
Published as a conference paper at ICLR 2024

A PRIMAL-DUAL APPROACH TO SOLVING VARIA-
TIONAL INEQUALITIES WITH GENERAL CONSTRAINTS

Tatjana Chavdarova∗
University of California, Berkeley
tatjana.chavdarova@berkeley.edu

Tong Yang∗

Carnegie Mellon University
tongyang@andrew.cmu.edu

Matteo Pagliardini
University of California, Berkeley & EPFL
matteo.pagliardini@epfl.ch

Michael I. Jordan
University of California, Berkeley
jordan@cs.berkeley.edu

ABSTRACT

Yang et al. (2023) recently showed how to use first-order gradient methods to solve
general variational inequalities (VIs) under a limiting assumption that analytic so-
lutions of specific subproblems are available. In this paper, we circumvent this
assumption via a warm-starting technique where we solve subproblems approxi-
mately and initialize variables with the approximate solution found at the previous
iteration. We prove the convergence of this method and show that the gap function
of the last iterate of the method decreases at a rate of O(1√

K
) when the operator

is L-Lipschitz and monotone. In numerical experiments, we show that this tech-
nique can converge much faster than its exact counterpart. Furthermore, for the
cases when the inequality constraints are simple, we introduce an alternative vari-
ant of ACVI and establish its convergence under the same conditions. Finally, we
relax the smoothness assumptions in Yang et al., yielding, to our knowledge, the
first convergence result for VIs with general constraints that does not rely on the
assumption that the operator is L-Lipschitz.

1 INTRODUCTION

We study variational inequalities (VIs), a general class of problems that encompasses both equilibria
and optima. The general (constrained) VI problem involves finding a point x⋆ ∈ X such that:

⟨x− x⋆, F (x⋆)⟩ ≥ 0, ∀x ∈ X , (cVI)

where X is a subset of the Euclidean n-dimensional space Rn, and where F : X 7→ Rn is a con-
tinuous map. VIs generalize standard constrained minimization problems, where F is a gradient
field F ≡ ∇f , and, by allowing F to be a general vector field, they also include problems such
as finding equilibria in zero-sum games and general-sum games (Cottle & Dantzig, 1968; Rock-
afellar, 1970). This increased expressivity underlies their practical relevance to a wide range of
emerging applications in machine learning, such as (i) multi-agent games (Goodfellow et al., 2014;
Vinyals et al., 2017), (ii) robustification of single-objective problems, which yields min-max formu-
lations (Szegedy et al., 2014; Mazuelas et al., 2020; Christiansen et al., 2020; Rothenhäusler et al.,
2018), and (iii) statistical approaches to modeling complex multi-agent dynamics in stochastic and
adversarial environments. We refer the reader to (Facchinei & Pang, 2003; Yang et al., 2023) for
further examples.

Such generality comes, however, at a price in that solving for equilibria is notably more challenging
than solving for optima. In particular, as the Jacobian of F is not necessarily symmetric, we may
have rotational trajectories or limit cycles (Korpelevich, 1976; Hsieh et al., 2021). Moreover, in sharp
contrast to standard minimization, the last iterate can be quite far from the solution even though the
average iterate converges to the solution (Chavdarova et al., 2019). This has motivated recent efforts

∗Equal contribution. Source code: https://github.com/Chavdarova/I-ACVI.

1

mailto:tatjana.chavdarova@berkeley.edu
mailto:tongyang@andrew.cmu.edu
mailto:matteo.pagliardini@epfl.ch
mailto:jordan@cs.berkeley.edu
https://github.com/Chavdarova/I-ACVI

Published as a conference paper at ICLR 2024

to study specifically the convergence of the last iterate produced by gradient-based methods. Thus,
herein, our focus and discussions refer to the last iterate.

Recent work has focused primarily on solving VIs in two cases of the domain X : (i) the uncon-
strained setting where X ≡ Rn (Golowich et al., 2020b; Chavdarova et al., 2023; Gorbunov et al.,
2022a; Bot et al., 2022) and for (ii) the constrained setting with projection-based methods (Tseng,
1995; Daskalakis et al., 2018; Diakonikolas, 2020; Nemirovski, 2004; Mertikopoulos et al., 2019;
Cai et al., 2022). The latter approach assumes that the projection is “simple,” in the sense that this
step does not require gradient computation. This holds, for example, for inequality constraints of the
form x ≤ τ where τ is some constant, in which case fast operations such as clipping suffice. How-
ever, as is the case in constrained minimization, the constraint set—denoted herein with C ⊆ X—is,
in the general case, an intersection of finitely many inequalities and linear equalities:

C = {x ∈ Rn|φi(x) ≤ 0, i ∈ [m], Cx = d} , (CS)

where each φi : Rn 7→ R, C ∈ Rp×n, and d ∈ Rp. Given a general CS (without assuming
additional structure), implementing the projection requires second-order methods, which quickly
become computationally prohibitive as the dimension n increases. If the second-order derivative
computation is approximated, the derived convergence rates will yet be multiplied with an additional
factor; thus, the resulting rate of convergence may not match the known lower bound (Golowich
et al., 2020a; Cai et al., 2022). This motivates a third thread of research, focusing on projection-
free methods for the constrained VI problem, where the update rule does not rely on the projection
operator. This is the case we focus on in this paper.

There has been significant work on developing second-order projection-free methods for the formu-
lation in cVI; we refer the interested reader to (Chapter 7, Nesterov & Nemirovski, 1994) and (Chap-
ter 11, Facchinei & Pang, 2003, vol. 2) for example. We remark that the seminal mirror-descent and
mirror-prox methods (Nemirovski & Yudin, 1983; Beck & Teboulle, 2003; Nemirovski, 2004) (see
App. A.5) exploit a certain structure of the domain and avoid the projection operator, but cannot be
applied for general CS.

In recent work, Yang et al. (2023) presented a first-order method, referred to as the ADMM-based
Interior Point Method for Constrained VIs (ACVI), for solving the cVI problem with general
constraints. ACVI combines path-following interior point (IP) methods and primal-dual meth-
ods. Regarding the latter, it generalizes the alternating direction method of multipliers (ADMM)
method (Glowinski & Marroco, 1975; Gabay & Mercier, 1976), an algorithmic paradigm that is
central to large-scale optimization (Boyd et al., 2011; Tibshirani, 2017)–see (Yang et al., 2023) and
App. A.1; but which has been little explored in the cVI context. On a high level, ACVI has two
nested loops: (i) the outer loop smoothly decreases the weight µi of the inequality constraints as in
IP methods, whereas (ii) the inner loop performs a primal-dual update (for a fixed µi) as follows:

• solve a subproblem whose main (primal) variable xj
i aims to satisfy the equality constraints,

• solve a subproblem whose main (primal) variable yj
i aims to satisfy the inequality constraints,

• update the dual variable λj
i .

The first two steps solve the subproblems exactly using an analytical expression of the solution, and
the variables converge to the same value, thus eventually satisfying both the inequality and equality
constraints. See Algorithm 3 for a full description, and see Fig. 2 for illustrative examples. The
authors documented that projection-based methods may extensively zig-zag when hitting a con-
straint when there is a rotational component in the vector field, an observation that further motivates
projection-free approaches even when the projection is simple.

Yang et al. showed that the gap function of the last iterate of ACVI decreases at a rate of O(1√
K
)

when the operator is L-Lipschitz, monotone, and at least one constraint is active. It is, however, an
open problem to determine if the same rate on the gap function applies while assuming only that
the operator is monotone (where monotonicity for VIs is analogous to convexity for standard min-
imization, see Def. 2.1). Moreover, in some cases, the subproblems of ACVI may be cumbersome
to solve analytically. Hence, a natural question is whether we can show convergence approximately
when the subproblems are solved. As a result, we raise the following questions:

• Does the last iterate of ACVI converge when the operator is monotone without requiring it
to be L-Lipschitz?

2

Published as a conference paper at ICLR 2024

• Does ACVI converge when the subproblems are solved approximately?

In this paper, we answer the former question affirmatively. Specifically, we prove that the last iterate
of ACVI converges at a rate of O(1√

K
) in terms of the gap function (Def. 2.2) even when assuming

only the monotonicity of the operator. The core of our analysis lies in identifying a relationship
between the reference point of the gap function and a KKT point that ACVI targets implicitly (i.e.,
it does not appear explicitly in the ACVI algorithm). This shows that ACVI explicitly works to
decrease the gap function at each iteration. The argument further allows us to determine a con-
vergence rate by making it possible to upper bound the gap function. This is in contrast to the
approach of Yang et al. (2023), who upper bound the iterate distance and then the gap function, an
approach that requires a Lipschitz assumption. This is the first convergence rate for the last iterate
for monotone VIs with constraints that does not rely on an L-Lipschitz assumption on the operator.

To address the latter question, we leverage a fundamental property of the ACVI algorithm—namely,
its homotopic structure as it smoothly transitions to the original problem, a homotopy that inher-
ently arises from its origin as an interior-point method (Boyd & Vandenberghe, 2004). Moreover,
due to the alternating updates of the two sets of parameters of ACVI (x and y; see Algorithm 3), the
subproblems change negligibly, with the changes proportional to the step sizes. This motivates the
standard warm-start technique where, at every iteration, instead of initializing at random, we ini-
tialize the corresponding optimization variable with the approximate solution found at the previous
iteration. We refer to the resulting algorithm as inexact ACVI, described in Algorithm 1. Further-
more, inspired by the work of Schmidt et al. (2011), which focuses on the proximal gradient method
for standard minimization, we prove that inexact ACVI converges with the same rate of O(1√

K
),

under a condition on the rate of decrease of the approximation errors. We evaluate inexact ACVI
empirically on 2D and high-dimensional games and show how multiple inexact yet computationally
efficient iterations can lead to faster wall-clock convergence than fewer exact ones.

Finally, we provide a detailed study of a special case of the problem class that ACVI can solve. In
particular, we focus on the case when the inequality constraints are simple, in the sense that projec-
tion on those inequalities is fast to compute. Such problems often arise in machine learning, e.g.,
whenever the constraint set is an Lp-ball, with p ∈ {1, 2,∞} as in adversarial training (Goodfellow
et al., 2015). We show that the same convergence rate holds for this variant of ACVI. Moreover, we
show empirically that when using this method to train a constrained GAN on the MNIST (Lecun &
Cortes, 1998) dataset, it converges faster than the projected variants of the standard VI methods.

In summary, our main contributions are as follows:

• We show that the gap function of the last iterate of ACVI (Yang et al., 2023, Algorithm 1 therein)
decreases at a rate of O(1√

K
) for monotone VIs, without relying on the assumption that the oper-

ator is L-Lipschitz.
• We combine a standard warm-start technique with ACVI and propose a precise variant with ap-

proximate solutions, named inexact ACVI—see Algorithm 1. We show that inexact ACVI recovers
the same convergence rate as ACVI, provided that the errors decrease at appropriate rates.

• We propose a variant of ACVI designed for inequality constraints that are fast to project to—see
Algorithm 2. We guarantee its convergence and provide the corresponding rate; in this case, we
omit the central path, simplifying the convergence analysis.

• Empirically, we: (i) verify the benefits of warm-start of the inexact ACVI; (ii) observe that I-ACVI
can be faster than other methods by taking advantage of cheaper approximate steps; (iii) train a
constrained GAN on MNIST and show the projected version of ACVI is faster to converge than
other methods; and (iv) provide visualizations contrasting the different ACVI variants.

1.1 RELATED WORKS

Last-iterate convergence of first-order methods on VI-related problems. When solving VIs,
the last and average iterates can be far apart; see examples in (Chavdarova et al., 2019). Thus,
an extensive line of work has aimed at obtaining last-iterate convergence for special cases of VIs
that are important in applications, including bilinear or strongly monotone games (e.g., Tseng,
1995; Malitsky, 2015; Facchinei & Pang, 2003; Daskalakis et al., 2018; Liang & Stokes, 2019;
Gidel et al., 2019b; Azizian et al., 2020; Thekumparampil et al., 2022), and VIs with cocoercive
operators (Diakonikolas, 2020). Several papers exploit continuous-time analyses as these provide

3

Published as a conference paper at ICLR 2024

direct insights on last-iterate convergence and simplify the derivation of the Lyapunov potential
function (Ryu et al., 2019; Bot et al., 2020; Rosca et al., 2021; Chavdarova et al., 2023; Bot et al.,
2022). For monotone VIs, (i) Golowich et al. (2020b;a) established that the lower bound of p̃-
stationary canonical linear iterative (p̃-SCLI) first-order methods (Arjevani et al., 2016) isO(1

p̃
√
K
),

(ii) Golowich et al. (2020b) obtained a rate in terms of the gap function, relying on first- and second-
order smoothness of F , (iii) Gorbunov et al. (2022a) and Gorbunov et al. (2022b) obtained a rate of
O(1

K) for extragradient (Korpelevich, 1976) and optimistic GDA (Popov, 1980), respectively—in
terms of reducing the squared norm of the operator, relying on first-order smoothness of F , and (iv)
Golowich et al. (2020b) and Chavdarova et al. (2023) provided the best iterate rate for OGDA while
assuming first-order smoothness of F . Daskalakis & Panageas (2019) focused on zero-sum convex-
concave constrained problems and provided an asymptotic convergence guarantee for the last iterate
of the optimistic multiplicative weights update (OMWU) method. For constrained and monotone
VIs with L-Lipschitz operator, Cai et al. (2022) recently showed that the last iterate of extragradient
and optimistic GDA have a rate of convergence that matches the lower bound. Gidel et al. (2017)
consider strongly convex-concave zero-sum games with strongly convex constraint set to study the
convergence of the Frank-Wolfe method (Lacoste-Julien & Jaggi, 2015).

Interior point (IP) methods for VIs. IP methods are a broad class of algorithms for solving prob-
lems constrained by general inequality and equality constraints. One of the widely adopted sub-
classes within IP methods utilizes log-barrier terms to handle inequality constraints. They typically
rely on Newton’s method, which iteratively approaches the solution from the feasible region. Sev-
eral works extend IP methods for constrained VI problems. Among these, Nesterov & Nemirovski
(Chapter 7, 1994) study extensions to VI problems while relying on Newton’s method. Further,
an extensive line of work discusses specific settings (e.g., Chen et al., 1998; Qi & Sun, 2002; Qi
et al., 2000; Fan & Yan, 2010). On the other hand, Goffin et al. (1997) described a second-order
cutting-plane method for solving pseudomonotone VIs with linear inequalities. Although these
methods enjoy fast convergence regarding the number of iterations, each iteration requires comput-
ing second-order derivatives, which becomes computationally prohibitive for large-scale problems.
Recently, Yang et al. (2023) derived the aforementioned ACVI method which combines IP methods
and the ADMM method, resulting in a first-order method that can handle general constraints.

2 PRELIMINARIES

Notation. Bold small and bold capital letters denote vectors and matrices, respectively, while curly
capital letters denote sets. We let [n] denote {1, . . . , n} and let e denote vector of all 1’s. The
Euclidean norm of v is denoted by ∥v∥, and the inner product in Euclidean space by ⟨·, ·⟩. ⊙
denotes element-wise product.

Problem. Let rank(C) = p be the rank of C as per (CS). With abuse of notation, let φ be
the concatenated φi(·), i ∈ [m]. We assume that each of the inequality constraints is convex and
φi ∈ C1(Rn), i ∈ [m]. We define the following sets:
C≤ ≜ {x ∈ Rn |φ(x) ≤ 0} , C< ≜ {x ∈ Rn |φ(x) < 0} , and C= ≜ {y ∈ Rn|Cy = d} ;
thus the relative interior of C is int C ≜ C< ∩ C=. We assume int C ̸= ∅ and that C is compact.

In the following, we list the necessary definitions and assumptions; see App. A for additional back-
ground. We define these for a general domain set S, and by setting S ≡ Rn and S ≡ X , these refer
to the unconstrained and constrained settings, respectively. We will use the standard gap function as
a convergence measure, which requires S to be compact to define it.
Definition 2.1 (monotone operators). An operator F : X ⊇ S → Rn is monotone on S if and only
if the following inequality holds for all x,x′ ∈ S: ⟨x− x′, F (x)− F (x′)⟩ ≥ 0.

Definition 2.2 (gap function). Given a candidate point x′ ∈ X and a map F : X ⊇ S → Rn where
S is compact, the gap function G : Rn → R is defined as: G(x′,S) ≜ max

x∈S
⟨F (x′),x′ − x⟩ .

Definition 2.3 (σ-approximate solution). Given a map F : X → Rn and a positive scalar σ, x ∈ X
is said to be a σ-approximate solution of F (x) = 0 iff ∥F (x)∥ ≤ σ.
Definition 2.4 (ε-minimizer). Given a minimization problem min

x
h(x), s.t. x ∈ S , and a fixed

positive scalar ε, a point x̂ ∈ S is said to be an ε-minimizer of this problem if and only if it holds
that: h(x̂) ≤ h(x) + ε, ∀x ∈ S.

4

Published as a conference paper at ICLR 2024

central path

initial point

(I-)ACVI

(a) ACVI (b) I-ACVI, K=20, ℓ=2 (c) I-ACVI, K=10, ℓ=2 (d) I-ACVI, K=5, ℓ=2

Figure 1: Convergence of ACVI and I-ACVI on the (2D-BG) problem. The central path is
depicted in yellow. For all methods, we show the y-iterates initialized at the same point (blue
circle). Each subsequent point on the trajectory depicts the (exact or approximate) solution at the
end of the inner loop. A yellow star represents the game’s Nash equilibrium (NE), and the constraint
set is the interior of the red square. (a): As we decay µt, the solutions of the inner loop of ACVI
follow the central path. As µt → 0, the solution of the inner loop of ACVI converges to the NE. (b,
c, d): When the x and y subproblems are solved approximately with a finite K and ℓ, the iterates
need not converge as the approximation error increases (and K decreases). See § 5 for a discussion.

Algorithm 1 Inexact ACVI (I-ACVI) pseudocode.
1: Input: operator F : X → Rn, constraints Cx = d and φi(x) ≤ 0, i = [m], hyperparameters
µ−1, β > 0, δ ∈ (0, 1), barrier map ℘ (℘1 or ℘2), inner optimizers Ax (e.g. EG, GDA) and Ay

(GD) for the x and y subproblems, resp.; outer and inner loop iterations T and K, resp.
2: Initialize: x(0)

0 ∈ Rn, y(0)
0 ∈ Rn, λ(0)

0 ∈ Rn

3: Pc ≜ I −C⊺(CC⊺)−1C where Pc ∈ Rn×n

4: dc ≜ C⊺(CC⊺)−1d where dc ∈ Rn

5: for t = 0, . . . , T − 1 do
6: µt = δµt−1

7: for k = 0, . . . ,K − 1 do
8: Set x(t)

k+1 to be a σk+1-approximate solution of: x+ 1
βPcF (x)−Pcy

(t)
k + 1

βPcλ
(t)
k −dc = 0

(w.r.t. x), by running ℓ(t)x steps of Ax, with x initialized to the previous solution (x(t)
k if

k > 0, else x
(t−1)
K)

9: Set y(t)
k+1 to be an εk+1-minimizer of miny

∑m
i=1 ℘

(
φi(y), µ

)
+ β

2

∥∥∥y − x
(t)
k+1 −

1
βλ

(t)
k

∥∥∥2,

by running ℓ(t)y steps of Ay , with y initialized to y
(t)
k when k > 0, or y(t−1)

K otherwise
10: λ

(t)
k+1 = λ

(t)
k + β(x

(t)
k+1 − y

(t)
k+1)

11: end for
12: (y

(t+1)
0 ,λ

(t+1)
0) ≜ (y

(t)
K ,λ

(t)
K)

13: end for

3 CONVERGENCE OF THE EXACT AND INEXACT ACVI ALGORITHMS FOR
MONOTONE VIS

In this section, we present our main theoretical findings: (i) the rate of convergence of the last iterate
of ACVI (the exact ACVI algorithm is stated in App. A) while relying exclusively on the assumption
that the operator F is monotone; and (ii) the corresponding convergence when the subproblems are
solved approximately—where the proposed algorithm is referred to as inexact ACVI—Algorithm 1
(℘1, ℘2 are defined below). Note that we only assume F is L-Lipschitz for the latter result, and if
we run Algorithm 1 with extragradient for line 8, for example, the method only has a convergence
guarantee if F is L-Lipschitz (see Korpelevich, 1976, Theorem 1). For easier comparison with one
loop algorithms, we will state both of these results for a fixed µ−1 (hence only have the k ∈ [K]
iteration count) as in (Yang et al., 2023); nonetheless, the same rates hold without knowing µ−1—see
App. B.4 in Yang et al. (2023) and our App. B.3. Thus, both guarantees are parameter-free.

5

Published as a conference paper at ICLR 2024

3.1 LAST ITERATE CONVERGENCE OF EXACT ACVI

Theorem 3.1 (Last iterate convergence rate of ACVI—Algorithm 1 in (Yang et al., 2023)). Given a
continuous operator F : X → Rn, assume: (i) F is monotone on C=, as per Def. 2.1; (ii) either F
is strictly monotone on C or one of φi is strictly convex. Let (x(t)

K ,y
(t)
K ,λ

(t)
K) denote the last iterate

of ACVI.Given any fixed K ∈ N+, run with sufficiently small µ−1, then ∀t ∈ [T], it holds that:

G(x(t)
K , C) ≤ O(1√

K
) , and

∥∥∥x(t)
K − y

(t)
K

∥∥∥ ≤ O(1√
K

) .

App. B gives the details on the constants that appear in the rates and the proof of Theorem 3.1.

3.2 LAST ITERATE CONVERGENCE RATE OF INEXACT ACVI

For some problems, the equation in line 8 or the convex optimization problem in line 9 of ACVI
may not have an analytic solution, or the exact solution may be expensive to compute. Thus we
consider solving these two problems approximately, using warm-starting. At each iteration, we set
the initial variable x and y to be the solution at the previous step when solving the x and y sub-
problems, respectively, as described in Algorithm 1. The following Theorem—inspired by (Schmidt
et al., 2011)—establishes that when the errors in the calculation of the subproblems satisfy certain
conditions, the last iterate convergence rate of inexact ACVI recovers that of (exact) ACVI. The
theorem holds for the standard barrier function used for IP methods, as well as for a new barrier
function (℘2) that we propose that is smooth and defined in the entire domain, as follows:

℘1(z, µ) ≜ −µ log(−z) (℘1) ℘2(z, µ) ≜

{
−µ log(−z) , z ≤ −e−

c
µ

µe
c
µ z + µ+ c , otherwise

(℘2)

where c in (℘2) is fixed constant. Choosing among these is denoted with ℘(·) in Algorithm 1.
Theorem 3.2 (Last iterate convergence rate of Inexact ACVI—Algorithm 1 with ℘1 or ℘2). Given
a continuous operator F : X → Rn, assume: (i) F is monotone on C=, as per Def. 2.1; (ii) either
F is strictly monotone on C or one of φi is strictly convex; and (iii) F is L-Lipschitz on X , that is,
∥F (x)− F (x′)∥ ≤ L ∥x− x′∥, for all x,x′ ∈ X and some L > 0. Let (x(t)

K ,y
(t)
K ,λ

(t)
K) denote the

last iterate of Algorithm 1; and let σk and εk denote the approximation errors at step k of lines 8 and
9 (as per Def. 2.3 and 2.4), respectively. Further, suppose: limK→∞

1√
K

∑K+1
k=1 (k(

√
εk + σk)) <

+∞ . Given any fixed K ∈ N+, run with sufficiently small µ−1, then for all t ∈ [T], it holds:

G(x(t)
K , C) ≤ O(1√

K
) , and

∥∥∥x(t)
K − y

(t)
K

∥∥∥ ≤ O(1√
K

) .

As is the case for Theorem 3.1, Theorem 3.2 gives a nonasymptotic convergence guarantee. While
the condition involving the sequences {ϵk}K+1

k=1 and {σk}K+1
k=1 requires the given expression to be

summable, the convergence rate is nonasymptotic as it holds for any K. App. B gives details on
the constants in the rates of Theorem 3.2, provides the proof, and also discusses the algorithms
Ax,Ay for the sub-problems that satisfy the conditions. App. C discusses further details of the
implementation of Algorithm 1; and we will analyze the effect of warm-starting in § 5.

4 SPECIALIZATION OF ACVI FOR SIMPLE INEQUALITY CONSTRAINTS

We now consider that the inequality constraints are simple in that the projection is fast to compute.
This scenario frequently occurs in machine learning, particularly when dealing with L∞-ball con-
straints, for instance. Projections onto the L2 and L1-balls can also be obtained efficiently through
simple normalization for L2 and a O

(
n log(n)

)
algorithm for L1 (Duchi et al., 2008). In ACVI,

we have the flexibility to substitute the y-subproblem with a projection onto the set defined by the
inequalities. The x-subproblem still accounts for equality constraints, and if there are none, this
simplifies the x-subproblem further since Pc ≡ I , and dc ≡ 0. Projection-based methods can-
not leverage this structural advantage of simple inequality constraints as the intersection with the
equality constraints can be nontrivial.

The P-ACVI Algorithm: omitting the log barrier. Assume that the provided inequality con-
straints can be met efficiently through a projection Π≤(·) : Rn → C≤. In that case, we no longer
need the log barrier, and we omit µ and the outer loop of ACVI over t ∈ [T]. Differentiating the
remaining expression of the y subproblem with respect to y and setting it to zero gives:

6

Published as a conference paper at ICLR 2024

Algorithm 2 P-ACVI: ACVI with simple inequalities.
1: Input: operator F : X → Rn, constraints Cx = d and projection operator Π≤ for the inequal-

ity constraints, hyperparameter β > 0, and number of iterations K.
2: Initialize: y0 ∈ Rn, λ0 ∈ Rn

3: Pc ≜ I −C⊺(CC⊺)−1C where Pc ∈ Rn×n

4: dc ≜ C⊺(CC⊺)−1d where dc ∈ Rn

5: for k = 0, . . . ,K − 1 do
6: Set xk+1 to be the solution of: x+ 1

βPcF (x)− Pcyk + 1
βPcλk − dc = 0 (w.r.t. x)

7: yk+1 = Π≤(xk+1 +
1
βλk)

8: λk+1 = λk + β(xk+1 − yk+1)
9: end for

argmin
y

β

2

∥∥∥∥y − xk+1 −
1

β
λk

∥∥∥∥2 = xk+1 +
1

β
λk .

This implies that line 9 of the exact ACVI algorithm (given in App. A) can be replaced with the
solution of the y problem without the inequality constraints, and we can cheaply project to satisfy
the inequality constraints, as follows: yk+1 = Π≤(xk+1 + 1

βλk) , where the φi(·) are included
in the projection. We describe the resulting procedure in Algorithm 2 and refer to it as P-ACVI.
In this scenario with simple φi, the y problem is always solved exactly; nonetheless, when the
x-subproblem is also solved approximately, we refer to it as PI-ACVI.

(a) xk of PI-ACVI (b) yk of PI-ACVI

Figure 2: Intermediate iterates of PI-ACVI
(Algorithm 2) on the 2D minmax game
(2D-BG). The boundary of the constraint set is
shown in red. (b) depicts the yk (from line 7
in Algorithm 2) which we obtain through pro-
jections. In (a), each spiral corresponds to iter-
atively solving the xk subproblem for ℓ = 20
steps (line 6 in Algorithm 2). Jointly, the trajec-
tories of x and y illustrate the ACVI dynamics:
x and the constrained y “collaborate” and con-
verge to the same point.

0 500 1000 1500
Time (seconds)

100

101

102

FI
D

(a) FID, lower is better

0 500 1000 1500
Time (seconds)

2

4

6

8

IS

P-GDA
P-EG
PI-ACVI `0 = 500
PI-ACVI `0 = 100

(b) IS, higher is better

Figure 3: Experiments on the (C-GAN) game,
using GDA, EG, and PI-ACVI on MNIST. All
curves are averaged over 4 seeds. (a): Frechet
Inception Distance (FID, lower is better) given
CPU wall-clock time. (b): Inception Score (IS,
higher is better) given wall-clock time. We ob-
serve that PI-ACVI converges faster than EG and
GDA for both metrics. Moreover, we see that us-
ing a large ℓ for the first iteration (ℓ0) can give a
significant advantage. The two PI-ACVI curves
use the same ℓ+ = 20.

Last-iterate convergence of P-ACVI. The following theorem shows that P-ACVI has the same last-
iterate rate as ACVI. Its proof can be derived from that of Theorem 3.1, which focuses on a more
general setting, see App. B. We state it as a separate theorem, as it cannot be deduced directly from
the statement of the former.
Theorem 4.1 (Last iterate convergence rate of P-ACVI—Algorithm 2). Given a continuous opera-
tor F : X → Rn, assume F is monotone on C=, as per Def. 2.1. Let (xK ,yK ,λK) denote the last
iterate of Algorithm 2. Then for all K ∈ N+, it holds that:

G(xK , C) ≤ O(
1√
K

) , and
∥∥xK − yK

∥∥ ≤ O(1√
K

) .

Remark 4.2. Note that Theorem 4.1 relies on weaker assumptions than Theorem. 3.1. This is a
ramification of removing the central path in the P-ACVI Algorithm. Thus, assumption (ii) in Theo-
rem 3.1—used earlier to guarantee the existence of the central path (see App. A)—is not needed.

7

Published as a conference paper at ICLR 2024

10−3 10−2 10−1

relative error

0

200

400

600

800

C
PU

tim
e

(s
)

P-GDA
P-EG
P-OGDA
P-LA4-GDA
ACVI
I-ACVI

(a) fixed error

0.0 0.5 1.0
η

10

20

30

40

50

nu
m

be
r

of
ite

ra
tio

ns

(b) rotational intensity

5 10 50 100 130
K0

1
5

10
20
30
40
50
60
70

K
+

4000

6000

8000

(c) I-ACVI: effect of K0,K+

Figure 4: Comparison between I-ACVI, (exact) ACVI, and projection-based algorithms on
the (HBG) problem. (a): CPU time (in seconds) to reach a given relative error (x-axis), where the
rotational intensity is fixed to η = 0.05 in (HBG) for all methods. (b): Number of iterations to reach
a relative error of 0.02 for varying values of the rotational intensity η. We fix the maximum number
of iterations to 50. (c): joint impact of the number of inner-loop iterations K0 at t = 0 and different
choices of inner-loop iterations for K+ at any t > 0 on the number of iterations needed to reach a
fixed relative error of 10−4. We see that irrespective of the selection ofK+, I-ACVI converges fast if
K0 is large enough. For instance, (K0 = 130,K+ = 1) converges faster than (K0 = 20,K+ = 20).
We fix ℓ = 10 for all the experiments, in all of (a), (b), and (c).

5 EXPERIMENTS

Methods. We compare ACVI, Inexact-ACVI (I-ACVI), and Projected-Inexact-ACVI (PI-ACVI)
with the projected variants of Gradient Descent Ascent (P-GDA), Extragradient (Korpelevich, 1976)
(P-EG), Optimistic-GDA (Popov, 1980) (P-OGDA), and Lookahead-Minmax (Zhang et al., 2019;
Chavdarova et al., 2021) (P-LA). We always use GDA as an inner optimizer for I-ACVI, PI-ACVI,
and P-ACVI. See App. D and C for comparison with additional methods and implementation.

Problems. We study the empirical performance of these methods on three different problems:
• 2D bilinear game: a version of the bilinear game with L∞ constraints, as follows

min
x1∈△

max
x2∈△

x1x2 , with △={x ∈ R| − 0.4 ≤ x ≤ 2.4} . (2D-BG)

• High-dimensional bilinear game: where each player is a 500-dimensional vector. The iterates are
constrained to the probability simplex. A parameter η ∈ (0, 1) controls the rotational component
of the game (when η = 1 the game is a potential, when η = 0 the game is Hamiltonian):

min
x1∈△

max
x2∈△

ηx⊺
1x1 + (1− η)x⊺

1x2 − ηx⊺
2x2 , with △={xi ∈ R500|xi ≥ 0, and e⊺xi = 1} .

(HBG)

• MNIST. We train GANs on the MNIST (Lecun & Cortes, 1998) dataset. We use linear inequality
constraints and no equality constraints, as follows:

min
G∈△θ

max
D∈△ζ

E
s∼pd

[logD(s)] + E
z∼pz

[log(1−D(G(z)))] (C-GAN)

where △θ ={θ|A1θ ≤ b1}, △ζ={ζ|A2ζ ≤ b2} ,

with pz , pd respectively, noise and data distributions; θ and ζ are the parameters of the generator
and discriminator, resp. D and G are the Generator and Discriminator maps, parameterized with
θ and ζ, resp. Ai ∈ R100×ni and bi ∈ Rni , where ni is the number of parameters of D or G.

5.1 INEXACT ACVI

2D bilinear game. In Fig. 1, we compare exact and inexact ACVI on the 2D-Bilinear game. Rather
than solving the subproblems of I-ACVI until we reach appropriate accuracy of the solutions of the
subproblems, herein, we fix the K and ℓ number of iterations in I-ACVI. We observe how I-ACVI
can converge following the central path when the inner loop of I-ACVI over k ∈ [K] is solved with
sufficient precision. The two parameters influencing the convergence of the iterates to the central
path areK and ℓ, where the latter is the number of iterations to solve the two subproblems (line 8 and
line 9 in Algorithm 1). Fig. 1 shows that small values such as K = 20 and ℓ = 2 are sufficient for
convergence for this purely rotational game. Nonetheless, as K and ℓ decrease further, the iterates

8

Published as a conference paper at ICLR 2024

of I-ACVI may not converge. This accords with Theorem 3.2, which indicates that the sum of errors
is bounded only if K is large. Hence, larger K implies a smaller error.

HD bilinear game. In Fig. 4(a) and Fig. 4(b) we compare I-ACVI with ACVI and the projection-
based algorithms on the (HBG) problem. We observe that both ACVI and I-ACVI outperform the
remaining baselines significantly in terms of speed of convergence measured in both CPU time and
the number of iterations. Moreover, while I-ACVI requires more iterations than ACVI to reach a
given relative error, those iterations are computationally cheaper relative to solving exactly each
subproblem; hence, I-ACVI converges much faster than any other method. Fig. 4(c) aims to demon-
strate that the subproblems of I-ACVI are suitable for warm-starting. Interestingly, we notice that the
choice of the number of iterations at the first step t = 0 plays a crucial role. Given that we initialize
variables at each iteration with the previous solution, it aids the convergence to solve the subprob-
lems as accurately as possible at t = 0. This initial accuracy reduces the initial error, subsequently
decreasing the error at all subsequent iterations. We revisit this observation in § 5.3.

5.2 PROJECTED-INEXACT-ACVI

2D bilinear game. In Fig. 2 we show the dynamics of PI-ACVI on the 2D game defined by (2D-BG).
Compared to ACVI in Fig. 1, the iterates converge to the solution without following the central path.
A comparison with other optimizers is available in App. D.

MNIST. In Fig. 3 we compare PI-ACVI and baselines on the (C-GAN) game trained on the MNIST
dataset. We employ the greedy projection algorithm (Beck, 2017) for the projections. Since ACVI
was derived primarily for handling general constraints, a question that arises is how it (and its vari-
ants) performs when the projection is fast to compute. Although the projection is fast to compute
for these experiments, PI-ACVI converges faster than the projection-based methods. Compared to
the projected EG method, which only improves upon GDA when the rotational component of F is
high, it gives more consistent improvements over the GDA baseline.

5.3 EFFECT OF WARM-UP ON I-ACVI AND PI-ACVI

I-ACVI. The experiments in Fig. 1 motivate increasing the number of iterations K only at the first
iteration t = 0—denotedK0, so that the early iterates are close to the central path. Recall that theK
steps (corresponding to line 7 in Algorithm 1) bring the iterates closer to the central path asK →∞
(see App. B). After those K0 steps, µ is decayed, which moves the problem’s solution along the
central path. For I-ACVI, from Fig. 4(c)—where ℓ is fixed to 10—we observed that regardless of
the selected value of K+ for t > 0, it can be compensated by a large enough K0.

PI-ACVI. We similarly study the impact of the warmup technique for the PI-ACVI method (Algo-
rithm 2). Compared to I-ACVI, this method omits the outer loop over t ∈ [T]. Hence, instead of
varying K0, we experiment with increasing the first ℓ at iteration k = 0, denoted by ℓ0. In Fig. 3 we
solve the constrained MNIST problem with PI-ACVI using either ℓ0 = 500 or ℓ0 = 100, ℓ+ is set
to 20 in both cases. Increasing the ℓ0 value significantly improves the convergence speed.

Conclusion. We observe consistently that using a large K0 or I-ACVI, or large l0 for PI-ACVI
aids the convergence. Conversely, factors such as l and K+ in I-ACVI, or l+ in PI-ACVI, exert a
comparatively lesser influence. Further experiments and discussions are available in App. D.

6 DISCUSSION

We contributed to an emerging line of research on the ACVI method, showing that the last iterate of
ACVI converges at a rate of order O(1/

√
K) for monotone VIs. This result is significant because

it does not rely on the first-order smoothness of the operator, resolving an open problem in the VI
literature. To address subproblems that cannot always be solved in closed form, we introduced an
inexact ACVI (I-ACVI) variant that uses warm-starting for its subproblems and proved last iterate
convergence under certain weak assumptions. We also proposed P-ACVI for simple inequality
constraints and showed that it converges with O(1/

√
K) rate. Our experiments provided insights

into I-ACVI’s behavior when subproblems are solved approximately, emphasized the impact of
warm-starting, and highlighted advantages over standard projection-based algorithms.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We acknowledge support from the Swiss National Science Foundation (SNSF), grants
P2ELP2 199740 and P500PT 214441 The work of T. Yang is supported in part by the NSF grant
CCF-2007911 to Y. Chi.

REFERENCES

Yossi Arjevani, Shai Shalev-Shwartz, and Ohad Shamir. On lower and upper bounds for smooth and
strongly convex optimization problems. In JMLR, 2016.

Waı̈ss Azizian, Ioannis Mitliagkas, Simon Lacoste-Julien, and Gauthier Gidel. A tight and unified
analysis of gradient-based methods for a whole spectrum of differentiable games. In AISTATS,
pp. 2863–2873, 2020.

Amir Beck. First-Order Methods in Optimization. SIAM, 2017.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Oper. Res. Lett., 31(3):167–175, 2003.

Dimitri Bertsekas, Angelia Nedic, and Asuman Ozdaglar. Convex Analysis and Optimization, vol-
ume 1. Athena Scientific, 2003.

Radu Ioan Bot, Ernö Robert Csetnek, and Phan Tu Vuong. The forward-backward-forward method
from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert
spaces. arXiv:1808.08084, 2020.

Radu Ioan Bot, Ernö Robert Csetnek, and Dang-Khoa Nguyen. Fast OGDA in continuous and
discrete time. arXiv preprint arXiv:2203.10947, 2022.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university press, 2004.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3, 2011. ISSN 1935-8237. doi: 10.1561/2200000016.

Yang Cai, Argyris Oikonomou, and Weiqiang Zheng. Tight last-iterate convergence of the extragra-
dient method for constrained monotone variational inequalities. arXiv:2204.09228, 2022.

Tatjana Chavdarova, Gauthier Gidel, François Fleuret, and Simon Lacoste-Julien. Reducing noise
in GAN training with variance reduced extragradient. In NeurIPS, 2019.

Tatjana Chavdarova, Matteo Pagliardini, Sebastian U Stich, François Fleuret, and Martin Jaggi.
Taming GANs with Lookahead-Minmax. In ICLR, 2021.

Tatjana Chavdarova, Michael I. Jordan, and Manolis Zampetakis. Last-iterate convergence of saddle
point optimizers via high-resolution differential equations. In Minimax Theory and its Applica-
tions, 2023.

Xiaojun Chen, Liqun Qi, and Defeng Sun. Global and superlinear convergence of the smoothing
newton method and its application to general box constrained variational inequalities. Mathemat-
ics of Computation, 67(222):519–540, 1998.

Rune Christiansen, Niklas Pfister, Martin Emil Jakobsen, Nicola Gnecco, and Jonas Peters. A causal
framework for distribution generalization. arXiv:2006.07433, 2020.

Liang-Ju Chu. On the continuity of trajectories for nonlinear monotone complementarity problems.
Scientiae Mathematicae, 1(3):263–275, 1998.

Richard W. Cottle and George B. Dantzig. Complementary pivot theory of mathematical program-
ming. Linear Algebra and its Applications, 1(1):103–125, 1968. ISSN 0024-3795.

Constantinos Daskalakis and Ioannis Panageas. Last-iterate convergence: Zero-sum games and
constrained min-max optimization. In ITCS, 2019.

10

Published as a conference paper at ICLR 2024

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training GANs with
optimism. In ICLR, 2018.

Jelena Diakonikolas. Halpern iteration for near-optimal and parameter-free monotone inclusion and
strong solutions to variational inequalities. COLT, 125, 2020.

Jim Douglas and H. H. Jr. Rachford. On the numerical solution of heat conduction problems in
two and three space variables. Transactions of the American Mathematical Society, 82:421–439,
1956.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto
the l1-ball for learning in high dimensions. In ICML, pp. 272–279, 2008. doi: 10.1145/1390156.
1390191.

J. Eckstein. Splitting Methods for Monotone Operators with Applications to Parallel Optimization.
Ph.D. dissertation. MIT, Cambridge, 1989.

Francisco Facchinei and Jong-Shi Pang. Finite-dimensional Variational Inequalities and Comple-
mentarity Problems. Springer, 2003.

Xiaona Fan and Qinglun Yan. An interior point algorithm for variational inequality problems. In-
ternational Journal of Contemporary Mathematical Sciences, 5(52):2595–2604, 2010.

Daniel Gabay. Applications of the method of multipliers to variational inequalities. In Studies in
Mathematics and its Applications, volume 15, pp. 299–331. Elsevier, 1983.

Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Computers & Mathematics with Applications, 2:17–
40, 1976. ISSN 0898-1221.

Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. Frank-Wolfe algorithms for saddle point
problems. In AISTATS, 2017.

Gauthier Gidel, Hugo Berard, Pascal Vincent, and Simon Lacoste-Julien. A variational inequality
perspective on generative adversarial nets. In ICLR, 2019a.

Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol, Gabriel Huang, Si-
mon Lacoste-Julien, and Ioannis Mitliagkas. Negative momentum for improved game dynamics.
In AISTATS, 2019b.

R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un, et la résolution,
par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. ESAIM: Mathemat-
ical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 9
(R2):41–76, 1975.

Roland Glowinski and Patrick Le Tallec. Augmented Lagrangian and Operator-Splitting Methods
in Nonlinear Mechanics. Society for Industrial and Applied Mathematics, 1989. doi: 10.1137/1.
9781611970838.

Jean-Louis Goffin, Patrice Marcotte, and Daoli Zhu. An analytic center cutting plane method for
pseudomonotone variational inequalities. Operations Research Letters, 20(1):1–6, 1997. ISSN
0167-6377.

Noah Golowich, Sarath Pattathil, and Constantinos Daskalakis. Tight last-iterate convergence rates
for no-regret learning in multi-player games. In NeurIPS, 2020a.

Noah Golowich, Sarath Pattathil, Constantinos Daskalakis, and Asuman Ozdaglar. Last iterate is
slower than averaged iterate in smooth convex-concave saddle point problems. In COLT, pp.
1758–1784, 2020b.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

11

Published as a conference paper at ICLR 2024

Eduard Gorbunov, Nicolas Loizou, and Gauthier Gidel. Extragradient method: O(1/K) last-iterate
convergence for monotone variational inequalities and connections with cocoercivity. In AISTATS,
2022a.

Eduard Gorbunov, Adrien Taylor, and Gauthier Gidel. Last-iterate convergence of optimistic gradi-
ent method for monotone variational inequalities. arXiv:2205.08446, 2022b.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In NIPS,
2017.

Ya-Ping Hsieh, Panayotis Mertikopoulos, and Volkan Cevher. The limits of min-max optimization
algorithms: convergence to spurious non-critical sets. In ICML, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Galina Michailovna Korpelevich. The extragradient method for finding saddle points and other
problems. Matecon, 1976.

Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence of Frank-Wolfe optimiza-
tion variants. In NIPS, 2015.

Yann Lecun and Corinna Cortes. The MNIST database of handwritten digits, 1998. URL http:
//yann.lecun.com/exdb/mnist/.

Tengyuan Liang and James Stokes. Interaction matters: A note on non-asymptotic local convergence
of generative adversarial networks. Artificial Intelligence and Statistics, 2019.

Zhouchen Lin, Huan Li, and Cong Fang. Alternating Direction Method of Multipliers for Machine
Learning. Springer, 2022.

P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM
Journal on Numerical Analysis, 16(6):964–979, 1979.

Yu. Malitsky. Projected reflected gradient methods for monotone variational inequalities. SIAM
Journal on Optimization, 25:502–520, 2015.

Santiago Mazuelas, Andrea Zanoni, and Aritz Pérez. Minimax classification with 0-1 loss and
performance guarantees. In NeurIPS, volume 33, 2020.

Panayotis Mertikopoulos, Bruno Lecouat, Houssam Zenati, Chuan-Sheng Foo, Vijay Chan-
drasekhar, and Georgios Piliouras. Optimistic mirror descent in saddle-point problems: Going
the extra(-gradient) mile. In ICLR, 2019.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and op-
timistic gradient methods for saddle point problems: Proximal point approach. arXiv:1901.08511,
2019.

Arkadi Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 15(1):229–251, 2004. doi: 10.1137/S1052623403425629.

Arkadi Nemirovski and David Yudin. Problem complexity and Method Efficiency in Optimization,
volume 1. Wiley, New York, 1983.

Yurii Nesterov and Arkadi Nemirovski. Interior-point polynomial algorithms in convex program-
ming. In Siam Studies in Applied Mathematics, 1994.

Robert Nishihara, Laurent Lessard, Ben Recht, Andrew Packard, and Michael Jordan. A general
analysis of the convergence of admm. In ICML, volume 37 of Proceedings of Machine Learning
Research, pp. 343–352, 2015.

Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. PyTorch. https://github.
com/pytorch/pytorch, 2017.

12

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch

Published as a conference paper at ICLR 2024

Leonid Denisovich Popov. A modification of the arrow–hurwicz method for search of saddle points.
Mathematical Notes of the Academy of Sciences of the USSR, 28(5):845–848, 1980.

Liqun Qi and Defeng Sun. Smoothing functions and smoothing newton method for complementarity
and variational inequality problems. Journal of Optimization Theory and Applications, 113(1):
121–147, 2002.

Liqun Qi, Defeng Sun, and Guanglu Zhou. A new look at smoothing Newton methods for nonlinear
complementarity problems and box constrained variational inequalities. Mathematical Program-
ming, 87(1):1–35, 2000.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In ICLR, 2016.

Ralph Tyrrell Rockafellar. Monotone operators associated with saddle-functions and minimax prob-
lems. Nonlinear functional analysis, 18(part 1):397–407, 1970.

Mihaela Rosca, Yan Wu, Benoit Dherin, and David G. T. Barrett. Discretization drift in two-player
games. In ICML, 2021.

Dominik Rothenhäusler, Nicolai Meinshausen, Peter Bühlmann, and Jonas Peters. Anchor regres-
sion: heterogeneous data meets causality. ArXiv:1801.06229, 2018.

Ernest K. Ryu and Wotao Yin. Large-Scale Convex Optimization via Monotone Operators. Springer
Publishing Company, Incorporated, 2022.

Ernest K. Ryu, Kun Yuan, and Wotao Yin. Ode analysis of stochastic gradient methods with opti-
mism and anchoring for minimax problems. arXiv:1905.10899, 2019.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training GANs. In NIPS, 2016.

Mark Schmidt, Nicolas Roux, and Francis Bach. Convergence rates of inexact proximal-gradient
methods for convex optimization. NIPS, 24, 2011.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv:1312.6199, 2014.

Kiran Koshy Thekumparampil, Niao He, and Sewoong Oh. Lifted primal-dual method for bilinearly
coupled smooth minimax optimization. In AISTATS, 2022.

Ryan J Tibshirani. Dykstra's algorithm, admm, and coordinate descent: Connections, insights, and
extensions. In NeurIPS, volume 30, 2017.

Paul Tseng. On linear convergence of iterative methods for the variational inequality problem.
Journal of Computational and Applied Mathematics, 60:237–252, 1995. ISSN 0377-0427.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, John
Quan, Stephen Gaffney, Stig Petersen, Karen Simonyan, Tom Schaul, Hado van Hasselt, David
Silver, Timothy Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence, An-
ders Ekermo, Jacob Repp, and Rodney Tsing. Starcraft II: A new challenge for reinforcement
learning. arXiv:1708.04782, 2017.

Tong Yang, Michael I. Jordan, and Tatjana Chavdarova. Solving constrained variational inequalities
via an interior point method. In ICLR, 2023.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. In NeurIPS, 2019.

13

Published as a conference paper at ICLR 2024

A ADDITIONAL BACKGROUND

In this section, we give background in addition to that presented in the main part. This includes:

(i) in A.1 we describe the ADMM method,
(ii) in App. A.2 we list relevant definitions,

(iii) details of the ACVI method, including its derivation, required for the proofs of the theorems
in this paper are explained in App. A.3, and

(iv) the baseline methods used in § 5 of the main part are described in App. A.5.

A.1 ALTERNATING DIRECTION METHOD OF MULTIPLIERS–ADMM

The ADMM method. ADMM (Glowinski & Marroco, 1975; Gabay & Mercier, 1976; Lions &
Mercier, 1979; Glowinski & Le Tallec, 1989) was proposed for objectives separable into two or
more different functions whose arguments are nondisjoint, as follows:

min
x,y

f(x) + g(y) s.t. Ax+By = b , (ADMM-Pr)

where f, g : Rn → R are often assumed convex, x,y ∈ Rn,A,B ∈ Rn′×n, and b ∈ Rn′
. ADMM

relies on the augmented Lagrangian function Lβ(·):

Lβ(x,y,λ) = f(x) + g(y) + ⟨Ax+By − b,λ⟩+ β

2
∥Ax+By − b∥2, (AL-CVX)

where β > 0. If the augmented Lagrangian method is used to solve (AL-CVX), at each step k we
have:

xk+1,yk+1 = argmin
x,y

Lβ(x,y,λk) and

λk+1 = λk + β(Axk+1 +Byk+1 − b) ,

where the latter step is gradient ascent on the dual. In contrast, ADMM updates x and y in an
alternating way as follows:

xk+1 = argmin
x
Lβ(x,yk,λk) ,

yk+1 = argmin
y
Lβ(xk+1,yk,λk) ,

λk+1 = λk + β(Axk+1 +Byk+1 − b) ,

(ADMM)

where the key difference is that for the y update the latest iterate of x is used.

ADMM’s popularity stems largely from its computational efficiency for large-scale machine learn-
ing problems (Boyd et al., 2011) and its rapid convergence in certain settings (e.g., Nishihara et al.,
2015). In particular, it achieves linear convergence when one of the objective terms is strongly
convex (Nishihara et al., 2015), and it is known in the community that it can converge faster than
the proximal point method in some regression examples. It can be viewed as equivalent to the
Douglas-Rachford operator splitting technique (Douglas & Rachford, 1956) applied within the dual
space (see e.g. Gabay, 1983; Eckstein, 1989; Lin et al., 2022).

A.2 ADDITIONAL VI DEFINITIONS AND EQUIVALENT FORMULATIONS

Here we give the complete statement of the definition of an L-Lipschitz operator for completeness,
which assumption was used in Theorem 3.2.
Definition A.1 (L-Lipschitz operator). Let F : X ⊇ S → Rn be an operator, we say that F satisfies
L-first-order smoothness on S if F is an L-Lipschitz map; that is, there exists L > 0 such that:

∥F (x)− F (x′)∥ ≤ L ∥x− x′∥ , ∀x,x′ ∈ S .

To define cocoercive operators—mentioned in the discussions of the related work, we will first
introduce the inverse of an operator.

Seeing an operator F : X → Rn as the graph GrF = {(x,y)|x ∈ X ,y = F (x)}, its inverse F−1

is defined as GrF−1 ≜ {(y,x)|(x,y) ∈ GrF} (see e.g. Ryu & Yin, 2022).

14

Published as a conference paper at ICLR 2024

Definition A.2 (1µ -cocoercive operator). An operator F : X ⊇ S → Rn is 1
µ -cocoercive (or 1

µ -
inverse strongly monotone) on S if its inverse (graph) F−1 is µ-strongly monotone on S, that is,

∃µ > 0, s.t. ⟨x− x′, F (x)− F (x′)⟩ ≥ µ ∥F (x)− F (x′)∥2 ,∀x,x′ ∈ S .

It is star 1
µ -cocoercive if the above holds when setting x′ ≡ x⋆ where x⋆ denotes a solution, that is:

∃µ > 0, s.t. ⟨x− x⋆, F (x)− F (x⋆)⟩ ≥ µ ∥F (x)− F (x⋆)∥2 ,∀x ∈ S,x⋆ ∈ S⋆X ,F .

Notice that cocoercivity implies monotonicity, and is thus a stronger assumption.

In the following, we will make use of the natural and normal mappings of an operator F : X → Rn,
where X ⊂ Rn. We denote the projection to the set X with ΠX . Following similar notation as
in (Facchinei & Pang, 2003), the natural map FNAT

X : X → Rn is defined as:

FNAT
X ≜ x−ΠX

(
x− F (x)

)
, ∀x ∈ X , (F-NAT)

whereas the normal map FNOR
X : Rn → Rn is:

FNOR
X ≜ F

(
ΠX (x)

)
+ x−ΠX (x), ∀x ∈ Rn . (F-NOR)

Moreover, we have the following solution characterizations:

(i) x⋆ ∈ S⋆X ,F iff FNAT
X (x⋆) = 0, and

(ii) x⋆ ∈ S⋆X ,F iff ∃x′ ∈ Rn s.t. x⋆ = ΠX (x′) and FNOR
X (x′) = 0.

A.3 DETAILS ON ACVI

For completeness, herein we state the ACVI algorithm and show its derivation, see (Yang et al.,
2023) for details. We will use these equations also for the proofs of our main results.

Derivation of ACVI. We first restate the cVI problem in a form that will allow us to derive an
interior-point procedure. By the definition of cVI it follows (see §1.3 in Facchinei & Pang, 2003)
that:

x ∈ S⋆C,F ⇔


w = x

x = argmin
z
F (w)⊺z

s.t. φ(z) ≤ 0

Cz = d

⇔


F (x) +∇φ⊺(x)λ+C⊺ν = 0

Cx = d

0 ≤ λ⊥φ(x) ≤ 0,

(KKT)

where λ ∈ Rm and ν ∈ Rp are dual variables. Recall that we assume that int C ≠ ∅, thus, by
the Slater condition (using the fact that φi(x), i ∈ [m] are convex) and the KKT conditions, the
second equivalence holds, yielding the KKT system of cVI. Note that the above equivalence also
guarantees the two solutions coincide; see Facchinei & Pang (2003, Prop. 1.3.4 (b)).

Analogous to the method described in § 2, we add a log-barrier term to the objective to remove the
inequality constraints and obtain the following modified version of (KKT):

w = x

x = argmin
z

F (w)⊺z − µ
m∑
i=1

log
(
−φi(z)

)
s.t. Cz = d

⇔


F (x) +∇φ⊺(x)λ+C⊺ν = 0

λ⊙ φ(x) + µe = 0

Cx− d = 0

φ(x) < 0,λ > 0,

(KKT-2)

with µ > 0, e ≜ [1, . . . , 1]⊺ ∈ Rm. The equivalence holds by the KKT and the Slater condition.

The update rule at step k is derived by the following subproblem:

min
x

F (wk)
⊺x− µ

m∑
i=1

log
(
− φi(x)

)
,

s.t. Cx = d ,

15

Published as a conference paper at ICLR 2024

where we fix w = wk. Notice that (i) wk is a constant vector in this subproblem, and (ii) the
objective is split, making ADMM a natural choice to solve the subproblem. To apply an ADMM-
type method, we introduce a new variable y ∈ Rn yielding:min

x,y
F (wk)

⊺x+ 1[Cx = d]− µ
m∑
i=1

log
(
− φi(y)

)
s.t. x = y

, (ACVI:subproblem)

where:

1[Cx = d] ≜

{
0, if Cx = d

+∞, if Cx ̸= d
,

is a generalized real-valued convex function of x.

As in Algorithm 1, for ACVI we also have the same projection matrix:

Pc ≜ I −C⊺(CC⊺)−1C , (Pc)

and:
dc ≜ C⊺(CC⊺)−1d , (dc-EQ)

where Pc ∈ Rn×n and dc ∈ Rn.

The augmented Lagrangian of (ACVI:subproblem) is thus:

Lβ(x,y,λ)=F (wk)
⊺x+ 1(Cx = d)− µ

m∑
i=1

log(−φi(y)) + ⟨λ,x− y⟩ + β

2
∥x− y∥2 , (AL)

where β > 0 is the penalty parameter. Finally, using ADMM, we have the following update rule for
x at step k:

xk+1 =argmin
x
Lβ(x,yk,λk) (Def-X)

=arg min
x∈C=

β

2

∥∥∥∥x− yk +
1

β
(F (wk) + λk)

∥∥∥∥2 .
This yields the following update for x:

xk+1 = Pc

(
yk −

1

β

(
F (wk) + λk

))
+ dc . (X-EQ)

For y and the dual variable λ, we have:

yk+1 = argmin
y
Lβ(xk+1,y,λk) (Def-Y)

= argmin
y

(
−µ

m∑
i=1

log
(
− φi(y)

)
+
β

2

∥∥∥∥y − xk+1 −
1

β
λk

∥∥∥∥2
)
. (Y-EQ)

To derive the update rule for w, wk is set to be the solution of the following equation:

w +
1

β
PcF (w)− Pcyk +

1

β
Pcλk − dc = 0. (W-EQ)

The following theorem ensures the solution of (W-EQ) exists and is unique, see App. B in (Yang
et al., 2023) for proof.
Theorem A.3 (W-EQ: solution uniqueness). If F is monotone on C=, the following statements hold
true for the solution of (W-EQ):

1. it always exists,

2. it is unique, and

3. it is contained in C=.

Finally, notice that w as it is redundant to be considered in the algorithm, since wk = xk+1, and it
is thus removed.

16

Published as a conference paper at ICLR 2024

Algorithm 3 (exact) ACVI pseudocode (Yang et al., 2023).
1: Input: operator F : X → Rn, constraints Cx = d and φi(x) ≤ 0, i = [m], hyperparameters
µ−1, β > 0, δ ∈ (0, 1), number of outer and inner loop iterations T and K, resp.

2: Initialize: y(0)
0 ∈ Rn, λ(0)

0 ∈ Rn

3: Pc ≜ I −C⊺(CC⊺)−1C where Pc ∈ Rn×n

4: dc ≜ C⊺(CC⊺)−1d where dc ∈ Rn

5: for t = 0, . . . , T − 1 do
6: µt = δµt−1

7: for k = 0, . . . ,K − 1 do
8: Set x(t)

k+1 to be the solution of: x+ 1
βPcF (x)− Pcy

(t)
k + 1

βPcλ
(t)
k − dc = 0 (w.r.t. x)

9: y
(t)
k+1 = argmin

y
− µ

∑m
i=1 log

(
− φi(y)

)
+ β

2

∥∥∥y − x
(t)
k+1 −

1
βλ

(t)
k

∥∥∥2
10: λ

(t)
k+1 = λ

(t)
k + β(x

(t)
k+1 − y

(t)
k+1)

11: end for
12: (y

(t+1)
0 ,λ

(t+1)
0) ≜ (y

(t)
K ,λ

(t)
K)

13: end for

The ACVI algorithm. Algorithm 3 describes the (exact) ACVI algorithm (Yang et al., 2023).

A.4 EXISTENCE OF THE CENTRAL PATH

In this section, we discuss the results that establish guarantees of the existence of the central path.
Let:

L(x,λ,ν) ≜ F (x) +∇φ⊺(x)λ+C⊺ν , and

h(x) = C⊺x− d .

For (λ,w,x,ν) ∈ R2m+n+p, let

G(λ,w,x,ν) ≜

 w ◦ λ
w + φ(x)
L(x,λ,ν)
h(x)

 ∈ R2m+n+p,

and

H(λ,w,x,ν) ≜

(
w + φ(x)
L(x,λ,ν)
h(x)

)
∈ Rm+n+p.

Let H++ ≜ H(R2m
++ × Rn × Rp).

By (Corollary 11.4.24, Facchinei & Pang, 2003) we have the following proposition.

Proposition A.4 (sufficient condition for the existence of the central path). If F is monotone, ei-
ther F is strictly monotone or one of φi is strictly convex, and C is bounded. The following four
statements hold for the functions G and H:

1. G maps R2m
++ × Rn+p homeomorphically onto Rm

++ ×H++;

2. Rm
++ ×H++ ⊆ G(R2m

+ × Rn+p);

3. for every vector a ∈ Rm
+ , the system

H(λ,w,x,ν) = 0, w ◦ λ = a

has a solution (λ,w,x,ν) ∈ R2m
+ × Rn+p; and

4. the set H++ is convex.

17

Published as a conference paper at ICLR 2024

A.5 SADDLE-POINT OPTIMIZATION METHODS

In this section, we describe in detail the saddle point methods that we compare with in the main
paper in § 5. We denote the projection to the set X with ΠX , and when the method is applied in the
unconstrained setting ΠX ≡ I .

For an example of the associated vector field and its Jacobian, consider the following constrained
zero-sum game:

min
x1∈X1

max
x2∈X2

f(x1,x2) , (ZS-G)

where f : X1 × X2 → R is smooth and convex in x1 and concave in x2. As in the main paper, we
write x ≜ (x1,x2) ∈ Rn. The vector field F : X → Rn and its Jacobian J are defined as:

F (x)=

[
∇x1

f(x)
−∇x2f(x)

]
, J(x)=

[
∇2

x1
f(x) ∇x2

∇x1
f(x)

−∇x1
∇x2

f(x) −∇2
x2
f(x)

]
.

In the remaining of this section, we will only refer to the joint variable x, and (with abuse of notation)
the subscript will denote the step. Let γ ∈ [0, 1] denote the step size.

(Projected) Gradient Descent Ascent (GDA). The extension of gradient descent for the cVI prob-
lem is gradient descent ascent (GDA). The GDA update at step k is then:

xk+1 = ΠX
(
xk − γF (xk)

)
. (GDA)

(Projected) Extragradient (EG). EG (Korpelevich, 1976) uses a “prediction” step to obtain an ex-
trapolated point xk+ 1

2
using GDA: xk+ 1

2
=ΠX

(
xk−γF (xk)

)
, and the gradients at the extrapolated

point are then applied to the current iterate xt:

xk+1=ΠX

(
xk − γF

(
ΠX
(
xk − γF (xk)

)))
. (EG)

In the original EG paper, (Korpelevich, 1976) proved that the EG method (with a fixed step size)
converges for monotone VIs, as follows.
Theorem A.5 (Korpelevich (1976)). Given a map F : X 7→ Rn, if the following is satisfied:

1. the set X is closed and convex,

2. F is single-valued, definite, and monotone on X–as per Def. 2.1,

3. F is L-Lipschitz–as per Asm. A.1.

then there exists a solution x⋆ ∈ X , such that the iterates xk produced by the EG update rule with
a fixed step size γ ∈ (0, 1

L) converge to it, that is xk → x⋆, as k →∞.

Facchinei & Pang (2003) also show that for any convex-concave function f and any closed convex
sets x1 ∈ X1 and x2 ∈ X2, the EG method converges (Facchinei & Pang, 2003, Theorem 12.1.11).

(Projected) Optimistic Gradient Descent Ascent (OGDA). The update rule of Optimistic Gradient
Descent Ascent OGDA ((OGDA) Popov, 1980) is:

xn+1 = ΠX
(
xn − 2γF (xn) + γF (xn−1)

)
. (OGDA)

(Projected) Lookahead–Minmax (LA). The LA algorithm for min-max optimization (Chavdarova
et al., 2021), originally proposed for minimization by Zhang et al. (2019), is a general wrapper of
a “base” optimizer where, at every step t: (i) a copy of the current iterate x̃n is made: x̃n ← xn,
(ii) x̃n is updated k ≥ 1 times, yielding ω̃n+k, and finally (iii) the actual update xn+1 is obtained
as a point that lies on a line between the current xn iterate and the predicted one x̃n+k:

xn+1 ← xn + α(x̃n+k − xn), α ∈ [0, 1] . (LA)
In this work, we use solely GDA as a base optimizer for LA, and denote it with LAk-GDA.

Mirror-Descent. The mirror-descent algorithm (Nemirovski & Yudin, 1983; Beck & Teboulle,
2003) can be seen as a generalization of gradient descent in which the geometry of the space is
controlled by a mirror map Ψ : X 7→ R. We define the Prox(·) mapping:

Prox(xn, g) ≜ argminx∈X g
⊤x+

1

γ
DΨ(x,xn) ,

18

Published as a conference paper at ICLR 2024

where DΨ is the Bregman divergence associated with the mirror map Ψ : X 7→ R, characterizing
the geometry of our space. The mirror descent algorithm uses the Prox mapping to obtain the next
iterate:

xn+1 ← Prox(xn, F (xn)) . (MD)

Mirror-Prox. Similarly to Mirror Descent, Mirror Prox (Nemirovski, 2004) generalizes extragradi-
ent to spaces where the geometry can be controlled by a mirror map Ψ:

xn+1/2 ← Prox(xn, F (xn)),

xn+1 ← Prox(xn, F (xn+1/2)) . (MP)

19

Published as a conference paper at ICLR 2024

B MISSING PROOFS

In this section, we provide the proofs of Theorems 3.1, 3.2 and 4.1, stated in the main part. In the
subsections B.3 and B.4, we also discuss the practical implications of Theorems 3.1 and 3.2, and the
algorithms that can be used for the subproblems in Algorithm 1, respectively.

B.1 PROOF OF THEOREM 3.1: LAST-ITERATE CONVERGENCE OF ACVI FOR MONOTONE
VARIATIONAL INEQUALITIES

Recall from Theorem 3.1 that we have the following assumptions:

• F is monotone on C=, as per Def. 2.1; and

• either F is strictly monotone on C or one of φi is strictly convex.

B.1.1 SETTING AND NOTATIONS

Before we proceed with the lemmas needed for the proof of Theorem 3.1, herein we introduce some
definitions and notations.

Subproblems and definitions. We remark that the ACVI derivation—given in App. A.3—is help-
ful for following the proof herein. Recall from it, that in order to derive the update rule for x, we
introduced a new variable w, and the relevant subproblem that yields the update rule for x includes
a term ⟨F (w),x⟩, where F is evaluated at some fixed point. As the proof relates the x

(t)
k iterate

of ACVI with the solution xµ
t of (KKT-2), in the following we will define two different maps each

with fixed w ≡ xµt and w ≡ x
(t)
k+1. That is, for convenience, we define the following maps from

Rn to R:

f (t)(x) ≜ F (xµt)⊺x+ 1(Cx = d) , (f (t))

f
(t)
k (x) ≜ F (x

(t)
k+1)

⊺x+ 1(Cx = d) , and (f (t)k)

g(t)(y) ≜ −µt

m∑
i=1

log
(
− φi(y)

)
=

m∑
i=1

℘1(φi(y), µt) , (g(t))

where xµt is a solution of (KKT-2) when µ = µt, and x
(t)
k+1 is the solution of the x-subproblem

in ACVI at step (t, k)–see line 8 in Algorithm 3. Note that the existence of xµt is guaranteed by
the existence of the central path-see App. A.4. Also, notice that f (t), f (t)k and g(t) are all convex
functions. In the following, unless otherwise specified, we drop the superscript (t) of x(t)

k+1, f (t),

f
(t)
k and subscript t of µt to simplify the notation.

In the remainder of this section, we introduce the notation of the solution points of the above KKT
systems and that of the ACVI iterates.

Let yµ = xµ. In this case, from (KKT-2) we can see that (xµ,yµ) is an optimal solution of:{
min
x,y

f(x) + g(y)

s.t. x = y
. (f -Pr)

There exists λµ ∈ Rn such that (xµ,yµ,λµ) is a KKT point of (f -Pr). By Prop. A.4, xµ = yµ

converges to a solution of (KKT). We denote this solution by x⋆. Then (xµ,yµ,λµ) converges
to the KKT point of (ACVI:subproblem) with wk = x⋆. Let (x⋆,y⋆,λ⋆) denote this KKT point,
where x⋆ = y⋆.

On the other hand, let us denote with (xµ
k ,y

µ
k ,λ

µ
k) the KKT point of the analogous problem of fk(·)

of: {
min
x,y

fk(x) + g(y)

s.t. x = y
. (fk-Pr)

20

Published as a conference paper at ICLR 2024

Note that the KKT point (xµ
k ,y

µ
k ,λ

µ
k) is guaranteed to exist by Slater’s condition. Also, recall from

the derivation of ACVI that (fk-Pr) is “non-symmetric” for x,y when using ADMM-like approach,
in the sense that: when we derive the update rule for x we fix y to yk (see Def-X), but when
we derive the update rule for y we fix x to xk+1 (see Def-Y). This fact is used later in (LB.3-1)
and LB.3-2 in Lemma B.3 for example.

Then, for the solution point, which we denoted with (xµ
k ,y

µ
k ,λ

µ
k), we also have that xµ

k = yµ
k . By

noticing that the objective above is equivalent to F (xk+1)
⊺x + 1(Cx = d) − µt

∑m
i=1 log

(
−

φi(y)
)
, it follows that the above problem (fk-Pr) is an approximation of:{

min
x
⟨F (xk+1),x⟩+ 1(Cx = d) + 1(φ(y) ≤ 0)

s.t. x = y
, (fk-Pr-2)

where, as a reminder, the constraint set C ⊆ X is defined as an intersection of finitely many inequal-
ities and linear equalities:

C = {x ∈ Rn|φi(x) ≤ 0, i ∈ [m], Cx = d} , (CS)

where each φi : Rn 7→ R, C ∈ Rp×n, d ∈ Rp, and we assumed rank(C) = p.

In fact, when µ → 0+, corollary 2.11 in (Chu, 1998) guarantees that (xµ
k ,y

µ
k ,λ

µ
k) converges to

a KKT point of problem (fk-Pr-2)—which immediately follows here since (fk-Pr-2) is a convex
problem. Let (x⋆

k,y
⋆
k,λ

⋆
k) denote this KKT point, where x⋆

k = y⋆
k.

Summary. To conclude, (xµ,yµ,λµ)—the solution of (f -Pr), converges to (x⋆,y⋆,λ⋆), a KKT
point of (ACVI:subproblem) with wk = x⋆, where x⋆ = y⋆ ∈ S⋆C,F ; (xµ

k ,y
µ
k ,λ

µ
k) converges to

(x⋆
k,y

⋆
k,λ

⋆
k)—a KKT point of problem (fk-Pr-2), where (xµ

k ,y
µ
k ,λ

µ
k) (in which xµ

k = yµ
k) is a

KKT point of problem (fk-Pr). Table 1 summarizes the notation for convenience.

Solution point Description Problem

(x⋆,y⋆,λ⋆) cVI solution, more precisely x⋆ = y⋆ ∈ S⋆C,F (cVI)

(xµt ,yµt ,λµt)
central path point,

also solution point of the subproblem with fixed F (xµt)
(f -Pr)

(xµt

k ,y
µt

k ,λµt

k) solution point of the subproblem with fixed F (x(t)
k+1)

where the indicator function is replaced with log-barrier
(fk-Pr)

(x⋆
k,y

⋆
k,λ

⋆
k) solution point of the subproblem with fixed F (x(t)

k+1) (fk-Pr-2)

Table 1: Summary of the notation used for the solution points of the different problems. (fk-Pr) is an
approximation of (fk-Pr-2) which replaces the indicator function with log-barrier. The t emphasizes
that these solution points change for different µ(t). Where clear from the context that we focus on a
particular step t, we drop the super/sub-script t to simplify the notation. See App. B.1.1.

B.1.2 INTERMEDIATE RESULTS

We will repeatedly use the following proposition that relates the output differences of fk(·) and f(·),
defined above.
Proposition B.1 (Relation between fk and f). If F is monotone, then ∀k ∈ N, we have that:

fk(xk+1)− fk(xµ) ≥ f(xk+1)− f(xµ).

Proof of Proposition B.1. It suffices to notice that:

fk(xk+1)− fk(xµ)−
(
f(xk+1)− f(xµ)

)
= ⟨F (xk+1)− F (xµ),xk+1 − xµ⟩.

The proof follows by applying the definition of monotonicity to the right-hand side.

21

Published as a conference paper at ICLR 2024

We will use the following lemmas.
Lemma B.2. For all x and y, we have:

f(x) + g(y)− f(xµ)− g(yµ) + ⟨λµ,x− y⟩ ≥ 0, (LB.2-f)

and:
fk(x) + g(y)− fk(xµ

k)− g(y
µ
k) + ⟨λ

µ
k ,x− y⟩ ≥ 0 . (LB.2-fk)

Proof. The Lagrange function of (f -Pr) is:

L(x,y,λ) = f(x) + g(y) + ⟨λ,x− y⟩.

And by the property of KKT point, we have:

L(xµ,yµ,λ) ≤ L(xµ,yµ,λµ) ≤ L(x,y,λµ), ∀(x,y,λ) ,

from which (LB.2-f) follows.

(LB.2-fk) can be shown in an analogous way.

The following lemma lists some simple but useful facts that we will use in the following proofs.
Lemma B.3. For the problems (f -Pr), (fk-Pr) and the xk,yk,λk of Algorithm 3, we have:

0 ∈ ∂fk(xk+1) + λk + β(xk+1 − yk) , (LB.3-1)
0 ∈ ∂g(yk+1)− λk − β(xk+1 − yk+1) , (LB.3-2)

λk+1 − λk = β(xk+1 − yk+1) , (LB.3-3)
−λµ ∈ ∂f(xµ) , (LB.3-4)

−λµ
k ∈ ∂fk(x

µ
k) , (LB.3-5)

λµ ∈ ∂g(yµ) , (LB.3-6)

λµ
k ∈ ∂g(y

µ
k) , (LB.3-7)

xµ = yµ, (LB.3-8)

xµ
k = yµ

k . (LB.3-9)

Remark B.4. Since g is differentiable, ∂g could be replaced by ∇g in Lemma B.3. Here we use ∂g
so that the results could be easily extended to Lemma B.31 for the proofs of Theorem 4.1, where we
replace the current g(y) by the indicator function 1(φ(y) ≤ 0), which is non-differentiable.

Proof of Lemma B.3. We can rewrite (AL) as:

Lβ(x,y,λ) = fk(x) + g(y) + ⟨λ,x− y⟩+ β

2
∥x− y∥2 . (re-AL)

(LB.3-1) and (LB.3-2) follow directly from (Def-X) and (Def-Y), resp. (LB.3-3) follows from line
10 in Algorithm 3, and (LB.3-4)-(LB.3-9) follows by the property of the KKT point.

We also define the following two maps (whose naming will be evident from the inclusions shown
after):

∇̂fk(xk+1) ≜ −λk − β(xk+1 − yk) , and (∇̂fk)

∇̂g(yk+1) ≜ λk + β(xk+1 − yk+1) . (∇̂g)

Then, from (LB.3-1) and (LB.3-2) it follows that:

∇̂fk(xk+1) ∈ ∂fk(xk+1) and ∇̂g(yk+1) ∈ ∂g(yk+1) . (1)

We continue with two equalities for the dot products involving ∇̂fk and ∇̂g.

22

Published as a conference paper at ICLR 2024

Lemma B.5. For the iterates xk+1, yk+1, and λk+1 of the ACVI—Algorithm 3—we have:

⟨∇̂g(yk+1),yk+1 − y⟩ = −⟨λk+1,y − yk+1⟩, (LB.5-1)

and

⟨∇̂fk(xk+1),xk+1 − x⟩+ ⟨∇̂g(yk+1),yk+1 − y⟩ =− ⟨λk+1,xk+1 − yk+1 − x+ y⟩
+ β⟨−yk+1 + yk,xk+1 − x⟩.

(LB.5-2)

Proof of Lemma B.5. The first part of the lemma (LB.5-1), follows trivially by noticing that
∇̂g(yk+1) = λk+1.

For the second part, from (LB.3-3), (∇̂fk) and (∇̂g) we have:

⟨∇̂fk(xk+1),xk+1 − x⟩ =− ⟨λk + β(xk+1 − yk),xk+1 − x⟩
=− ⟨λk+1,xk+1 − x⟩+ β⟨−yk+1 + yk,xk+1 − x⟩,

(2)

and
⟨∇̂g(yk+1),yk+1 − y⟩ = −⟨λk+1,y − yk+1⟩. (3)

Adding these together yields (LB.5-2).

The following Lemma further builds on the previous Lemma B.5, and upper-bounds some dot prod-
ucts involving ∇̂fk and ∇̂g with a sum of only squared norms.
Lemma B.6. For the xk+1, yk+1, and λk+1 iterates of the ACVI—Algorithm 3—we have:

⟨∇̂fk(xk+1),xk+1 − xµ⟩+ ⟨∇̂g(yk+1),yk+1 − yµ⟩+ ⟨λµ,xk+1 − yk+1⟩

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2 + β

2
∥yµ − yk∥2 −

β

2
∥yµ − yk+1∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥yk − yk+1∥2 ,

and

⟨∇̂fk(xk+1),xk+1 − xµ
k⟩+ ⟨∇̂g(yk+1),yk+1 − yµ

k ⟩+ ⟨λ
µ
k ,xk+1 − yk+1⟩

≤ 1

2β
∥λk − λµ

k∥
2 − 1

2β
∥λk+1 − λµ

k∥
2 +

β

2
∥yµ

k − yk∥2 −
β

2
∥yµ

k − yk+1∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥yk − yk+1∥2 .

Proof of Lemma B.6. For the left-hand side of the first part of Lemma B.6:

LHS = ⟨∇̂fk(xk+1),xk+1 − xµ⟩+ ⟨∇̂g(yk+1),yk+1 − yµ⟩+ ⟨λµ,xk+1 − yk+1⟩ ,
we let (x,y,λ) = (xµ,yµ,λµ) in (LB.5-2), and using the result of that lemma, we get that:

LHS = −⟨λk+1,xk+1− yk+1−xµ + yµ⟩+ β⟨−yk+1 + yk,xk+1−xµ⟩+ ⟨λµ,xk+1− yk+1⟩ ,
and since xµ = yµ (LB.3-8):

LHS = −⟨λk+1,xk+1 − yk+1⟩+ β⟨−yk+1 + yk,xk+1 − xµ⟩+ ⟨λµ,xk+1 − yk+1⟩
= −⟨λk+1 − λµ,xk+1 − yk+1⟩+ β⟨−yk+1 + yk,xk+1 − xµ⟩ ,

where in the last equality, we combined the first and last terms together. Using (LB.3-3) that
1
β (λk+1 − λk) = (xk+1 − yk+1) yields (for the second term above, we add and subtract yk+1

in its second argument, and use xµ = yµ):

LHS =− 1

β
⟨λk+1 − λµ,λk+1 − λk⟩+ ⟨−yk+1 + yk,λk+1 − λk⟩

− β⟨−yk+1 + yk,−yk+1 + yµ⟩ (4)

23

Published as a conference paper at ICLR 2024

Using the 3-point identity—that for any vectors a, b, c it holds ⟨b − a, b − c⟩ = 1
2 (∥a− b∥2 +

∥b− c∥2 − ∥a− c∥2)—for the first term above we get that:

⟨λk+1 − λµ,λk+1 − λk⟩ =
1

2

(
∥λk − λµ∥2 + ∥λk+1 − λk∥2 − ∥λk+1 − λµ∥2

)
,

and similarly,

⟨−yk+1 + yk,−yk+1 + yµ⟩ = 1

2

(
∥−yk + yµ∥2 − ∥−yk+1 + yµ∥2 − ∥−yk+1 + yk∥2

)
,

and by adding these together, we get:

LHS =
1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2 − 1

2β
∥λk+1 − λk∥2

+
β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2 − β

2
∥−yk+1 + yk∥2

+ ⟨−yk+1 + yk,λk+1 − λk⟩ . (5)

On the other hand, (LB.5-1) which states that ⟨∇̂g(yk+1),yk+1 − y⟩ + ⟨λk+1,−yk+1 + y⟩ = 0,
also asserts:

⟨∇̂g(yk),yk − y⟩+ ⟨λk,−yk + y⟩ = 0 . (6)

Letting y = yk in (LB.5-1), and y = yk+1 in (6), and adding them together yields:

⟨∇̂g(yk+1)− ∇̂g(yk),yk+1 − yk⟩+ ⟨λk+1 − λk,−yk+1 + yk⟩ = 0 .

By the monotonicity of ∂g, we know that the first term of the above equality is non-negative. Thus,
we have:

⟨λk+1 − λk,−yk+1 + yk⟩ ≤ 0 . (7)

Lastly, plugging it into (5) gives the first inequality of Lemma B.6.

The second inequality of Lemma B.6 follows similarly.

The following Lemma upper-bounds the sum of (i) the difference of f(·) evaluated at xk+1 and
at xµ and (ii) the difference of g(·) evaluated at yk+1 and at yµ; up to a term that depends on
xk+1 − yk+1 as well. Recall that (xµ,yµ,λµ) is a point on the central path.
Lemma B.7. For the xk+1, yk+1, and λk+1 iterates of the ACVI—Algorithm 3—we have:

f(xk+1) + g(yk+1)− f(xµ)− g(yµ) + ⟨λµ,xk+1 − yk+1⟩

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2

+
β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥−yk+1 + yk∥2 (LB.7)

Proof of Lemma B.7. From the convexity of fk(x) and g(y); from proposition B.1 on the relation
between fk(·) and f(·) which asserts that f(xk+1)− f(xµ) ≤ fk(xk+1)− fk(xµ); as well as from
Eq. (1) which asserts that ∇̂fk(xk+1) ∈ ∂fk(xk+1) and ∇̂g(yk+1) ∈ ∂g(yk+1); it follows for the
LHS of Lemma B.7 that:

f(xk+1)+g(yk+1)− f(xµ)− g(yµ) + ⟨λµ,xk+1 − yk+1⟩
≤ fk(xk+1) + g(yk+1)− fk(xµ)− g(yµ) + ⟨λµ,xk+1 − yk+1⟩
≤ ⟨∇̂fk(xk+1),xk+1 − xµ⟩+ ⟨∇̂g(yk+1),yk+1 − yµ⟩+ ⟨λµ,xk+1 − yk+1⟩

(8)

24

Published as a conference paper at ICLR 2024

Finally, by plugging in the first part of Lemma B.6, Lemma B.7 follows, that is:

f(xk+1) + g(yk+1)− f(xµ)− g(yµ) + ⟨λµ,xk+1 − yk+1⟩

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2

+
β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥−yk+1 + yk∥2.

(9)

The following theorem upper bounds the analogous quantity but for fk(·) (instead of f as does
Lemma B.7), and further asserts that the difference between the xk+1 and yk+1 iterates of exact
ACVI (Algorithm 3) tends to 0 asymptotically. The inequality in Theorem B.8 plays an important
role later when deriving the nonasymptotic convergence rate of ACVI.

Theorem B.8 (Asymptotic convergence of (xk+1 − yk+1) of ACVI). For the xk+1, yk+1, and
λk+1 iterates of the ACVI—Algorithm 3—we have:

fk(xk+1)− fk(xµ
k) + g(yk+1)− g(yµ

k)

≤ ∥λk+1∥ ∥xk+1 − yk+1∥+ β ∥yk+1 − yk∥ ∥xk+1 − xµ
k∥ → 0 ,

(TB.8-fk-UB)

and
xk+1 − yk+1 → 0 , as k →∞ .

Proof of Theorem B.8: Asymptotic convergence of (xk+1 − yk+1) of ACVI. Recall from (LB.2-f)
of Lemma B.2 that by setting x ≡ xk+1,y ≡ yk+1 we asserted that:

f(xk+1)− f(xµ) + g(yk+1)− g(yµ) + ⟨λµ,xk+1 − yk+1⟩ ≥ 0 .

Further, notice that the LHS of the above inequality overlaps with that of (LB.7). This implies that
the RHS of (LB.7) has to be non-negative. Hence, we have that:

1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2 ≤

1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2

+
β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2.

(10)

Summing over k = 0, . . . ,∞ gives:
∞∑
k=0

(1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

)
≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥−y0 + yµ∥2 ,

from which we deduce that λk+1 − λk → 0 and yk+1 − yk → 0.

Also notice that by simply reorganizing (10) we have:

1

2β
∥λk+1 − λµ∥2+β

2
∥−yk+1 + yµ∥2

≤ 1

2β
∥λk − λµ∥2 + β

2
∥−yk + yµ∥2 − 1

2β
∥λk+1 − λk∥2 −

β

2
∥−yk+1 + yk∥2

≤ 1

2β
∥λk − λµ∥2 + β

2
∥−yk + yµ∥2

≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥−y0 + yµ∥2 ,

(11)

where the second inequality follows because the norm is non-negative.

25

Published as a conference paper at ICLR 2024

From (11) we can see that ∥λk − λµ∥2 and ∥yk − yµ∥2 are bounded for all k, as well as ∥λk∥.
Recall that:

λk+1 − λk = β(xk+1 − yk+1) = β(xk+1 − xµ) + β(−yk+1 + yµ) ,

where in the last equality, we add and subtract xµ = yµ. Combining this with the fact that λk+1 −
λk → 0 (see above), we deduce that xk+1 − yk+1 → 0 and that xk+1 − xµ is also bounded.

Using the convexity of fk(·) and g(·) for the LHS of Theorem B.8 we have:

LHS = fk(xk+1)− fk(xµ
k) + g(yk+1)− g(yµ

k)

≤ ⟨∇̂fk(xk+1),xk+1 − xµ
k⟩+ ⟨∇̂g(yk+1),yk+1 − yµ

k ⟩ .

Using (LB.5-2) with x ≡ xµ
k ,y ≡ yµ

k we have:

LHS ≤ −⟨λk+1,xk+1 − yk+1 −xµ
k + yµ

k︸ ︷︷ ︸
=0, due to (LB.3-9)

⟩+ β⟨−yk+1 + yk,xk+1 − xµ
k⟩ .

Hence, it follows that:

fk(xk+1)− fk(xµ
k) + g(yk+1)− g(yµ

k)

≤− ⟨λk+1,xk+1 − yk+1⟩+ β⟨−yk+1 + yk,xk+1 − xµ
k⟩

≤ ∥λk+1∥ ∥xk+1 − yk+1∥+ β ∥yk+1 − yk∥ ∥xk+1 − xµ
k∥ ,

where the last inequality follows from Cauchy-Schwarz.

Recall that C is compact and D is the diameter of C:

D ≜ sup
x,y∈C

∥x− y∥ .

Thus, we have:

∥yk+1 − yµ
k∥ = ∥yk+1 − yµ∥+

∥∥yµ − yµ
k+1

∥∥ ≤ ∥yk+1 − yµ∥+D,

which implies that ∥yk − yµ
k∥ are bounded for all k. Since:

λk+1 − λk = β(xk+1 − yk+1) = β(xk+1 − xµ
k) + β(−yk+1 + yµ

k),

we deduce that xk+1 − xµ
k is also bounded. Thus, we have (TB.8-fk-UB).

The following lemma states an important intermediate result that ensures that 1
2β ∥λk+1 − λk∥2 +

β
2 ∥−yk+1 + yk∥2 does not increase.

Lemma B.9 (non-increment of 1
2β ∥λk+1 − λk∥2 + β

2 ∥−yk+1 + yk∥2). For the xk+1, yk+1, and
λk+1 iterates of the ACVI—Algorithm 3—we have:

1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2 ≤

1

2β
∥λk − λk−1∥2 +

β

2
∥−yk + yk−1∥2. (LB.9)

Proof of Lemma B.9. (LB.5-2) gives:

⟨∇̂fk−1 (xk) ,xk − x⟩+ ⟨∇̂g (yk) ,yk − y⟩
=− ⟨λk,xk − yk − x+ y⟩+ β⟨−yk + yk−1,xk − x⟩.

(12)

26

Published as a conference paper at ICLR 2024

Letting (x,y,λ) = (xk,yk,λk) in (LB.5-2) and (x,y,λ) = (xk+1,yk+1,λk+1) in (12), and
adding them together, and using (LB.3-3) yields:

⟨∇̂fk (xk+1)− ∇̂fk−1 (xk) ,xk+1 − xk⟩+ ⟨∇̂g (yk+1)− ∇̂g (yk) ,yk+1 − yk⟩
=− ⟨λk+1 − λk,xk+1 − yk+1 − xk + yk⟩+ β⟨−yk+1 + yk − (−yk + yk−1) ,xk+1 − xk⟩

=− 1

β
⟨λk+1 − λk,λk+1 − λk − (λk − λk−1)⟩

+ ⟨−yk+1 + yk + (yk − yk−1) ,λk+1 − λk + βyk+1 − (λk − λk−1 + βyk)⟩

=
1

2β

[
∥λk − λk−1∥2 − ∥λk+1 − λk∥2 − ∥λk+1 − λk − (λk − λk−1)∥2

]
+
β

2

[
∥−yk + yk−1∥2 − ∥−yk+1 + yk∥2 − ∥−yk+1 + yk − (−yk + yk−1)∥2

]
+ ⟨−yk+1 + yk − (−yk + yk−1) ,λk+1 − λk − (λk − λk−1)⟩

=
1

2β

(
∥λk − λk−1∥2 − ∥λk+1 − λk∥2

)
+
β

2

(
∥−yk + yk−1∥2 − ∥−yk+1 + yk∥2

)
− 1

2β
∥λk+1 − λk − (λk − λk−1)∥2 −

β

2
∥−yk+1 + yk − (−yk + yk−1)∥2

+ ⟨−yk+1 + yk − (−yk + yk−1) ,λk+1 − λk − (λk − λk−1)⟩

≤ 1

2β

(
∥λk − λk−1∥2 − ∥λk+1 − λk∥2

)
+
β

2

(
∥−yk + yk−1∥2 − ∥−yk+1 + yk∥2

)
.

By the convexity of fk and fk−1, we get:

⟨∇̂fk (xk+1) ,xk+1 − xk⟩ ≥fk(xk+1)− fk(xk) ,

−⟨∇̂fk−1 (xk) ,xk+1 − xk⟩ ≥fk−1(xk)− fk−1(xk+1) .

Adding them together gives that:

⟨∇̂fk (xk+1)− ∇̂fk−1 (xk) ,xk+1 − xk⟩ ≥fk(xk+1)− fk−1(xk+1)− fk(xk) + fk−1(xk)

=⟨F (xk+1)− F (xk),xk+1 − xk⟩ ≥ 0 .

Thus by the monotonicity of F and ∇̂g, (LB.9) follows.

Lemma B.10. If F is monotone on C=, then for Algorithm 3, we have:
fK (xK+1) + g (yK+1)− fK (xµ

K)− g (yµ
K)

≤ ∆µ

K + 1
+

(
2
√
∆µ +

1√
β
∥λµ∥+

√
βD

)√
∆µ

K + 1
,

(LB.10-1)

and ∥xK+1 − yK+1∥ ≤

√
∆µ

β (K + 1)
, (LB.10-2)

where ∆µ ≜ 1
β ∥λ0 − λµ∥2 + β∥y0 − yµ∥2.

Proof of Lemma B.10. Summing (10) over k = 0, 1, . . . ,K and using the monotonicity of
1
2β ∥λk+1 − λk∥2 + β

2 ∥−yk+1 + yk∥2 from Lemma B.9, we have:

1

β
∥λK+1 − λK∥2 + β∥−yK+1 + yK∥2

≤ 1

K + 1

K∑
k=0

(1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

)
≤ 1

K + 1

(
1

β
∥λ0 − λµ∥2 + β∥−y0 + yµ∥2

)
. (13)

27

Published as a conference paper at ICLR 2024

From this, we deduce that:

β∥xK+1 − yK+1∥ = ∥λK+1 − λK∥ ≤
√

β∆µ

K + 1
,

∥−yK+1 + yK∥ ≤

√
∆µ

β (K + 1)
.

On the other hand, (11) gives:

1

2β
∥λK+1 − λµ∥2 + β

2
∥−yK+1 + yµ∥2 ≤ 1

2
∆µ .

Hence, we have:
∥λK+1 − λµ∥ ≤

√
β∆µ, (14)

∥−yK+1 + yµ∥ ≤

√
∆µ

β
.

Furthermore, we have:

∥yK+1 − yµ
K∥ ≤

∥∥yK+1 − yµ
∥∥+ ∥∥yµ − yK

µ

∥∥ ≤√∆µ

β
+D ,

∥xK+1 − xµ
K∥ =

∥∥∥∥ 1β (λK+1 − λK)− (−yK+1 + yµ
K)

∥∥∥∥
≤ 1

β
∥λK+1 − λK∥+ ∥yK+1 − yµ

K∥

≤

√
∆µ

β(K + 1)
+

√
∆µ

β
+D ,

and
∥λK+1∥ ≤ ∥λµ∥+ ∥λK+1 − λµ∥ ≤ ∥λµ∥+

√
β∆µ .

Then using (TB.8-fk-UB) in Lemma B.8, we have (LB.37-1).

Discussion. Lemma B.10 has an analogous form to Theorem 7 in (Yang et al., 2023), but here
we change the reference points from xµ and yµ in (28) of (Yang et al., 2023) to xµ

K and yµ
K we

newly introduce in our paper. We stress that this change, together with our observation that x⋆
k is

the reference point of the gap function at xk+1 (see (16)), is crucial to weakening the assumptions
in (Yang et al., 2023). We can see this from the following proof sketch of Theorem 3.1:

1. Lemma B.10 gives

fK (xK+1) + g (yK+1)− fK (xµ
K)− g (yµ

K) = O(1√
K

).

2. Note that g(yK+1) − g(yµ
K) → 0, xµ

K → x⋆
K when µ → 0. Using the above inequality,

we have that when µ is small,

|fK(xK+1)− fK(x⋆
K)| = O(1√

K
).

3. With observation (16), we could write the gap function at xK+1 explicitly as

G(xK+1, C) = fK(xK+1)− fK(x⋆
K).

Combining the above two expressions, we reach our conclusion:

G(xK+1, C) = O(
1√
K

).

28

Published as a conference paper at ICLR 2024

In contrast, (Yang et al., 2023) gives the upper bound w.r.t. the gap function through two indirect
steps, each introducing some extra assumptions:

1. Theorem 7 in (Yang et al., 2023) gives

fK (xK+1) + g (yK+1)− fK (xµ)− g (yµ) = O(1√
K

),

which leads to |F (xK)⊺(xK+1 − x⋆)| = O(1√
K
) and |F (x⋆)⊺(xK+1 − x⋆)| = O(1√

K
)

(the first indirect bound) when µ is small enough.
2. Under either the ξ-monotonicity assumption in Thm. 2 or assumption (iii) in Thm. 3 of

(Yang et al., 2023), they are able to bound the iterate distance using the above results as
follows:

∥xK − x⋆∥ = O(1√
K

)

(the second indirect bound).
3. Finally, by assuming Lipschitzness of F , they derive from the above bound that

G(xK+1, C) = O(
1√
K

).

B.1.3 PROVING THEOREM 3.1

We are now ready to prove Theorem 3.1. Here, we give a nonasymptotic convergence rate of Algo-
rithm 3.
Theorem B.11 (Restatement of Theorem 3.1). Given an continuous operator F : X → Rn, assume
that:

(i) F is monotone on C=, as per Def. 2.1;

(ii) F is either strictly monotone on C or one of φi is strictly convex.

Let (x(t)
K ,y

(t)
K ,λ

(t)
K) denote the last iterate of Algorithm 3. Given any fixed K ∈ N+, run with

sufficiently small µ−1, then for all t ∈ [T], we have:

G(xK , C) ≤
2∆

K
+ 2

(
2
√
∆+

1√
β
∥λ⋆∥+

√
βD + 1 +M

)√
∆

K
(na-Rate)

and ∥∥xK − yK
∥∥ ≤ 2

√
∆

βK
, (15)

where ∆ ≜ 1
β ∥λ0 − λ⋆∥2 + β∥y0 − y⋆∥2 and D ≜ sup

x,y∈C
∥x− y∥, and M ≜ sup

x∈C
∥F (x)∥.

Proof of Theorem B.11. Note that

(fk-Pr-2)⇔ min
x∈C
⟨F (xk+1),x⟩

⇔ max
x∈C
⟨F (xk+1),xk+1 − x⟩

⇔ G(xk+1, C) ,
from which we deduce

G(xk+1, C) = ⟨F (xk+1),xk+1 − x⋆
k⟩ ,∀k . (16)

For any fixed K ∈ N, by Corollary 2.11 in (Chu, 1998) we know that

xµ
K → x⋆

K ,

g(yK+1)− g(yµ
K)→ 0 ,

∆µ → 1

β
∥λ0 − λ⋆∥2 + β∥y0 − y⋆∥2 = ∆ . (17)

29

Published as a conference paper at ICLR 2024

Thus, there exists µ−1 > 0, s.t.∀0 < µ < µ−1,

∥xµ
K − x⋆

K∥ ≤
√

∆µ

K + 1
,

|g(yK+1)− g(yµ
K)| ≤

√
∆µ

K + 1
.

Combining with Lemma B.10, we have

⟨F (xK+1), xK+1 − xµ
K⟩

= fK (xK+1)− fK (xµ
K)

≤ ∆µ

K + 1
+

(
2
√
∆µ +

1√
β
∥λµ∥+

√
βD

)√
∆µ

K + 1
+ g (yµ

K)− g (yK+1)

≤ ∆µ

K + 1
+

(
2
√
∆µ +

1√
β
∥λµ∥+

√
βD + 1

)√
∆µ

K + 1
.

(18)

Using the above inequality, we have

G(xK+1, C) =⟨F (xK+1),xK+1 − x⋆
K⟩ (19)

=⟨F (xK+1),xK+1 − xµ
K⟩+ ⟨F (xK+1),x

µ
K − x⋆

K⟩ (20)

≤⟨F (xK+1),xK+1 − xµ
K⟩+ ∥F (xK+1)∥ ∥xµ

K − x⋆
K∥ (21)

≤ ∆µ

K + 1
+

(
2
√
∆µ +

1√
β
∥λµ∥+

√
βD + 1 +M

)√
∆µ

K + 1
. (22)

Moreover, by (17), we can choose small enough µ−1 so that

G(xK+1, C) ≤
2∆

K + 1
+ 2

(
2
√
∆+

1√
β
∥λ⋆∥+

√
βD + 1 +M

)√
∆

K + 1
,

and

∥xK+1 − yK+1∥ ≤ 2

√
∆

β(K + 1)
, (23)

where (23) uses (LB.10-2) in Lemma B.10.

30

Published as a conference paper at ICLR 2024

B.2 PROOF OF THEOREM 3.2: LAST-ITERATE CONVERGENCE OF INEXACT ACVI FOR
MONOTONE VARIATIONAL INEQUALITIES

B.2.1 USEFUL LEMMAS FROM PREVIOUS WORKS

The following lemma is Lemma 1 from (Schmidt et al., 2011).
Lemma B.12 (Lemma 1 in (Schmidt et al., 2011)). Assume that the nonnegative sequence {uk}
satisfies the following recursion for all k ≥ 1 :

u2k ≤ Sk +

k∑
i=1

λiui ,

with {Sk} an increasing sequence, S0 ≥ u20 and λi ≥ 0 for all i. Then, for all k ≥ 1, it follows:

uk ≤
1

2

k∑
i=1

λi +

Sk +

(
1

2

k∑
i=1

λi

)2
1/2

.

Proof. We prove the result by induction. It is true for k = 0 (by assumption). We assume it is true
for k − 1, and we denote by vk−1 = max{u1, . . . , uk−1}. From the recursion, we deduce:

(uk − λk/2)2 ≤ Sk +
λ2k
4

+ vk−1

k−1∑
i=1

λi , (24)

leading to

uk ≤
λk
2

+

(
Sk +

λ2k
4

+ vk−1k − 1

k−1∑
i=1

λi

)1/2

, (25)

and thus

uk ≤ max

vk−1,
λk
2

+

(
Sk +

λ2k
4

+ vk−1k − 1

k−1∑
i=1

λi

)1/2
 . (26)

Let v⋆k−1 ≜ 1
2

∑k
i=1 λi +

(
Sk +

(
1
2

∑k
i=1 λi

)2)1/2

. Note that

vk−1 =
λk
2

+

(
Sk +

λ2k
4

+ vk−1k − 1

k−1∑
i=1

λi

)1/2

⇔ vk−1 = v⋆k−1 .

Since the two terms in the max are increasing functions of vk−1, it follows that if vk−1 ≤ v⋆k−1, then
vk ≤ v⋆k−1. Also note that

vk−1 ≥
λk
2

+

(
Sk +

λ2k
4

+ vk−1k − 1

k−1∑
i=1

λi

)1/2

⇔ vk−1 ≥ v⋆k−1 .

From which we deduce that if vk−1 ≥ v⋆k−1, then vk ≤ vk−1, and the induction hypotheses ensure
that the property is satisfied for k.

In the convergence rate analysis of inexact ACVI-Algorithm 1, we need the following definition
(Bertsekas et al., 2003):
Definition B.13 (ε-subdifferential). Given a convex function ψ : Rn → R and a positive scalar ε, a
vector a ∈ Rn is called an ε-subgradient of ψ at a point x ∈ domψ if

ψ(z) ≥ ψ(x) + (z − x)⊺a− ε, ∀z ∈ Rn . (ε-G)

The set of all ε-subgradients of a convex function ψ at x ∈ domψ is called the ε-subdifferential of
ψ at x, and is denoted by ∂εψ(x).

31

Published as a conference paper at ICLR 2024

B.2.2 INTERMEDIATE RESULTS

We first give some lemmas that will be used in the proof of Theorem 3.2.

In the following proofs, we assume ε0 = σ0 = 0. We need the following two lemmas to state a
lemma analogous to Lemma B.3 but for the inexact ACVI.

Lemma B.14. In inexact ACVI-Algorithm 1, for each k, ∃ rk+1 ∈ Rn, ∥rk+1∥ ≤
√

2εk+1

β , s.t.

β(xk+1 +
1

β
λk − yk+1 − rk+1) ∈ ∂εk+1

g(yk+1) .

Proof of Lemma B.14. We first recall some properties of ε-subdifferentials (see, eg. (Bertsekas et al.,
2003), Section 4.3 for more details). x is an ε-minimizer (see Def. 2.4) of a convex function ψ if
and only if 0 ∈ ∂εψ(x). Let ψ = ψ1 + ψ2, where both ψ1 and ψ2 are convex, we have ∂ϵψ(x) ⊂
∂ϵψ1(x) + ∂ϵψ2(x). If ψ1(x) =

β
2 ∥x− z∥2, then

∂εψ1(x) =

{
y ∈ Rn

∣∣∣∣∣β2
∥∥∥∥x− z − y

β

∥∥∥∥2 ≤ ε
}

=

{
y ∈ Rn,y = βx− βz + βr

∣∣∣∣β2 ∥r∥2 ≤ ε
}
.

Let ψ2 = g and z = xk+1 + 1
βλk, then yk+1 is an εk+1-minimizer of ψ1 + ψ2. Thus we have

0 ∈ ∂εk+1
ψ(yk+1) ⊂ ∂εk+1

ψ1(yk+1) + ∂εk+1
ψ2(yk+1). Hence, there is an rk+1 such that

β(xk+1 +
1

β
λk − yk+1 − rk+1) ∈ ∂εk+1

g(yk+1) with ∥rk+1∥ ≤
√

2εk+1

β
.

Lemma B.15. In inexact ACVI-Algorithm 1, for each k, ∃ qk+1 ∈ Rn, ∥qk+1∥ ≤ σk+1, s.t.

xk+1 + qk+1 = argmin
x

{
fk(x) +

β

2

∥∥∥∥x− yk +
1

β
λk

∥∥∥∥2
}
. (27)

where Lβ is the augmented Lagrangian of problem (fk-Pr).

Proof of Lemma B.15. By the definition of xk+1 (see line 8 of inexact ACVI-Algorithm 1 and
Def. 2.3) we have

xk+1 + qk+1 =− 1

β
PcF (x) + Pcyk −

1

β
Pcλk + dc

=argmin
x
Lβ(x,yk,λk) ,

whereLβ is the augmented Lagrangian of the problem, which is given in AL (note that wk = xk+1).
(fk-Pr). And from the above equation (27) follows.

Similar to Lemma B.3, and using Lemma B.14 and Lemma B.15, we give the following lemma for
inexact ACVI–Algorithm 1.
Lemma B.16. For the problems (f -Pr), (fk-Pr) and inexact ACVI-Algorithm 1, we have

0 ∈ ∂fk(xk+1 + qk+1) + λk + β(xk+1 − yk) + βqk+1 (LB.16-1)
0 ∈ ∂εk+1

g(yk+1)− λk − β(xk+1 − yk+1) + βrk+1, (LB.16-2)

λk+1 − λk = β(xk+1 − yk+1), (LB.16-3)
−λµ ∈ ∂f(xµ), (LB.16-4)

−λµ
k ∈ ∂fk(x

µ
k), (LB.16-5)

λµ = ∇g(yµ), (LB.16-6)

λµ
k = ∇g(yµ

k), (LB.16-7)
xµ = yµ, (LB.16-8)

xµ
k = yµ

k , (LB.16-9)

32

Published as a conference paper at ICLR 2024

We define the following two maps (whose naming will be evident from the inclusions shown after):

∇̂fk(xk+1 + qk+1) ≜ −λk − β(xk+1 − yk)− βqk+1 , and (noisy-∇̂fk)

∇̂εk+1
g(yk+1) ≜ λk + β(xk+1 − yk+1)− βrk+1 . (noisy-∇̂g)

Then, from (LB.3-1) and (LB.3-2) it follows that:

∇̂fk(xk+1 + qk+1) ∈ ∂fk(xk+1 + qk+1) and ∇̂εk+1
g(yk+1) ∈ ∂εk+1

g(yk+1) . (28)

The following lemma is analogous to Lemma B.5 but refers to the noisy case.
Lemma B.17. For the iterates xk+1, yk+1, and λk+1 of the inexact ACVI—Algorithm 1—we have:

⟨∇̂εk+1
g(yk+1),yk+1 − y⟩ = −⟨λk+1,y − yk+1⟩ − β⟨rk+1,yk+1 − y⟩, (LB.17-1)

and

⟨∇̂fk(xk+1 + qk+1),xk+1 − x⟩+ ⟨∇̂εk+1
g(yk+1),yk+1 − y⟩

=− ⟨λk+1,xk+1 − yk+1 − x+ y⟩+ β⟨−yk+1 + yk,xk+1 − x⟩
− β⟨qk+1,xk+1 − x⟩ − β⟨rk+1,yk+1 − y⟩ .

(LB.17-2)

Proof of Lemma B.17. From (LB.16-3), (noisy-∇̂fk) and (noisy-∇̂g) we have:

⟨∇̂fk(xk+1 + qk+1) + βqk+1,xk+1 − x⟩ =− ⟨λk + β(xk+1 − yk),xk+1 − x⟩
=− ⟨λk+1,xk+1 − x⟩+ β⟨−yk+1 + yk,xk+1 − x⟩,

and
⟨∇̂εk+1

g(yk+1) + βrk+1,yk+1 − y⟩ = −⟨λk+1,y − yk+1⟩ .

Adding these together yields:

⟨∇̂fk(xk+1 + qk+1) + βqk+1,xk+1 − x⟩+ ⟨∇̂εk+1
g(yk+1) + βrk+1,yk+1 − y⟩

=− ⟨λk+1,xk+1 − yk+1 − x+ y⟩
+ β⟨−yk+1 + yk,xk+1 − x⟩ .

Rearranging the above two equations, we obtain (LB.17-1) and (LB.17-2).

The following lemma is analogous to Lemma B.6 but refers to the noisy case.
Lemma B.18. For the xk+1, yk+1, and λk+1 iterates of the inexact ACVI—Algorithm 1—we have:

⟨∇̂fk(xk+1 + qk+1),xk+1 − xµ⟩+ ⟨∇̂εk+1
g(yk+1),yk+1 − yµ⟩+ ⟨λµ,xk+1 − yk+1⟩

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2 + β

2
∥yµ − yk∥2 −

β

2
∥yµ − yk+1∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥yk − yk+1∥2

− β⟨rk+1 − rk,yk+1 − yk⟩ − β⟨rk+1,yk+1 − yµ⟩+ εk + εk+1 − β⟨qk+1,xk+1 − xµ⟩ ,
and

⟨∇̂fk(xk+1 + qk+1),xk+1 − xµ
k⟩+ ⟨∇̂εk+1

g(yk+1),yk+1 − yµ
k ⟩+ ⟨λ

µ
k ,xk+1 − yk+1⟩

≤ 1

2β
∥λk − λµ

k∥
2 − 1

2β
∥λk+1 − λµ

k∥
2 +

β

2
∥yµ

k − yk∥2 −
β

2
∥yµ

k − yk+1∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥yk − yk+1∥2

− β⟨rk+1 − rk,yk+1 − yk⟩ − β⟨rk+1,yk+1 − yµ
k ⟩+ εk + εk+1 − β⟨qk+1,xk+1 − xµ

k⟩ .

33

Published as a conference paper at ICLR 2024

Proof of Lemma B.18. For the left-hand side of the first part of Lemma B.18:

LHS = ⟨∇̂fk(xk+1 + qk+1),xk+1 − xµ
k⟩+ ⟨∇̂εk+1

g(yk+1),yk+1 − yµ
k ⟩+ ⟨λ

µ
k ,xk+1 − yk+1⟩ ,

we let (x,y,λ) = (xµ,yµ,λµ) in (LB.17-2), and using the result of that lemma we get that:

LHS =− ⟨λk+1,xk+1 − yk+1 − xµ + yµ⟩+ β⟨−yk+1 + yk,xk+1 − xµ⟩
− β⟨qk+1,xk+1 − xµ⟩ − β⟨rk+1,yk+1 − yµ⟩+ ⟨λµ,xk+1 − yk+1⟩ ,

and since xµ = yµ (LB.3-8):

LHS = −⟨λk+1,xk+1 − yk+1⟩+ β⟨−yk+1 + yk,xk+1 − xµ⟩+ ⟨λµ,xk+1 − yk+1⟩
− β⟨qk+1,xk+1 − xµ⟩ − β⟨rk+1,yk+1 − yµ⟩

= −⟨λk+1 − λµ,xk+1 − yk+1⟩+ β⟨−yk+1 + yk,xk+1 − xµ⟩
− β⟨qk+1,xk+1 − xµ⟩ − β⟨rk+1,yk+1 − yµ⟩ ,

where in the last equality, we combined the first and third terms together. Using (LB.16-3) that
1
β (λk+1 − λk) = xk+1 − yk+1 yields (for the second term above, we add and subtract yk+1 in its
second argument, and use xµ = yµ):

LHS =− 1

β
⟨λk+1 − λµ,λk+1 − λk⟩+ ⟨−yk+1 + yk,λk+1 − λk⟩

− β⟨−yk+1 + yk,−yk+1 + yµ⟩ − β⟨qk+1,xk+1 − xµ⟩ − β⟨rk+1,yk+1 − yµ⟩ .
(29)

Using the 3-point identity, that for any vectors a, b, c it holds ⟨b − a, b − c⟩ = 1
2 (∥a− b∥2 +

∥b− c∥2 − ∥a− c∥2), for the first term above, we get that:

⟨λk+1 − λµ,λk+1 − λk⟩ =
1

2

(
∥λk − λµ∥+ ∥λk+1 − λk∥ − ∥λk+1 − λµ∥

)
,

and similarly,

⟨−yk+1 + yk,−yk+1 + yµ⟩ = 1

2

(
∥−yk + yµ∥ − ∥−yk+1 + yµ∥ − ∥−yk+1 + yk∥

)
,

and by plugging these into (29) we get:

LHS =
1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2 − 1

2β
∥λk+1 − λk∥2

+
β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2 − β

2
∥−yk+1 + yk∥2

+ ⟨−yk+1 + yk,λk+1 − λk⟩ − β⟨qk+1,xk+1 − xµ⟩ − β⟨rk+1,yk+1 − yµ⟩ . (30)

On the other hand, (LB.17-1) which states that ⟨∇̂εk+1
g(yk+1),yk+1−y⟩+ ⟨λk+1,−yk+1+y⟩ =

−β⟨rk+1,yk+1 − y⟩, also asserts:

⟨∇̂εkg(yk),yk − y⟩+ ⟨λk,−yk + y⟩ = −β⟨rk,yk − y⟩ . (31)

Letting y = yk in (LB.17-1), and y = yk+1 in (31), and adding them together yields:

⟨∇̂εk+1
g(yk+1)− ∇̂εkg(yk),yk+1 − yk⟩+ ⟨λk+1 − λk,−yk+1 + yk⟩ (32)

= −β⟨rk+1 − rk,yk+1 − yk⟩ . (33)

By the definition of ϵ-subdifferential as per Def.B.13 we have:

εk + g(yk+1) ≥ g(yk) + ⟨∇̂εkg(yk),yk+1 − yk⟩ , and

εk+1 + g(yk) ≥ g(yk+1) + ⟨∇̂εk+1
g(yk+1),yk − yk+1⟩ .

34

Published as a conference paper at ICLR 2024

Adding together the above two inequalities, we obtain:

⟨∇̂εk+1
g(yk+1)− ∇̂εkg(yk),yk+1 − yk⟩ ≥ −εk+1 − εk . (34)

Combining (32) and (34), we deduce:

⟨λk+1 − λk,−yk+1 + yk⟩ ≤ −β⟨rk+1 − rk,yk+1 − yk⟩+ εk+1 + εk . (35)

Lastly, plugging it into (30) gives the first inequality of Lemma B.18.

The second inequality of Lemma B.18 follows similarly.

Lemma B.19. For the xk+1, yk+1, and λk+1 iterates of the inexact ACVI—Algorithm 1—we have:

fk(xk+1 + qk+1) + g(yk+1)− fk(xµ)− g(yµ) + ⟨λµ,xk+1 + qk+1 − yk+1⟩

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2

+
β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥−yk+1 + yk∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥yk − yk+1∥2

− β⟨rk+1 − rk,yk+1 − yk⟩ − β⟨rk+1,yk+1 − yµ⟩
+ εk + 2εk+1 − ⟨qk+1,λk − λµ + β(xk+1 − yk) + β(xk+1 − xµ)⟩ .

(LB.19)

Proof of Lemma B.19. From the convexity of fk(x) and g(y) and Eq. (28) which asserts that
∇̂fk(xk+1 + qk+1) ∈ ∂fk(xk+1 + qk+1) and ∇̂εk+1

g(yk+1) ∈ ∂εk+1
g(yk+1), it follows for the

LHS of Lemma B.19 that:

fk(xk+1 + qk+1) + g(yk+1)− fk(xµ)− g(yµ) + ⟨λµ,xk+1 + qk+1 − yk+1⟩
≤⟨∇̂fk(xk+1 + qk+1),xk+1 + qk+1 − xµ⟩+ ⟨∇̂εk+1

g(yk+1),yk+1 − yµ⟩
+ εk+1 + ⟨λµ,xk+1 + qk+1 − yk+1⟩ .

Finally, by plugging in the first part of Lemma B.18 and using (noisy-∇̂fk), Lemma B.19 follows,
that is:
f(xk+1 + qk+1) + g(yk+1)− f(xµ)− g(yµ) + ⟨λµ,xk+1 + qk+1 − yk+1⟩

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2 + β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥−yk+1 + yk∥2 − β⟨rk+1 − rk,yk+1 − yk⟩

− β⟨rk+1,yk+1 − yµ⟩+ εk + 2εk+1

− β⟨qk+1,xk+1 − xµ⟩ − ⟨qk+1,λk − λµ + β(xk+1 − yk) + βqk+1⟩

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2 + β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥−yk+1 + yk∥2 − β⟨rk+1 − rk,yk+1 − yk⟩

− β⟨rk+1,yk+1 − yµ⟩+ εk + 2εk+1

− ⟨qk+1,λk − λµ + β(xk+1 − yk) + β(xk+1 − xµ)⟩ .

35

Published as a conference paper at ICLR 2024

The following theorem upper bounds the analogous quantity but for fk(·) (instead of f), and further
asserts that the difference between the xk+1 and yk+1 iterates of inexact ACVI (Algorithm 1) tends
to 0 asymptotically.
Theorem B.20 (Asymptotic convergence of (xk+1 − yk+1) of I-ACVI). Assume that

∑∞
i=1(σi +√

εi) < +∞, then for the xk+1, yk+1, and λk+1 iterates of the inexact ACVI—Algorithm 1—we
have:

fk(xk+1 + qk+1)− fk(xµ
k) + g(yk+1)− g(yµ

k)

≤∥λk+1∥ ∥xk+1 − yk+1∥+ β ∥yk+1 − yk∥ ∥xk+1 − xµ
k∥

+ βσk+1 ∥xk+1 − xµ
k∥+

√
2εk+1β ∥yk+1 − yµ

k∥+ εk+1 → 0 ,
(TB.20-fk-UB)

and
xk+1 − yk+1 → 0 , as k →∞ .

Proof of Lemma B.20. Recall from (LB.2-f) of Lemma B.2 that by setting x ≡ xk+1 + qk+1,y ≡
yk+1 it asserts that:

f(xk+1 + qk+1)− f(xµ) + g(yk+1)− g(yµ) + ⟨λµ,xk+1 + qk+1 − yk+1⟩ ≥ 0 .

Further, notice that the LHS of the above inequality overlaps with that of (LB.19). This implies that
the RHS of (LB.19) has to be non-negative. Hence, we have that:

1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2

+
β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2

− β⟨rk+1 − rk,yk+1 − yk⟩ − β⟨rk+1,yk+1 − yµ⟩
+ εk + 2εk+1 − ⟨qk+1,λk − λµ + β(xk+1 − yk) + β(xk+1 − xµ)⟩ .

Recall that ∥rk+1∥ ≤
√

2εk+1

β and ∥qk+1∥ ≤ σk+1 (see Lemma B.14 and Lemma B.15), by
Cauchy-Schwarz inequality we have:

1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2

+
β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2

+
√
2β(
√
εk+1 +

√
εk) ∥yk+1 − yk∥+

√
2βεk+1 ∥yk+1 − yµ∥

+ εk + 2εk+1 + σk+1(∥λk − λµ∥+ β ∥xk+1 − yk∥+ β ∥xk+1 − xµ∥) .

(36)

Summing over k = 0, . . . ,∞, we have:
∞∑
k=0

(1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

)
≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥−y0 + yµ∥2

+
√
2β

∞∑
k=0

(
(
√
εk+1 +

√
εk) ∥yk+1 − yk∥+

√
εk+1 ∥yk+1 − yµ∥

)
+ 3

∞∑
k=0

εk

+

∞∑
k=0

σk+1

(
∥λk − λµ∥+ β ∥xk+1 − yk∥+ β ∥xk+1 − xµ∥

)
.

(37)

36

Published as a conference paper at ICLR 2024

Also notice that by simply reorganizing (36) we have:

1

2β
∥λk+1 − λµ∥2+β

2
∥−yk+1 + yµ∥2

≤ 1

2β
∥λk − λµ∥2 + β

2
∥−yk + yµ∥2 − 1

2β
∥λk+1 − λk∥2 −

β

2
∥−yk+1 + yk∥2

+
√
2β(
√
εk+1 +

√
εk) ∥yk+1 − yk∥+

√
2βεk+1 ∥yk+1 − yµ∥

+ εk + 2εk+1 + σk+1(∥λk − λµ∥+ β ∥xk+1 − yk∥+ β ∥xk+1 − xµ∥)

≤ 1

2β
∥λk − λµ∥2 + β

2
∥−yk + yµ∥2

+
√
2β(
√
εk+1 +

√
εk) ∥yk+1 − yk∥+

√
2βεk+1 ∥yk+1 − yµ∥

+ εk + 2εk+1 + σk+1(∥λk − λµ∥+ β ∥xk+1 − yk∥+ β ∥xk+1 − xµ∥)

≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥−y0 + yµ∥2

+
√
2β

k∑
i=0

(
√
εi+1 +

√
εi) ∥yi+1 − yi∥+

√
2β

k∑
i=0

√
εi+1 ∥yi+1 − yµ∥

+

k∑
i=0

εi + 2

k∑
i=0

εi+1

+

k∑
i=0

σi+1(∥λi − λµ∥+ β ∥xi+1 − yi∥+ β ∥xi+1 − xµ∥) ,

(38)

where the second inequality follows because the norm is non-negative.

From the above inequality we deduce:

1

4β

(
∥λk+1 − λµ∥+ β ∥yk+1 − yµ∥

)2
≤ 1

2β
∥λk+1 − λµ∥2 + β

2
∥yk+1 − yµ∥2

≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥−y0 + yµ∥2

+
√

2β

k∑
i=0

(
√
εi+1 +

√
εi) ∥yi+1 − yi∥+

√
2β

k∑
i=0

√
εi+1 ∥yi+1 − yµ∥

+

k∑
i=0

εi + 2

k∑
i=0

εi+1 +

k∑
i=0

σi+1(∥λi − λµ∥+ β ∥xi+1 − yi∥+ β ∥xi+1 − xµ∥) ,

(39)

where the first inequality is the Cauchy-Schwarz inequality.

Using (LB.16-3) and (LB.16-8), we have:

∥xi+1 − xµ∥ = ∥yi+1 − yµ + xi+1 − yi+1∥

≤ ∥yi+1 − yµ∥+ 1

β
∥λi+1 − λi∥

≤ ∥yi+1 − yµ∥+ 1

β
∥λi+1 − λµ∥+ 1

β
∥λi − λµ∥ ,

(40)

∥xi+1 − yi∥ ≤ ∥xi+1 − xµ∥+ ∥yi − yµ∥

≤ ∥yi − yµ∥+ ∥yi+1 − yµ∥+ 1

β
∥λi+1 − λµ∥+ 1

β
∥λi − λµ∥ ,

(41)

37

Published as a conference paper at ICLR 2024

∥yi+1 − yi∥ ≤ ∥yi+1 − yµ∥+ ∥yi − yµ∥ . (42)

Plugging these into (39), we obtain:

1

4β

(
∥λk+1 − λµ∥+ β ∥yk+1 − yµ∥

)2
≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥y0 − yµ∥2 +

√
2β

k∑
i=0

(
√
εi+1 +

√
εi)
(
∥yi+1 − yµ∥+ ∥yi − yµ∥

)
+
√
2β

k∑
i=0

√
εi+1 ∥yi+1 − yµ∥+

k∑
i=0

εi + 2

k∑
i=0

εi+1

+

k∑
i=0

σi+1

(
∥λi − λµ∥+ β

(
∥yi − yµ∥+ ∥yi+1 − yµ∥+ 1

β
∥λi+1 − λµ∥

+
1

β
∥λi − λµ∥

)
+ β

(
∥yi+1 − yµ∥+ 1

β
∥λi+1 − λµ∥+ 1

β
∥λi − λµ∥

))

≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥y0 − yµ∥2 +

k∑
i=0

εi + 2

k∑
i=0

εi+1

+

k∑
i=0

(√
2β
(√
εi+1 +

√
εi
)
+ βσi+1

)
∥yi − yµ∥+

k∑
i=0

3σi+1 ∥λi − λµ∥

+

k∑
i=0

(√
2β
(
2
√
εi+1 +

√
εi
)
+ 2βσi+1

)
∥yi+1 − yµ∥+

k∑
i=0

2σi+1 ∥λi+1 − λµ∥

=
1

2β
∥λ0 − λµ∥2 + β

2
∥y0 − yµ∥2 +

k∑
i=0

εi + 2

k∑
i=0

εi+1

+
(√

2β
√
ε1 + βσ1

)
∥y0 − yµ∥+ 3σ1 ∥λ0 − λµ∥

+

k∑
i=1

(√
2β
(√
εi+1 +

√
εi
)
+ βσi+1

)
∥yi − yµ∥

+

k+1∑
i=1

(√
2β
(
2
√
εi +

√
εi−1

)
+ 2βσi

)
∥yi − yµ∥

+

k∑
i=1

3σi+1 ∥λi − λµ∥+
k+1∑
i=1

2σi ∥λi − λµ∥

≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥y0 − yµ∥2 +

(√
2β
√
ε1 + βσ1

)
∥y0 − yµ∥+ 3σ1 ∥λ0 − λµ∥+ 3

k+1∑
i=1

εi

+

k+1∑
i=1

(√
2β
(√
εi+1 + 3

√
εi +

√
εi−1

)
+ β(2σi + σi+1)

)
∥yi − yµ∥

+

k+1∑
i=1

(2σi + 3σi+1) ∥λi − λµ∥

≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥y0 − yµ∥2 +

(√
2β
√
ε1 + βσ1

)
∥y0 − yµ∥+ 3σ1 ∥λ0 − λµ∥+ 3

k+1∑
i=1

εi

+

k+1∑
i=1

(√ 2

β

(√
εi+1 + 3

√
εi +

√
εi−1

)
+ (2σi + 3σi+1)

)(
β ∥yi − yµ∥+ ∥λi − λµ∥

)
,

38

Published as a conference paper at ICLR 2024

From which we deduce:(
∥λk+1 − λµ∥+ β ∥yk+1 − yµ∥

)2
≤2 ∥λ0 − λµ∥2 + 2β2 ∥y0 − yµ∥2 + 4β

(√
2β
√
ε1 + βσ1

)
∥y0 − yµ∥

+ 12βσ1 ∥λ0 − λµ∥+ 12β

k+1∑
i=1

εi

+ 4β

k+1∑
i=1

(√ 2

β

(√
εi+1 + 3

√
εi +

√
εi−1

)
+ (2σi + 3σi+1)

)(
β ∥yi − yµ∥+ ∥λi − λµ∥

)
.

Now we set ui ≜ β ∥yi − yµ∥ + ∥λi − λµ∥, λi ≜ 4β
(√

2
β

(√
εi+1 + 3

√
εi +

√
εi−1

)
+ (2σi +

3σi+1)
)

and Sk+1 ≜ 2 ∥λ0 − λµ∥2 + 2β2 ∥y0 − yµ∥2 + 4β
(√

2β
√
ε1 + βσ1

)
∥y0 − yµ∥ +

12βσ1 ∥λ0 − λµ∥+ 12β
∑k+1

i=1 εi and Lemma B.12 to get:

uk+1 ≤
1

2

k+1∑
i=1

λi +

Sk+1 +

(
1

2

k+1∑
i=1

λi

)2
1/2

︸ ︷︷ ︸
Ak+1

, (43)

where we set the RHS of (43) to be Ak+1.

Note that when
∑∞

i=1(σi +
√
εi) < +∞, we have Aµ ≜ lim

k→+∞
Ak < +∞, and

∥yk − yµ∥ ≤ 1

β
Aµ , (44)

∥λk − λµ∥ ≤ Aµ . (45)

Using Eq. (37) we could further get:

∥xk − xµ∥ ≤ 3

β
Aµ . (46)

Combining (40),(41) and (42) with (37) and using the above inequalities, we have:

∞∑
k=0

(1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

)
≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥−y0 + yµ∥2

+
√
2β

∞∑
k=0

(
(
√
εk+1 +

√
εk) ·

2

β
Aµ +

√
εk+1 ·

1

β
Aµ
)
+ 3

∞∑
k=0

εk

+

∞∑
k=0

σk+1

(
Aµ + β · 4

β
Aµ + β · 3

β
Aµ
)

≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥−y0 + yµ∥2 + 5

√
2

β
Aµ

∞∑
k=1

√
εk + 3

∞∑
k=1

εk + 8Aµ
∞∑
k=1

σk , (47)

from which we can see that λk+1 − λk → 0 and yk+1 − yk → 0.

Recall that:
λk+1 − λk = β(xk+1 − yk+1) ,

from which we deduce xk+1 − yk+1 → 0.

39

Published as a conference paper at ICLR 2024

Using the convexity of fk(·) and g(·) for the LHS of Theorem B.20 we have:

LHS = fk(xk+1 + qk+1)− fk(xµ
k) + g(yk+1)− g(yµ

k)

≤ ⟨∇̂fk(xk+1 + qk+1),xk+1 − xµ
k⟩+ ⟨∇̂εk+1

g(yk+1),yk+1 − yµ
k ⟩+ εk+1

Using (LB.17-2) with x ≡ xµ
k ,y ≡ yµ

k we have:

LHS ≤− ⟨λk+1,xk+1 − yk+1 −xµ
k + yµ

k︸ ︷︷ ︸
=0, due to (LB.3-9)

⟩+ β⟨−yk+1 + yk,xk+1 − xµ
k⟩

− β⟨qk+1,xk+1 − xµ
k⟩ − β⟨rk+1,yk+1 − yµ

k ⟩+ εk+1 .

.

Hence, it follows that:

fk(xk+1 + qk+1)− fk(xµ
k) + g(yk+1)− g(yµ

k)

≤− ⟨λk+1,xk+1 − yk+1⟩+ β⟨−yk+1 + yk,xk+1 − xµ
k⟩

− β⟨qk+1,xk+1 − xµ
k⟩ − β⟨rk+1,yk+1 − yµ

k ⟩+ εk+1

≤∥λk+1∥ ∥xk+1 − yk+1∥+ β ∥yk+1 − yk∥ ∥xk+1 − xµ
k∥

+ βσk+1 ∥xk+1 − xµ
k∥+

√
2εk+1β ∥yk+1 − yµ

k∥+ εk+1 ,

where the last inequality follows from Cauchy-Schwarz.

Recall that C is compact and D is the diameter of C:

D ≜ sup
x,y∈C

∥x− y∥ .

Combining with (42), we have:

∥yk+1 − yµ
k∥ = ∥yk+1 − yµ∥+

∥∥yµ − yµ
k+1

∥∥ ≤ 1

β
Aµ +D , (48)

which implies that ∥yk − yµ
k∥ are bounded for all k. Similarly, using (40), we deduce:

∥xk+1 − xµ
k∥ = ∥xk+1 − xµ∥+

∥∥xµ − xµ
k+1

∥∥ ≤ 3

β
Aµ +D , (49)

which implies that xk+1 − xµ
k is also bounded. Note that when

∑∞
i=1(σi +

√
εi) < +∞, we have

lim
k→∞

σk = lim
k→∞

εk = 0. Thus, we have (TB.20-fk-UB).

Lemma B.21. Assume that F is L-Lipschitz. For the xk+1, yk+1, and λk+1 iterates of the ACVI—
Algorithm 3—we have:

1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

≤ 1

2β
∥λk − λk−1∥2 +

β

2
∥−yk + yk−1∥2

+ (σk+1 + σk)
(
β ∥yk − yk−1∥+ (2β + L) ∥yk+1 − yk∥

+

(
2 +

L

β

)
∥λk+1 − λk∥+

(
L

β
+ 1

)
∥λk − λk−1∥

)
+
√
2β(
√
εk +

√
εk+1) ∥yk+1 − yk∥+ εk + εk+1 .

(LB.21)

Proof of Lemma B.21. (LB.17-2) gives:

⟨∇̂fk−1(xk + qk),xk − x⟩+ ⟨∇̂εkg(yk),yk − y⟩
=− ⟨λk,xk − yk − x+ y⟩+ β⟨−yk + yk−1,xk − x⟩ − β⟨qk,xk − x⟩ − β⟨rk,yk − y⟩ .

(50)

40

Published as a conference paper at ICLR 2024

Letting (x,y,λ) = (xk,yk,λk) in (LB.17-2) and (x,y,λ) = (xk+1,yk+1,λk+1) in (50), and
adding them together, and using (LB.16-3), we have

⟨∇̂fk (xk+1 + qk+1)− ∇̂fk−1 (xk + qk) ,xk+1 − xk⟩+ ⟨∇̂εk+1
g (yk+1)− ∇̂εkg (yk) ,yk+1 − yk⟩

=− ⟨λk+1 − λk,xk+1 − yk+1 − xk + yk⟩+ β⟨−yk+1 + yk − (−yk + yk−1) ,xk+1 − xk⟩
− β⟨qk+1 − qk,xk+1 − xk⟩ − β⟨rk+1 − rk,yk+1 − yk⟩

=− 1

β
⟨λk+1 − λk,λk+1 − λk − (λk − λk−1)⟩

+ ⟨−yk+1 + yk + (yk − yk−1) ,λk+1 − λk + βyk+1 − (λk − λk−1 + βyk)⟩
− β⟨qk+1 − qk,xk+1 − xk⟩ − β⟨rk+1 − rk,yk+1 − yk⟩ (51)

=
1

2β

[
∥λk − λk−1∥2 − ∥λk+1 − λk∥2 − ∥λk+1 − λk − (λk − λk−1)∥2

]
+
β

2

[
∥−yk + yk−1∥2 − ∥−yk+1 + yk∥2 − ∥−yk+1 + yk − (−yk + yk−1)∥2

]
+ ⟨−yk+1 + yk − (−yk + yk−1) ,λk+1 − λk − (λk − λk−1)⟩
− β⟨qk+1 − qk,xk+1 − xk⟩ − β⟨rk+1 − rk,yk+1 − yk⟩

=
1

2β

(
∥λk − λk−1∥2 − ∥λk+1 − λk∥2

)
+
β

2

(
∥−yk + yk−1∥2 − ∥−yk+1 + yk∥2

)
− 1

2β
∥λk+1 − λk − (λk − λk−1)∥2 −

β

2
∥−yk+1 + yk − (−yk + yk−1)∥2

+ ⟨−yk+1 + yk − (−yk + yk−1) ,λk+1 − λk − (λk − λk−1)⟩
− β⟨qk+1 − qk,xk+1 − xk⟩ − β⟨rk+1 − rk,yk+1 − yk⟩

≤ 1

2β

(
∥λk − λk−1∥2 − ∥λk+1 − λk∥2

)
+
β

2

(
∥−yk + yk−1∥2 − ∥−yk+1 + yk∥2

)
+ β(σk+1 + σk) ∥xk+1 − xk∥+

√
2β(
√
εk +

√
εk+1) ∥yk+1 − yk∥ . (52)

Using the monotonicity of fk and fk−1, we deduce:

⟨∇̂fk (xk+1 + qk+1) ,xk + qk − (xk+1 + qk+1)⟩+ fk (xk+1 + qk+1) ≤ fk (xk + qk) ,

⟨∇̂fk−1 (xk + qk) ,xk+1 + qk+1 − (xk + qk)⟩+ fk−1 (xk + qk) ≤ fk−1 (xk+1 + qk+1) .

Adding together the above two inequalites and rearranging the terms, we have:

⟨∇̂fk (xk+1 + qk+1)− ∇̂fk−1 (xk + qk) ,xk + qk − (xk+1 + qk+1)⟩
+ fk (xk+1 + qk+1)− fk−1 (xk+1 + qk+1) + fk−1 (xk + qk)− fk (xk + qk) ≤ 0 ,

which gives:

⟨∇̂fk (xk+1 + qk+1)− ∇̂fk−1 (xk + qk) ,xk+1 − xk⟩
≥⟨∇̂fk (xk+1 + qk+1)− ∇̂fk−1 (xk + qk) , qk − qk+1⟩

+ fk (xk+1 + qk+1)− fk−1 (xk+1 + qk+1) + fk−1 (xk + qk)− fk (xk + qk)

=⟨∇̂fk (xk+1 + qk+1)− ∇̂fk−1 (xk + qk) , qk − qk+1⟩
+ ⟨F (xk+1)− F (xk),xk+1 + qk+1 − xk − qk⟩

≥⟨−λk − β(xk+1 − yk)− βqk+1 − (−λk−1 − β(xk − yk−1)− βqk) , qk − qk+1⟩
+ ⟨F (xk+1)− F (xk),xk+1 + qk+1 − xk − qk⟩

≥⟨λk−1 − λk − β(xk+1 − yk) + β(xk − yk−1), qk − qk+1⟩
+ ⟨F (xk+1)− F (xk),xk+1 + qk+1 − xk − qk⟩

≥ − (σk+1 + σk) (∥λk−1 − λk − β(xk+1 − yk) + β(xk − yk−1)∥+ ∥F (xk+1)− F (xk)∥) ,
(53)

where the second inequality uses (noisy-∇̂fk), the penultimate inequality uses the nonnegativity of
⟨qk − qk+1, qk − qk+1⟩, and the last inequality follows from the monotonicity of F , the Cauchy-
Schwarz inequality and the fact that ∥qk∥ ≤ σk.

41

Published as a conference paper at ICLR 2024

Note that by (LB.16-3) we have:

λk−1 − λk − β(xk+1 − yk) + β(xk − yk−1)

=β(yk − xk − (xk+1 − yk) + (xk − yk−1))

=β(2yk − xk+1 − yk−1)

=β((yk − yk−1)− (yk+1 − yk)− (xk+1 − yk+1))

=β((yk − yk−1)− (yk+1 − yk))− (λk+1 − λk) , (54)

xk+1−xk = xk+1−yk+1+yk+1−yk+yk−xk =
1

β
(λk+1−λk)+yk+1−yk+

1

β
(λk−λk−1) .

(55)

Using (53),(54), (55) and the L-smoothness property of F , we get:

⟨∇̂fk (xk+1 + qk+1)− ∇̂fk−1 (xk + qk) ,xk+1 − xk⟩
≥ − (σk+1 + σk) (β ∥yk − yk−1∥+ β ∥yk+1 − yk∥+ ∥λk+1 − λk∥+ L ∥xk+1 − xk∥)

≥− (σk+1 + σk)
(
β ∥yk − yk−1∥+ (β + L) ∥yk+1 − yk∥

+

(
1 +

L

β

)
∥λk+1 − λk∥+

L

β
∥λk − λk−1∥

)
.

Combining the above inequality with (34) and (52), and using (44) and (46), it follows that:

1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

≤ 1

2β
∥λk − λk−1∥2 +

β

2
∥−yk + yk−1∥2 + β(σk+1 + σk) ∥xk+1 − xk∥

+
√

2β(
√
εk +

√
εk+1) ∥yk+1 − yk∥

+ (σk+1 + σk)

(
β ∥yk − yk−1∥+ (β + L) ∥yk+1 − yk∥+

(
1 +

L

β

)
∥λk+1 − λk∥

+
L

β
∥λk − λk−1∥

)
+ εk + εk+1

≤ 1

2β
∥λk − λk−1∥2 +

β

2
∥−yk + yk−1∥2

+ (σk+1 + σk)

(
β ∥yk − yk−1∥+ (2β + L) ∥yk+1 − yk∥+

(
2 +

L

β

)
∥λk+1 − λk∥

+

(
L

β
+ 1

)
∥λk − λk−1∥

)
+
√

2β(
√
εk +

√
εk+1) ∥yk+1 − yk∥+ εk + εk+1 .

42

Published as a conference paper at ICLR 2024

Lemma B.22. If limK→+∞
1√
K

∑K+1
k=1 k(σk +

√
εk) < +∞, then we have:

∞∑
k=1

σk +
√
εk < +∞ , (56)

∞∑
k=1

kεk < +∞ . (57)

σK +
√
εk ≤ O

(
1√
K

)
. (58)

Proof. Let TK ≜ limK→+∞
1√
K

∑K+1
k=1 k(σk +

√
εk). If limK→+∞ TK < +∞, then by Cauchy’s

convergence test, ∀p ∈ N+, TK+p − TK → 0, K → +∞.

Note that

TK+p − TK =
1√

K + p

K+p+1∑
k=K+2

k(σ +
√
εk) +

(
1√

K + p
− 1√

K

)K+1∑
k=1

k(σ +
√
εk)

=
1√

K + p

K+p+1∑
k=K+2

k(σ +
√
εk)−

p
√
K + p

√
K
(√

K + p+
√
K
) K+1∑

k=1

k(σ +
√
εk) ,

where the second term

p
√
K + p

√
K
(√

K + p+
√
K
) K+1∑

k=1

k(σ +
√
εk)

≤ 1√
K

K+1∑
k=1

k(σ +
√
εk)→ 0, K → +∞, ∀p ∈ N+ .

(59)

Thus for any p ∈ N+, we have

1√
K + p

K+p+1∑
k=K+2

k(σ +
√
εk)→ 0, K → +∞ . (60)

From which we deduce that for any p ∈ N+,
K+p+1∑
K+2

(σ +
√
εk) ≤

√
K + p

K + 2
· K + 2√

K + p

K+p+1∑
K+2

(σ +
√
εk)

≤
√
K + p

K + 2
· 1√

K + p

K+p+1∑
K+2

k(σ +
√
εk)→ 0 , ∀K → +∞ .

(61)

Again by Cauchy’s convergence test, we have
∞∑
k=1

σk +
√
εk < +∞ ,

which is (56).

Note that limK→∞ TK = T0 +
∑∞

k=0 Tk+1 − Tk. And

Tk+1 − Tk = O
(√

K(σk +
√
εk)
)
≥ O(kεk) .

Thus by the comparison test, we have
∞∑
k=1

kεk < +∞ ,

43

Published as a conference paper at ICLR 2024

σK +
√
εk ≤ O

(
1√
K

)
,

which gives (57), (58).

Lemma B.23. Assume that F is monotone on C=, and limK→+∞
1√
K

∑K+1
k=1 k(σk+

√
εk) < +∞,

then for the inexact ACVI—Alg. 1, we have:
fK (xK+1 + qK+1) + g (yK+1)− fK (xµ

K)− g (yµ
K)

≤ (∥λµ∥+ 4A+ βD)
Eµ

β
√
K

+ (3Aµ + βD)σk+1 +
√

2β

(
Aµ

β
+D

)
√
εk+1 + εk+1 ,

(LB.23-1)

and ∥xK+1 − yK+1∥ ≤
Eµ

β
√
K
, (LB.23-2)

where Aµ is defined in Theorem B.20.

Proof of Lemma B.23. First, we define: ∆µ ≜ 1
β ∥λ0 − λµ∥2 + β∥y0 − yµ∥2.

Summing (36) over k = 0, 1, . . . ,K, we have:
K∑
i=0

(
1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

)
≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥−y0 + yµ∥2

+

K∑
i=0

√
2β(
√
εk+1 +

√
εk) ∥yk+1 − yk∥+

K∑
i=0

√
2βεk+1 ∥yk+1 − yµ∥

+

K∑
k=0

εk + 2

K∑
k=0

εk+1 +

K∑
k=0

σk+1(∥λk − λµ∥+ β ∥xk+1 − yk∥+ β ∥xk+1 − xµ∥)

≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥−y0 + yµ∥2

+ 2

K∑
k=0

√
2

β
Aµ(
√
εk+1 +

√
εk) +

K∑
k=0

√
2

β
Aµ√εk+1

+

K∑
k=0

εk + 2

K∑
k=0

εk+1 +

K∑
k=0

σk+1

(
A+ β · 4

β
Aµ + β · 3

β
Aµ

)

≤ ∆µ + 5

√
2

β
Aµ

K+1∑
k=1

√
εk + 8Aµ

K+1∑
k=1

σi + 3

K+1∑
k=1

εk , (62)

where the penultimate inequality follows from (41), (44), (45) and (46), and Aµ is defined in Theo-
rem B.20.

Recall that Lemma B.21 gives:
1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

≤ 1

2β
∥λk − λk−1∥2 +

β

2
∥−yk + yk−1∥2

+ (σk+1 + σk)

(
β ∥yk − yk−1∥+ (2β + L) ∥yk+1 − yk∥+

(
2 +

L

β

)
∥λk+1 − λk∥

+

(
L

β
+ 1

)
∥λk − λk−1∥

)
+
√

2β(
√
εk +

√
εk+1) ∥yk+1 − yk∥+ εk + εk+1 .

44

Published as a conference paper at ICLR 2024

Let:

δk+1 ≜(σk+1 + σk)

(
β ∥yk − yk−1∥+ (2β + L) ∥yk+1 − yk∥+

(
2 +

L

β

)
∥λk+1 − λk∥

+

(
L

β
+ 1

)
∥λk − λk−1∥

)
+
√
2β(
√
εk +

√
εk+1) ∥yk+1 − yk∥+ εk + εk+1 .

(δ)

Then the above inequality could be rewritten as:

1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

≤ 1

2β
∥λk − λk−1∥2 +

β

2
∥−yk + yk−1∥2 + δk+1 ,

which gives:

1

2β
∥λK+1 − λK∥2 +

β

2
∥−yK+1 + yK∥2

≤ 1

2β
∥λk − λk−1∥2 +

β

2
∥−yk + yk−1∥2 +

K∑
i=k

δi+1 . (63)

Combining (63) with (62), we obtain:

K

(
1

2β
∥λK+1 − λK∥2 +

β

2
∥−yK+1 + yK∥2

)
≤

K∑
i=0

(
1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

)
+

K−1∑
i=0

K∑
j=k+1

δj+1

≤∆µ + 5

√
2

β
A

K+1∑
k=1

√
εk + 8A

K+1∑
k=1

σi + 3

K+1∑
k=1

εk +

K∑
k=1

kδk+1 . (64)

We define:

ak+1 ≜ (σk+1 + σk)

(
1 +

L

β

)
, (a)

bk+1 ≜ (σk+1 + σk)

(
2 +

L

β

)
+

√
2

β
(
√
εk+1 +

√
εk) , (b)

u′k+1 ≜ ∥λk+1 − λk∥+ β ∥yk+1 − yk∥ . (u′)

Note that:

δk+1 ≤εk + εk+1 + (σk+1 + σk)

(
1 +

L

β

)
︸ ︷︷ ︸

ak+1

(∥λk − λk+1∥+ β ∥yk − yk−1∥)︸ ︷︷ ︸
u′
k

+

(
(σk+1 + σk)

(
2 +

L

β

)
+

√
2

β
(
√
εk+1 +

√
εk)

)
︸ ︷︷ ︸

bk+1

(∥λk+1 − λk∥+ β ∥yk+1 − yk∥)︸ ︷︷ ︸
u′
k+1

,

45

Published as a conference paper at ICLR 2024

from which we deduce that:
K∑

k=1

kδk+1 ≤
K∑

k=1

(kak+1u
′
k + (k + 1)bk+1u

′
k+1) +

K∑
k=1

k(εk + εk+1) (65)

≤
K+1∑
k=1

(ak+1 + bk)ku
′
k + 2

K+1∑
k=1

kεk (66)

=

K+1∑
k=1

(
(σk+1 + σk)

(
1 +

L

β

)
+ (σk−1 + σk)

(
2 +

L

β

)
+

√
2

β
(
√
εk−1 +

√
εk)
)

︸ ︷︷ ︸
ck

ku′k

+ 2

K+1∑
k=1

kεk , (67)

where we define

ck ≜
(
(σk+1 + σk)

(
1 +

L

β

)
+ (σk−1 + σk)

(
2 +

L

β

)
+

√
2

β
(
√
εk−1 +

√
εk)
)
. (c)

Note that by Cauchy-Schwarz inequality, we have:
K

4β
u′2k+1 =

K

4β
(∥λk+1 − λk∥+ β ∥yk+1 − yk∥)2

≤ K

2β

(
∥λK+1 − λK∥2 + β2∥−yK+1 + yK∥2

)
.

Combining this inequality with (64), (67), and letting:

Bk+1 ≜ ∆µ + 5

√
2

β
Aµ

K+1∑
k=1

√
εk + 8Aµ

K+1∑
k=1

σi + 3

K+1∑
k=1

εk , (B)

gives:

u′2k+1 ≤
4β

K

(
Bk+1 + 2

K+1∑
k=1

kεk

)
+

4β

K

K+1∑
k=1

kcku
′
k .

Using Lemma B.12, we obtain:

u′k+1 ≤
1√
K

 2β√
K

K+1∑
k=1

kck +

4β

(
Bk+1 + 2

K+1∑
k=1

kεk

)
+

(
2β

√
K
∑K+1

k=1 kck

)2
 1

2


︸ ︷︷ ︸

Ek+1

.

(68)

Using the assumption that limK→+∞
1√
K

∑K+1
k=1 k(σk +

√
εk) < +∞ and (56) in Lamma B.22,

we have Bk+1 is bounded; using (57), we know that Ek+1 in the RHS of (68) is bounded.

Let Eµ = limk→∞Ek, then by (68) we have

β∥xK+1 − yK+1∥ = ∥λK+1 − λK∥ ≤
Eµ

√
K
, (69)

∥−yK+1 + yK∥ ≤
Eµ

β
√
K
. (70)

On the other hand, (44), (45) and (46) gives:

∥xk − xµ
k∥ ≤∥xk − xµ∥+ ∥xµ − xµ

k∥ ≤
3

β
Aµ +D ,

∥yk − yµ
k∥ ≤∥yk − yµ∥+ ∥yµ − yµ

k∥ ≤
1

β
Aµ +D ,

∥λk+1∥ ≤∥λk+1 − λµ∥+ ∥λµ∥ ≤ Aµ + ∥λµ∥ .

46

Published as a conference paper at ICLR 2024

Plugging these into (TB.20-fk-UB) yields (LB.23-1).

B.2.3 ANALOGOUS INTERMEDIATE RESULTS FOR THE EXTENDED LOG BARRIER

Recall from § 3.2 that we defined the following barrier functions,

℘1(z, µ) ≜ −µ log(−z) (℘1)

℘2(z, µ) ≜

{
−µ log(−z) , z ≤ −e−

c
µ

µe
c
µ z + µ+ c , otherwise

(℘2)

where c in (℘2) is a fixed constant. For convenience, we also define herein:

g̃(t)(y) ≜
m∑
i=1

℘2

(
φi(y), µt

)
. (g̃(t))

In the previous subsections, we focused on the standard barrier function used for IP methods (℘1).
In this subsection, we first show that when we use barrier map (℘2) in Alg. 1, where constant c in
(℘2) is properly chosen, y(t)

k+1—the solution to the minimization problem in line 9 of Alg. 1 is the
same when we use standard barrier map (℘1). Thus, all the above results hold if we substitute g(t)

by g̃(t).
Proposition B.24 (Equivalent solutions of the y-subproblems with ℘1 and with ℘2). For any
fixed t ∈ {0, . . . , T − 1} and k ∈ {0, . . . ,K − 1}, let τi ≜ miny

∑m
j=1,j ̸=i ℘2

(
φj(y), µt

)
+

β
2

∥∥∥y − x
(t)
k+1 −

1
βλ

(t)
k

∥∥∥2, τ ≥ −min1≤i≤m{τi}, and ctk ≜ ψt
k(y

(t)
k) + τ . Further, define:

ψt
k(y) ≜

m∑
i=1

℘1

(
φi(y), µt

)
+
β

2

∥∥∥∥y − x
(t)
k+1 −

1

β
λ
(t)
k

∥∥∥∥2 , (ψ)

and

ψ̃t
k(y) ≜

m∑
i=1

℘2

(
φi(y), µt

)
+
β

2

∥∥∥∥y − x
(t)
k+1 −

1

β
λ
(t)
k

∥∥∥∥2 , (ψ̃)

where we let c = ctk in (℘2). Then, it holds that:

y
(t)
k+1 = argmin

y
ψ̃t
k(y) = argmin

y
ψt
k(y; c

t
k) . (71)

Proof of Prop. B.24: Equivalent solutions of the y-subproblems with ℘1 and with ℘2. When c =

ctk in (℘2), ∀y ∈ Rn, if ∃i ∈ [m], s.t. φi(y) > −e−ctk/µ, then we have

℘2(φi(y), µt) > ctk = ψt
k(y

(t)
k) + τ . (72)

Note that
℘2(x, µt) ≤ ℘1(x, µt), ∀x , (73)

thus, we have:
ψ̃t
k(y

′) ≤ ψt
k(y

′), ∀y′ . (74)

Let ỹ(t)
k+1 = argmin

y
ψ̃t
k(y). If τ ≥ −min1≤i≤m{τi}, then (72) and (74) give:

ψ̃t
k(y) =

m∑
i=1

℘2(φi(y); c
t
k) +

β

2

∥∥∥∥y − x
(t)
k+1 −

1

β
λ
(t)
k

∥∥∥∥2
>ψt

k(y
(t)
k) + τ + τi ≥ ψt

k(y
(t)
k) ≥ ψ̃t

k(y
(t)
k) ≥ ψ̃t

k(ỹ
(t)
k+1) , (75)

which indicates ỹ(t)
k+1, the minimum of ψ̃t

k(y
(t)
k), must be in the set S ≜ {x|φ(x) ≤ −e−ctk/µe}.

Note that ψ̃t
k(·) ≡ ψt

k(·) on S. Therefore, ỹ(t)
k+1 = y

(t)
k+1.

47

Published as a conference paper at ICLR 2024

The next Proposition shows the smoothness of the objective in line 9 of Alg. 1 when we use the
extended log barrier term (℘2).

Proposition B.25 (Smoothness of (℘2)). Suppose for all i ∈ [m], we have ∥∇φi(y)∥ ≤
Mi, ∀y ∈ Rn, and φi is Li-smooth in Rn, then ψ̃t

k(·) is L̃µt

ctk
-smooth, where L̃µt

ctk
=∑m

i=1

(
µte

ctk/µtLi + µte
2ctk/µtMi

)
+ β .

Proof of Prop. B.25: Smoothness of (℘2). Note that for any x, c ∈ R and µ > 0, we have 0 ≤
℘′
2(x, µ) ≤ µec/µ and 0 ≤ ℘′′

2(x, µ) ≤ µe2c/µ. Thus, we have:

||∇ψ̃t
k(y)−∇ψ̃t

k(x)||
= ∥℘′

2(φi(y), µ)∇φi(y)− ℘′
2(φi(x), µ)∇φi(x)∥

= ∥℘′
2(φi(y), µ)(∇φi(y)−∇φi(x)) + (℘′

2(φi(y), µ)− ℘′
2(φi(x), µ))∇φi(x)∥

≤µec/µ ∥∇φi(y)−∇φi(x)∥+Mi|℘′
2(φi(y), µ)− ℘′

2(φi(x), µ)|

≤
(
µec/µLi + µe2c/µMi

)
∥y − x∥ , ∀x,y ∈ Rn ,

from which we can easily see that the proposition is true.

Remark B.26. We note the following remarks regarding the above result.

(i) When t is large, τi defined in Prop. B.24 > 0 or is very close to 0. Therefore, in order to
let τ satisfy τ ≥ −min1≤i≤m{τi}, it suffices to set it to a small positive number.

(ii) ψt
k(y

(t)
k) is bounded and thus ctk is bounded. Suppose ctk is upper bounded by c⋆, i.e.,

ctk ≤ c⋆, ∀k, t. Then ∀t ∈ {0, . . . , T − 1}, ψ̃t
k(·) is L̃µt

c⋆ -smooth, and β-strongly convex
and the subproblem in line 9 could be solved by commonly used first-order methods such
as gradient descent at a linear rate.

(iii) Alternatively, instead of updating ctk for each k, t as it is suggested in line 9 of Alg. 1, for
any t, we could fix ctk to be ψt

k(y
′) + τ , where y′ is an arbitrary interior point of C≤; see

Appendix C for detailed implementation.

B.2.4 PROVING THEOREM 3.2

We are now ready to prove Theorem 3.2. Here we give a nonasymptotic convergence rate of Algo-
rithm 1.

Theorem B.27 (Restatement of Theorem 3.2). Given an continuous operator F : X → Rn, assume
that:

(i) F is monotone on C=, as per Def. 2.1;

(ii) F is L-Lipschitz on X ;

(iii) F is either strictly monotone on C or one of φi is strictly convex.

For any fixed K ∈ N+, let (x(t)
K ,y

(t)
K ,λ

(t)
K) denote the last iterate of Algorithm 1. Let ℘ be ℘1 or

℘2 with c = ctk (see Prop. B.24 for the definition of ctk). Run with sufficiently small µ−1. Further,
suppose:

lim
K→+∞

1√
K

K+1∑
k=1

k(σk +
√
εk) < +∞ .

We define:

λi ≜ 4β
(√ 2

β

(√
εi+1 + 3

√
εi +

√
εi−1

)
+ (2σi + 3σi+1)

)
,

48

Published as a conference paper at ICLR 2024

S⋆
k+1 ≜ 2 ∥λ0 − λ⋆∥2 + 2β2 ∥y0 − y⋆∥2 + 4β

(√
2β
√
ε1 + βσ1

)
∥y0 − y⋆∥

+ 12βσ1 ∥λ0 − λ⋆∥+ 12β

k+1∑
i=1

εi ,

A⋆
k+1 ≜

1

2

k+1∑
i=1

λi +

S⋆
k+1 +

(
1

2

k+1∑
i=1

λi

)2
1/2

,

and

A ≜ lim
k→+∞

A⋆
k < +∞ .

We define

ck ≜
(
(σk+1 + σk)

(
1 +

L

β

)
+ (σk−1 + σk)

(
2 +

L

β

)
+

√
2

β
(
√
εk−1 +

√
εk)
)
,

∆ ≜
1

β
∥λ0 − λ⋆∥2 + β∥y0 − y⋆∥2 ,

B⋆
k+1 ≜ ∆+ 5

√
2

β
A

K+1∑
k=1

√
εk + 8A

K+1∑
k=1

σi + 3

K+1∑
k=1

εk ,

E⋆
k+1 ≜

2β√
K

K+1∑
k=1

kck +

4β

(
B⋆

k+1 + 2

K+1∑
k=1

kεk

)
+

(
2β

√
K
∑K+1

k=1 kck

)2
 1

2

,

and
E = lim

k→∞
E⋆

k .

Then, we have:

G(xK+1, C) ≤ (2 ∥λ⋆∥+ 5A+ βD + 1 +M)
E

β
√
K

+ (4A+ βD +M)σk+1

+
√

2β

(
2A

β
+D

)
√
εk+1 + εk+1

=O
(

1√
K

)
.

and
∥xK+1 − yK+1∥ ≤

2E

β
√
K
,

where ∆ ≜ 1
β ∥λ0 − λ⋆∥2 + β∥y0 − y⋆∥2 and D ≜ sup

x,y∈C
∥x− y∥, and M ≜ sup

x∈C
∥F (x)∥.

Proof of Theorem B.27. Note that

(fk-Pr-2)⇔ min
x∈C
⟨F (xk+1),x⟩

⇔ max
x∈C
⟨F (xk+1),xk+1 − x⟩

⇔ G(xk+1, C) ,

49

Published as a conference paper at ICLR 2024

from which we deduce
G(xk+1, C) = ⟨F (xk+1),xk+1 − x⋆

k⟩ ,∀k . (76)

For any K ∈ N, by (Chu, 1998) we know that:
xµ
K → x⋆

K ,

g(yK+1)− g(yµ
K)→ 0 ,

∆µ → 1

β
∥λ0 − λ⋆∥2 + β∥y0 − y⋆∥2 = ∆ , (77)

Aµ → A , (78)
Eµ → E . (79)

Thus, there exists µ−1 > 0, s.t.∀0 < µ < µ−1,

∥xµ
K − x⋆

K∥ ≤
Eµ

β
√
K
,

|g(yK+1)− g(yµ
K)| ≤ Eµ

β
√
K
.

Combining with Lemma B.23, we have that:
⟨F (xK+1),xK+1 − xµ

K⟩
=⟨F (xK+1),xK+1 + qK+1 − xµ

K⟩ − ⟨F (xK+1), qK+1⟩
=fK (xK+1 + qK+1)− fK (xµ

K)− ⟨F (xK+1), qK+1⟩

≤ (∥λµ∥+ 4Aµ + βD)
Eµ

β
√
K

+ (3Aµ + βD)σk+1

+
√
2β

(
Aµ

β
+D

)
√
εk+1 + εk+1

+ ∥qK+1∥ ∥F (xK+1)∥+ g (yµ
K)− g (yK+1)

≤ (∥λµ∥+ 4Aµ + βD + 1)
Eµ

β
√
K

+ (3Aµ + βD +M)σk+1

+
√
2β

(
Aµ

β
+D

)
√
εk+1 + εk+1 .

Using the above inequality, we have
G(xK+1, C) =⟨F (xK+1),xK+1 − x⋆

K⟩
=⟨F (xK+1),xK+1 − xµ

K⟩+ ⟨F (xK+1),x
µ
K − x⋆

K⟩
≤⟨F (xK+1),xK+1 − xµ

K⟩+ ∥F (xK+1)∥ ∥xµ
K − x⋆

K∥

≤ (∥λµ∥+ 4Aµ + βD + 1 +M)
Eµ

β
√
K

+ (3Aµ + βD +M)σk+1

+
√

2β

(
Aµ

β
+D

)
√
εk+1 + εk+1 .

Moreover, by (77), we can choose small enough µ−1 so that

G(xK+1, C) ≤ (2 ∥λ⋆∥+ 5A+ βD + 1 +M)
E

β
√
K

+ (4A+ βD +M)σk+1 (80)

+
√

2β

(
2A

β
+D

)
√
εk+1 + εk+1 . (81)

and
∥xK+1 − yK+1∥ ≤

2E

β
√
K
, (82)

where (82) uses (LB.23-2) in Lemma B.23. By (64), (80), (82) and Prop. B.24, we draw the conclu-
sion.

50

Published as a conference paper at ICLR 2024

B.3 DISCUSSION ON THEOREMS 3.1 AND 3.2 AND PRACTICAL IMPLICATIONS

We adopt the same way of stating our theorems 3.1 and 3.2 as in the main part of (Yang et al., 2023)
(see remark 2 therein) for clarity, easier comparison with one-loop algorithms, and because these
are without loss of generality provided that K, T are selected appropriately, as Yang et al. (2023)
showed. In particular, we require knowing a sufficiently small µ−1 which depends on the selected
K. Note that we cannot prove a faster rate than O(1/

√
K) for the inner loop for our algorithm; so

even if we further adjust µ−1, the rate would still be O(1/
√
K). Given the statements in our paper,

the same convergence rate ofO(1√
K
) is implied for cases when we do not know a sufficiently small

µ−1 by the argument in App. B.4 of (Yang et al., 2023). For completeness, herein, we focus on
clarifying why this is the case.
Remark B.28. Notice that only when we require a sufficiently small µ−1 (as we do in our statements)
can we use any T,K ∈ N+. For versions of the theorems that do not require a sufficiently small
µ−1, K,T must be appropriately selected.

We obtain explicitly how µ−1 depends on the given K by re-writing an equivalent re-formulation of
App. B.4 in (Yang et al., 2023, Remark 5). In particular, for any fixed µ−1 > 0, K ∈ N+ and any
T ≥ O(logK), for Algorithms 1 and 3 we have G(x(T)

K , C) = O(1/
√
K).

As an example, since µ−1 could be an arbitrary positive number, without loss of generality, we could
let µ−1 = 1; then the above implies that when µT = O(δlogK), we have G(x(T)

K , C) = O(1/
√
K).

This implies that for our Theorems 3.1 and 3.2, setting µ−1 = O(δlogK) is enough.

Interpretation. Here, we provide an intuitive explanation for the above statement. For any T ∈ N ,
the inner loop of ACVI is solving (KKT-2), where µ = µT . Note that (KKT-2) is a modified
problem of the original VI problem, approaching the original problem when µ → 0. Thus, when
µ−1 is large, larger T is needed in order to let (KKT-2) be a good enough approximation of the
original problem.

Practical implications. Suppose you need ϵ-accurate solution. Then K is selected to satisfy K ≥
1
ϵ2 , and then T ≥ log(K) = 2 log(1/ϵ). Notice that the overall complexity to reach ϵ precision is
still O(1/ϵ2) up to a log factor.

B.4 ALGORITHMS FOR SOLVING THE SUBPROBLEMS IN ALG. 1

As in (Schmidt et al., 2011), Theorem 3.2 provides sufficient conditions on the errors so that the
order of the rate is maintained. In other words, one can think of running a single step of a gradient-
based method for the sub-problems. Thus, the inner loop has a complexity of the order of one (or
a constant number of) gradient computations. Below, we discuss the algorithms that satisfy the
assumptions of Theorem 3.2 so as the shown convergence rate holds.

Choosing the Ax method. Let G(x) ≜ x + 1
βPcF (x) − Pcy

(t)
k + 1

βPcλ
(t)
k − dc, then from the

proof of Thm. 1 in Yang et al. (2023) we know that G is strongly monotone on C=. Moreover, when
F is L-Lipschitz continuous, G is also Lipschitz continuous. Many common VI methods have a
linear rate on the x subproblem, thus satisfying the condition we give (Tseng, 1995; Gidel et al.,
2019a; Mokhtari et al., 2019). Hence, for Ax, we could use the first-order methods for VIs listed
in App. A.5 to find the unique solution of the VI problem defined by the tuple (C=, G), at a linear
convergence rate. To solve a VI defined by (C=, G), we need to compute the projection ΠC= , which
is straightforward by noticing that ΠC=

(x) = Pcx+ dc, ∀x.

Choosing the Ay method. If using ℘ to be ℘1, the objective of the y subproblem is strongly
convex but non-smooth. Thus, to our knowledge, there is no known method to achieve a linear rate
for general constraints without additional assumptions. However, one could satisfy the condition
we give by using methods for Ay to exploit the constraint structure further. For example, if the
constraints are linear, it is straightforward to derive the update rule for the y subproblem, which
satisfies the conditions of the theorem.

On the other hand, as discussed in Remark B.26, when choosing ℘ to be ℘2, the objective of the
subproblem in line 9 of Alg. 1 is smooth and strongly convex and thus could be solved by commonly
used unconstrained first-order solvers such as gradient descent at a linear rate.

51

Published as a conference paper at ICLR 2024

Discussion. The above facts allude to the advantages of ACVI, as the sub-problems are “easier” than
the original problem. To summarize, (i) if F is monotone, the x subproblem is strongly monotone;
and (ii) the y subproblem is regular minimization which is significantly less challenging to solve in
practice, and also it is strongly convex.

52

Published as a conference paper at ICLR 2024

B.5 PROOF OF THEOREM 4.1: CONVERGENCE OF P-ACVI

B.5.1 SETTING AND NOTATIONS

We define the following maps from Rn to Rn:

f(x) ≜ F (x⋆)⊺x+ 1(Cx = d) , (fk)

fk(x) ≜ F (xk+1)
⊺x+ 1(Cx = d) , and (f)

g(y) ≜ 1(φ(y) ≤ 0) , (g)

where x⋆ is a solution of (KKT). Let y⋆ = x⋆. Then (x⋆,y⋆) is an optimal solution of (f -Pr). Let
us denote with (x⋆

k,y
⋆
k,λ

⋆
k) the KKT point of (fk-Pr). Note that in this case, the problem (fk-Pr) is

equivalent to (fk-Pr-2).

B.5.2 INTERMEDIATE RESULTS

In P-ACVI-Algorithm 2, by the definition of yk+1 (line 7 of Algorithm 2), y⋆
k and y⋆ we immedi-

ately know that
g(yk+1) = g(y⋆

k) = g(y⋆) = 0. (83)

The intermediate results for the proofs of Theorem 3.1 still hold in this case only with a little mod-
ification, and the proofs of them are very close to the previous ones. To avoid redundancy, we omit
these proofs.

Proposition B.29 (Relation between fk and f). If F is monotone, then ∀k ∈ N, we have that:

fk(xk+1)− fk(x⋆) ≥ f(xk+1)− f(x⋆).

Lemma B.30. For all x and y, we have

f(x) + g(y)− f(x⋆)− g(y⋆) + ⟨λ⋆,x− y⟩ ≥ 0, (LB.30-f)

and:
fk(x) + g(y)− fk(x⋆

k)− g(y⋆
k) + ⟨λ⋆

k,x− y⟩ ≥ 0 . (LB.30-fk)

The following lemma lists some simple but useful facts that we will use in the following proofs.

Lemma B.31. For the problems (f -Pr), (fk-Pr) and Algorithm 2, we have

0 ∈ ∂fk(xk+1) + λk + β(xk+1 − yk) (LB.31-1)
0 ∈ ∂g(yk+1)− λk − β(xk+1 − yk+1), (LB.31-2)

λk+1 − λk = β(xk+1 − yk+1), (LB.31-3)
−λ⋆ ∈ ∂f(x⋆), (LB.31-4)
−λ⋆

k ∈ ∂fk(x⋆
k), (LB.31-5)

λ⋆ ∈ ∂g(y⋆), (LB.31-6)
λ⋆
k ∈ ∂g(y⋆

k), (LB.31-7)
x⋆ = y⋆, (LB.31-8)
x⋆
k = y⋆

k , (LB.31-9)

Like in App.B.1.2, we also define ∇̂fk(xk+1) and ∇̂g(yk+1) by (∇̂fk) and (∇̂g), resp.

Then, from (LB.31-1) and (LB.31-2) it follows that:

∇̂fk(xk+1) ∈ ∂fk(xk+1) and ∇̂g(yk+1) ∈ ∂g(yk+1) . (84)

53

Published as a conference paper at ICLR 2024

Lemma B.32. For the iterates xk+1, yk+1, and λk+1 of the P-ACVI—Algorithm 2—we have:

⟨∇̂g(yk+1),yk+1 − y⟩ = −⟨λk+1,y − yk+1⟩, (85)

and

⟨∇̂fk(xk+1),xk+1 − x⟩+ ⟨∇̂g(yk+1),yk+1 − y⟩ =− ⟨λk+1,xk+1 − yk+1 − x+ y⟩
+ β⟨−yk+1 + yk,xk+1 − x⟩.

(86)

Lemma B.33. For the xk+1, yk+1, and λk+1 iterates of the P-ACVI—Algorithm 2—we have:

⟨∇̂fk(xk+1),xk+1 − x⋆⟩+ ⟨∇̂g(yk+1),yk+1 − y⋆⟩+ ⟨λ⋆,xk+1 − yk+1⟩

≤ 1

2β
∥λk − λ⋆∥2 − 1

2β
∥λk+1 − λ⋆∥2 + β

2
∥y⋆ − yk∥2 −

β

2
∥y⋆ − yk+1∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥yk − yk+1∥2 ,

and

⟨∇̂fk(xk+1),xk+1 − x⋆
k⟩+ ⟨∇̂g(yk+1),yk+1 − y⋆

k⟩+ ⟨λ⋆
k,xk+1 − yk+1⟩

≤ 1

2β
∥λk − λ⋆

k∥2 −
1

2β
∥λk+1 − λ⋆

k∥2 +
β

2
∥y⋆

k − yk∥2 −
β

2
∥y⋆

k − yk+1∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥yk − yk+1∥2 .

Lemma B.34. For the xk+1, yk+1, and λk+1 iterates of the P-ACVI—Algorithm 2—we have:

f(xk+1) + g(yk+1)− f(x⋆)− g(y⋆) + ⟨λ⋆,xk+1 − yk+1⟩
≤ fk(xk+1) + g(yk+1)− fk(x⋆)− g(y⋆) + ⟨λ⋆,xk+1 − yk+1⟩

≤ 1

2β
∥λk − λ⋆∥2 − 1

2β
∥λk+1 − λ⋆∥2

+
β

2
∥−yk + y⋆∥2 − β

2
∥−yk+1 + y⋆∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥−yk+1 + yk∥2 (LB.34)

The following theorem upper bounds the analogous quantity but for fk(·) (instead of f), and further
asserts that the difference between the xk+1 and yk+1 iterates of P-ACVI (Algorithm 2) tends to 0
asymptotically.
Theorem B.35 (Asymptotic convergence of (xk+1 − yk+1) of P-ACVI). For the xk+1, yk+1, and
λk+1 iterates of the P-ACVI—Algorithm 2—we have:

fk(xk+1)− fk(x⋆
k) ≤ ∥λk+1∥ ∥xk+1 − yk+1∥+ β ∥yk+1 − yk∥ ∥xk+1 − x⋆

k∥ → 0 ,
(TB.35-fk-UB)

and
xk+1 − yk+1 → 0 , as k →∞ .

Lemma B.36. For the xk+1, yk+1, and λk+1 iterates of the P-ACVI—Algorithm 2—we have:

1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2 ≤

1

2β
∥λk − λk−1∥2 +

β

2
∥−yk + yk−1∥2. (LB.36)

54

Published as a conference paper at ICLR 2024

Lemma B.37. If F is monotone on C=, then for Algorithm 2, we have:

fK (xK+1)− fK (x⋆
K) ≤ ∆

K + 1
+

(
2
√
∆+

1√
β
∥λ⋆∥+

√
βD

)√
∆

K + 1
, (LB.37-1)

and ∥xK+1 − yK+1∥ ≤

√
∆

β (K + 1)
, (LB.37-2)

where ∆ ≜ 1
β ∥λ0 − λ⋆∥2 + β∥y0 − y⋆∥2.

B.5.3 PROVING THEOREM. 4.1

We are now ready to prove Theorem 4.1. Here we give a nonasymptotic convergence rate of P-
ACVI-Algorithm 2.
Theorem B.38 (Restatement of Theorem 4.1). Given an continuous operator F : X → Rn, assume
F is monotone on C=, as per Def. 2.1. Let (xK ,yK ,λK) denote the last iterate of Algorithm 3.
Then ∀K ∈ N+, we have

G(xK , C) ≤
∆

K
+

(
2
√
∆+

1√
β
∥λ⋆∥+

√
βD

)√
∆

K
(na-lf-Rate)

and ∥∥xK − yK
∥∥ ≤√ ∆

βK
, (87)

where ∆ ≜ 1
β ∥λ0 − λ⋆∥2 + β∥y0 − y⋆∥2 and D ≜ sup

x,y∈C
∥x− y∥, and M ≜ sup

x∈C
∥F (x)∥.

Proof of Theorem 4.1. Note that

(fk-Pr-2)⇔ min
x∈C
⟨F (xk+1),x⟩

⇔ max
x∈C
⟨F (xk+1),xk+1 − x⟩

⇔ G(xk+1, C) ,

from which we deduce

G(xk+1, C) = ⟨F (xk+1),xk+1 − x⋆
k⟩ = fK (xK+1)− fK (x⋆

K) ,∀k . (88)

Combining with Lemma B.37, we obtain (na-lf-Rate) and (87).

55

Published as a conference paper at ICLR 2024

C IMPLEMENTATION DETAILS

In this section, we provide the details on the implementation of the results presented in § 5 in the
main part, as well as those of the additional results presented in App. D. In addition, we provide the
source code through the following link: https://github.com/Chavdarova/I-ACVI.

C.1 IMPLEMENTATION DETAILS FOR THE 2D-BG GAME

Recall that we defined the 2D bilinear game as:

min
x1∈△

max
x2∈△

x1x2 where △={x ∈ R| − 0.4 ≤ x ≤ 2.4}. (2D-BG)

To avoid confusion in the notation, in the remainder of this section, we rename the players in
(2D-BG) as p1 and p2:

min
p1∈△

max
p2∈△

p1p2 where △={p ∈ R| − 0.4 ≤ p ≤ 2.4}

In the following, we list the I-ACVI and P-ACVI implementations.

I-ACVI. For I-ACVI (Algorithm 1), we use the following Python code and the PyTorch li-
brary (Paszke et al., 2017). We set β = 0.5, µ = 3, K = 20, ℓ = 20, δ = 0.5 and use a
learning rate of 0.1. The following implementation uses the standard log-barrier (℘1).

Listing 1: Implementation of the I-ACVI algorithm (using (℘1)) on the 2D constrained bilinear
game.
1 import torch
2 lr = 0.1 # learning rate
3 beta = 0.5 # ACVI beta parameter
4 mu = 3 # ACVI mu parameter
5 K = 20 # ACVI K parameter
6 l = 20 # I-ACVI l parameter
7 delta = 0.5 # ACVI delta parameter: exponential decay of mu
8
9 p1_x = torch.nn.Parameter(torch.tensor(2.0))

10 p1_y = torch.nn.Parameter(torch.tensor(2.0))
11 p1_l = torch.nn.Parameter(torch.tensor(0.0))
12
13 p2_x = torch.nn.Parameter(torch.tensor(2.0))
14 p2_y = torch.nn.Parameter(torch.tensor(2.0))
15 p2_l = torch.nn.Parameter(torch.tensor(0.0))
16
17 while mu > 0.0001:
18
19 for itr in range(K):
20
21 for _ in range(l): # solve x problem (line 8 of algorithm)
22 loss_p1 = 1/beta * p1_x * p2_x + 0.5 * (p1_x - p1_y + p1_l/beta).pow(2)
23 p1_x.grad = None
24 loss_p1.backward()
25 with torch.no_grad():
26 p1_x -= lr * p1_x.grad
27
28 loss_p2 = -1/beta * p1_x * p2_x + 0.5 * (p2_x - p2_y + p2_l/beta).pow(2)
29 p2_x.grad = None
30 loss_p2.backward()
31 with torch.no_grad():
32 p2_x -= lr * p2_x.grad
33
34 for _ in range(l): # solve y problem (line 9 of algorithm)
35 phi_1 = p1_y + 0.4 # -0.4 < p1_y # define all the inequality constraints
36 phi_2 = 2.4 - p1_y # p1_y < 2.4
37 phi_3 = p2_y + 0.4 # -0.4 < p2_y
38 phi_4 = 2.4 - p2_y # p1_y < 2.4
39 log_term = -mu * (phi_1.log() + phi_2.log() + phi_3.log() + phi_4.log())
40 loss = log_term + beta/2 * (p1_y - p1_x - p1_l/beta).pow(2)
41 + beta/2 * (p2_y - p2_x - p2_l/beta).pow(2)
42 p1_y.grad, p2_y.grad = None, None
43 loss.backward()
44 with torch.no_grad():

56

https://github.com/Chavdarova/I-ACVI

Published as a conference paper at ICLR 2024

45 p1_y -= lr * p1_y.grad
46 p2_y -= lr * p2_y.grad
47
48 # update the lambdas (line 10 of algorithm)
49 with torch.no_grad():
50 p1_l += beta * (p1_x - p1_y)
51 p2_l += beta * (p2_x - p2_y)
52
53 mu *= delta # decay mu

For completeness, we provide the source code below when using the (℘2) barrier map instead of
(℘1).

Listing 2: Implementation of the I-ACVI algorithm (using (℘2)) on the 2D constrained bilinear
game.
1 import torch
2 lr = 0.1 # learning rate
3 beta = 0.5 # ACVI beta parameter
4 mu = 3 # ACVI mu parameter
5 K = 20 # ACVI K parameter
6 l = 20 # I-ACVI l parameter
7 delta = 0.5 # ACVI delta parameter: exponential decay of mu
8 c = torch.tensor([1.0]) # c parameter of the extended barrier
9

10 p1_x = torch.nn.Parameter(torch.tensor(2.0))
11 p1_y = torch.nn.Parameter(torch.tensor(2.0))
12 p1_l = torch.nn.Parameter(torch.tensor(0.0))
13
14 p2_x = torch.nn.Parameter(torch.tensor(2.0))
15 p2_y = torch.nn.Parameter(torch.tensor(2.0))
16 p2_l = torch.nn.Parameter(torch.tensor(0.0))
17
18 while mu > 0.0001:
19
20 for itr in range(K):
21
22 for _ in range(l): # solve x problem (line 8 of algorithm)
23 loss_p1 = 1/beta * p1_x * p2_x + 0.5 * (p1_x - p1_y + p1_l/beta).pow(2)
24 p1_x.grad = None
25 loss_p1.backward()
26 with torch.no_grad():
27 p1_x -= lr * p1_x.grad
28
29 loss_p2 = -1/beta * p1_x * p2_x + 0.5 * (p2_x - p2_y + p2_l/beta).pow(2)
30 p2_x.grad = None
31 loss_p2.backward()
32 with torch.no_grad():
33 p2_x -= lr * p2_x.grad
34
35 for _ in range(l): # solve y problem (line 9 of algorithm)
36 phi_1 = p1_y + 0.4 # -0.4 < p1_y # define all the inequality constraints
37 phi_2 = 2.4 - p1_y # p1_y < 2.4
38 phi_3 = p2_y + 0.4 # -0.4 < p2_y
39 phi_4 = 2.4 - p2_y # p1_y < 2.4
40 log_terms = [phi_1, phi_2, phi_3, phi_4]
41 clip_condition = [-phi <= -torch.exp(-c/mu) for phi in log_terms]
42 new_log_terms = [-mu*torch.log(phi) if condition else
43 -mu*torch.exp(c/mu)*phi+mu+c for
44 phi, condition in zip(log_terms, clip_condition)]
45 loss = sum(new_log_terms) + beta/2 * (p1_y - p1_x - p1_l/beta).pow(2)
46 + beta/2 * (p2_y - p2_x - p2_l/beta).pow(2)
47
48 p1_y.grad, p2_y.grad = None, None
49 loss.backward()
50 with torch.no_grad():
51 p1_y -= lr * p1_y.grad
52 p2_y -= lr * p2_y.grad
53
54 # update the lambdas (line 10 of algorithm)
55 with torch.no_grad():
56 p1_l += beta * (p1_x - p1_y)
57 p2_l += beta * (p2_x - p2_y)
58
59 mu *= delta # decay mu

57

Published as a conference paper at ICLR 2024

PI-ACVI. For PI-ACVI, we use the following Python code implementing Algorithm 2 using the
Pytorch library. We set β = 0.5, K = 20, ℓ = 20, and use a learning rate of 0.1.

Listing 3: Implementation of the PI-ACVI algorithm on the 2D constrained bilinear game.
1 import torch
2
3 lr = 0.1 # learning rate
4 beta = 0.5 # ACVI beta parameter
5 K = 20 # ACVI K parameter
6 l = 20 # I-ACVI l parameter
7
8 p1_x = torch.nn.Parameter(torch.tensor(2.0))
9 p1_y = torch.nn.Parameter(torch.tensor(2.0))

10 p1_l = torch.nn.Parameter(torch.tensor(0.0))
11
12 p2_x = torch.nn.Parameter(torch.tensor(2.0))
13 p2_y = torch.nn.Parameter(torch.tensor(2.0))
14 p2_l = torch.nn.Parameter(torch.tensor(0.0))
15
16 for itr in range(K):
17
18 # solve x problem (line 6 of algorithm)
19 for _ in range(l):
20 loss_p1 = 1/beta * p1_x * p2_x + 0.5 * (p1_x - p1_y + p1_l/beta).pow(2)
21 p1_x.grad = None
22 loss_p1.backward()
23 with torch.no_grad():
24 p1_x -= lr * p1_x.grad
25
26 loss_p2 = -1/beta * p1_x * p2_x + 0.5 * (p2_x - p2_y + p2_l/beta).pow(2)
27 p2_x.grad = None
28 loss_p2.backward()
29 with torch.no_grad():
30 p2_x -= lr * p2_x.grad
31
32 # solve y problem using projection (line 7 of algorithm)
33 with torch.no_grad():
34 p1_y.data = p1_x + p1_l/beta
35 p1_y.data = p1_y.clip(-0.4, 2.4)
36
37 p2_y.data = p2_x + p2_l/beta
38 p2_y.data = p2_y.clip(-0.4, 2.4)
39
40 # update the lambdas (line 8 of algorithm)
41 with torch.no_grad():
42 p1_l += beta * (p1_x - p1_y)
43 p2_l += beta * (p2_x - p2_y)

C.2 IMPLEMENTATION DETAILS FOR THE HBG GAME

Solution and relative error. The solution of (HBG) is x⋆ = 1
500e, with e ∈ R1000. As a metric

of the experiments on this problem, we use the relative error: εr(xk) =
∥xk−x⋆∥

∥x⋆∥ .

Experiments of Fig.4.a showing CPU time to reach a fixed relative error. The target relative
error is 0.02. We set the step size of GDA, EG, and OGDA to 0.3 and use k = 5 and α = 0.5 for
LA-GDA. For I-ACVI, we set β = 0.5, µ−1 = 10−6, δ = 0.8, λ0 = 0, K = 10, ℓ = 10 and the
step size is 0.05.

Experiments of Fig.4.b showing the number of iterations to reach a fixed relative error. Hy-
perparameters are the same as for Fig.4.a. We vary the rotation “strength” (1− η), with η ∈ (0, 1).

Experiments of Fig.4.c showing the impact of K0. For this experiment, we depict, for various
pairs (K0,K+), how many iterations are required to reach a relative error smaller than 10−4. We
set β = 0.5, µ = 1e − 6, δ = 0.8, T = 5000 and 0.05 as learning rate. We experiment with K0 ∈
{5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130} and K+ ∈ {1, 5, 10, 20, 30, 40, 50, 60, 70}.
The following Python code snippet shows an implementation of I-ACVI (Algorithm 1) on the (HBG)
game:

58

Published as a conference paper at ICLR 2024

Listing 4: Implementation of the I-ACVI algorithm on the HBG game.

1 import numpy as np
2 import time
3
4 eps = .02 # target relative error
5 dim = 500 # dim(x1) == dim(x2) == dim
6 x_opt = np.ones((2*dim,1))/dim # solution
7
8 # I-ACVI parameters
9 beta, mu, delta, K, l, T, lr = 0.5, 1e-6, .8, 10, 10, 100, 0.05

10
11 # Building HBG matrices
12 eta = 0.05
13 A1 = np.concatenate((eta*np.identity(dim), (1-eta)*np.identity(dim)), axis=1)
14 A2 = np.concatenate((-(1-eta)*np.identity(dim), eta*np.identity(dim)), axis=1)
15 A = np.concatenate((A1, A2), axis=0)
16
17 # Build projection matrix Pc
18 temp1 = np.concatenate((np.ones((1,dim)), np.zeros((1,dim))), axis=1)
19 temp2 = np.concatenate((np.zeros((1,dim)), np.ones((1,dim))), axis=1)
20 C = np.concatenate((temp1,temp2), axis=0)
21 d = np.ones((2,1))
22 temp = np.linalg.inv(np.dot(C, C.T))
23 temp = np.dot(C.T, temp)
24 dc = np.dot(temp, d)
25 Pc = np.identity(2*dim) - np.dot(temp,C)
26
27 # Initialize players
28 init = np.random.rand(2*dim, 1)
29 init[:dim] = init[:dim] / np.sum(init[:dim]) # ensuring it is part of the simplex
30 init[dim:] = init[dim:] / np.sum(init[dim:])
31 z_x = np.copy(init)
32 z_y = np.copy(init)
33 z_lmd = np.zeros(init.shape)
34
35 finished, cnt, t0 = False, 0, time.time()
36
37 for _ in range(T):
38 mu *= delta
39 for _ in range(K):
40 cnt += 1
41 # Solve approximately the X problem (line 8 of algorithm)
42 for _ in range(l):
43 g = z_x + 1/beta * np.dot(Pc, np.dot(A,z_x)) - np.dot(Pc, z_y) + 1/beta * np.dot(Pc,

z_lmd) - dc
44 z_x -= lr * g
45
46 if np.linalg.norm(z_x-x_opt)/np.linalg.norm(x_opt) <= eps:
47 finished = True
48 print(f"Reached a relative error of {eps} after {cnt} iterations in

{time.time()-t0:.2f} sec.")
49 break
50
51 # Solve approximately the Y problem (line 9 of algorithm)
52 for _ in range(l):
53 assert all(z_y > 0) # ensuring the log terms are positive
54 g = - mu * 1/z_y + beta*(z_y - z_x - z_lmd/beta)
55 z_y -= lr * g
56
57 # Update lambdas (line 10 of algorithm)
58 z_lmd += beta*(z_x-z_y)
59
60 if finished:
61 break

C.3 IMPLEMENTATION DETAILS FOR THE C-GAN GAME

For the experiments on the MNIST dataset, we use the source code of Chavdarova et al. (2021)
for the baselines, and we build on it to implement PI-ACVI (Algorithm 2). For completeness, we
provide an overview of the implementation.

Models. We used the DCGAN architectures (Radford et al., 2016), listed in Table 2, and the pa-
rameters of the models are initialized using PyTorch default initialization. For experiments on this

59

Published as a conference paper at ICLR 2024

Generator
Input: z ∈ R128 ∼ N (0, I)

transposed conv. (ker: 3×3, 128→ 512; stride: 1)
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 512→ 256, stride: 2)

Batch Normalization
ReLU

transposed conv. (ker: 4×4, 256→ 128, stride: 2)
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 128→ 1, stride: 2, pad: 1)

Tanh(·)

Discriminator
Input: x ∈ R1×28×28

conv. (ker: 4×4, 1→ 64; stride: 2; pad:1)
LeakyReLU (negative slope: 0.2)

conv. (ker: 4×4, 64→ 128; stride: 2; pad:1)
Batch Normalization

LeakyReLU (negative slope: 0.2)
conv. (ker: 4×4, 128→ 256; stride: 2; pad:1)

Batch Normalization
LeakyReLU (negative slope: 0.2)

conv. (ker: 3×3, 256→ 1; stride: 1)
Sigmoid(·)

Table 2: DCGAN architectures (Radford et al., 2016) used for experiments on MNIST. With “conv.”
we denote a convolutional layer and “transposed conv” a transposed convolution layer (Radford
et al., 2016). We use ker and pad to denote kernel and padding for the (transposed) convolution
layers, respectively. With h×w, we denote the kernel size. With cin → yout we denote the number
of channels of the input and output, for (transposed) convolution layers. The models use Batch
Normalization (Ioffe & Szegedy, 2015) layers.

dataset, we used the non-saturating GAN loss as proposed in (Goodfellow et al., 2014):

LD = E
x̃d∼pd

log
(
D(x̃d)

)
+ E

z̃∼pz

log
(
1−D

(
G(z̃)

))
(L-D)

LG = E
z̃∼pz

log
(
D
(
G(z̃)

))
, (L-G)

where G(·), D(·) denote the generator and discriminator, resp., and pd and pz denote the data and
the latent distributions (the latter predefined as normal distribution).

Details on the PI-ACVI implementation. When implementing PI-ACVI on MNIST, we set β =
0.5, and K = 5000, we use ℓ+ = 20 and ℓ0 ∈ {100, 500}. We consider only inequality constraints
(and there are no equality constraints), therefore, the matrices Pc and dc are identity and zero,
respectively. As inequality constraints, we use 100 randomly generated linear inequalities for the
Generator and 100 for the Discriminator.

Projection details. Suppose the linear inequality constraints for the Generator are Aθ ≤ b, where
θ ∈ Rn is the vector of all parameters of the Generator, A = (a⊺

1 , . . . ,a
⊺
100)

⊺ ∈ R100×n, b =
(b1, . . . , b100) ∈ R100. We use the greedy projection algorithm described in (Beck, 2017). A greedy
projection algorithm is essentially a projected gradient method; it is easy to implement in high-
dimension problems and has a convergence rate of O(1/

√
K). See Chapter 8.2.3 in (Beck, 2017)

for more details. Since the dimension n is very large, at each step of the projection, one could only
project θ to one hyperplane a⊺

i x = bi for some i ∈ I(θ), where

I(θ) ≜ {j|a⊺
j θ > bj}.

For every j ∈ {1, 2, . . . , 100}, let
Sj ≜ {x|a⊺

jx ≤ bj}.

The greedy projection method chooses i so that i ∈ argmax{dist(θ,Si)}. Note that as long as θ is
not in the constraint set C≤ = {x|Ax ≤ b}, i would be in I(θ). Algorithm 4 gives the details of
the greedy projection method we use for the baseline, written for the Generator only for simplicity;
the same projection method is used for the Discriminator as well.

Metrics. We describe the metrics for the MNIST experiments. We use the two standard GAN
metrics, Inception Score (IS, Salimans et al., 2016) and Fréchet Inception Distance (FID, Heusel
et al., 2017). Both FID and IS rely on a pre-trained classifier and take a finite set of m̃ samples from
the generator to compute these. Since MNIST has greyscale images, we used a classifier trained on
this dataset and used m̃ = 5000.

60

Published as a conference paper at ICLR 2024

Algorithm 4 Greedy projection method for the baseline.
1: Input: θ ∈ Rn, A = (a⊺

1 , . . . ,a
⊺
100)

⊺ ∈ R100×n, b = (b1, . . . , b100) ∈ R100, ε > 0
2: while True do
3: I(θ) ≜ {j|a⊺

j θ > bj}
4: if I(θ) = ∅ or max

j∈I(θ)

|a⊺
j θ−bj |
∥aj∥ < ε then

5: break
6: end if
7: choose i ∈ argmax

j∈I(θ)

|a⊺
j θ−bj |
∥aj∥

8: θ ← θ − |a⊺
i θ−bi|
∥ai∥2 ai

9: end while
10: Return: θ

Metrics: IS. Given a sample from the generator x̃g ∼ pg—where pg denotes the data distribution of
the generator—IS uses the softmax output of the pre-trained network p(ỹ|x̃g) which represents the
probability that x̃g is of class ci, i ∈ 1 . . . C, i.e., p(ỹ|x̃g) ∈ [0, 1]C . It then computes the marginal
class distribution p(ỹ) =

∫
x̃
p(ỹ|x̃g)pg(x̃g). IS measures the Kullback–Leibler divergence DKL

between the predicted conditional label distribution p(ỹ|x̃g) and the marginal class distribution
p(ỹ). More precisely, it is computed as follows:

IS(G) = exp
(

E
x̃g∼pg

[
DKL

(
p(ỹ|x̃g)||p(ỹ)

)])
= exp

(1

m̃

m̃∑
i=1

C∑
c=1

p(yc|x̃i) log
p(yc|x̃i)

p(yc)

)
. (IS)

It aims at estimating (i) if the samples look realistic i.e., p(ỹ|x̃g) should have low entropy, and (ii) if
the samples are diverse (from different ImageNet classes), i.e., p(ỹ) should have high entropy. As
these are combined using the Kullback–Leibler divergence, the higher the score is, the better the
performance.

Metrics: FID. Contrary to IS, FID compares the synthetic samples x̃g ∼ pg with those of the
training dataset x̃d ∼ pd in a feature space. The samples are embedded using the first several layers
of a pretrained classifier. It assumes pg and pd are multivariate normal distributions and estimates
the means mg and md and covariances Cg and Cd, respectively, for pg and pd in that feature space.
Finally, FID is computed as:

DFID(pd, pg) ≈ D2

(
(md,Cd), (mg,Cg)

)
= ∥md −mg∥22 + Tr

(
Cd +Cg − 2(CdCg)

1
2

)
,

(FID)

where D2 denotes the Fréchet Distance. Note that as this metric is a distance, the lower it is, the
better the performance.

Hardware. We used the Colab platform (https://colab.research.google.com/) and
Nvidia T4 GPUs.

61

https://colab.research.google.com/

Published as a conference paper at ICLR 2024

D ADDITIONAL EXPERIMENTS AND ANALYSES

In this section, we provide complementary experiments associated with the three games introduced
in the main paper: (2D-BG), (HBG), and (C-GAN). We also provide an additional study of the
robustness of I-ACVI to bad conditioning by introducing a version of the (HBG) game, see § D.3
for more details.

D.1 ADDITIONAL RESULTS FOR I-ACVI ON THE 2D-BG GAME

For completeness, in Fig. 5 we show the trajectories for the x iterates—complementary to the y-
iterates’ trajectories depicted in Fig. 1 of the main part.

(a) ACVI (b) I-ACVI K = 20, ℓ = 2 (c) I-ACVI K = 10, ℓ = 2 (d) I-ACVI K = 5, ℓ = 2

Figure 5: Complementary illustrations to those in Fig. 1 of the main part: depicting here the
trajectories of the x iterates. We compare the convergence of ACVI and I-ACVI with different
parameters on the (2D-BG) problem while also depicting the central path (shown in yellow). Each
subsequent bullet on the trajectory depicts the (exact or approximate) solution at the end of the inner
loop (when k ≡ K − 1). The Nash equilibrium (NE) of the game is represented by a yellow star,
and the constraint set is the interior of the red square.

Comparison between (℘1) and (℘2). In Fig. 6 and Fig. 7 we show the trajectories of respectively
the y and x iterates as we increase the learning rate. Increasing the learning rate increases the
chance of crossing the standard log barrier, which makes the (℘1) undefined for such input, as the
log function is not defined on the entire space. In contrast, the newly proposed barrier (℘2) is defined
everywhere; thus, the y iterates crossing the boundary of the constrained set does not make the (℘2)
unstable and allows for convergence to the solution.

D.2 ADDITIONAL RESULTS FOR PI-ACVI ON THE 2D-BG GAME

In this section, we provide complementary visualization to Fig. 2 in the main paper. We (i) compare
with other methods in Fig. 8,9 and (ii) show PI-ACVI trajectories for various hyperparameters in
Fig. 10.

PI-ACVI vs. baselines. In Fig. 8 and 9, we can observe the behavior of projected gradient descent
ascent, projected extragradient, projected lookahead, projected proximal point, mirror descent, and
mirror prox on the simple 2D constrained bilinear game (2D-BG), we use the same learning rate of
0.2 for all methods except for mirror prox which is using a learning rate of 0.4. In Fig. 10 we show
trajectories for PI-ACVI for ℓ ∈ {1, 4, 10, 100}, β = 0.5, K = 150 and a learning rate 0.2.

D.3 ADDITIONAL RESULTS ON THE HBG GAME

In this section, we (i) provide complementary experiments to Fig. 4 from the main paper, as well as
(ii) analyze the robustness of I-ACVI against bad conditioning.

CPU time to reach a given relative error. In Fig. 11 we extend the x-axis of Fig. 4.a from the
main paper for I-ACVI. Unlike baselines, I-ACVI remains fast even when the target relative error is
very small. This is due to the fact that I-ACVI uses cheaper approximate steps for lines 8 and 9 of
Algorithm 1.

62

Published as a conference paper at ICLR 2024

(e) lr = 0.3 (f) lr = 0.4 (g) lr = 0.5 (h) lr = 0.6

Figure 6: I-ACVI trjectories for the y iterates for different choices of learning rates lr. Top
row: Trajectories for the I-ACVI implementation using the standard barrier function (℘1). As the
learning rate increases, the y iterates cross the log barrier, breaking the convergence. Bottom row:
Trajectories for the I-ACVI implementation using the new smooth barrier function defined over
the entire domain (℘2). The extended barrier function we proposed is defined everywhere; thus,
even if the iterates cross the standard barrier, the method converges, allowing for the use of larger
step sizes. We can reduce the constant c to improve the stability; we used c = {10, 1, 0.2, 0} and
γ = {0.3, 0.4, 0.5, 0.6} for the learning rate.

(e) lr = 0.3 (f) lr = 0.4 (g) lr = 0.5 (h) lr = 0.6

Figure 7: Complementary to Fig. 6, I-ACVI trjectories for the x iterates for different choices of
learning rates lr. Top row: Trajectories for the I-ACVI implementation using the standard barrier
function (℘1). As the learning rate increases, the y iterates (see Fig. 6) are crossing the log barrier,
which breaks the optimization. Bottom row: Trajectories for the I-ACVI implementation using the
new smooth barrier function defined over the entire domain (℘2). The iterates are allowed to cross
the standard log barrier, which allows the y iterates to recover from large steps. We can reduce the
constant c to improve the stability, we used c = {10, 1, 0.2, 0}, and γ = {0.3, 0.4, 0.5, 0.6} for the
learning rate.

63

Published as a conference paper at ICLR 2024

(a) P-GDA (b) P-EG (c) P-LA (d) P-PP

Figure 8: Comparison of Projected Gradient Descent Ascent (P-GDA), extragradient (P-EG)
(Korpelevich, 1976), Lookahead (P-LA) (Chavdarova et al., 2021) and Proximal-Point (P-PP)
on the (2D-BG) game. For P-PP, we solve the inner proximal problem through multiple steps of
GDA and use warm-start (the last PP solution is used as a starting point of the next proximal prob-
lem). All those methods progress slowly when hitting the constraint. Those trajectories can be
contrasted with PI-ACVI in Fig. 10.

(a) Mirror-Descent (b) Mirror-Prox

Figure 9: Comparison of Mirror-Descent (MD) and Mirror-Prox (MP) on the (2D-BG) game.
Mirror-descent cycles around the solution without converging. Mirror-prox is converging to the
solution. Both methods have been implemented using simultaneous updates and with a Bregman
divergence DΨ(x, y) with Ψ(x) = −x+0.4

2.8 log(x+0.4
2.8)− (1− x+0.4

2.8) log(1− x+0.4
2.8).

(e) ℓ = 1 (f) ℓ = 4 (g) ℓ = 10 (h) ℓ = 100

Figure 10: PI-ACVI (Algorithm 2) for different choices of ℓ. Top row: Trajectories for the x
iterates. Bottom row: Trajectories for the y iterates. For ℓ = 1, the trajectory for the y iterates is
similar to the one of P-GDA (see Fig. 8), as we increase ℓ we observe how relatively few iterations
are required for convergence compared to baselines.

64

Published as a conference paper at ICLR 2024

10−5 10−2

relative error

0

100

200

300

400

C
PU

tim
e

(s
)

GDA
EG
OGDA
LA4-GDA
ACVI
I-ACVI

Figure 11: Comparison between I-ACVI and other baselines used in § 5 of the main part. CPU
time (in seconds; y-axis) to reach a given relative error (x-axis); while the rotational intensity is
fixed to η = 0.05 in (HBG) for all methods. I-ACVI is much faster to converge than other methods,
including ACVI.

5 10 50 100 130
K0

1
5

10
20
30
40
50
60
70

K
+

2.5

5.0

7.5

10.0

Figure 12: Impact of K0: joint impact of the number of inner-loop iterations K0 at t = 0, and
different choices of inner-loop iterations for K+ at any t > 0, on the CPU-time needed to reach a
fixed relative error of 10−4. A large enough K0 can compensate for a small K+.

Impact of K0. In Fig. 12 we show, for each (K0,K+) the CPU time required to reach a relative
error of 10−4. Those times are highly correlated with the number of iterations shown in Fig. 4.c of
the main paper.

Comparison with mirror-descent and mirror-prox. In Fig. 13 extend the experiments of Fig. 4.b
of the main paper to include the mirror-descent (MD) and mirror-prox (MP) methods described in
App. A.5.

Impact of conditioning. We modify the (HBG) game to study the impact of conditioning. Hence,
we propose the following version:

min
x1∈△

max
x2∈△

x⊺
1Dx2 , (HBG-v2)

△={xi ∈ R500|xi ≥ 0, and , e⊺xi = 1}, and D = diag(α1, . . . , α500) .

65

Published as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
η

10

20

30

40

50

nu
m

be
r

of
ite

ra
tio

ns

GDA
EG
OGDA
LA4-GDA
ACVI
I-ACVI
Mirror-Descent
Mirror-Prox

Figure 13: Number of iterations to reach a relative error of 0.02 for varying values of the rotational
intensity η (x-axis). We fixed the maximum number of iterations to 50. For mirror-descent and
mirror-prox, we used the KL-divergence as DΨ(x, y) and use large step sizes of respectively γ =
500 and γ = 280. When the rotational intensity is strong (small η), mirror-descent fails to converge
within the 50 iterations budget. However, when η is large, mirror descent converges much faster
than GDA, EG, OGDA, and LA4-GDA. Mirror-prox is better than mirror-descent at handling strong
rotational intensities but is slowed down when the game is mostly potential. In comparison, ACVI
converges after a small number of steps regardless of η.

The solution of this game depends on the {αi}500i=1:

x⋆
1 = x⋆

2 =
1∑500

i=1 1/αi


1/α1

1/α2

...
1/α500


We define the conditioning κ as the ratio between the largest and smallest αi: κ ≜ αmin

αmax
.

In our experiments we select αi linearly interpolated between 1 and αmax (e.g. using the
np.linspace(1,a max,500) NumPy function). We set αmin = 1 and vary αmax ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We compare projected extragradient (P-EG) with I-ACVI. For P-EG,
we obtained better results when using smaller learning rates γ for larger αmax: γ = 0.3× 0.9αmax .
For I-ACVI we set β = 0.5, µ = 10−5, δ = 0.5, γ = 0.003, K = 100 and T = 200. We vary
ℓ depending on αmax: ℓ = 20 for αmax ∈ {1, 2, 3}, ℓ = 50 for αmax ∈ {4, 5, 6}, and ℓ = 100
for αmax ∈ {7, 8, 9, 10}. We compare the CPU times required to reach a relative error of 0.02 in
Fig. 14. We observe that I-ACVI is more robust to bad conditioning than P-EG. As κ → 0, P-EG
fails to converge in an appropriate time despite reducing the learning rate. For I-ACVI, keeping
the same learning rate and only increasing ℓ is enough to compensate for smaller κ values. One
can speculate that I-ACVI is more robust thanks to (i) the y-problem (line 9 in Algorithm 1) not
depending on F (x), hence being relatively robust to the problem itself, and (ii) the x-problem (line
8 in Algorithm 1) being “regularized” by yk and λk.

D.4 ADDITIONAL RESULTS ON THE C-GAN GAME

This section shows complementary results to our constrained GAN MNIST experiments. In Fig. 15,
we further show the impact of ℓ0 on the convergence speed by training different PI-ACVI models
with ℓ0 ∈ {20, 50, 100, 200, 400, 600, 800, 1000}, all other hyperparameters being equal — setting
ℓ+ = 10. We compare in Fig. 16 the obtained curves for ℓ0 = 400 with projected-GDA (P-GDA),
and verify that — similarly to Fig. 3 of the main paper for which ℓ+ = 20 — PI-ACVI is here as
well outperforming significantly P-GDA. This shows that PI-ACVI is relatively unaffected by ℓ+ as
opposed to ℓ0.

66

Published as a conference paper at ICLR 2024

0.25 0.50 0.75 1.00
κ

0

100

200

300

400

C
PU

tim
e

(s
)

P-EG
I-ACVI

Figure 14: Experiment on conditioning: CPU time to reach a relative error of 0.02 on the
(HBG-v2) game, for different conditioning values κ. While P-EG struggles to converge when the
conditioning is bad (small κ), I-ACVI, on the other hand, can cope relatively well.

0 250 500 750 1000 1250 1500
Time (seconds)

10−1

100

101

102

FI
D

PI-ACVI `0 = 20
PI-ACVI `0 = 50
PI-ACVI `0 = 100
PI-ACVI `0 = 200
PI-ACVI `0 = 400
PI-ACVI `0 = 600
PI-ACVI `0 = 800
PI-ACVI `0 = 1000

(a) FID on (C-GAN)

0 250 500 750 1000 1250 1500
Time (seconds)

2

4

6

8

IS
PI-ACVI `0 = 20
PI-ACVI `0 = 50
PI-ACVI `0 = 100
PI-ACVI `0 = 200
PI-ACVI `0 = 400
PI-ACVI `0 = 600
PI-ACVI `0 = 800
PI-ACVI `0 = 1000

(b) IS on (C-GAN)

Figure 15: Effect of ℓ0 on FID and IS: On the MNIST datasets, comparison of various runs of
PI-ACVI for different ℓ0. All other hyperparameters are equal: ℓ+ = 10, β = 0.5, see § C for more
details. (a) and (b): we observe the importance of ℓ0, despite ℓ+ = 10 being relatively small we
still converge fast to a solution — in terms of both FID (↓) and IS (↑) — given ℓ0 large enough. All
curves are obtained by averaging over two seeds.

0 500 1000 1500
Time (seconds)

100

101

FI
D

P-GDA
PI-ACVI `0 = 400

(a) FID on (C-GAN)

0 500 1000 1500
Time (seconds)

2

4

6

8

IS

P-GDA
PI-ACVI `0 = 400

(b) IS on (C-GAN)

Figure 16: PI-ACVI vs. P-GDA on (C-GAN) MNIST: On the MNIST datasets, comparison of
P-GDA and PI-ACVI. For PI-ACVI, we set ℓ0 = 400 and ℓ+ = 10. (a) and (b): in both FID (↓)
and IS (↑), PI-ACVI converges faster than P-GDA. The difference with Fig. 3 from the main paper
is that we use ℓ+ = 10 instead of ℓ+ = 20. This shows that PI-ACVI is relatively robust to different
values of ℓ+.

67

	Introduction
	Related Works

	Preliminaries
	Convergence of the Exact and Inexact ACVI Algorithms for Monotone VIs
	Last iterate convergence of exact ACVI
	Last iterate convergence rate of inexact ACVI

	Specialization of ACVI for Simple Inequality Constraints
	Experiments
	Inexact ACVI
	Projected-Inexact-ACVI
	Effect of Warm-up on I-ACVI and PI-ACVI

	Discussion
	Additional Background
	Alternating direction method of multipliers–ADMM
	Additional VI definitions and equivalent formulations
	Details on ACVI
	Existence of the central path
	Saddle-point optimization methods

	Missing Proofs
	Proof of Theorem 3.1: Last-iterate convergence of ACVI for Monotone Variational Inequalities
	Setting and notations
	Intermediate results
	Proving Theorem 3.1

	Proof of Theorem 3.2: Last-iterate convergence of inexact ACVI for Monotone Variational Inequalities
	Useful lemmas from previous works
	Intermediate results
	Analogous intermediate results for the extended log barrier
	Proving Theorem 3.2

	Discussion on Theorems 3.1 and 3.2 and Practical Implications
	Algorithms for solving the subproblems in Alg. 1
	Proof of Theorem 4.1: Convergence of P-ACVI
	Setting and notations
	Intermediate results
	Proving Theorem. 4.1

	Implementation Details
	Implementation details for the 2D-BG game
	Implementation details for the HBG game
	Implementation details for the C-GAN game

	Additional Experiments and Analyses
	Additional results for I-ACVI on the 2D-BG game
	Additional results for PI-ACVI on the 2D-BG game
	Additional results on the HBG game
	Additional results on the C-GAN game

