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Abstract

This paper presents a novel federated linear contextual bandits model, where indi-
vidual clients face different K-armed stochastic bandits coupled through common
global parameters. By leveraging the geometric structure of the linear rewards, a
collaborative algorithm called Fed-PE is proposed to cope with the heterogeneity
across clients without exchanging local feature vectors or raw data. Fed-PE relies
on a novel multi-client G-optimal design, and achieves near-optimal regrets for
both disjoint and shared parameter cases with logarithmic communication costs. In
addition, a new concept called collinearly-dependent policies is introduced, based
on which a tight minimax regret lower bound for the disjoint parameter case is
derived. Experiments demonstrate the effectiveness of the proposed algorithms on
both synthetic and real-world datasets.

1 Introduction

Federated learning (FL) (McMahan et al., 2017) is an emerging distributed machine learning (ML)
paradigm where massive number of clients collaboratively learn a shared prediction model while
keeping all the training data on local devices. Compared with standard centralized machine learning,
FL has the following characteristics (Kairouz et al., 2021):

• Heterogeneous local datasets. The local datasets, which are often generated at edge devices, are
likely drawn from non-independent and identically distributed (non-IID) distributions.

• Communication efficiency. The communication cost scales with the number of clients, which
is one of the primary bottlenecks of FL. It is critical to minimize the communication cost while
maintaining the learning accuracy.

• Privacy. FL protects local data privacy by only sharing model updates instead of the raw data.

While the main focus of the state-of-the-art FL is on the supervised learning setting, recently, a few
researchers begin to extend FL to the multi-armed bandits (MAB) framework (Lai and Robbins,
1985; Auer et al., 2002; Bubeck and Cesa-Bianchi, 2012; Agrawal and Goyal, 2012, 2013a). In the
canonical setting of MAB, a player chooses to play one arm from a set of arms at each time slot.
An arm, if played, will offer a reward that is drawn from its distribution which is unknown to the
player. With all previous observations, the player needs to decide which arm to pull each time in order
to maximize the cumulative reward. MAB thus represents an online learning model that naturally
captures the intrinsic exploration-exploitation tradeoff in many sequential decision-making problems.

Extending FL to the MAB framework is naturally motivated by a corpus of applications, such as
recommender systems, clinical trials, and cognitive radio. In those applications, the sequential
decision making involves multiple clients and is distributed by nature. While classical MAB models
assume immediate access to the sequentially generated data at the learning agent, under the new
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realm of FL, local datasets can be stored and analyzed at the clients, thus reducing the communication
load and potentially protecting the data privacy.

Despite the potential benefits of FL, the sequential decision making and bandit feedback bring new
challenges to the design of FL algorithms in the MAB setting. Different from the supervised learning
setting where static datasets are collected beforehand, under the MAB setting, data is generated
sequentially as decisions are made, actions are taken, and observations are collected. In order to
maximize the cumulative reward and minimize the corresponding learning regret, it thus requires
sophisticated coordination of the actions of the clients. The heterogeneous reward distributions
across clients make the coordination process even more convoluted and challenging. Besides, the
data privacy and communication efficiency requirements result in significant challenges for efficient
information exchange and aggregation between local clients and the central server.

In this work, we attempt to address those challenges in a federated linear contextual bandits framework.
This particular problem is motivated by the following exemplary applications.

• Personalized content recommendation. For content (arm) recommendation in web-services, user
engagement (reward) depends on the profile of a user (context). The central server may deploy a
recommender system on each user’ local device (client) in order to personalize recommendations
without knowing the personal profile or behavior of the user.

• Personalized online education. In order to maximize students performances (reward) in online
learning, the education platform (central server) needs to personalize teaching methods (arms)
based on the characteristics of individual students (context). With the online learning software
installed at local devices (client), it is desirable to personalize the learning experiences without
allowing the platform to access students’ characteristics or scores.

In those examples, the reward of pulling the same arm at different clients follows different distributions
dependent on the context as in contextual bandits (Auer, 2003; Langford and Zhang, 2008). We note
that conventional contextual bandits is defined with respect to a single player, where the time-varying
context can be interpreted as different incoming user profiles. In contrast, we consider a multi-client
model, where each client is associated with a fixed user profile. The variation of contexts is captured
over clients as opposed to over time. Although the set of clients remains fixed through the learning
process, the reward of pulling the same arm still varies across clients. Such a model naturally takes
data heterogeneity into consideration. Besides, we adopt a linear reward model, which has been
widely studied in contextual bandits (Li et al., 2010; Agrawal and Goyal, 2013b).

Main contributions. Our main contributions are summarized as follows.

First, we propose a new federated linear contextual bandits model that takes the diverse user pref-
erences and data heterogeneity into consideration. Such a model naturally bridges local stochastic
bandits with linear contextual bandits, and is well poised to capture the tradeoffs between communi-
cation efficiency and learning performances in the federated bandits setting.

Second, we design a novel algorithm named Fed-PE and further develop its variants to solve the
federated linear contextual bandits problem. Under Fed-PE, clients only upload their local estimates
of the global parameters without sharing their local feature vectors or raw observations. It not
only keeps the personal information private, but also reduces the upload cost. We explicitly show
that Fed-PE and its variants achieve near-optimal regret performances for both disjoint and shared
parameter cases with logarithmic communication costs.

Third, we generalize the G-optimal design from the single-player setting (Lattimore and Szepesvári,
2020) to the multi-client setting. We develop a block coordinate ascent algorithm to solve the
generalized G-optimal design efficiently with convergence guarantees. Such a multi-client G-optimal
design plays a vital role in Fed-PE, and may find broad applications in related multi-agent setups.

Finally, we introduce a novel concept called collinearly-dependent policy and show that the cele-
brated LinUCB type of policies (Li et al., 2010), Thompson sampling based policies with Gaussian
priors (Agrawal and Goyal, 2013b), and least squared estimation based policies, such as Fed-PE,
are all in this category. By utilizing the property of collinearly-dependent policies, we are able to
characterize a tight minimax regret lower bound in the disjoint parameter setting. We believe that this
concept may be of independent interest for the study of bandits with linear rewards.
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Table 1: Performance comparison
Model Algorithm Regret Communication cost
Linear DELB O(d

√
MT log(T )) O((Md+ d log log d) log T )

Linear contextual
(shared parameter)

FedUCB1 O(
√
dMT log T ) O(Md2 log T )

Fed-PE (this work) O(
√
dMT log(KMT )) O(M(d2 + dK) log T )

Lower bound Ω(
√
dMT ) N/A

Linear contextual
(disjoint parameter)

Centralized2 O(
√
dKMT log3(KMT )) O(Md2KT )

Fed-PE (this work) O(
√
dKMT log(KMT )) O(Md2K log T )

Lower bound (this work) Ω(
√
dKMT ) N/A

M : number of clients;K: number of arms; T : time horizon; d: ambient dimension of the feature vectors.

Notations. Throughout this paper, we use ‖x‖V to denote
√
xᵀV x. The range of a matrixA, denoted

by range(A), is the subspace spanned by the column vectors of A. We use A† and Det(A) to denote
the pseudo-inverse and pseudo-determinant of square matrix A, respectively. The specific definitions
can be found in Appendix B of the supplementary material.

2 Related Works

Collaborative and distributed bandits. Our model is closely related to the collaborative and
distributed bandits when action collision is not considered. Landgren et al. (2016, 2018) and
Martínez-Rubio et al. (2019) study distributed bandits in which multiple agents face the same MAB
instance, and the agents collaboratively share their estimates over a fixed communication graph in
order to design consensus-based distributed estimation algorithms to estimate the mean of rewards
at each arm. Szorenyi et al. (2013) considers a similar setup where in each round an agent is able
to communicate with a few random peers. Korda et al. (2016) considers the case where clients in
different unknown clusters face independent bandit problems, and every agent can communicate with
only one other agent per round. The communication and coordination among the clients in those
works are fundamentally different from our work.

Wang et al. (2020) investigates communication-efficient distributed linear bandits, where the agents
can communicate with a server by sending and receiving packets. It proposes two algorithms, namely,
DELB and DisLinUCB, for fixed and time-varying action sets, respectively. The fixed action set
setting is similar to our setup, except that it assumes that all agents face the same bandits model,
which does not take data heterogeneity into consideration.

Federated bandits. A few recent works have touched upon the concept of federated bandits. With
heterogeneous reward distributions at local clients, Shi and Shen (2021) and Shi et al. (2021)
investigate efficient client-server communication and coordination protocols for federated MAB
without and with personalization, respectively. Agarwal et al. (2020) studies regression-based
contextual bandits as an example of the federated residual learning framework, where the reward of
a client depends on both a global model and a local model. Li et al. (2020) and Zhu et al. (2021)
focus on differential privacy based local data privacy protection in federated bandits. While the linear
contextual bandit model considered in Dubey and Pentland (2020) is similar to this work, it focuses
on federated differential privacy and proposes a LinUCB-based FedUCB algorithm, which incurs a
higher regret compared with our result for the shared parameter case. A regret and communication
cost comparison between Fed-PE and other baseline algorithms is provided in Table 1.

3 Problem Formulation

Clients and local bandits model. We consider a federated linear contextual bandits setting where
there are M clients pulling the same set of K items (arms) denoted as [K] := {1, 2, . . . ,K}. At
each time t, each client i ∈ [M ] pulls an arm ai,t ∈ [K] based on locally available information.
The incurred reward yi,t is given by yi,t = ri,ai,t + ηi,t, where ηi,t is a random noise, and ri,ai,t is

1Results adapted from Dubey and Pentland (2020) by letting the privacy budget 1/ε go to 0.
2Results adapted from the single-player linear contextual bandits studied in Dimakopoulou et al. (2017) by

assuming instantaneous information exchange and sequential decision-making at the central server.
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the unknown expected reward by pulling arm ai,t. We note that without additional assumptions or
interaction among the clients, each local model is a standard single-player stochastic MAB, where
classic algorithms such as UCB (Auer and Ortner, 2010) and Thompson sampling (Agrawal and
Goyal, 2012) are known to achieve order-optimal regret.

Linear reward structure with global parameters. In order to capture the inherent correlation
between rewards of pulling the same arm by different clients, we assume ri,a has a linear structure,
i.e., ri,a = xᵀi,aθa, where xi,a ∈ Rd is the feature vector associated with client i and arm a, and
θa ∈ Rd is a fixed but unknown parameter vector for each a ∈ [K]. Here we use xᵀ to denote
the transpose of vector x. The same arm a may have different reward distributions for different
clients, due to potentially varying xi,a across clients. Such a linear model naturally captures the
heterogeneous data distributions at the clients, yet admits possible collaborations among clients due
to the common parameters {θa}a∈[K]. When θa varies for different arm a, it is called the disjoint
parameter case; when θa is known to be a constant across the arms, it is the shared parameter case.
We investigate both cases in Sections 4 and 5, respectively.

Communication model. We assume there exists a central server in the system, and similar to FL, the
clients can communicate with the server periodically with zero latency. Specifically, the clients can
send “local model updates” to the central server, which then aggregates and broadcasts the updated
“global model” to the clients. (We will specify these components later.) Note that just as in FL,
communication is one of the major bottlenecks and the algorithm has to be conscious about its usage.
Similar to Wang et al. (2020), we define the communication cost of an algorithm as the number
of scalars (integers or real numbers) communicated between server and clients. We also make the
assumption that clients and server are fully synchronized (McMahan et al., 2017).

Data privacy concerns. Similar to Dubey and Pentland (2020), our contextual bandit problem
involves two sets of information that are desirable to be kept private to client i: the feature vectors
{xi,a}a∈[K] and the observed rewards {yi,t}t∈[T ]. Different from the differential privacy mechanism
adopted in Dubey and Pentland (2020), in this work, we aim to communicate estimated global model
parameters {θa}a between the clients and the server. This is consistent with the FL framework, where
only model updates are communicated instead of the raw data.

Assumption 1 We make the following assumptions throughout the paper:

1) Bounded parameters: For any i ∈ [M ], a ∈ [K], we have ‖θa‖2 ≤ s, 0 < ` ≤ ‖xi,a‖2 ≤ L.
2) Independent 1-subgaussian noise: ηi,t is a 1-subgaussian noise parameter sampled indepen-

dently at each time for each client with E[ηi,t] = 0, E[exp(ληi,t)] ≤ exp(λ
2

2 ) for any λ > 0.

Assumption 1.1 is a standard assumption in the bandit literature, which ensures that the maximum
regret at any step is bounded. We emphasize that our work does not make any assumption on the
knowledge of suboptimality gaps, nor do we assume the existence of a unique optimal arm at each
client.

Our objective is to minimize the expected cumulative regret among all clients, defined as:

E[R(T )] = E

[
M∑
i=1

T∑
t=1

(
xᵀi,a∗i

θa∗i − x
ᵀ
i,ai,t

θai,t

)]
, (1)

where a∗i ∈ [K] is an optimal arm for client i: ∀b 6= a∗i , xᵀi,a∗i θa
∗
i
− xᵀi,bθb ≥ 0.

4 Federated Linear Contextual Bandits: Disjoint Parameter Case

4.1 Challenges

Solving the federated linear contextual bandits model faces several new challenges. The first challenge
is due to the constraint that only locally estimated parameters {θa}a∈[K] are uploaded to the central
server. While this is not an issue for stochastic MAB where the {θa}a∈[K] are scalars (Shi and Shen,
2021; Shi et al., 2021), this brings significant challenges for the aggregation of the local estimates
into a “global model” in our setup. This is because under the linear reward structure, the locally
received rewards {yi,t}t∈[T ] only contain the projection of θa along the direction of xi,a, while the
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portion of information lying outside range(xi,a) is not captured in {yi,t}t∈[T ]. Thus, by utilizing
{yi,t}t∈[T ], the locally estimated θa, denoted as θ̂i,a, cannot provide any information of θa beyond
range(xi,a). Since {xi,a}i∈[M ] are different for the same arm a, the locally estimated {θ̂i,a}i∈[M ]

are essentially lying in different subspaces. The central server thus needs to take such geometric
structure into account when aggregating {θ̂i,a} to construct the global estimate of θa.

The geometric structure of the local rewards also brings another challenge for the coordination of
actions of local clients. Intuitively, in order to help client i accurately estimate the expected reward by
pulling arm a, it suffices to obtain an accurate projection of θa on range(xi,a); any part of θa lying
outside this subspace is irrelevant. Therefore, if two clients i and j have xi,a and xj,a orthogonal to
each other, exchanging the local estimates θ̂i,a and θ̂j,a does not help the other client improve her own
local estimation. On the other hand, if xi,a and xj,a are completely aligned with each other, θ̂i,a and
θ̂j,a can be aggregated directly to improve the local estimation accuracy of both. With M possible
subspaces spanned by {xi,a}i, it is highly likely that different clients receive different amounts of
relevant information (i.e., information lying in range(xi,a)) through information exchange facilitated
by the central server. Therefore, in order to reduce the overall regret, it is necessary to coordinate the
actions of clients in a sophisticated fashion.

Third, since the exact knowledge of the local feature vectors {xi,a} are kept from the central server,
the server may not have an accurate estimation of the uncertainty level of the local estimates at each
client, or how much the coordination would help individual clients. This would make efficient and
effective coordination even more challenging.

4.2 Federated Phased Elimination (Fed-PE) Algorithm

To address the aforementioned challenges, we propose the Federated Phased Elimination (Fed-PE)
algorithm. The Fed-PE algorithm works in phases, where the length of phase p is fp+K. It contains
a client side subroutine (Algorithm 1) and a server side subroutine (Algorithm 2). Throughout the
paper we use superscript p to indicate phase p barring explicit explanation. We use Api ⊂ [K] to
denote the subset of active arms at client i in phase p, Ap := ∪Mi=1A

p
i , Rpa := {i : a ∈ Api }, and

define T pi,a as the time indices at which client i pulls arm a during the collaborative exploration step
in phase p. Then, the algorithm works as follows.

Algorithm 1 Fed-PE : client i
Input: T , M , K, α, fp

1: Initialization: Pull each arm a ∈ [K] and receive reward yi,a; θ̂0i,a ←
yi,axi,a
‖xi,a‖2

; Send {θ̂0i,a}a to the server;

A0
i ← [K]; p← 1.

2: while not reaching the time horizon T do
3: Receive {(θ̂pa, V pa )}a∈Ap−1 from the server. . Arm elimination
4: for a ∈ Ap−1

i do
r̂pi,a ← xᵀi,aθ̂

p
a, upi,a ← α ‖xi,a‖V pa /`. (2)

5: end for
6: âpi ← arg max

a∈Ap−1
i

r̂pi,a, Api ←
{
a ∈ Ap−1

i | r̂pi,a + upi,a ≥ r̂
p

i,â
p
i
− up

i,â
p
i

}
.

7: Send Api to the central server. . Active arm set updating
8: Receive fpi,a for all a ∈ Api .
9: for a ∈ Api do . Collaborative exploration

10: Pull arm a for fpi,a times and receive rewards {yi,t}t∈T pi,a .

θ̂pi,a ←
(

1

fpi,a

∑
t∈T pi,a

yi,t

)
xi,a
‖xi,a‖2

. (3)

11: end for
12: Send {θ̂pi,a}a∈Api to the server; Pull âpi until phase length equals fp +K.

13: p← p+ 1.
14: end while
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At the initialization phase, each client i pulls every arm a ∈ [K] once and receives a reward yi,a,
based on which it obtains an estimate of the projection of θa. These estimates are sent to the server to
construct a preliminary global estimate of θa for each a. The global estimates {θ̂1

a}a and the potential
matrices {V 1

a }a are then broadcast to all clients, after which phase p = 1 begins. Note that after
receiving {θ̂0

i,a}i,a, the central server will keep a unit vector ēi,a = θ̂0i,a/‖θ̂0i,a‖ for all i ∈ [M ], a ∈ [K].
Since θ̂0

i,a is a scaled version of xi,a, ēi,a lies in range(xi,a), and will be utilized to coordinate the
arm pulling process (coined as collaborative exploration), as elaborated in Section 4.3.

At the beginning of phase p, after receiving the broadcast {θ̂pa}a and {V pa }a from the server, each
client i will utilize the (θ̂pa, V

p
a ) pair to estimate the expected rewards ri,a and obtain the confidence

level according to Eqn. (2) for each a ∈ Ap−1
i . Based on the constructed confidence interval, client i

then eliminates some arms in Ap−1
i and obtains Api .

Next, each client i sends the newly constructed active arm set Api to the server. The server then
decides fpi,a, the number of times client i pulling arm a during the collaborative exploration step
in phase p for each i ∈ [M ] and a ∈ Api . The specific mechanism to decide fpi,a is elaborated in
Section 4.3.

After the collaborative exploration step, client i performs least-square estimation (LSE) for each arm
a ∈ Api based on local observations collected in the current phase according to Eqn. (3) and then
sends it to the server for global aggregation. Note that although θ̂pi,a lies in range(xi,a), the exact
value of xi,a is not revealed to the server, thus preserving the privacy to certain extent.

Algorithm 2 Fed-PE : Central server
Input: T , M , K, α, fp

1: Initialization: Receive {θ̂0i,a}i,a; ēi,a ←
θ̂0i,a

‖θ̂0i,a‖
for all i ∈ [M ], a ∈ [K]; V 1

a ←
(∑

i∈[M ]

θ̂0i,a(θ̂
0
i,a)

ᵀ

‖θ̂0i,a‖

)†
,

θ̂1a ← V 1
a

(∑
i∈[M ] θ̂

0
i,a

)
for all a ∈ [K]; Broadcast {θ̂1a, V 1

a }a∈[K]; p← 1.
2: while not reaching the time horizon T do
3: Receive {Api }i∈[M ]; Set Ap ← ∪Mi=1Api ; SetRpa ← {i : a ∈ Api }.
4: Solve the multi-client G-optimal design in (6), and obtain solution πp = {πpi,a}i∈[M ],a∈Api

.
5: For every client i, send {fpi,a := dπpi,af

pe}a∈Api .

6: Receive {(a, θ̂pi,a)}a∈Api from each client i.
7: for a ∈ Ap do . Global aggregation

V p+1
a ←

∑
i∈Rpa

fpi,a
θ̂pi,a(θ̂pi,a)ᵀ

‖θ̂pi,a‖2

† , θ̂p+1
a ← V p+1

a

∑
i∈Rpa

fpi,aθ̂
p
i,a

 . (4)

8: end for
9: Broadcast {(θ̂p+1

a , V p+1
a )}a∈Ap to all clients.

10: p← p+ 1.
11: end while

4.3 Multi-client G-optimal Design

In this subsection, we elaborate the core design of Fed-PE, the collaborative exploration step. There
are three main design objectives we aim to achieve: 1) As explained in Section 4.1, one of the main
challenges in our federated linear contextual bandits setting is that, each client may benefit differently
from the information exchange through the central server. To minimize the overall regret, for each
arm a ∈ Ap, it is desirable to ensure that after the global aggregation following the collaboration
exploration in phase p, the uncertainty in r̂p+1

i,a across the clients is balanced. 2) For each client
i, in order to eliminate the sub-optimal arms efficiently, it is also important to guarantee that the
uncertainty in r̂p+1

i,a across the arms in Api is balanced. 3) Finally, in order to ensure synchronized
model updating, we aim to have each client perform the same number of arm pulling in each phase.

Motivated by those objectives, we propose a multi-client G-optimal design to coordinate the explo-
ration of all clients. Specifically, we define πpi : Api → [0, 1] as a distribution on the active arm set
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Api for each i, and denote πp := (πp1 , . . . , π
p
M ) as a vector in R

∑
i∈[M] |A

p
i |. Let ei,a := xi,a/‖xi,a‖.

We note that ei,a equals to either ēi,a or −ēi,a. Then, we define a feasible set Cp ⊂ R
∑
i∈[M] |A

p
i | as

follows:

Cp =

πp
∣∣∣∣∣∣
πpi,a ≥ 0,∀i ∈ [M ], a ∈ Api ,∑
a∈Api

πpi,a = 1,∀i ∈ [M ],

rank({πpi,aei,a}i∈Rpa) = rank({ei,a}i∈Rpa),∀a ∈ Ap

 . (5)

We can verify that Cp is a convex set. The first two conditions ensure that {πpi,a}a form a valid
distribution for each client i. We name the last condition as the “rank-preserving” condition. We note
that the subspace spanned by the LHS of the rank-preserving condition is always a subset of that
spanned by the RHS. Thus, once the rank is preserved, the subspaces spanned by the LHS and the RHS
are the same. Thus, this condition ensures that every dimension of θa lying in range({xi,a}i∈Rpa)
will be explored under the collaborative exploration. Any violation of the “rank-preserving” condition
will lead to information missing along the unexplored dimensions, which shall be prevented in order
to reduce the uncertainty level regarding arm a at every client i ∈ Rpa.

Then, we formulate the so called multi-client G-optimal design problem as follows:

minimize G(π) =
M∑
i=1

max
a∈Api

eᵀi,a

( ∑
j∈Rpa

πpj,aej,ae
ᵀ
j,a

)†
ei,a s.t. πp ∈ Cp. (6)

We note that eᵀi,a
(∑

j∈Rpa π
p
j,aej,ae

ᵀ
j,a

)†
ei,a can be interpreted as an approximate measure of the

uncertainty level along dimension xi,a if the arms are explored locally according to distributions
{πpi }i. Thus, the objective function is an approximate measure of the total uncertainties in the least
explored arms at each of the clients. By solving (6), the aforementioned three design objectives can
be met. We point out that although the server does not known ei,a, the objective function remains the
same when ei,a is replaced by ēi,a. Thus, the server can simply use ēi,a to solve (6).

After solving (6) and obtaining {πpi,a}, the server would set {fpi,a := dπpi,afpe}a∈Api and send it to
client i. Note that after taking the ceiling function,

∑
a∈Api

fpi,a may be greater than fp. To ensure
synchronized updating, each client i would keep pulling the estimated best arm âpi until the phase
length equals fp +K.

We note that the multi-client G-optimal design formulated in (6) is related to the G-optimal design
for the single-player linear bandits problem discussed in Lattimore and Szepesvári (2020), and the
DELB algorithm for the distributed linear bandits in Wang et al. (2020). However, for such cases,
the player(s) faces a single bandit problem, thus the objective is to simply obtain a distribution over
a so-called core set of arms in order to minimize the maximum uncertainty across the arms. In
contrast, due to the multiple clients involved in the federated bandits setting and the heterogeneous
reward distributions, we are essentially solving M coupled G-design problems, one associated with
each client. Such coupling effect fundamentally changes the nature of the problem, leading to very
different characterization of the problem and numerical approaches.

In Appendix C.1 of the supplementary material, we analyze an equivalent problem of the multi-client
G-optimal design. We note that such equivalence essentially generalizes the equivalence between the
original G-optimal design and D-optimal design in Lattimore and Szepesvári (2020) to the coupled
design case. While the original G-design problem can be approximately solved through the Frank-
Wolfe algorithm under an appropriate initialization (Todd, 2016), solving the multi-client G-optimal
design problem is numerically non-trivial. In Appendix C.2, we propose a block coordinate ascent
algorithm to solve the equivalent problem of (6) efficiently with guaranteed convergence.

4.4 Theoretical Analysis of Fed-PE

We now characterize the performance of the Fed-PE algorithm.

Theorem 1 Under Assumption 1, with probability at least 1−δ, the cumulative regret under Fed-PE
scales in O

(√
dKMT (log(K(log T )/δ) + min{d, logM})

)
and the communication cost scales

in O(Md2K log T ).
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The complete version of Theorem 1 and its proof can be found in Appendix D in the supplementary
material. For the communication cost, at each phase p, client i uploads at most K local estimates with
dimension d and downloads at most K global estimates and potential matrices with dimension d and
d2, respectively. Thus, the upload cost is O(MdK log T ) and the download cost is O(Md2K log T ).

Remark 1 When we set δ = O(
√
dK/MT), the overall regret scales in O(

√
dKMT log(MKT )),

and the per-client regret scales in O(
√
dKT log(MKT )/M). While the minimax lower bound

for standard stochastic MAB scales in Ω(
√
KT ), the collaborative learning induced by Fed-PE

leads to
√
d/M -fold reduction of the per-client regret. We also note that for single-player linear

contextual bandits with disjoint parameters, the best known upper bound scales in Õ(
√
dKMT )

(Dimakopoulou et al., 2017) over MT arm pulls, which indicates that the regret of Fed-PE is close
to the state-of-the-art centralized algorithms at a communication cost in O(log T ).

4.5 Enhanced Fed-PE

The original Fed-PE algorithm requires exponentially increasing fp in order to achieve the regret
upper bound in Theorem 1. This is because in each phase p, we only utilize the rewards collected in
phase p− 1 to estimate θa. While this simplifies the analysis, the measurements collected in earlier
phases cannot be utilized. In order to overcome this limitation, we propose an Enhanced Fed-PE
algorithm by leveraging all historical information. Enhanced Fed-PE achieves different tradeoffs
between communication cost and regret performance by adjusting fp. The detailed description
and analysis of Enhanced Fed-PE for different selection of fp can be found in Appendix E in the
supplementary material.

4.6 Lower Bound

To derive a tight lower bound, we focus on a set of representative policies defined as follows.

Definition 1 (Collinearly-dependent policy) Two clients i and j are called collinear if there exist
an arm a ∈ [K] and a subset S ⊂ [M ] such that the following conditions are satisfied: 1) xi,a /∈
span({xm,a|m ∈ S}); and 2) xi,a ∈ span({xm,a|m ∈ S} ∪ {xj,a}). For any two clients i and j
that are not collinear, if the action of client i is independent of the action of j under a policy π, then,
the policy is called a collinearly-dependent policy.

We note that the definition of collinearly-dependent policies is actually quite natural. Intuitively, for
two clients that are not collinear, their local observations on any arm a cannot be utilized to improve
each other’s knowledge of their own local models. As a result, they should not affect each other’s
decision-making process. As shown in the supplementary material, we can verify that the most
celebrated ridge regression based LinUCB type of policies (Li et al., 2010), Thompson sampling
based polices with Gaussian priors (Agrawal and Goyal, 2013b), and least-square estimation based
policies, including Fed-PE, all fall in this category.

Theorem 2 For any collinearly-dependent policy, there exists an instance of the federated linear
contextual bandits such that the regret is lower bounded as R(T ) = Ω(

√
dKMT ).

Remark 2 Theorem 2 essentially shows that, even if raw data transmission and instantaneous com-
munication are allowed and other collinearly-dependent policies are adopted, we cannot improve the
order of the regret summarized in Theorem 1 much, i.e., Fed-PE is order-optimal up to

√
log(KMT ).

The proof of Theorem 2 relies on the construction of a special instance of the federated linear
contextual bandits where the clients can be divided into d groups. Clients in each group face the
same K-armed stochastic bandits model locally, while clients from two distinct groups are not
collinear. Analyzing the regret bound in each individual group, we can show that it is lower bounded
by Ω(

√
KMT/d). Then, by utilizing the property of collinearly-dependent policies, we can show

that the overall regret is lower bounded by Ω(
√
dKMT ) for this scenario. More discussions on the

collinearly-dependent policies and the complete proof of Theorem 2 can be found in Appendix F in
the supplementary material.
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5 Federated Linear Contextual Bandits: Shared Parameter Case

The Fed-PE algorithm can be slightly modified for the shared parameter case where θa = θ,∀a ∈ [K].
While the client side operation stays the same, the global aggregation step at the server side in (4)
can be changed by letting the “potential matrix” V p be (

∑
a∈[K](V

p
a )†)†, and the global estimator θ̂p

be V p
(∑

i∈[M ]

∑
a∈Ap−1

i
fp−1
i,a θ̂p−1

i,a

)
. Below, we present the main result for this case and leave the

detailed algorithm description and regret analysis in the supplementary material.

Theorem 3 Under Assumption 1, with probability at least 1−δ, the regret of the adapted Fed-PE for
the shared parameter case is upper bounded by O

(√
dMT (log((log T )/δ) + min{d, logMK})

)
,

and the communication cost scales in O((KdM + d2M) log T ).

Remark 3 By setting δ = O(
√

1/MT), we can show that the overall regret scales in
O(
√
dMT log(MTK)). We note that this bound improves the regret bound for the no differen-

tial privacy guarantee case in Dubey and Pentland (2020) by a factor of
√

log T , although our
settings are slightly different. By assuming all clients face the same linear bandits in this shared
parameter setting, the regret in the federated setting over horizon T must be worse than the linear
bandits over horizon MT . Since the latter is lowered bounded by Ω(

√
dMT ) (Chu et al., 2011),

the minimax regret for the shared parameter setting is bounded by Ω(
√
dMT ) as well. Thus, the

modified Fed-PE is near-optimal for this case.

In terms of the communication cost, the uploading cost stays the same as in the disjoint parameter
case, while the broadcast cost is reduced by a factor of K, since only one potential matrix needs to
be broadcast for the shared parameter case.

6 Experiments

Experiment results using both synthetic and real-world datasets are reported in this section to evaluate
Fed-PE and the proposed enhancement. Additional experimental details and more experimental
results can be found in the supplementary material. We consider four different algorithms, namely,
Fed-PE, Enhanced Fed-PE, local UCB without communication, and a modified Fed-PE algorithm
with full information exchange after collaborative exploration in each phase (coined as ‘Collaborative’
in Figure 1). For all experiments, we set T = 217, fp = 2p, p ∈ {1, 2, . . . , 16}, and run 10 trials. For
Fed-PE and its variants, we choose δ = 0.1. Note that other values of δ may further improve the
regret. We evaluate the algorithms on both synthetic and MovieLens-100K datasets.

Synthetic Dataset: We first set M = 100,K = 10, and d = 3. We set {θa} as the canonical basis
of R3. The feature vectors xi,a are generated randomly ensuring that the suboptimality reward gaps
lie in [0.2, 0.4] and ` = 0.5, L = 1. The per-client cumulative regret as a function of T is plotted in
Figure 1(a). We see that Enhanced Fed-PE outperforms Fed-PE while being slightly worse than
‘Collaborative’. This indicates that keeping feature vectors xi,a private to clients does not impact the
learning performance significantly. All Fed-PE related algorithms outperform local UCB when T is
sufficiently large, demonstrating the effectiveness of communication in improving learning locally.
We also set K = 10, d = 4, and vary the number of clients M . The performance of Enhanced
Fed-PE is plotted in Figure 1(b). We note that the per-client regret monotonically decreases as M
increases, corroborating the theoretical results.

Movielens Dataset: We then use the MovieLens-100K dataset (Harper and Konstan, 2015) to
evaluate the performances. Motivated by Bogunovic et al. (2021), we first complete the rating matrix
R = [ri,a] ∈ R943×1682 through collaborative filtering (Morabia, 2019), and then use non-negative
matrix factorization with 3 latent factors to get R = WH , where W ∈ R943×3, H ∈ R3×1682.
Let xi,a be the ith row vector of W . We apply the k-means algorithm to the row vectors of H to
produce K = 30 groups (arms), and let θa be the center of the a-th group. Finally, we randomly
choose M = 100 users’ feature vectors. We observe that 0.4 ≤ ‖xi,a‖2 ≤ 0.8, and the suboptimality
gaps lie in [0.01, 0.8]. The regret performances of the algorithms are plotted in Figure 1(c). The
curves show similar characteristics as in Figure 1(a). These results demonstrate the effectiveness of
collaborative learning in the federated bandits setting.
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(a) Synthetic regret. (b) Regret with varying M . (c) MovieLens regret.

Figure 1: Pseudo-regret over T . Shaded area indicates the standard deviation.

7 Discussion and Conclusion

In this work, we have considered a novel federated linear contextual bandits model, which naturally
connects local stochastic MAB models with linear contextual bandits through common global
parameters. While each client can only observe a projection of each global parameter in its own
subspace, Fed-PE utilizes the geometric structure of the local estimates to reconstruct the global
parameters and guide efficient collaborative exploration. Theoretical analysis indicates that Fed-PE
achieves near-optimal regret for both disjoint and shared parameter cases with a communication cost
in the order of O(log T ).

An interesting open question is whether we can further reduce the communication cost without
downgrading the regret performance. In particular, we note the the original single-player G-optimal
design allows for a sparse solution whose support is of size d(d+1)/2. Our numerical results indicate
that such sparse solutions exist for the multi-client G-optimal design as well. Utilizing the sparsity of
the solution may reduce the communication cost significantly. Theoretical characterization of the
existence of such sparse solutions is our next step.

Another possible direction to explore is to incorporate the differential privacy mechanism to the
Fed-PE framework. Although local feature vectors {xi,a} are kept private under Fed-PE, local
estimate θ̂i,a lies in range(xi,a), thus revealing the direction of xi,a to the central server. We aim to
add certain perturbation on θ̂i,a in order to obfuscate the direction information without significantly
affecting the regret performance.
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