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Abstract

Large language models (LLMs) frequently001
face challenges with complex logical reasoning002
tasks. We address this issue with the help of003
Lean, a theorem proving framework. First, we004
formalize logical reasoning problems as theo-005
rems within Lean and then proceed to either006
prove or disprove them. This methodology007
serves dual purposes: it eliminates the possibil-008
ity of logical inconsistencies typical in LLM009
outputs and effectively manages complex log-010
ical reasoning tasks. Central to our approach011
are the numerous theorem proofs written in012
Lean, which encapsulate human logical reason-013
ing. Training a model with this data enhances014
its capability to address logical reasoning prob-015
lems. Our method demonstrates state-of-the-art016
performance on FOLIO dataset and achieves017
performance near this level on ProofWriter. No-018
tably, these results were accomplished by fine-019
tuning on fewer than 100 in-domain samples020
for each dataset.1021

1 Introduction022

Logical reasoning, a bedrock of intelligence and023

a core capability of humans, has long been a024

challenging issue for machine learning systems,025

even for recent large language models (LLMs).026

LLMs, despite their impressive abilities to under-027

stand and generate natural language, often fall short028

when dealing with complex logical reasoning tasks.029

They frequently suffer from logical inconsisten-030

cies, wherein the model hallucinates and makes031

statements or predictions not grounded in premises,032

leading to spurious results (Saparov and He, 2023;033

Dasgupta et al., 2022).034

Recent advances in AI have adopted a struc-035

tured approach to tackle these reasoning problems036

by splitting them into symbolic formalization and037

problem-solving (He-Yueya et al., 2023; Pan et al.,038

2023; Ye et al., 2023). The formalization step is039

1Our code and data will be released upon publication.

often handled by a large language model, while 040

problem-solving is handled by an off-the-shelf sym- 041

bolic solver. In this approach, symbolic solvers es- 042

sentially act as a rigorous checkpoint, ensuring that 043

the model outputs align with logical rules, thereby 044

mitigating the issue of logic inconsistency. Here, 045

solvers may range from being completely deter- 046

ministic, like SymPy (He-Yueya et al., 2023), or 047

relying on a combination of heuristics and basic 048

machine learning techniques, as is the case with 049

Pyke (Pan et al., 2023) and Z3 (Ye et al., 2023; 050

de Moura and Bjørner, 2008). While this approach 051

successfully addresses hallucinations, it still strug- 052

gles with more complex problems. 053

Serving as a powerful theorem prover and a 054

versatile programming language, Lean (de Moura 055

et al., 2015) presents a compelling solution to con- 056

nect symbolic solvers with linguistic resources. 057

Much like symbolic solvers, Lean has a strict check 058

system, ensuring each reasoning step is certified. 059

What distinguishes it, however, is its functionality 060

also as a programming language developed specifi- 061

cally for theorem proving. Every day, a substantial 062

amount of code is written in Lean, capturing rea- 063

soning “nuggets” with step-by-step rationals that 064

are useful for training LLMs. A few recent studies 065

have already tapped into Lean for mathematical 066

theorem proving tasks (Polu et al., 2023; Han et al., 067

2022a; Lample et al., 2022), showing its potential 068

in tackling difficult reasoning challenges. 069

In this paper, we propose LeanReasoner, a Lean- 070

based framework to tackle logical reasoning prob- 071

lems. We use LLMs to formalize natural language 072

context into Lean, and fine-tune a custom model 073

on these problems using a modest amount of data 074

annotated ourselves. As we utilize LLMs to dy- 075

namically generate solutions within the Lean en- 076

vironment, our approach stands in stark contrast 077

to the static, pre-defined solution-finding methods 078

of LogicLM (Pan et al., 2023), which only rely on 079

traditional techniques like forward and backward 080
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chaining, and SATLM (Ye et al., 2023), which op-081

erates within the Z3 environment utilizing a suite082

of predetermined algorithms and heuristics. The083

adaptive nature of LLMs as a solution-finding tool084

allows our system to evolve continuously, harness-085

ing a vast array of reasoning data and information.086

Our contributions in this paper are three-fold.087

• To our knowledge, this is the first attempt to use088

Lean, traditionally associated with mathematical089

theorem proving, for natural language logical090

reasoning. This effort highlights a possible inter-091

section between mathematical theorem proving092

and logical reasoning.093

• Our research revealed that incorporating pre-094

training data from mathematical theorem proofs095

enhances the development of a more effective096

solver for logical reasoning compared to pre-097

vious techniques. Additionally, this approach098

enabled us to achieve SOTA results on FOLIO.099

• We make available the training data accumulated100

in this research, comprising 100 formalizations101

of logic reasoning problems from ProofWriter102

to Lean, along with 27 analogous formalizations103

from FOLIO. The corresponding proofs in Lean104

are also included.105

2 Problem Definition and Notation106

The underlying task we aim to solve is logical rea-107

soning, which takes the form of multi-choice ques-108

tions given natural language context. The answer109

to the question can be logically deduced based on110

the context.111

The framework we use for solving the problem112

is Lean.2 Lean is an open source theorem proving113

programming language with vibrant community114

support. Its current base includes over 100,000115

theorems and 1,000,0000 lines of code.3 Lean can116

also be used as a generic theorem prover, not nec-117

essarily in the area of mathematics. This is the way118

we use it for our case.119

The task and our solution to it, consist of the120

following components:121

• Context, which represents natural language ut-122

terances, composing a set of rules and facts. For123

example: Hudson is a cat, all cats are animals,124

and cats often meow.125

2https://leanprover.github.io/.
3https://en.wikipedia.org/wiki/Lean_

(proof_assistant).

• Question, which denotes the posed question. For 126

example, Does Hudson often meow? 127

• Options is a set of available answers (discrete 128

categories) from which an answer can be chosen. 129

For example, True, False or Unknown. 130

• Formalized context refers to the representation 131

of context in Lean. For example, the formal- 132

ized context for our example would be: axiom 133

A1 is_cat Hudson, axiom A2 ∀x, is_cat x → 134

is_animal x and axiom A3 ∀x, is_cat x → of- 135

ten_meow x. 136

• Formalized question: Given that Lean operates 137

as a theorem prover, questions are transformed 138

into dual theorems: one asserting the positive 139

stance and the other negating it. For the given ex- 140

ample, the formalized questions would be: Theo- 141

rem hudson_often_meows: often_meow Hudson 142

and Theorem not_hudson_often_meows: ¬ of- 143

ten_meow Hudson. 144

• Goal: In the context of proving theorems with 145

Lean, a "goal" is a logical statement that needs 146

to be proven true, given a set of axioms and rules. 147

When we set out to answer a question using the 148

Lean prover, this question becomes our root goal. 149

At that point, we can apply various instructions 150

in Lean to simplify or break down this primary 151

goal and generate intermediate goals. 152

For instance, using our earlier examples, 153

if the root goal is proving Theorem hud- 154

son_often_meows: often_meow Hudson, an in- 155

termediate goal might be proving that Hudson is 156

a cat. We aim to resolve each intermediate goal 157

using our provided context, gradually working 158

our way towards proving the root goal. Once all 159

intermediate goals are addressed, we have effec- 160

tively proven our root goal, and the proof search 161

concludes successfully. 162

• Tactics are the instructions in the Lean theorem 163

proving language that are used to manipulate 164

goals to obtain a proof for a given goal. For 165

example, apply A3 Hudson is a tactic that uses 166

modus ponens on the Goal often_meow Hudson 167

and transforms it to a new Goal is_cat Hudson 168

A diagram of these components and the relations 169

between them is depicted in Figure 1. This proce- 170

dure is framed within the language of the Lean 171

theorem prover as a goal-satisfying process. 172

3 LeanReasoner 173

Our framework, LeanReasoner, is composed of 174

four main components: a formalizer, a tactic gen- 175
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Context, Question and Options

Context: The cow is big. The cow likes the dog. The cow visits the dog. The dog needs the cow The cow needs the cow. If something visits the dog and the dog
needs the cow then it needs the cow. If the dog visits the cow then the cow visits the dog. If something needs the cow and the cow likes the dog then it likes the cow.

Question: Does the Cow like the Cow     Options: True, False or Unknown

Likes Cow Cow

apply R4 apply R3 Cow

Needs Cat Cow ∧
Likes Cow Cat

Needs Cow Cow ∧
Likes Cow Dog

sorry

No Goals

......

split

Needs Cow Cow,
Likes Cow Dog

apply R1 Cow exact T5
Likes Cow Dog......

exact T2

No Goals

Tactic Generator + Proof Search

constant Cow: obj                         

constant Dog: obj                          

constant Cat: obj                         

constant Big: obj -> Prop             

constant Likes: obj->obj->Prop    
constant Needs obj->obj->Prop

axiom R1 : ∀ x : obj, Visits x Dog ∧ Needs Dog Cow → Needs x Cow

axiom R2 : Visits Dog Cow → Visits Cow Dog
axiom R3 : ∀ x : obj, Needs x Cow ∧ Likes Cow Dog → Likes x Cow

axiom R4: ∀ x : obj, Needs Cat Cow ∧ Likes Cow Cat → Likes Cow

Cow

theorem does_cow_like_cow : Likes Cow Cow

Formalizer

Exists Path
that found a proof

to the theorem 

Yes

No
Is this theorem

the positive version
of the question

Yes

No

Check every proof
path

Unknown

False True

Result Intepreter

axiom T1: Big Cow                       

axiom T2: Likes Cow Dog             
axiom T3: Visits Cow Dog             

axiom T4: Needs Dog Cow           

axiom T5: Needs Cow Cow   

Figure 1: An overview of our approach: The natural language context is first processed by the “formalizer”. It then
advances to the proof search stage, where all the orange tactics are generated by the “tactic generator”. Finally, the
outcome is interpreted by the “result interpreter”. All items inside stadiums are goals.

erator, a proof search mechanism, and a result176

interpreter. The formalizer converts context and177

question to formalized context and formalized ques-178

tion. The tactic generator then generates tactics179

based on premises extracted from the formalized180

context. The proof search mechanism oversees181

tactic execution and goal expansion. The result182

interpreter analyses the output of the proof search183

and identifies the correct answer in the options. In184

this section, we detail of each those components.185

3.1 Formalizer186

As formalizers, we used OpenAI models text-187

davinci-003 (GPT-3) and GPT-4 (OpenAI, 2023).188

For text-davinci-003, we followed the same prompt-189

ing approach as Logic-LM (Pan et al., 2023) to sep-190

arate the task specification and problems, thereby191

enabling the model to continue with the task of192

formalization through next-token-prediction. For193

GPT-4, we used similar prompts, but included task194

specification in the system prompt.195

There is no automatic way to assert all the en-196

tities, relationships, and constraints of the context197

have been captured by the formalized result. How-198

ever, the syntax of the formalized result can be199

checked, as correct syntax is a prerequisite for200

downstream theorem proving. If an error is en-201

countered during compilation, we provide the error202

message generated by Lean along with the faulty203

formalization and ask the formalizer to regenerate204

the result. We further conduct manual inspections205

of the formalizer in §5. We note that we take a206

strict approach, and if the formalizer fails more207

than once, then the problem is counted as not being 208

correctly solved. 209

3.2 Tactic Generator 210

The model we used for tactic generation is Re- 211

Prover (Yang et al., 2023). This model contains 212

two parts: a retriever that employs retrieval mecha- 213

nisms to explicitly select premises when provided 214

with the current goal, and a generator that generates 215

tactics using the goal and the retrieved premises. 216

The division of the problem-solving task into 217

premise selection and tactic generation simplifies 218

the process and facilitates easier troubleshooting. 219

It isolates the source of potential issues, be it in 220

the premise selection or the tactic generation, thus 221

reducing the complexity of the problem. Also, this 222

division of responsibilities eases the burden on the 223

tactic generator. Choosing the right premise is chal- 224

lenging amidst numerous distractions, especially in 225

logical reasoning problems when several options 226

might seem promising for the current step but won’t 227

ultimately lead to the desired goal. 228

The premise retrieval component of our process 229

draws from the Dense Passage Retriever (DPR) 230

(Karpukhin et al., 2020). Provided with a goal g 231

as the query and a set of candidate premises P , it 232

generates a ranked list of m premises from P . In 233

DPR, both g and P are treated as raw texts that are 234

embedded in a vector space. We then retrieve the 235

top m premises that maximize the cosine similarity 236

between the goal and the premise. For tactic gen- 237

eration, we use a standard sequence-to-sequence 238

model. The goal and the premises are concatenated 239
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together as a string to generate new tactics.240

As a baseline, we also prompt GPT-4 to generate241

proofs. For cases when the chosen theorem to prove242

aligns with the answer (say the chosen theorem is243

the positive stance of the question and the answer is244

YES), we present GPT-4 with the correct proof as245

part of the prompt. Conversely, if the answer does246

not align with the chosen theorem or the answer is247

UNKNOWN, the formalized theorem is unprovable.248

In those cases, we still encourage the model to249

engage in step-by-step reasoning, even though it250

will eventually hit a roadblock. An example of the251

prompt to GPT-4 can be found in Appendix A.1.252

3.3 Proof Search253

The proof search module controls the overall search254

process that selects tactics and maintains states dur-255

ing proof construction. Essentially, the goal of256

the search method is to build a proof tree, which257

incrementally evolves the goal through tactic invo-258

cations. This approach was first introduced in GPT-259

F (Polu and Sutskever, 2020). LeanDoJo (Yang260

et al., 2023), a recently released framework that261

enables interaction with Lean programmatically,262

subsequently provided an implementation of this263

method, which we utilize for our study.264

As a reference, the middle part of Figure 1 pro-265

vides a practical illustration of this process. Start-266

ing from the root goal, for each given proof goal,267

we explore 64 possible tactics. All goals are main-268

tained in a priority queue and are expanded based269

on cumulative log probabilities of the goal, defined270

as the summation of the log probabilities of the271

tactics that brought us to the goal from the root.272

This implies that we tend to expand those goals273

where our generative model has the highest global274

confidence.275

To enhance search efficiency and circumvent po-276

tential loops, we have incorporated a mechanism277

that stops the expansion of a node N if we have278

already explored another node M with a state se-279

quence that prefixes N . Essentially, if the current280

goal being explored contains all the elements of a281

previously explored goal, then it shouldn’t be fur-282

ther expanded. This is based on the observation283

that if we have already assessed the potential paths284

and outcomes for a specific goal, then exploring285

a more generalized version of the same goal is re-286

dundant. Such a mechanism avoids unnecessary287

repetitions, thereby streamlining the search process288

and improving overall efficiency. Moreover, we de-289

fine a valid proof as one that is devoid of “cheating” 290

tactics (such as sorry) that tell Lean to assume that 291

the current goal is completed, even though it hasn’t 292

been proven. This means that every path containing 293

“cheating” tactics is disregarded. 294

Errors in the search process typically manifest in 295

two ways: a timeout or the exhaustion of nodes to 296

search. We have allocated a three-minute window 297

for each search, which is usually sufficient. We 298

provided more analysis of the errors made by the 299

tactic generator in the experiment section. 300

3.4 Result Intepreter 301

For options that include Unknown, we only re- 302

gard the result as correct if no other options can 303

be proven. All datasets investigated in this study 304

only contain questions with only one correct op- 305

tion. Consequently, if the proof system verifies 306

more than one option, the response is immediately 307

marked as incorrect. 308

4 Experimental Setup 309

We now describe our experimental setup: the 310

datasets we used for evaluation and model training 311

and the details of model training. 312

4.1 Evaluation Data 313

In our evaluation, we use two common logical rea- 314

soning datasets as testbeds: 315

ProofWriter: This deductive logical reasoning 316

dataset presents problems in an intuitive language 317

form. We incorporated the Open-World Assump- 318

tion (OWA) subset as per (Pan et al., 2023), where 319

each instance is characterized by a (problem, goal) 320

pairing, and labels can be categorized as TRUE, 321

FALSE, or UNKNOWN. It encompasses five seg- 322

ments based on the required reasoning depth. Our 323

focus is the depth-5 subset, which is the most chal- 324

lenging one. To get a fair comparison against Logic- 325

LM, we used the same 600 sample tests, ensuring 326

an even label distribution. 327

FOLIO: Unlike ProofWriter, FOLIO is con- 328

structed using intricate first-order logic. This in- 329

creases the complexity of the proving part. The 330

dataset presents problems in a more natural word- 331

ing, with relationships that are considerably more 332

complex. Such a combination of advanced logic 333

and rich linguistic structure renders the formaliza- 334

tion task in FOLIO substantially tougher than in 335

ProofWriter. For our analysis, we turned to the en- 336

tire FOLIO test set, encompassing 204 examples. 337
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4.2 Training Data for Domain Adaptation338

Regarding the data for model training, we collected339

100 theorem proofs for ProofWriter and 27 theorem340

proofs for FOLIO, where each problem’s proof341

was either manually annotated or collected from342

successful proofs generated by GPT-4. The data343

collection took about eight days.344

In annotating the data, we adopted two divergent345

approaches for constructing proofs. One approach346

emulated a straightforward strategy, encompassing347

a detailed procedure with numerous intermediate348

steps and lemmas, similar to how we might derive a349

proof when faced with theorem-proving tasks. Con-350

versely, the second approach resembles the proof351

formats found in mathlib. We generate more suc-352

cinct proofs of the same problem by reducing the353

number of intermediate lemmas and combining354

multiple tactics into a single compound tactic. The355

objective of having two annotations for the same356

problem was to examine the influence of annota-357

tion style on downstream logical reasoning. In the358

following experiments, we use Intuitive to refer to359

the first annotation style and Concise to denote the360

second annotation style. An illustrative example is361

available in Appendix C.362

It is important to mention that despite the limited363

data collected, the reasoning patterns for logical364

reasoning likely mirror those found in mathemati-365

cal reasoning, which were potentially learned dur-366

ing pretraining. The main purpose of this data367

collection is domain adaptation to transfer from368

math to natural language logical reasoning.369

4.3 Model Training370

We used the same model structure for pretraining371

as in the ReProver paper, namely, Google’s Byte-372

T5 (Xue et al., 2022). We also experimented with373

the pre-trained ReProver from LeanDoJo (Yang374

et al., 2023), which was pre-trained on Mathlib 3.375

The fine-tuning of our collected data took about six376

hours on one A100 40G. The hyperparameters are377

the same as in the original LeanDoJo paper. We378

will release our code to facilitate reproducibility.379

5 Results380

We present our experimental results, including an381

examination of the formalization module, insights382

into enhancing the tactic generator module, and a383

comparison of our work with other baselines.384

5.1 Analysis of Prompting Results 385

Since there is no automated method to confirm 386

the accuracy of formalization, we conduct man- 387

ual examinations of the formalized results to de- 388

termine whether errors occur during the formal- 389

ization or proof generation stages. Only formal- 390

izations that correctly captured every fact, axiom, 391

and rule were counted as accurate. We prompted 392

the LLM to formalize a selection of 100 questions 393

from ProofWriter’s validation set and 40 questions 394

from FOLIO’s training set and manually examined 395

them. The findings have been summarized in Table 396

1. 397

The formalization accuracy of ProofWriter is 398

much higher than FOLIO. This can be attributed 399

to its simpler language structure. In the case of 400

FOLIO, although using a large language model for 401

formalization helped in filtering out unnecessary 402

details from the natural language context, there still 403

exists some common error patterns. We have illus- 404

trated typical GPT-4 error patterns in Appendix B 405

using a composite sample derived from various er- 406

ror instances. Interestingly, Lean’s formalization 407

accuracy is on par with both Prolog and FOL in 408

Logic-LM. This consistency underscores Lean’s 409

versatility, allowing it to uniformly represent differ- 410

ent problem types within a single framework. 411

We observed improved results when formalized 412

code was paired with descriptive textual comments 413

(example in Appendix A.1) sourced from the con- 414

text. This approach further splits the formalization 415

task into two subtasks: 1) linking textual context 416

with formalized code and 2) generating formalized 417

code based on the prior textual context. These tex- 418

tual cues acted as a bridge between raw text and 419

formalized code, enhancing the performance of 420

formalization. 421

The distinction in performance between GPT- 422

3 and GPT-4 is evident. While the formalization 423

for simpler problems is the same, GPT-3 struggles 424

with intricate logic and complex problems. As such, 425

we opted not to use GPT-3 in further tests. Addi- 426

tionally, we experimented with the CodeLLAMA 427

(Baptiste Rozière and et.al, 2023) model family 428

for similar tasks, but found that their accuracy in 429

formalization was significantly lower than that of 430

GPT-3, achieving less than 30% on ProofWriter. 431

The proof accuracy section of the table is de- 432

termined by whether the generated proof can be 433

validated successfully in Lean. If the formaliza- 434

tion of the question to theorem is correct and the 435
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Model ProofWriter FOLIO
Formalize Prove Answer Formalize Prove Answer

GPT-4 Base 94% 15% 80% 60% 10% 35%
GPT-4 Base Comments 99% 15% 80% 75% 15% 35%
GPT-4 Base Separate 95% 5% 75% 60% 10% 40%
GPT-3 Base Comments 77% 12% 63% 45% 10% 35%
Logic-LM 98% 75.5% 74% 65% 69.2% 55%

Table 1: Formalization, Proof, and Answer choice accuracy of 100 ProofWriter samples and 40 FOLIO samples
via OpenAI Language Model API, with manual annotation. ‘GPT-4 Base’ serves as our baseline, where few-shot
examples include both formalization and proof generation in a single prompt. In ‘GPT-4 Base Comments’, we
augment these examples with line-by-line comments in Lean code. For ‘GPT-4 Base Separate’, we divide the task
into two parts, using separate prompts for formalization and proof generation. For simplicity, we did not use the
self-refinement technique when evaluating Logic-LM.

proof can be validated without any error or warn-436

ing, then we can treat the proof as valid. However,437

the accuracy of rendered proofs is very low. The438

issue could stem from assigning too many tasks to439

the large language model, making it challenging440

to address both within a single prompt. Despite441

our efforts to separate formalization and proof, the442

results were still disappointing, which highlights443

GPT-3 and GPT-4’s struggle with generating cor-444

rect Lean proof. Interestingly, the proof accuracy445

of Logic-LM wasn’t as high as we expected. Upon446

replicating their code, we found their chosen solver447

Pyke to be suboptimal, struggling to identify an448

answer when multiple search paths are available449

and some could result in loops.450

Despite the low accuracy in most of GPT-4’s451

proofs, it achieved a high accuracy for final choices452

on ProofWriter (as shown in column Answer). We453

believe this may be due to GPT-4’s training expo-454

sure to the dataset, potentially leading to a degree455

of memorization.456

5.2 Enhanced Proving457

In this section, we focus on training our own mod-458

els to do tactic generation using our annotated train-459

ing data. To isolate the impact of the tactic genera-460

tor, we only used the accurate formalizations from461

the previous subsection for testing. This gave us 99462

test examples for ProofWriter and 28 for FOLIO.463

All findings are detailed in Table 2.464

We first compare the results on premise selec-465

tion using the metrics recall@1 and recall@4. The466

recall@k metric is defined as follows:467

recall@k =
|GT_Prem ∩ Pred_Prem[0 : k]|

|GT_Prem|
,468

where GT_Prem means ground truth premises and469

Pred_Prem means top predicted premises. It is470

not surprising that LeanReasoner pretrained solely 471

with math data yielded suboptimal results. This 472

can be attributed to the domain mismatch between 473

mathematical theorem proving and logical reason- 474

ing. The model frequently makes mistakes by at- 475

tempting to use other, unrelated tactics that are 476

useful in mathematical theorem proving (like ring, 477

linarith) but not applicable in logical reasoning. 478

Furthermore, the accuracy for FOLIO was notice- 479

ably poorer than that of ProofWriter. This disparity 480

is likely due to FOLIO’s intricate logic and its need 481

for a broader array of first-order logic tactics such 482

as cases, have, and contradiction. In contrast, 483

ProofWriter primarily employs tactics like apply, 484

exact, and split. 485

Regarding the overall proof results, LeanRea- 486

soner pretrained on math theorem proving data con- 487

sistently outperformed other approaches for both 488

ProofWriter and FOLIO datasets. This success indi- 489

cates that our model effectively utilizes the logical 490

elements found in mathematical theorem proofs. 491

While the premise selector benefits from distinct 492

cues and a limited range of choices, the realm of 493

tactic generation is much broader. This vastness of 494

options renders the ReProver baseline’s proof ac- 495

curacy nearly negligible. But other than that, there 496

is a strong correlation between premise selection 497

accuracy and overall proof accuracy. While the ben- 498

efits of a pretrained LeanReasoner may not be as 499

noticeable for simpler datasets like ProofWriter, its 500

value becomes evident for more complex datasets, 501

such as FOLIO. 502

Fine-tuning with different annotations has a 503

slight effect on premise selection and tactic gener- 504

ation in this small test set. When fine-tuned with 505

Concise annotations, LeanReasoner would also 506

try to generate concise proofs, which usually use 507
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Method
Pretrained Fine-tuned ProofWriter FOLIO
on Math on the Premise Selection Proof Premise Selection Proof

Data Annotation Rec@1 Rec@4 Acc Rec@1 Rec@4 Acc
GPT-4 N/A N/A N/A 15% N/A 10%
LeanReasoner Yes No 56.2% 81.3% 0% 23.5% 38.2% 0%
LeanReasoner No Intuitive 62.5% 100% 99% 54.8% 95.2% 71.4%
LeanReasoner Yes Intuitive 75% 100% 99% 71.4% 96.8% 85.7%
LeanReasoner Yes Concise 75% 100% 99% 83.8% 97.4% 85.7%

Table 2: Comparative Analysis of Recall@k in premise selection and overall proof accuracy for 99 ProofWriter test
samples and 28 FOLIO test samples. This test set comprises formally verified and manually inspected results. The
effects of pretraining and fine-tuning on LeanReasoner are evaluated using theorem-proving data and both Intuitive
and Concise annotation sets, respectively. Premise Selection accuracy was not calculated for the GPT-4 baseline due
to the complexities in prompting GPT-4 with Lean goals.

Method Acc
Full training set method
Abs Biases (Gontier et al., 2022) 80.6%
MetaInduce (Yang et al., 2022) 98.6%
RECKONING (Chen et al., 2023b) 99.8%
Zero-shot method
GPT-4 CoT (Pan et al., 2023) 68.1%
Logic-LM (Pan et al., 2023) 79.3%
Our method (finetuned on 100 samples)
LeanReasoner without Pretraining 95.8%
LeanReasoner fine-tuned on Intuitive 98.3%
LeanReasoner fine-tuned on Concise 98.3%

Table 3: Proof accuracy across different methods for
the ProofWriter dataset. The fine-tuned LeanReasoner
has been pretrained on mathlib. Full training set method
means the model has been trained on the full training
set of ProofWriter.

compound tactics that offer more information for508

premise selection. However, the final proof accu-509

racy has not changed on this small test set.510

Figure 2 displays an example of proofs for the511

same question, produced by the three primary meth-512

ods we compared. In the absence of pretraining, the513

model struggles to identify an appropriate approach514

for solving the problem. It merely attempts to ap-515

ply the next applicable theorem, lacking a clear516

objective. While Intuitive data offers numerous517

lemmas that assist in the thought process during518

proof-writing, these excessive lemmas do not aid519

LLMs in generating tactics effectively.520

5.3 Comparing Against Other Baselines521

Having demonstrated that pretraining on theorem522

proving data yields superior performance, we pro-523

ceed to benchmark our results against established524

baselines for both ProofWriter and FOLIO. The525

Method Acc
Full training set method
Roberta (Han et al., 2022b) 62.1%
FOLNet (Chen, 2023) 70.6%
Zero-shot method
GPT-4 CoT (Pan et al., 2023) 70.6%
Logic-LM (Pan et al., 2023) 74.5%
Lean Z3 (SATLM) 77.5%
Our method (finetuned on 27 samples)
LeanReasoner without Pretraining 66.2%
LeanReasoner fine-tuned on Intuitive 78.4%
LeanReasoner fine-tuned on Concise 82.6%

Table 4: Proof accuracy across different methods for the
FOLIO dataset. The result from ’Lean Z3’ is derived
from lean-smt applied to formalized Lean Code. The
fine-tuned LeanReasoner has been pretrained on math-
lib. Full training set method means the model has been
trained on the full training set of FOLIO.

evaluation uses the same set of 600 problems from 526

LogicLM and the entire FOLIO test set. 527

As illustrated in Table 3, our approach yields 528

near-perfect accuracy on the ProofWriter dataset. 529

While other methods except Logic-LM and GPT-4 530

COT use the entire training set of ProofWriter, our 531

approach relies on just 100 examples, underscor- 532

ing the efficiency of our method. Fine-tuning on 533

Concise annotation doesn’t bring any advantage to 534

the final performance on this dataset. 535

Table 4 presents our performance on FOLIO. For 536

a fair comparison with SATLM that uses the Z3 537

solver, we used the lean-smt tool 4 on our formal- 538

ized Lean code. This tool produces outcomes in 539

the form of “sat/unsat”. In Z3, “sat” stands for 540

“satisfiable.” When Z3 returns “sat” as the result, 541

it means that there exists a set of variable values 542

4https://github.com/ufmg-smite/lean-smt
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Formalization:
axiom A1 : ∀ (a : Animal), is_rabbit a → is_cute a

axiom A2 : ∀ (a : Animal), is_rabbit a ∨ is_squirrel a

axiom A3 : ∀ (a : Animal), is_skittish a → ¬ is_still a

axiom A4 : ∀ (a : Animal), is_squirrel a → is_skittish a

axiom A5 : is_still Rock

theorem rock_condition : is_turtle Rock ∨ is_cute Rock:=

LeanReasoner Intuitive:
have h1 : ¬ is_skittish Rock, {

    intro h, have h2 : is_still Rock, from A5,

    have h3 : ¬ is_still Rock, from A3 Rock h,

    contradiction,

},

cases A2 Rock, {

    have h2 : is_cute Rock, from A1 Rock h, 

    right, exact h2,

}, {

    have h3 : ...,

    have h4: ...,

    have h5: ...,

},

Problem statement: All rabbits are cute. Some turtles exist. An 
animal is either a rabbit or a squirrel. If something is skittish, then 
it is not still. All squirrels are skittish. Rock is still.

LeanReasoner Concise:

cases A2 Rock, {

    right,

    exact A1 Rock h,

}, {

    exfalso,

    exact A3 Rock (A4 Rock h) A5,

}

Question: Rock is a turtle or cute.

LeanReasoner without Pretraining:

right,

apply A1 Rock,

cases A2 Rock, {

    exact h,

}, {

    ...

}, ✔
compresses multiple tactics 
into one generation reduces the 
workload of LLM

⤫
model fails to find the 
correct solution to prove 
the theorem

⤫
model is confused by the 
excessive lemma 
introduced by have tactics

Figure 2: Sample proof generated by LeanReasoner without Pretraining, LeanReasoner finetuned on Intuitive data,
and LeanReasoner finetuned on Concise data.

that makes the theorem true. On the other hand,543

“unsat” stands for “unsatisfiable”. When Z3 re-544

turns “unsat”, it means that the formula is inher-545

ently contradictory and cannot be satisfied under546

any circumstance. We interpret these results sim-547

ilarly to “found a proof/didn’t find a proof” using548

our result interpreter. Due to the extensive length549

of proofs for FOLIO problems, we observed that550

LeanReasoner, when fine-tuned on the Intuitive551

dataset, often allocates an excessive amount of time552

for exploration and occasionally enters loops. In553

contrast, generating shorter proofs tends to ease the554

discovery of the proof. In essence, while the tactics555

generated when fine-tuned on the Concise dataset556

are more challenging to produce, the bottleneck557

for LeanReasoner on FOLIO resides in the search558

process.559

It’s important to acknowledge that there can be560

scenarios where errors in problem formalization or561

proof generation may occur, yet the final answer is562

still deemed correct. A case in point is when the563

answer to a problem is unknown, and errors arise564

in these stages. In such instances, the model would565

struggle to prove either the positive or negative566

theorem. However, with our result interpreter, these567

instances would still be classified as correct despite568

the underlying issues in problem handling.569

6 Related Work570

Several past studies (Chen, 2023; Creswell and571

Shanahan, 2022; Chen et al., 2023b) used symbolic572

solvers to augment neural networks with logical573

reasoning. Many of these approaches grapple with574

constraints like the necessity for custom or special- 575

ized module designs that lack broad applicability. 576

Recent work (Pan et al., 2023; Ye et al., 2023; Poe- 577

sia et al., 2023) presents a more general framework 578

that combines contemporary LLMs with symbolic 579

logic, bypassing the need to train or craft intricate 580

modules tailored for specific problems. While our 581

research aligns with these, we do not exclusively 582

rely on off-the-shelf solvers. 583

A common way to boost the reasoning skills of 584

LLMs is by training them on data that requires 585

some form of reasoning. As noted by (Lewkowycz 586

et al., 2022), LLMs trained with science and math 587

data do better on tasks that require reasoning, espe- 588

cially when using CoT prompting. Other results by 589

(Fu and Khot, 2022; Fu et al., 2023) suggest that 590

powerful LLMs get advanced reasoning capabili- 591

ties from being trained on code. This work is an 592

extension of this idea to theorem proving. 593

7 Conclusion 594

We introduced LeanReasoner, a framework based 595

on Lean that augments the logical reasoning abili- 596

ties of LLMs. An extensive examination was con- 597

ducted on errors from the formalization and proof 598

generation stage. We also examined the perfor- 599

mance enhancements from pretraining on theorem 600

proving data and annotation styles. We offered a 601

comprehensive comparison with other techniques 602

that highlight our model’s superior strengths. Our 603

results underscore the potential of integrating theo- 604

rem proving frameworks with LLMs in advancing 605

logical reasoning. 606
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Limitations607

Despite our promising results, our method encoun-608

ters limitations when dealing with problems that609

involve commonsense and factual reasoning. In610

these cases, it is challenging to retrieve all the nec-611

essary information and accurately represent it in612

Lean. Consider MMLU (Hendrycks et al., 2020)613

and SummEdits (Laban et al., 2023): MMLU re-614

quires the model to possess extensive world knowl-615

edge, while SummEdits involves determining con-616

sistency in summaries of different edits. In both617

instances, the ability to represent the complexity618

and nuance of real-world knowledge in Lean is619

severely limited.620

Further complications arise when dealing with621

math word problems (Cobbe et al., 2021) and simi-622

lar tasks (Hendrycks et al., 2021), where the goal623

is to derive a numeric solution rather than a proof.624

The theorem proving approach, while effective for625

certifying the validity of logical reasoning, does626

not directly yield a numerical answer. Lastly, our627

method grapples with problems found in more com-628

plicated reasoning datasets like TheoremQA (Chen629

et al., 2023a). These problems require an advanced630

understanding of complex concepts and the ability631

to formalize these concepts into Lean. Our current632

framework struggles with this level of complex-633

ity, underscoring the need for more sophisticated634

formalization techniques and a deeper integration635

between language understanding and theorem prov-636

ing.637

Even in the context of symbolic problems, there638

are challenges. For instance, consider the Logi-639

calDeduction task from the BigBench dataset (Sri-640

vastava et al., 2022). Although this problem ap-641

pears straightforward, employing Lean to solve it642

is neither the most practical nor the most efficient643

approach. Lean, as a theorem prover, is excellent in644

abstract reasoning and proof construction, but when645

faced with tasks involving constraints and variable646

possibilities, it falls short. To solve the problems647

in LogicDeduction, using Lean would require us648

to formalize the concepts of ordering and relative649

positioning. Even after doing so, generating proof650

would necessitate significant labor and wouldn’t651

necessarily yield a readily interpretable answer. In652

contrast, a Constraint Satisfaction Problem (CSP)653

solver can effectively manage constraints and gen-654

erate potential solutions efficiently.655

Ethical Considerations 656

Incorporating Lean’s theorem proving capabilities 657

into LLMs represents a significant stride forward 658

in the AI reasoning domain. Our method has not 659

only shown a remarkable improvement in handling 660

complex reasoning tasks but also offers a layer 661

of mathematical rigor that bolsters the reliability 662

of conclusions derived. However, as we elevate 663

the reasoning prowess of LLMs, there’s an am- 664

plified potential for embedded biases within the 665

training data to manifest and magnify. Especially 666

in reasoning scenarios, this can inadvertently lead 667

to skewed logic or unintended favoritism in areas of 668

utmost sensitivity such as medical diagnoses or le- 669

gal interpretations. While our method’s foundation 670

in Lean’s theorem proving data acts as a rigorous 671

check, complete reliance on it is not foolproof. A 672

proactive approach in reviewing both training data 673

and model outcomes is essential to uphold unbiased 674

reasoning. 675

Our integration of Lean provides LLMs with the 676

unique advantage of elucidating detailed logical 677

pathways, reinforcing the transparency of our rea- 678

soning process. Tracing reasoning step by step, 679

not only bolsters confidence in the derived conclu- 680

sions but also enhances the explainability of these 681

systems. Such transparency is vital in fostering 682

trust, especially when these models are used in piv- 683

otal decision-making processes. This robustness 684

coupled with the broader societal implications of 685

advanced reasoning in LLMs underscores the ne- 686

cessity for ongoing ethical reflection and proactive 687

measures to address potential challenges. 688
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A Prompts for Formalization 818

A.1 Prompts for ProofWriter 819

In subsection 5.1, we discussed various formaliza- 820

tion approaches. In this section, we present the 821

results using the GPT-4 Base Comments method 822

on ProofWriter when the answer is False. As evi- 823

dent from the last line, the predicted outcome from 824

GPT-4 can be derived easily. 825
826

System Message: 827
You are a logician with a background in 828
mathematics that translates natural language 829
reasoning text to Lean code so that these natural 830
language reasoning problems can be solved. During 831
the translation, please pay close attention to the 832
predicates and entities. There is an additional 833
requirement: I also want you to try to prove the 834
theorem you translated to Lean. If you can prove the 835
theorem, give me True at the end of the answer. If 836
you can prove the negation of the theorem, write 837
False at the end of the answer. If you can neither 838
prove the original theorem nor the negation 839
of the theorem, please give me Unknown at the end of 840
the answer. 841842

843
Input: 844
Textual context: The cat is blue. The cat is nice. 845
The cat likes the cow. The cat needs the cow. The 846
cat needs the rabbit. The cow does not need the 847
rabbit. The cow needs the tiger. The rabbit is 848
round. The tiger is nice. The tiger does not 849
like the cow. If someone likes the cat and they 850
chase the cat then they are blue. If someone 851
likes the cow and they are red then the cow is 852
round. If someone needs the tiger and they need 853
the cat then they do not chase the cow. If someone 854
needs the cat and the cat is blue then the cat is 855
red. If someone is round then they need the cat. 856
If someone likes the cat and the cat needs the 857
rabbit then the cat chases the tiger. If the rabbit 858
needs the tiger then the rabbit is not round. 859

860
Question: Based on the above information, is the 861
following statement true, false, or unknown? The 862
cow chases the cow. 863864
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865
Output:866
universe u867

868
constant obj : Type u869

870
constant Cat : obj871
constant Cow : obj872
constant Rabbit : obj873
constant Tiger : obj874

875
constant Blue : obj → Prop876
constant Nice : obj → Prop877
constant Likes : obj → obj → Prop878
constant Needs : obj → obj → Prop879
constant Round : obj → Prop880
constant Red : obj → Prop881
constant Chases : obj → obj → Prop882

883
axiom T1 : Blue Cat884
axiom T2 : Nice Cat885
axiom T3 : Likes Cat Cow886
axiom T4 : Needs Cat Cow887
axiom T5 : Needs Cat Rabbit888
axiom T6 : ¬ Needs Cow Rabbit889
axiom T7 : Needs Cow Tiger890
axiom T8 : Round Rabbit891
axiom T9 : Nice Tiger892
axiom T10 : ¬ Likes Tiger Cow893

894
-- If someone likes the cat and they chase the cat895

then they are blue896
axiom R1 : ∀ x : obj, Likes x Cat ∧ Chases x Cat →897

Blue x898
-- If someone likes the cow and they are red then899

the cow is round900
axiom R2 : ∀ x : obj, Likes x Cow ∧ Red x → Round901

Cow902
-- If someone needs the tiger and they need the cat903

then they do not chase the cow904
axiom R3 : ∀ x : obj, Needs x Tiger ∧ Needs x Cat905

→ ¬ Chases x Cow906
-- If someone needs the cat and the cat is blue907

then the cat is red908
axiom R4 : ∀ x : obj, Needs x Cat ∧ Blue Cat →909

Red Cat910
-- If someone is round then they need the cat911
axiom R5 : ∀ x : obj, Round x → Needs x Cat912
-- If someone likes the cat and the cat needs the913

rabbit then the cat chases the tiger914
axiom R6 : ∀ x : obj, Likes x Cat ∧ Needs Cat915

Rabbit → Chases Cat Tiger916
-- If the rabbit needs the tiger then the rabbit is917

not round918
axiom R7 : ∀ x : obj, Needs Rabbit Tiger → ¬919

Round Rabbit920
921
922

theorem cow_chases_cow : Chases Cow Cow :=923
begin924

have H1 : Needs Cow Tiger := T7,925
have H2 : Needs Cat Cow := T4,926
have H3 : ¬ Chases Cow Cow := R3 Cow (and.intro927

H1 H2),928
contradiction,929
sorry,930

end931
932

-- Looks like the theorem cannot be proven in Lean.933
-- So let’s try to prove the negation of the934

theorem, which is Cow does not chase Cow935
936

theorem not_cow_chases_cow : ¬ Chases Cow Cow :=937
begin938

apply R3 Cow,939
split,940
exact T7,941
apply R5,942
apply R2 Cat,943
split,944
exact T3,945
apply R4 Rabbit,946
split,947
apply R5,948
exact T8,949
exact T1,950

end951

952
-- The negation of the theorem can be proven in 953

Lean. So 954
-- The answer is False 955956

A.2 Prompts used for FOLIO 957

For FOLIO, the prompts differ slightly from those 958

used for ProofWriter. Since FOLIO’s textual con- 959

text remains consistent across multiple questions, 960

we concatenate questions sharing the same context 961

and prompt the large language model in a single in- 962

stance. An illustrative example is provided below. 963
964

System Message: 965
You are a logician with a background in 966
mathematics that translates natural language 967
reasoning text to Lean code so that these natural 968
language reasoning problems can be solved. During 969
the translation, please pay close attention to the 970
predicates and entities. There is an additional 971
requirement: I also want you to try to prove the 972
theorem you translated to Lean. If you can prove the 973
theorem, give me True at the end of the answer. If 974
you can prove the negation of the theorem, write 975
False at the end of the answer. If you can neither 976
prove the original theorem nor the negation 977
of the theorem, please give me Unknown at the end of 978
the answer. 979980

981
Input: 982
Textual context: There are six types of wild 983
turkeys: Eastern wild turkey, Osceola wild 984
turkey, Gould’s wild turkey, Merriam’s wild 985
turkey, Rio Grande wild turkey, and Ocellated 986
wild turkey. Tom is not an Eastern wild turkey. 987
Tom is not an Osceola wild turkey. Tom is 988
also not a Gould’s wild turkey, or a 989
Merriam’s wild turkey, or a Rio Grande wild 990
turkey. Tom is a wild turkey. 991

992
Question 1: Based on the above information, is the 993
following statement true, false, or uncertain? 994
Tom is an Ocellated wild turkey. 995
Question 2: Based on the above information, is the 996
following statement true, false, or uncertain? 997
Tom is an Eastern wild turkey. 998
Question 3: Based on the above information, is the 999
following statement true, false, or uncertain? 1000
Joey is a wild turkey. 10011002
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1003
Output:1004
-- Introducing basic types for entities in our1005

universe.1006
constant Turkey : Type1007
constant Tom : Turkey1008
constant Joey : Turkey1009

1010
-- Defining properties for the turkeys in our1011

universe.1012
constant is_wild_turkey : Turkey → Prop1013
constant is_eastern_wild_turkey : Turkey → Prop1014
constant is_osceola_wild_turkey : Turkey → Prop1015
constant is_goulds_wild_turkey : Turkey → Prop1016
constant is_merriams_wild_turkey : Turkey → Prop1017
constant is_rio_grande_wild_turkey : Turkey → Prop1018
constant is_ocellated_wild_turkey : Turkey → Prop1019

1020
-- Context from the information1021

1022
-- Tom is not an Eastern wild turkey.1023
axiom A1 : ¬ is_eastern_wild_turkey Tom1024
-- Tom is not an Osceola wild turkey.1025
axiom A2 : ¬ is_osceola_wild_turkey Tom1026
-- Tom is also not a Gould’s wild turkey.1027
axiom A3 : ¬ is_goulds_wild_turkey Tom1028
-- Tom is not a Merriam’s wild turkey.1029
axiom A4 : ¬ is_merriams_wild_turkey Tom1030
-- Tom is not a Rio Grande wild turkey.1031
axiom A5 : ¬ is_rio_grande_wild_turkey Tom1032
-- Tom is a wild turkey.1033
axiom A6 : is_wild_turkey Tom1034
-- There are six types of wild turkeys: Eastern1035

wild turkey, Osceola wild turkey, ’Goulds wild1036
turkey, ’Merriams wild turkey, Rio Grande wild1037
turkey, and Ocellated wild turkey.1038

axiom turkey_type_exclusivity : ∀ (t : Turkey),1039
is_wild_turkey t → is_eastern_wild_turkey t ∨1040
is_osceola_wild_turkey t ∨1041
is_goulds_wild_turkey t ∨1042
is_merriams_wild_turkey t ∨1043
is_rio_grande_wild_turkey t ∨1044
is_ocellated_wild_turkey t1045

1046
-- Formalizing the Questions1047

1048
-- Question 11049
-- Tom is an Ocellated wild turkey.1050
-- Let’s first prove the positive case.1051
theorem tom_is_ocellated_wild_turkey :1052

is_ocellated_wild_turkey Tom :=1053
begin1054

cases turkey_type_exclusivity Tom A6, {1055
have h1 : ¬ is_eastern_wild_turkey Tom,1056

from A1,1057
contradiction,1058

}, {1059
cases h, {1060

have h1 : ¬ is_osceola_wild_turkey1061
Tom, from A2,1062

contradiction,1063
}, {1064

cases h, {1065
have h1 : ¬ is_goulds_wild_turkey1066

Tom, from A3,1067
contradiction,1068

}, {1069
cases h, {1070

have h1 : ¬1071
is_merriams_wild_turkey Tom, from A4,1072

contradiction,1073
}, {1074

cases h, {1075
have h1 : ¬1076

is_rio_grande_wild_turkey Tom, from A5,1077
contradiction,1078

}, {1079
assumption,1080

}1081
}1082

}1083
}1084

}1085
end1086

1087
-- Let’s try the negative case.1088

1089

theorem not_tom_is_ocellated_wild_turkey : ¬ 1090
is_ocellated_wild_turkey Tom := 1091

begin 1092
exact A2, 1093

end 1094
1095

-- The answer is Unknown 1096
1097

-- Question 2 1098
-- Tom is an Eastern wild turkey. 1099
-- Let’s first prove the positive case. 1100
theorem tom_is_eastern_wild_turkey : 1101

is_eastern_wild_turkey Tom := 1102
begin 1103

sorry, -- Placeholder for proof 1104
end 1105

1106
-- Let’s try the negative case. 1107

1108
theorem not_tom_is_eastern_wild_turkey : ¬ 1109

is_eastern_wild_turkey Tom := 1110
begin 1111

exact A1, 1112
end 1113

1114
-- The answer is False 1115

1116
-- Question 3 1117
-- Joey is a wild turkey. 1118
-- Let’s first prove the positive case. 1119
theorem joey_is_wild_turkey : is_wild_turkey Joey := 1120
begin 1121

sorry, -- Placeholder for proof 1122
end 1123

1124
-- Let’s try the negative case. 1125

1126
theorem not_joey_is_wild_turkey : ¬ is_wild_turkey 1127

Joey := 1128
begin 1129

sorry, -- Placeholder for proof 1130
end 1131

1132
-- The answer is Unknown 11331134

B Example Errors During Formalization 1135

This is an artificial example highlighting typical 1136

errors encountered in the formalization stage. 1137
1138

Input: 1139
There are three types of wild turkeys: Eastern 1140
turkey, Osceola turkey, Gould’s turkey. Tom is 1141
neither an Eastern turkey nor an Osceola turkey. 1142
Tom is a wild turkey. Bob is a Eastern turkey. 1143
Bob weights 86 pounds and Tom weights 73 pounds. 1144
Turkey either bites or stings.Bob bites. Eastern 1145
turkey ’s bite would cause death. 1146

1147
Question 1: Tom is a Gould’s turkey. 1148
Question 2: Bob is heavier than Tom. 1149
Question 3: If Bob bites you, you will die. 11501151

1152
Output: 1153
constant Turkey : Type 1154
constant Eastern Osceola Goulds : Turkey → Prop 1155
constant weight_86 weight_73 : Turkey → Prop 1156
constant bites stings : Turkey → Prop 1157
constant eastern_bite_causes_death : Turkey → Prop 1158
constant Tom Bob : Turkey 1159

1160
axiom A1 : ¬ Eastern Tom ∧ ¬ Osceola Tom 1161
axiom A2 : Eastern Bob 1162
axiom A3 : weight_86 Bob 1163
axiom A4 : weight_73 Tom 1164
axiom A5 : ∀ (t : Turkey), bites t ∨ stings t 1165
axiom A6 : bites Bob 1166
axiom A7 : ∀ (t : Turkey), 1167

eastern_bite_causes_death t 11681169
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There are a few errors in the above code, includ-1170

ing:1171

• There is a missing axiom that corresponds to1172

"There are three types of wild turkeys":1173

Goulds Tom ∨ Eastern Tom ∨ Osceola Tom1174

• The formalization of numbers is incorrect, it1175

should be:1176

constant weight : Turkey → N1177

axiom A3 : weight Bob = 861178

axiom A4 : weight Tom = 731179

• The formalization of logic is incorrect, it1180

should be:1181

¬ bite_causes_death t ∧ bite_causes_itching t) ∨1182

(bite_causes_death ∧ ¬ bite_causes_itching t1183

• There is an incorrect division of concepts that1184

would make the proving impossible, the cor-1185

rect version should be:1186

∀ (t : Turkey), Eastern t → bite_causes_death t1187

C Example Proof Annotation with1188

Different Annotation Styles1189

Here we’re showing two example proofs created on1190

the same problem with ‘Intuitive’ annotation style1191

and ‘Concise’ annotation style.1192
1193

Input:1194
"Textual Context": All eels are fish. No fish are1195
plants. A thing is either a plant or animal.1196
Nothing that breathes is paper. All animals breathe.1197
If a sea eel is either an eel or a plant, then a sea1198
eel is an eel or an animal.1199
"Question": "Based on the above information, is1200
the following statement true, false, or uncertain?1201
Sea eel is a paper.12021203

1204
Formalized Context:1205
constant Thing : Type1206

1207
constant is_eel : Thing → Prop1208
constant is_fish : Thing → Prop1209
constant is_plant : Thing → Prop1210
constant is_animal : Thing → Prop1211
constant is_paper : Thing → Prop1212
constant breathes : Thing → Prop1213

1214
constant sea_eel : Thing1215

1216
-- All eels are fish.1217
axiom A1 : ∀ (t : Thing), is_eel t → is_fish t1218
-- No fish are plants.1219
axiom A2 : ∀ (t : Thing), is_fish t → ¬ is_plant t1220
-- A thing is either a plant or animal.1221
axiom A3 : ∀ (t : Thing), is_plant t ∨ is_animal t1222
-- Nothing that breathes is paper.1223
axiom A4 : ∀ (t : Thing), breathes t → ¬ is_paper1224

t1225
-- All animals breathe.1226

axiom A5 : ∀ (t : Thing), is_animal t → breathes t 1227
-- If a sea eel is either an eel or a plant, then a 1228

sea eel is an eel or an animal. 1229
axiom A6 : (is_eel sea_eel ∨ is_plant sea_eel) → 1230

(is_eel sea_eel ∨ is_animal sea_eel) 12311232

1233
Intuitive Proof: 1234
theorem not_sea_eel_is_paper : ¬ is_paper sea_eel 1235

:= 1236
begin 1237

cases A3 sea_eel, { 1238
have h1 : ¬ is_fish sea_eel, { 1239

intro h, 1240
have temp := A2 sea_eel h, 1241
contradiction, 1242

}, 1243
have h2 : ¬ is_eel sea_eel, { 1244

intro h, 1245
have temp := A1 sea_eel h, 1246
contradiction, 1247

}, 1248
have h3 : is_eel sea_eel ∨ is_plant 1249

sea_eel, { 1250
right, 1251
assumption, 1252

}, 1253
have h4 : is_eel sea_eel ∨ is_animal 1254

sea_eel := A6 h3, 1255
cases h4, { 1256

contradiction, 1257
}, { 1258

have h5 : breathes sea_eel := A5 1259
sea_eel h4, 1260

have h6 : ¬ is_paper sea_eel := A4 1261
sea_eel h5, 1262

contradiction, 1263
} 1264

}, { 1265
have h1 : breathes sea_eel := A5 sea_eel h, 1266
have h2 : ¬ is_paper sea_eel := A4 sea_eel 1267

h1, 1268
contradiction, 1269

} 1270
end 12711272

1273
Concise Proof: 1274
theorem not_sea_eel_is_paper : ¬ is_paper sea_eel 1275

:= 1276
begin 1277

cases A3 sea_eel, { 1278
cases A6 (or.inr h), { 1279

have h1 := A2 sea_eel (A1 sea_eel h_1), 1280
contradiction, 1281

}, { 1282
exact A4 sea_eel (A5 sea_eel h_1), 1283

} 1284
}, { 1285

exact A4 sea_eel (A5 sea_eel h), 1286
} 1287

end 12881289
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