
Under review as a conference paper at ICLR 2024

FAIR FEATURE IMPORTANCE SCORES FOR INTERPRET-
ING TREE-BASED METHODS AND SURROGATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Across various sectors such as healthcare, criminal justice, national security, fi-
nance, and technology, large-scale machine learning (ML) and artificial intel-
ligence (AI) systems are being deployed to make critical data-driven decisions.
Many have asked if we can and should trust these ML systems to be making these
decisions. Two critical components are prerequisites for trust in ML systems: in-
terpretability, or the ability to understand why the ML system makes the decisions
it does, and fairness, which ensures that ML systems do not exhibit bias against
certain individuals or groups. Both interpretability and fairness are important and
have separately received abundant attention in the ML literature, but so far, there
have been very few methods developed to directly interpret models with regard to
their fairness. In this paper, we focus on arguably the most popular type of ML
interpretation: feature importance scores. Inspired by the use of decision trees in
knowledge distillation, we propose to leverage trees as interpretable surrogates for
complex black-box ML models. Specifically, we develop a novel fair feature im-
portance score for trees that can be used to interpret how each feature contributes
to fairness or bias in trees, tree-based ensembles, or tree-based surrogates of any
complex ML system. Like the popular mean decrease in impurity for trees, our
Fair Feature Importance Score is defined based on the mean decrease (or increase)
in group bias. Through simulations as well as real examples on benchmark fair-
ness datasets, we demonstrate that our Fair Feature Importance Score offers valid
interpretations for both tree-based ensembles and tree-based surrogates of other
ML systems.

1 INTRODUCTION

The adoption of machine learning models in high-stakes decision-making has witnessed a remark-
able surge in recent years. Employing these models to assist in human decision processes offers
significant advantages, such as managing vast datasets and uncovering subtle trends and patterns.
However, it has become increasingly evident that the utilization of these models can lead to biased
outcomes. Even when users can discern bias within the model’s results, they frequently encounter
substantial hurdles when attempting to rectify this bias, primarily due to their inability to compre-
hend the inner workings of the model and the factors contributing to its bias. When machine learning
models impact high-stakes decisions, trust is paramount (Toreini et al., 2020; Rasheed et al., 2022;
Broderick et al., 2023). Users, stakeholders, and the general public need to have confidence in the
fairness and interpretability of these models. Without comprehensible explanations and the ability
to audit model decisions, trust can degrade rapidly.

An incident with the Apple Credit Card in 2019 is a prime example of this. The wife of a long-time
married couple applied for an increased credit limit for her card (Vigdor, 2019). Despite having a
better credit score and other positive factors in her favor, her application for an increased line of
credit was denied. The husband, who had filed taxes together with his wife for years, wondered
why he deserved a credit limit 20 times that of his wife. When the couple inquired as to why the
credit limit was so different, no one was able to explain the decision to the couple, which created
consternation amongst these and other clients on social media who also demanded explanations
(Knight, 2019). This led to an investigation by the New York State Department of Financial Services.
While the investigation showed that the card did not discriminate based on gender (Campbell, 2021),
the inability to provide an interpretation or explanation about the fairness of the algorithm used to
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determine credit limits created significant mistrust. Moving forward, it is critical that we have
ways of interpreting ML systems based not only on the accuracy of predictions, but also on the
fairness of the predictions. As a particular example, we have many ways to interpret how features
affect a model’s predictions through feature importance scores (Du et al., 2019; Murdoch et al.,
2019). Yet, we have no current way of understanding how a feature affects the fairness of the
model’s predictions. The goal of this paper is to fill in this critical gap by developing a simple and
interpretable fair feature importance score.

Countless works have proposed methods to improve fairness in existing models (Zemel et al., 2013;
Calmon et al., 2017; Agarwal et al., 2018; Zhang et al., 2018; Lohia et al., 2019; Caton & Haas,
2020), but few have focused on how to interpret models with regards to fairness. We adopt a simple
approach and consider interpreting features in decision trees. Why trees? First, trees have a popular
and easy-to-compute intrinsic feature importance score known as mean decrease in impurity (MDI)
(Breiman, 1973). Second, tree-based ensembles like random forests and boosting are widely used
machine learning models, especially for tabular data. Finally, decision trees have been proposed for
knowledge distillation of deep learning systems and other black-box systems (Hinton et al., 2015;
Gou et al., 2021). Decision trees have also more recently been proposed for use as interpretability
surrogates for deep learning systems (Guidotti et al., 2018; Schaaf et al., 2019).

In this work, we develop a straightforward and intuitive metric for calculating fair feature importance
scores in decision trees. Our Fair Feature Importance Score (FairFIS) reveals which features lead to
improvements in the fairness of a model’s predictions and which degrade fairness or contribute to the
model’s bias. Additionally, we show how FairFIS can be used to explain the fairness of predictions
in tree-based ensembles and through tree-based surrogates of other complex ML systems.

1.1 RELATED WORKS

To promote trust, transparency, and accountability, there has been a surge in recent research in in-
terpretable ML; see reviews of this literature by Molnar (2020); Lipton (2018) for more details.
Interpretable ML (or explainable AI) seeks to provide human understandable insights into the data,
the model or a model’s output and decisions (Allen et al., 2023; Murdoch et al., 2019). One of the
most popular interpretations is feature importance, which measures how each feature contributes to
a model’s predictions. There are a wide variety of model-specific feature importance measures like
the popular mean decrease in impurity (MDI) for decision trees (Louppe et al., 2013) or layer-wise
relevance propagation (LRP) for deep learning (Samek et al., 2021), among many others. Several
proposed model agnostic measures of feature importance include Shapley values, feature permuta-
tions, and feature occlusions (Mase et al., 2021; Chen et al., 2018).

Another notable category of interpretability-enhancing techniques involves surrogate models. A
surrogate model is a simplified and more interpretable representation of a complex, often black-box
model (Samek & Müller, 2019). Surrogate models are designed to approximate the behavior of the
original model while being easier to understand, faster to compute, or more suitable for specific
tasks such as optimization, sensitivity analysis, or interpretability; examples include linear models,
decision trees or Gaussian processes. One of the most well-known surrogates for interpretability
is LIME (Local Interpretable Model-Agnostic Explanations) (Ribeiro et al., 2016); this approach
builds a simple and interpretable (usually linear) model to interpret a local sub-region of the input
space. Global surrogates, on the other hand, build a second surrogate model to approximate the
global behavior and all the predictions of the original model. Decision trees have been proposed as
potential global surrogates as they are fast, simple and interpretable, and as a fully grown decision
tree can exactly reproduce the predictions of the original model on the training data (Blanco-Justicia
& Domingo-Ferrer, 2019). On a related note, decision trees have played a crucial role in an as-
sociated field known as knowledge distillation, where simplified surrogates of complex models are
crafted to mimic the complex model’s predictions (Hinton et al., 2015; Gou et al., 2021). Although
knowledge distillation focuses on prediction, it is worth noting that if predictions from surrogate
decision trees prove to be accurate, they can also be harnessed for interpretation (Yang et al., 2018;
Sagi & Rokach, 2021; Wan et al., 2020).

Separate from interpretability, fairness is another critical component to promote trust in ML systems.
There has been a surge of recent literature on fairness (Chouldechova & Roth, 2018; Friedler et al.,
2019). And while many methods have been developed to mitigate bias in ML systems (Zhang
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Figure 1: Schematic trees to illustrate FIS and FairFIS. Panel A illustrates the level of node t and
the child level of t that are used to calculate FairFIS. Panels B-D illustrate classification trees with
pluses and minuses denoting positive and negative labels respectively and red and blue denoting the
majority and minority groups respectively. Panels B and C show the Bias and weighted impurity
(Gini Index) at node or level t and that of the children of node t. In Panel B, notice the Bias decreases
between the parent and child level, resulting in a positive FairFIS for that split. Differently, in Panel
C, the Bias increases, resulting in a negative FairFIS for that split. Panel D illustrates why we must
use soft predictions versus hard labels when computing FairFIS.

et al., 2018; Grari et al., 2019; Agarwal et al., 2018), very few of these papers have additionally
focused on interpretability. Yet, many have called for improving interpretability in the context of
fairness Agarwal (2021); Wang et al. (2023). Notably, there are a few recent examples that seek
to address this. Begley et al. (2020) introduces a new value function that measures fairness for use
within Shapley values; although this is an interesting and relevant approach, no code is publicly
available and computing these Shapley values requires significant computational time. Another
relevant example is LimeOut (Bhargava et al., 2020) which uses LIME explanations to determine
which features to drop to make a classifier fairer. This is a local and not global method, however,
and the focus is on selecting features, not directly interpreting them via a feature importance score.
In this paper, we are motivated to address these issues by proposing a very simple, intuitive, fast,
and easy-to-compute fair feature importance score.

1.2 CONTRIBUTIONS

We make three major contributions that allow us to interpret a tree or tree-based model in terms of
the fairness of its features. First, we propose and develop the first fair feature importance score (Fair-
FIS) for interpreting decision trees. Second, we outline how to use FairFIS to interpret tree-based
ensembles and tree-based global surrogates of complex ML systems. Finally, we empirically vali-
date FairFIS for interpreting trees, tree-based ensembles, and tree-based surrogates of deep learning
models on both synthetic and benchmark datasets.

2 FairFIS: FAIR FEATURE IMPORTANCE SCORE FOR TREES

2.1 REVIEW: FEATURE IMPORTANCE SCORE (FIS) FOR TREES

One of the many benefits of decision trees is that they have a straightforward mechanism for inter-
pretation. The Feature Importance Score (FIS) is based on the Mean Decrease in Impurity (MDI),
measured by a decrease in variance in regression or in the Gini Index or other metrics for classifi-
cation Breiman (1973). Let us first introduce some notation to formally define and review FIS; this
definition will help us in defining our Fair FIS in the next section. Suppose we have a response y and
the decision tree is built from data X based on n samples. Additionally, let t = 0 be the root node
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of the tree and T be the total number of nodes in the tree; let nt be the number of samples falling in
node t. Next, let cℓ(t) be the left child of t and cr(t) be the right child of node t. Let St = {i ∈ t}
be the set of samples belonging to node t; let ySt

be the response associated with those samples in
node t, we we denote as yt for ease of notation. Let ŷt denote the predictions for samples in node
t. As an example, for binary classification with y ∈ {0, 1} or for regression with y ∈ R recall that
ŷt = 1

|St|
∑

i∈St
yi; that is, ŷt is the proportion of successes in node t in the classification setting

and the mean of node t in the regression setting. Additionally, let wt represent the weighted number
of samples nt

n at node t and 1{(t,j)} denote the indicator that feature j was split upon in node t. Let
L(y, ŷ) be the loss function employed to built the decision tree (e.g. MSE loss for regression or the
Gini Index or Cross Entropy for classification). Now, we can formally define FIS:
Definition 1. For a decision tree, the FIS (MDI) for feature j is defined as:

FISj =

T−1∑
t=0

1{(t,j)}(wtL(yt, ŷt)−
(
wcℓ(t)L(ycℓ(t), ŷcℓ(t)) + wcr(t)L(ycr(t)), ŷcr(t))

)
) (1)

If feature j is used to split node t, then the FIS calculates the change in the loss function before
and after the split, or more precisely, the change in the loss between the predictions at node t and
the predictions of node t’s children. Hence, FIS uses the accuracy of the predictions to determine
feature importance.

2.2 FAIRFIS

Inspired by FIS, we seek to define a feature importance score for group fairness that is based upon the
bias of the predictions instead of the accuracy of the predictions. To do this, we first need to define
group bias measures. Let zi ∈ {0, 1} for i = 1, . . . n be an indicator of the protected attribute (e.g.
gender, race or etc.) for each observation. We propose to work with two popular metrics to measure
the group bias, Demographic Parity (DP) and Equality of Opportunity (EQOP), although we note
that our framework is conducive to other group metrics as well. In brief, DP measures whether
the predictions are different conditional on the protected attribute whereas EQOP is typically only
defined for classification tasks and measures whether the predictions are different conditioned on a
positive outcome and the protected attribute (Hardt et al., 2016; Beutel et al., 2017).

One might consider simply replacing the loss function in equation 1 with these bias metrics, but
constructing our fair metric is not that simple. Consider that for FIS, we can calculate the loss
between yt and ŷt for a particular node t, hence we can calculate the difference in loss after a split.
We cannot use this same process, however, for bias as the predictions in each node of the decision
tree are the same by construction. Thus, for a given node t, there are never any differences between
the predictions based on protected group status. Hence, the bias calculated at node t must always be
zero. To remedy this and keep the same spirit as FIS, we propose to consider the difference in bias
between the split that produced node t and the split at node t that produces node t’s children. Thus,
we propose to calculate the bias that results from each split of the tree. To formalize this, notice that
the result of each split in a tree is a right and left node. We call this set the level of the tree for node
t and denote this as lev(t); this level includes the right and left node denoted as levℓ(t) and levr(t)
respectively. We also let c(t) denote all the children of t, or in other words, the child level of node t.
Now, we can define our bias metrics for the split that produced node t, or in other words, the level
of node t. The Bias of lev(t) in terms of DP and EQOP are defined as follows:

BiasDP (lev(t)) =
∣∣E(ŷi|zi = 1, i ∈ lev(t))− E(ŷi|zi = 0, i ∈ lev(t))

∣∣, (2)

BiasEQOP (lev(t)) =
∣∣E(ŷi = 1|yi = 1, zi = 1, i ∈ lev(t))

− E(ŷi = 1|yi = 1, zi = 0, i ∈ lev(t))
∣∣. (3)

These group bias metrics range between zero and one, with higher values indicating larger amounts
of bias in the predictions. Armed with these definitions, we now seek to replace the loss function
L in FIS with this Bias metric to obtain our FairFIS. To do so, we calculate the difference in bias
between the level of node t and node t’s children:
Definition 2. The FairFIS for feature j is defined as:

FairFISj =

T−1∑
t=0

1{(t,j)}wt (Bias(lev(t))−Bias(c(t)) (4)
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Figure 2: Classification results for FIS (MDI) using the Gini Index) and FairFIS (DP) on the three
major simulation types and for a decision tree, gradient boosting, and random forest classifier. The
magnitudes and directions of the FairFIS scores for each group align with what we would expect
from the simulation construction, thus validating our metric.

Note that at the root node, t = 0, the level of the tree consists of only the root; then, Bias(lev(0)) =
0 for this constant model at the root in our definition. Finally, as the scale of FIS is not always inter-
pretable, it is common to normalize FIS so that is sums to one across all features. We analogously
do so for FairFIS by rescaling so that the sum of the absolute values across all features is one; in
this manner, FairFIS and FIS are on the same scale and can be directly interpreted.

Our FairFIS formulation is an analogous extension of FIS as it calculates the Bias of the parent
minus the Bias of the children summed over all splits that split upon feature j. But unlike FIS which
is always positive, FairFIS can be both positive and negative. As decision trees are constructed with
each split minimizing the loss, the difference in loss between parent and children is always positive.
The splits do not consider Bias, however, so the Bias of the parent level could be higher or lower
than that of the child level. Thus, FairFIS will be positive when the split at node t improved the bias
and negative when the split at node t made the bias worse. FairFIS is then positive for features that
improve the fairness (or decrease the bias) and negative for features that are less fair (or increased
the bias). This is a particularly advantageous aspect of FairFIS that improves the interpretability of
each feature with respect to fairness.

Figure 1 illustrates our FairFIS definition for a binary classification example. Panel A highlights our
notation and calculation of Bias for levels of the tree. In Panel B, the bias improves from the parent
level to the child level and hence FairFIS is positive, indicating the split improved the fairness of the
predictions. The opposite happens in Panel C where the bias is worse in the child level and hence
FairFIS is negative indicating worsening fairness as a result of the split.

In regression settings, FairFIS can be easily applied with the demographic parity metric equation 2,
which is most commonly used for regression tasks. The bias can be calculated directly as the empir-
ical mean of the predictions in each sensitive group. For classification settings, however, more care
needs to taken in computing the Bias and our FairFIS metric, as discussed in the next section.

2.3 FAIRFIS IN CLASSIFICATION SETTINGS

Typically for classification tasks, people use hard label predictions to compute the DP and EQOP
Bias metrics. However, for decision trees, this presents a problem as both the left and right node
of level t could predict the same hard label; the parent and child levels could also predict the same
hard label. In these settings, using hard labels with equation 2 and equation 3 would result in zero
or a misleading Bias measure even when the split might be unfair. This phenomenon is illustrated
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in Figure 1 Panel D. To remedy this issue, we are left with two options: employ measures of Bias
that take soft predictions or employ probabilistic decision trees that return stochastic hard label
predictions based on the soft label probabilities. So that our Bias metrics are interpretable and
comparable with others that typically employ hard label predictions, we choose the latter option. Let
levℓ(t) and levr(t) denote the left and right nodes of the level of node t and let πlevℓ(t) and πlevr(t)

denote the proportion of positive samples in these nodes, respectively. Then for probabilistic trees,
ŷi for i ∈ levℓ(t) is a Bernoulli random variable with probability of success πlevℓ(t), and that of the
right node is defined analogously. Given this, we can directly apply equation 2 and equation 3 to
compute the expectation necessary for our Bias metrics:
Proposition 1. Consider binary classification with probabilistic trees, then our Bias measures are
given by the following:

BiasDP (lev(t)) =

∣∣∣∣∣πlevℓ(t)

(∑
i 1{zi=1,i∈levℓ(t)}∑
i 1{zi=1,i∈lev(t)}

−
∑

i 1{zi=0,i∈levℓ(t)}∑
i 1{zi=0,i∈lev(t)}

)

+ πlevr(t)

(∑
i 1{zi=1,i∈levr(t)}∑
i 1{zi=1,i∈lev(t)}

−
∑

i 1{zi=0,i∈levr(t)}∑
i 1{zi=0,i∈lev(t)}

) ∣∣∣∣∣, (5)

BiasEQOP (lev(t)) =

∣∣∣∣∣πlevℓ(t)

(∑
i 1{zi=1,yi=1,i∈levℓ(t)}∑
i 1{zi=1,yi=1,i∈lev(t)}

−
∑

i 1{zi=0,yi=1,i∈levℓ(t)}∑
i 1{zi=0,yi=1,i∈lev(t)}

)

+ πlevr(t)

(∑
i 1{zi=1,yi=1,i∈levr(t)}∑
i 1{zi=1,yi=1,i∈lev(t)}

−
∑

i 1{zi=0,yi=1,i∈levr(t)}∑
i 1{zi=0,yi=1,i∈lev(t)}

) ∣∣∣∣∣. (6)

Thus, even when employing probabilistic trees, our Bias measures and hence FairFIS is easy to
compute. The proof / calculation for Proposition 1 is in the Supplemental materials. Note also
that these results for the Bias and also FairFIS can easily be extended to multi-class classification
settings, which we present in the Supplemental materials.

2.4 FAIRFIS FOR TREE-BASED ENSEMBLES AND DECISION TREE GLOBAL SURROGATES

Decision Trees are widely used due to their ability to break down complex problems into simpler
solutions, thus making them more interpretable (Loh, 2011). Further, they are commonly employed
in various popular ensemble-based classifiers such as random forest, gradient boosting, XGBoost,
and others. For these tree-based ensembles, FIS is averaged (or averaged with weights) over all the
trees in the ensemble (Breiman, 1996). We propose to extend FairFIS in the exact same manner to
interpret all tree-based ensembles.

Decision trees have also gained attention for their role in knowledge distillation to transfer knowl-
edge from large, complex models to smaller models that are easier to deploy (Hinton et al., 2015;
Buciluǎ et al., 2006). Here, decision trees are not fit to the original labels or outcomes, but instead to
the complex model’s predicted labels or outcomes. Recently, others have proposed to use decision
trees in a similar manner for global interpretation surrogates (Blanco-Justicia & Domingo-Ferrer,
2019; Yang et al., 2018; Sagi & Rokach, 2021; Wan et al., 2020). Decision trees are often an ideal
surrogate in this scenario as a fully grown tree can exactly reproduce the predictions of the complex,
black-box model. Hence, if the predictions match precisely, we can be more confident in the fea-
ture interpretations that the decision tree surrogate produces. Here, we propose to employ FairFIS
to interpret features in a decision tree surrogate in the exact same manner as that of FIS. In this
way, FairFIS provides a simple, intuitive, and computationally efficient way to interpret any large,
complex, and black-box ML system.

3 EMPIRICAL STUDIES

3.1 SIMULATION SETUP AND RESULTS

We design simulation studies to validate our proposed FairFIS metric; these simulations are an im-
portant test since there are not other comparable fair feature interpretation methods to which we can
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compare our approach. We work with four groups of features: features in G1 and G2 are correlated
with the protected attribute z and are hence biased, features in G1 and G3 are signal features asso-
ciated with the outcome y, and features in G4 are purely noise. We simulate the protected attribute,
zi, as z i.i.d∼ Bernoulli(π) and take π = 0.2. Then, the data is generated as xi,j

i.i.d∼ N(αj ∗ zi,Σ)
with αj = 2 if j ∈ G1 or G2 and αj = 0 if j ∈ G2 or G4. Hence, all features in G1 and G2

are strongly associated with z and hence should be identified as biased features with a negative
FairFIS. Then, we consider three major simulation scenarios for both classification and regression
settings: a linear model where f(xi) = β0 +

∑p
j=1 βjxij , a non-linear additive scenario where

f(xi) = β0 +
∑p

j=1 βjsin(xij), and finally a non-linear scenario with pairwise interactions where
f(xi) = β0 +

∑p
j=1 βjxij +

∑p
l=1,k=1 γlksin(xilxik) and with γlk = 1 for the first two features

in each group and zero otherwise. We also let βj = 1 for j ∈ G1 or G3 and βj = 0 for j ∈ G2

or G4. For regression scenarios, we let yi = f(xi) + ϵ where ϵ
i.i.d∼ N(0, 1), and for classification

scenarios, we employ a logisitic model with yi
i.i.d∼ Bernoulli(σ(f(xi)), where σ is the sigmoid

function. We present our binary classification results for the DP metric with N = 1000, p = 12
features, and Σ = I in Figure 2. Additional simulation results for both classification and regression
tasks with N = 500 or 1000, larger p, correlated features with Σ ̸= I, and for the EQOP metric are
presented in the Supplemental Materials.

Figure 2 presents the FIS and FairFIS metric for each of the twelve features colored according
to their group status, and averaged over ten replicates. We present all three simulation scenarios
for decision tree, gradient boosting, and random forest classifiers. First, notice that the sign of
FairFIS is correct in all scenarios; that is, features in G1 (red) and G2 (blue) are biased and FairFIS
accurately reflects this bias with a negative score while the features in G3 (green) and G4 (purple)
exhibit no bias and FairFIS is positive. FairFIS also accurately captures the magnitude of each
feature’s contributions as the magnitude of FairFIS and FIS are comparable in all scenarios. Note
here that FairFIS values are low for non-signal features in trees and gradient boosting, as non-
signal features are likely not split upon and hence do not contribute to bias or fairness. Because
random forests use random splits, however, non-signal features are split upon more often and we
see that FairFIS accurately determines that features in G2 are biased. Overall, these results (and the
many additional simulations in the Supplement) strongly validate the use of FairFIS for interpreting
features in trees and tree-based ensembles with respect to the bias or fairness that the feature induces
in the predictions.

3.2 CASE STUDIES

To align our work with the existing fairness literature, we evaluate our method on five popular
benchmark datasets. We examine: (i) the Adult Income dataset (Dua & Graff, 2017) containing
14 features and approximately 48,000 individuals with class labels stating whether their income
is greater than $50,000 and Gender as the protected attribute; (ii) the COMPAS dataset (Larson
et al., 2022), which contains 13 attributes of roughly 7,000 convicted criminals with class labels that
state whether the individual will recidivate within two years of their most recent crime and we use
Race as the protected attribute; (iii) the Law School dataset (Whiteman, 1998), which has 8 features
and 22,121 law school applicants with class labels stating whether an individual will pass the Bar
exam when finished with law school and Race as the protected attribute; (iv) the Communities
and Crimes (C & C) dataset (Dua & Graff, 2017), which contains 96 features of 2,000 cities with
a regression task of predicting the number of violent crimes per capita and Race encoded as the
protected attribute; and (v) the German Credit dataset, which classifies people with good or bad
credit risks based on 20 features and 1,000 observations and we use Gender as the protected attribute.

We begin by validating the use of FairFIS for interpreting tree-based global surrogates. To do this, in
Figure 3, we compare FIS and FairFIS results on a gradient boosting classifier (where these scores
were calculated by averaging over all tree ensemble members) to FIS and FairFIS results for a tree-
based surrogate of the same gradient boosting classifier (where a fully grown decision tree was fit
to the model’s predictions). Generally, we see that the FIS and FairFIS scores between the top row
(boosting) and bottom row (surrogate) are similar in magnitude and direction. Specifically looking
at the Adult dataset, we see that “Married” is an important feature according to FIS but FairFIS
indicates that it is a highly biased feature; these results are reflected in both the boosting model and
the tree surrogate. While the scores for some of the less important features may vary slightly between
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Figure 3: Global surrogate validation. The top row shows FIS and FairFIS results on a gradient
boosting classifier for the Adult, COMPAS and Law datasets. The bottom row shows FIS and
FairFIS results for a tree-based surrogate of a boosting classifier. The scores between the top and
bottom rows are similar in magnitude and direction, indicating that our scores are effective when
used to interpret tree-based global surrogates.

the original model and the surrogate, notice that the most important features are always consistent
between the two approaches. This indicates that our FairFIS scores are effective when used to
interpret tree-based global surrogates. Additional case studies on tree-based surrogates including
validating FIS compared to model-specific deep learning feature importance scores are provided in
the Supplemental Material.

Next, we evaluate the quality of FairFIS interpretations on several benchmark datasets in Figure 4;
additional interpretations of all benchmarks are provided in the Supplemental Material. Panel A of
Figure 4 shows scores for a tree-based surrogate of a deep learning model (multi-layer perceptron
with two hidden layers each with p units and ReLU activation) on the C & C dataset with Race as
the protected attribute and the COMPAS dataset with Race as the protected attribute. In the C & C
dataset, the percentage of kids who grew up with two parents in the household, denoted as “% Kids
2 Par”, has the highest magnitude for both FIS and FairFIS, although FairFIS shows that this feature
is strongly biased. Studies have shown that black young adults are disproportionately impacted by
family structure (Wilcox, 2021). Specifically, black young adults are less likely to go to college
and more likely to be imprisoned if they grow up in a single-parent household. In contrast, white
young adults are significantly less affected by family structure. Thus, our FairFIS interpretations are
consistent with these studies. Looking at the results for the COMPAS dataset, the number of priors
greater than 3, denoted as “Num Pri > 3” has the highest magnitude for both FIS and FairFIS, and
again FairFIS reveals that this feature is strongly biased. These interpretations are consistent with
other studies on the COMPAS data set (Rudin et al., 2020), again validating our results.

In Panel B of Figure 4, we examine FIS and FairFIS scores for a tree-based surrogate of a deep
learning model (multi-layer perception with two hidden layers each with p units and ReLU acti-
vation) as well as a tree-based surrogate for a bias mitigation method, the Adversarial Debiasing
approach (Zhang et al., 2018) for the Adult dataset with Gender as the protected attribute. The Ad-
versarial Debiasing method (Zhang et al., 2018) applies adversarial learning to improve fairness by
learning how to prevent an adversary from predicting the protected attribute. Looking at the Adult
dataset scores of the tree-based surrogate of the deep learning model, we see that the “Cap. Gain”,
“Edu Num”, and “Married” features are most important in terms of accuracy and US Native Country
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Figure 4: Interpretation of Features in Benchmark Datasets. Panel A displays the results of a tree-
based surrogate of a deep learning model on the C & C dataset and the COMPAS dataset. Panel
B explores the difference in importance scores between a tree-based surrogate of a deep learning
model and a tree-based surrogate of a bias mitigation approach, Adversarial Debiasing.

(“US NC”), “Married”, and “Age” are most influential in terms of bias. Specifically, “US NC” and
“Married” hurt the overall fairness of the model. In the debiasing method, the magnitude of both
FairFIS and FIS for the feature “Married” decreases substantially, showing that using this feature
likely would result in more biased predictions. Additionally, the “Cap. Gain” feature becomes more
important in terms of accuracy in the debiasing model, as this feature exhibits relatively less bias.
The accuracy and fairness go from 0.84 and 0.83 in the deep learning model to 0.80 and 0.92 in the
Adversarial Debiasing model, indicating that the approach is successful at mitigating bias. Seeing
as the severely unfair features become less unfair when the model becomes more fair indicates that
our fair feature importance scores accurately capture when features are helping or hurting the overall
fairness of the model. Note also that strongly predictive features often hurt fairness, and as fairness
increases, accuracy decreases. This trend is a sign of the well-known and studied tradeoff between
fairness and accuracy (Zliobaite, 2015; Little et al., 2022). Further results on all five benchmark
datasets are included in the Supplemental material.

4 DISCUSSION

In this work, we proposed a fair feature importance score, FairFIS, for interpreting trees, tree-based
ensembles, and tree-based surrogates of complex ML systems. We extend the traditional accuracy-
based FIS (MDI), which calculates the change in loss between parent and child nodes, to consider
fairness, where we calculate the difference in group bias between the parent and child levels. We
empirically demonstrated that FairFIS accurately captures the importance of features with regard to
fairness in various simulation and benchmark studies. Crucially, we showed that we can employ this
method to interpret complex deep learning models when trees are used as surrogates.
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Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 535–541, 2006.

Flavio P Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and
Kush R Varshney. Optimized pre-processing for discrimination prevention. In NeurIPS 2017: Ad-
vances in Neural Information Processing Systems, volume 30, pp. 3995–4004, 2017. doi: https:
//proceedings.neurips.cc/paper/2017/hash/9a49a25d845a483fae4be7e341368e36-Abstract.html.

Ian Carlos Campbell. The apple card doesn’t actually discriminate against women, investigators
say. The Verge, 2021. URL https://www.theverge.com/2021/3/23/22347127/
goldman-sachs-apple-card-no-gender-discrimination.

Simon Caton and Christian Haas. Fairness in machine learning: A survey. ArXiv Pre-Print
2010.04053, 2020. doi: 10.48550/arXiv.2010.04053.

Jianbo Chen, Le Song, Martin J Wainwright, and Michael I Jordan. L-shapley and c-shapley: Effi-
cient model interpretation for structured data. arXiv preprint arXiv:1808.02610, 2018.

Alexandra Chouldechova and Aaron Roth. The frontiers of fairness in machine learning. ArXiv
Pre-Print 1810.08810, 2018. doi: 10.48550/arXiv.1810.08810.

Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable machine learning. Communi-
cations of the ACM, 63(1):68–77, 2019.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Sorelle A. Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam Choudhary, Evan P.
Hamilton, and Derek Roth. A comparative study of fairness-enhancing interventions in machine
learning. In FAccT 2019: Proceedings of the 2019 Conference on Fairness, Accountability, and
Transparency, pp. 329–338, 2019. doi: 10.1145/3287560.3287589.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129:1789–1819, 2021.

10

https://www.theverge.com/2021/3/23/22347127/goldman-sachs-apple-card-no-gender-discrimination
https://www.theverge.com/2021/3/23/22347127/goldman-sachs-apple-card-no-gender-discrimination
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Under review as a conference paper at ICLR 2024

Vincent Grari, Boris Ruf, Sylvain Lamprier, and Marcin Detyniecki. Fair adversarial gradient tree
boosting. In ICDM 2019: Proceedings of the 2019 IEEE International Conference on Data
Mining, pp. 1060–1065, 2019. doi: 10.1109/ICDM.2019.00124.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino
Pedreschi. A survey of methods for explaining black box models. ACM Computing Surveys,
51(5), aug 2018. ISSN 0360-0300. doi: 10.1145/3236009. URL https://doi.org/10.
1145/3236009.

Moritz Hardt, Eric Price, and Nathan Srebron. Equality of opportunity in super-
vised learning. In NeurIPS 2016: Advances in Neural Information Processing Sys-
tems 29, volume 29, 2016. URL https://papers.nips.cc/paper/2016/hash/
9d2682367c3935defcb1f9e247a97c0d-Abstract.html.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Will Knight. The apple card didn’t see gender—and that’s the prob-
lem. WIRED, 2019. URL https://www.wired.com/story/
the-apple-card-didnt-see-genderand-thats-the-problem/.

Jeff Larson, Marjorie Roswell, and Vaggelis Atlidakis. Compas recidivism risk score data and
analysis, 2022. URL https://github.com/propublica/compas-analysis/.

Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of inter-
pretability is both important and slippery. Queue, 16(3):31–57, 2018.

Camille Olivia Little, Michael Weylandt, and Genevera I. Allen. To the fairness frontier and beyond:
Identifying, quantifying, and optimizing the fairness-accuracy Pareto frontier. arXiv preprint
arXiv:2206.00074, 2022.

Wei-Yin Loh. Classification and regression trees. Wiley interdisciplinary reviews: data mining and
knowledge discovery, pp. 14–23, 2011.

Pranay K. Lohia, Karthikeyan Natesan Ramamurthy, Manish Bhide, Diptikalyan Saha, Kush R.
Varshney, and Ruchir Puri. Bias mitigation post-processing for individual and group fairness. In
ICASSP 2019: Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 2847–2851, 2019. doi: 10.1109/ICASSP.2019.8682620.

Gilles Louppe, Louis Wehenkel, Antonio Sutera, and Pierre Geurts. Understanding variable impor-
tances in forests of randomized trees. Advances in neural information processing systems, 26,
2013.

Masayoshi Mase, Art B Owen, and Benjamin B Seiler. Cohort shapley value for algorithmic fairness.
arXiv preprint arXiv:2105.07168, 2021.

Christoph Molnar. Interpretable machine learning. 2 edn., 2020.

W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Definitions, meth-
ods, and applications in interpretable machine learning. Proceedings of the National Academy of
Sciences, 116(44):22071–22080, 2019.

Khansa Rasheed, Adnan Qayyum, Mohammed Ghaly, Ala Al-Fuqaha, Adeel Razi, and Junaid
Qadir. Explainable, trustworthy, and ethical machine learning for healthcare: A survey. Com-
puters in Biology and Medicine, pp. 106043, 2022.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?”: Explain-
ing the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. Association for
Computing Machinery, 2016. ISBN 9781450342322. doi: 10.1145/2939672.2939778. URL
https://doi.org/10.1145/2939672.2939778.

Cynthia Rudin, Caroline Wang, and Beau Coker. The age of secrecy and unfairness in recidivism
prediction. Harvard Data Science Review, 2(1):1, 2020.

11

https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://papers.nips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://papers.nips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/
https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/
https://github.com/propublica/compas-analysis/
https://doi.org/10.1145/2939672.2939778


Under review as a conference paper at ICLR 2024

Omer Sagi and Lior Rokach. Approximating xgboost with an interpretable decision tree. Informa-
tion Sciences, 572:522–542, 2021.

Wojciech Samek and Klaus-Robert Müller. Towards explainable artificial intelligence. Explainable
AI: interpreting, explaining and visualizing deep learning, pp. 5–22, 2019.
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