content.

Algorithm 2 Estimating the Support Size of the Target Distribution

Require: Dataset D = {x(i)}Ni=1, reference model Qθ (e.g., Llama3.1), coverage threshold p ∈ (0,1)
1: for each sample x ∈ D do
2: for each position l in the target sequence do
3: Compute conditional distribution Qθ(xl ∣ x<l)
4: Sort vocabulary tokens by decreasing probability
5: Compute minimal number kl of top tokens such that cumulative mass ≥ p
6: end for
7: Let kmax(x)←maxl kl
8: end for
9: Compute geometric mean of {kmax(x)}x∈D

10: Return geometric mean as upper bound estimate of ∣Supp(P )∣

Precision and Recall for the Integers Multiplication Task. In this experiment, we evaluate the model using the Precision
and Recall metrics. We compute these metrics using the following algorithm:

Algorithm 3 Precision and Recall for Integer Multiplication

Require: Number of samples N , model Qθ trained to generate a sequence of digits a1a2 × b1b2 = c1c2, where ai, bi, ci ∈
{0,1, . . . ,9} such that a1a2 × b1b2%97 = c1c2.

1: Initialize unique← ∅
2: Initialize correct← 0
3: for each sample i = 1, . . . ,N do
4: Sample a sequence x(i) from the model
5: if the sequence has the right format then
6: if a1a2 × b1b2%97 = c1c2 then
7: correct← correct + 1
8: if (a1a2, b1b2) ∉ unique then
9: unique← unique ∪ (a1a2, b1b2)

10: end if
11: end if
12: end if
13: end for
14: Compute Precision Precision = correct

N

15: Compute Recall Recall = ∣unique∣
99×99

16: Return Precision,Recall

Precision and Recall for the WritingPrompts Task. In this experiment, we evaluate the model using Precision and
Recall, computed following the algorithm proposed by Le Bronnec et al. (2024), described below. We used the same
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hyperparameter than the original paper, with two differences: instead of using the embedding of the last token to featurize
texts, we averaged the embeddings, and we used 2,000 samples for the support estimation.

Algorithm 4 Precision and Recall for WritingPrompts

Require: Number of samples N = 2000, model Qθ, dataset D = {x(i)}Ni=1, number of neighbors k = 4, embedding model
ϕ = GPT2-Large.

1: Estimate the support of the distribution P with D using k-NN based on Kynkäänniemi et al. (2019) and Le Bronnec
et al. (2024) with embedding model ϕ.

2: Initialize Q = ∅
3: while ∣Q∣ < N do
4: Sample a sequence x(i) from the model and add it to Q
5: end while
6: Estimate the support of the distribution Qθ with Q using k-NN based on Kynkäänniemi et al. (2019) and Le Bronnec

et al. (2024) with embedding model ϕ.
7: Count the number of samples Nfake of Q that are in SuppP .
8: Count the number of samples Nreal of D that are in SuppQθ.
9: Compute Precision = Nfake

N

10: Compute Recall = Nfake

Nreal

11: Return Precision,Recall

Precision and Recall for the Code Generation Task and MathQA-Python. We use the widely adopted pass@k metric
to evaluate code-generation tasks in CodeContests and MathQA-Python. Formally, pass@k estimates the probability that
at least one of k sampled completions is correct, which directly corresponds to Precision when k = 1, and Recall as
pass@100 − pass@1. This accounts for diversity in model outputs under multiple draws.

The computation uses the unbiased estimator for pass@k (Chen et al., 2021): given n ≥ k samples per prompt, let c be the
number of correct completions. The unbiased estimate is:

p̂ass@k =

⎧⎪⎪
⎨
⎪⎪⎩

1 −
(
n−c
k
)

(
n
k
)

if c ≤ n − k

1 otherwise

Algorithm 5 Precision and Recall for Code Generation

Require: Dataset D = {x(i)}Ni=1, number of samples per prompt n, evaluation budget k
1: Initialize sum pass 1← 0
2: Initialize sum pass k← 0
3: for each prompt x(i) ∈ D do
4: Generate n completions y(i,1), . . . ,y(i,n) using Qθ

5: Let c← number of correct completions among the n
6: Compute unbiased estimate:

p̂ass@k
(i)
=

⎧⎪⎪
⎨
⎪⎪⎩

1 −
(
n−c
k
)

(
n
k
)

if c ≤ n − k

1 otherwise

7: sum pass 1← sum pass 1 + c/n

8: sum pass k← sum pass k + p̂ass@k
(i)

9: end for
10: Precision← sum pass 1

N

11: Recall← sum pass k
N

−Precision
12: Return Precision,Recall
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D.3. Comparison with decoding methods.

To complement our analysis of temperature-based sampling, we report results for two alternative decoding strategies on the
WRITINGPROMPTS dataset: Top-p sampling, with varying p and KL-guided temperature sampling (Chang et al., 2023),
reported to yield better diversity in question-anwering and summarization tasks.

We tested Top-p for p ∈ {0.1,0.5,0.8,0.9}, and re-implemented KL-guided sampling, using guidance parameter σ ∈
{1.0,3.0,5.0,10.0} (same range as in the original paper). All experiments used the same model and evaluation setup as in
the main paper.

Table 5: Precision (P) and Recall (R) on WRITINGPROMPTS for different decoding methods. Note that for as σ increases,
KL-guided approaches standard sampling. For all methods we used a temperature of t = 1.

Method P R

Base sampling, t = 1 0.848 0.086

Top-p, p = 0.1 0.997 0.001
Top-p, p = 0.5 0.996 0.001
Top-p, p = 0.8 0.886 0.033
Top-p, p = 0.9 0.805 0.058

KL, σ = 1.0 0.757 0.061
KL, σ = 3.0 0.800 0.068
KL, σ = 5.0 0.831 0.069
KL, σ = 10.0 0.844 0.086

From Table 5, we observe that Top-p sampling increases Precision at the expense of Recall. This aligns with intuition, as
Top-p discards low-probability tokens, favoring more likely completions and thus leading to higher Precision.

In contrast, KL-guided sampling reduces both Precision and Recall overall. This may be due to the fact that the method
was originally designed for conditional generation tasks such as summarization and question answering, which likely have
different characteristics than our open-ended generation setting.

These results reinforce the need for Recall-oriented training losses, which offer a more effective way to improve the
Precision-Recall trade-off than decoding-based methods alone.
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