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ABSTRACT

Providing generalization guarantees for stochastic optimization algorithms re-
mains a key challenge in learning theory. Recently, numerous works demonstrated
the impact of the geometric properties of optimization trajectories on generaliza-
tion performance. These works propose worst-case generalization bounds in terms
of various notions of intrinsic dimension and/or topological complexity, which
were found to empirically correlate with the generalization error. However, most
of these approaches involve intractable mutual information terms, which limit a
full understanding of the bounds. In contrast, some authors built on algorithmic
stability to obtain worst-case bounds involving geometric quantities of a com-
binatorial nature, which are impractical to compute. In this paper, we address
these limitations by combining empirically relevant complexity measures with a
framework that avoids intractable quantities. To this end, we introduce the con-
cept of random set stability, tailored for the data-dependent random sets produced
by stochastic optimization algorithms. Within this framework, we show that the
worst-case generalization error can be bounded in terms of (i) the random set
stability parameter and (ii) empirically relevant, data- and algorithm-dependent
complexity measures of the random set. Moreover, our framework improves exist-
ing topological generalization bounds by recovering previous complexity notions
without relying on mutual information terms. Through a series of experiments in
practically relevant settings, we validate our theory by evaluating the tightness of
our bounds and the interplay between topological complexity and stability.

1 INTRODUCTION

Explaining the generalization capabilities of modern deep learning models is still an open problem
and an active research area Zhang et al.| (2017} |2021). Classically, supervised learning tasks can be
framed as a population risk minimization problem, defined as:

minweRd {R(w) = EZN/tz M(wv Z)]} ) (1)

where z € Z denotes the data, following a probability distribution ., on the data space Z, and
¢:R? x Z — Ris the loss function. In practice, we have Z = X x )/, where X’ denotes a feature
space and ) is a label space. Since p. is unknown, it is in general not possible to directly solve
Equation (1); instead, we typically solve the empirical risk minimization problem: for a dataset
S = (21,...,2n) ~ puS™ sampled i.i.d. from p, it corresponds to

min,epa {Rs(w) = L S0, 6w, z)}. )

To evaluate the validity of this replacement, it is essential to quantify the discrepancy between the
two objectives. Thus, a central quantity of interest in learning theory is the generalization error,

defined as Gg(w) := R(w) — Rg(w).

To quantify the generalization error, a large body of work analyzes the problem at the level of a single
weight vector w by modeling the learning algorithm as a mapping (S, U) — wg y, where S € Z"
represents the dataset and U captures the algorithmic randomness. This viewpoint underlies, for
example, information-theoretic approaches (Xu & Raginskyl [2017; [Steinke & Zakynthinou, 2020;
Pensia et al.|, 2018)), as well as the algorithmic stability frameworks (Bousquet & Elisseeff] 2002}
Hardt et al., 2016} Feldman & Vondrak, 2019). While these approaches provide generalization
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guarantees in various settings, the choice of which iterate to analyze remains unclear in the absence
of a stopping criterion, and consequently cannot capture the full behavior of the generalization error.

In contrast to focusing on a single weight vector, recent work has highlighted the role of the parame-
ter trajectory — the sequence of iterates generated by the learning algorithm for solving Equation (2)
—in explaining the generalization behavior of modern machine learning models|Xu et al.|(2024); Fu
et al.| (2024);/Andreeva et al.|(2024). Indeed, since the empirical risk can contain many local minima,
the trajectory surrounding a local minimum offers a concise way to assess its quality. The trajectory
itself inherently reflects the influence of the optimization algorithm, the choice of hyperparameters,
and the dataset, factors that are essential for deriving meaningful generalization bounds.

To capture the geometric information of the parameter trajectory, several authors have proposed
analyzing the worst-case generalization error along the entire trajectory, rather than relying on a
single weight vector. Due the dependence of the parameter trajectory on the random variables S
(dataset) and U (algorithmic noise), numerous studies on worst-case generalization bounds adopted
the formulation of data-dependent random sets (Simsekli et al.,|2020; |Dupuis et al., 2023; Andreeva
et al.| 2023). In line with these previous works, we formalize a learning algorithm as a mapping,

AU, 2" x © — CL(R?) := {closed subsets in R4}, A : (S,U) — Wsp, (3)
where S € Z™ is the dataset and U € () is an independent random variable representing the
algorithm randomness. This formalization includes (but is not limited to) the following examples.
Example 1.1. Consider a stochastic optimizer wi+1 = F(wg,S,U) (U is the batch noise) and
K;, Ky € IN*. The parameter trajectory is defined as A(S,U) = Ws y = {wy, K1 <k < K»}.

Example 1.2. Consider a dynamics of the form dW, = —VRg(W,)dt + odB;, where U :=
(Bt)¢>0 is a Brownian motion. Let T' > 0, the parameter trajectory is Wg iy := {Wy, t € [0,T}.

The following Examples [I.3]and[T.4]illustrate that this formulation also includes classical learning-
theoretic frameworks.

Example 1.3. Singleton bounds correspond to the case where we choose A(S,U) := {wg v}

Example 1.4. Classical worst-case (uniform) generalization error over a data-independent hypoth-
esis set W |Shalev-Shwartz & Ben-David| (2014) correspond to a constant mapping A(S,U) = W.

In this general setting, the main quantity of interest is the worst-case generalization error over Wg 7,

Gs(Ws,u) i= suPyew, ,, (R(w) — ﬁs(w)) 4)

In the case of Example [I.4] this problem has been classically analyzed through the Rademacher
complexity over YV (Bartlett & Mendelson,2002). However, as noted by Dupuis et al.|(2023)), these
classical techniques break down for data-dependent random sets.

To overcome this limitation, many studies have employed information-theoretic techniques, partic-
ularly within the “fractal-based” literature (Simsekli et al., 2020; Birdal et al.l 2021). A unifying
perspective recently emerged with the PAC-Bayesian theory for random sets (Dupuis et al.| 2024)),
which was recently employed by | Andreeva et al.|(2024) to establish generalization bounds based on
novel topological complexity measures. Informally, all these bounds are of the following for

C(Ws.y) +IT + log(1/¢)

SupwEWS,U (R(w) - ﬁg(w)) S \/ n s (5

with probability at least 1 — (. The term IT is an information-theoretic (IT) term, typically the fotal
mutual information between the dataset S and the set Wg 7 The aforementioned bounds differ in the
choice of complexity measure C(Ws ), but all include an IT term. The presence of such IT term
is a major drawback of these studies, as it is computationally intractable and not well-understood in
the general case (Dupuis et al.,|2024), and they can potentially be infinite.

On the other hand, [Foster et al.[(2019) adopted a conceptually different approach by extending the
notion of algorithmic stability (Bousquet & Elisseeff] |2002) to data-dependent hypothesis sets. De-
spite allowing a different point of view on Equation (4)), their assumption does not explicitly take into

"We use the notation < in informal statements where absolute constants have been omitted.
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Figure 1: (Left) Evolution of the loss function ¢(-, Z) for a fixed sample Z € Z over T' = 1000
iterations, for two neighboring datasets S, S’ € Z™. While the classical notion of algorithmic
stability measures the error at a specific iteration ¢, our stability notion extends this perspective to
the entire training trajectory. (Right) Numerical estimation of our new random set stability parameter
(Bn) as n increases. The experiments demonstrate that 3,, decreases with larger n.

account the algorithm randomness U, which is known to be paramount for deriving stability-based
bounds (Hardt et al., 2016). Moreover, |[Foster et al.| (2019) use a modified notion of Rademacher
complexity whose evaluation requires all setsﬂ of the form Wso, where S, = (#1,615-- - Zn,0 )»
with S1 = (21,1,..+,20,1), S(—1) = (21,-1, -+ s Zn,—1) ~ p®" and o € {—1,1}". Hence, the
sets Wso differ from the empirically accessible set WWs iy and evaluating all sets Wg- would require
running the training algorithm exponentially many times in n, rendering this approach impractical.
A similar construction has been used by [Sachs et al.| (2023) in the definition of the algorithmic-
dependent Rademacher complexity.

Contributions. In this study, we propose to address the aforementioned issues by introducing a
novel framework for deriving worst-case generalization bounds on data-dependent random sets,
which are empirically relevant and do not contain intractable mutual information terms. Inspired by
Foster et al.| (2019), we adopt a stability-based approach, which we adapt to exploit the algorithm
randomness in an explicit way. Based on our new assumption, we show that Gs(Wg 17) can be upper
bounded in terms of the stability parameter and a Rademacher complexity term. This allows us to
take advantage of the best of both worlds by (1) avoiding the intricate information-theoretic (IT)
terms and (2) relating the generalization error to topologically meaningful complexity measures,
hence, providing IT-terms free versions of the topological generalization bounds of [Birdal et al.
(2021)); |/Andreeva et al.|(2024). Our contributions are detailed below.

* We introduce the notion of random set stability, specifically designed for stochastic learning al-
gorithms. Moreover, we relate it to classical stability notions, providing a systematic procedure to
establish random set stability in diverse settings.

* We derive an expected worst-case generalization bound in terms of a Rademacher complexity term
evaluated over the empirically relevant set WWg ;; and the stability parameter.

* We apply our framework to obtain generalization bounds based on the fractal and topological com-
plexity measures introduced in (Birdal et al., 2021j;|Andreeva et al., [2024) without any intractable
mutual information terms. These bounds read as follows:

E [SqueWs,U (R(w) — ﬁg(w))} < @1/3 (1 +E [w/log C(Ws,U)D ,

where 3, is the stability parameter and C(Ws /) is the complexity measure (see Section .
Therefore, we provide the first fully computable topological bounds for practically used optimiza-
tion algorithms, hence, addressing the main issues of the aforementioned previous works.

* We provide a systematic empirical investigation of the tightness of our bounds.

* We empirically investigate the previously introduced topological quantities and their interplay
with stability as the sample size n varies, extending the correlation analyses of prior studies, and
therefore providing evidence supporting the validity of our stability-based approach.

The implementation will be made available upon publication. All proofs are in the appendix.

*Ws denotes in the setting of [Foster et al.| (2019) a data dependent hypothesis set. The authors do not
account for algorithmic randomness U. For U constant both notation can be seen as equivalent.
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2 TECHNICAL BACKGROUND

In this section, we provide some technical background on algorithmic stability. One of our contri-
butions, described in Section [3.1] is to extend these notions to data-dependent random sets.

Algorithmic stability is a fundamental concept in learning theory Bousquet & Elisseeff] (2002);
Bousquet et al.| (2020). It has proven successful in providing generalization guarantees for widely
used stochastic optimization algorithms |[Feldman & Vondrak| (2019); Zhu et al.[(2023)); Hardt et al.
(2016). To position our work within existing stability-based bounds, we consider a variant of al-
gorithmic stability, called uniform argument stability Bassily et al.|(2020). As with most stability
notions, it is defined with respect to a single iteration. Therefore, the learning algorithm used in
the next definition corresponds to the setting of Example and can be seen as a randomized map-
ping (S,U) — A(S,U) € R? In all the following, we say that two datasets S, S’ € Z" are
neighboring datasets if they differ by one element, which we denote S ~ S’.

Definition 2.1. Let A : (S,U) — R be a randomized algorithm. A satisfies 3-uniform argument
stability if for any neighboring datasets S ~ S’, we have Ey [||A(S,U) — A(S",U)||] < 5.

If /(w, z) is L-Lipschitz continuous in w, this implies the algorithmic stability Hardt et al.[(2016):

sup sup Ey [((A(S,U),z) — L(A(S",U),2)] < LB. 6)
S~S' zeZ
In the context of worst-case generalization bounds, where Ws 7 is a set (i.e., not a singleton), one
needs to specify the stability of the entire set Wg 7. To address this issue, a first step was taken by
Foster et al.|(2019), who introduced the following notion of hypothesis set stability.

Definition 2.2. A family Ws)gczn € (R%)Z" of data-dependent hypothesis sets is S-uniformly
stable when for any S ~ S’ in Z™ and w € W, there exists w’ € Wg such that:

sup,cz [l(w, z) — L(w', z)| < 6.

Although this assumption has been analyzed in settings such as strongly convex optimization [Foster
et al.| (2019), the notion of hypothesis set stability (Definition does not account for the presence
of algorithmic randomness U and therefore cannot be applied to the data-dependent random sets
defined by Equation (3). In Section[3] we thus extend Definition [2.2]to data-dependent random sets.

3 MAIN THEORETICAL RESULTS

In this section, we present our main theoretical contributions, which consist in deriving expected
worst-case generalization bounds through a new concept of random set stability, described in Sec-
tion[3.1] After discussing its validity, we present a key technical lemma and recover classical gener-
alization bounds in the case of Examples and[T.4] We then apply our framework to improve sev-
eral data-dependent worst-case generalization bounds, including intrinsic dimension bounds |Sim-
sekli et al.| (2020); Birdal et al.|(2021) and topological bounds |Andreeva et al.| (2024).

3.1 RANDOM SET STABILITY

As explained above, the main drawback of Definition[2.2]is that it does not explicitly account for the
algorithm randomness (e.g., batch indices), while algorithmic randomness is known to be paramount
for single-iterates stability bounds Hardt et al.[|(2016);|Zhu et al.| (2023).

In order to address this issue, we propose an improvement of the assumption of [Foster et al.|(2019),
accounting for the presence of randomness. The main difficulty that arises here is to give a meaning
to the expressions such as “for all w € Ws 1", when Ws r; is a random set. To do so, we define the
notion of data-dependent selection [Molchanov|(2017).

Definition 3.1. A data-dependent selection of W (7 is a deterministic mapping w : CL(R?)x 2" —
R such that w(Ws 17, S") € Ws r, almost surely. In particular, we assume the existence of a
random variable wo(Ws,r7, S) such that, almost surely, wo(Ws,r, S’) € arg max,,cyy, ,, G5 (w).

Note that the existence of such a random variable is ensured under mild measure-theoretic conditions
Molchanov| (2017). Equipped with this definition, we now introduce our stability assumption.
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Assumption 3.1 (Random set stability). Algorithm A is B,,-trajectory-stable if for any J € N* and
any data-dependent selection w of Ws.us, there exists a map w' : CL(R?) x R? — R? such that:

 Forany S, U and w € R%, w'(Ws y,w) € Wsy -
* Forall z € Z and two datasets S, S' € Z" differing by J elements we have:

Ey[[l(wWs,u, S), z) — £(w' Wsr v, wWs,u, S)), 2)|] < Bnd.

In the absence of algorithmic randomness (i.e., when U is constant), Assumption [3.1]is a particular
case of Definition Stability assumptions are usually enounced for neighboring datasets; here,
we present a variant with datasets differing by J elements. These two variants are equivalent, and we
choose this presentation to simplify subsequent proofs and notations. The presence of the mapping
w’ might be intriguing: w’ corresponds to the parameter denoted w’ in Definition|2.2and is denoted
this way to make its dependence on the different random variables explicit.

Applicability of random set stability. The question naturally arises as to whether this assumption
can be met and how it fits within the existing stability conditions. We answer this question with the
following lemma, which shows that Assumption [3.1]is implied by Definition

Lemma 3.2. Consider a fixed K € N*, 1 < k < K, and algorithmsﬂ Ar(S,U) = wg. Let
A(S,U) = Ws,u = {Ax(S,U) Y| be an algorithm in the sense of Equation (3)). Assume that for
all k, Ay, is §y-uniformly argument-stable in the sense of Definition and that the loss {(w, z) is

L-Lipschitz-continuous in w. Then, A is trajectory-stable with parameter at most 3,, = L 25:1 Ok

In the context of Example [T.T] this result shows that Definition [2.1) implies random set stability. It
can be noted that many stability-based studies rely on a Lipschitz assumption and prove uniform
argument stability to derive algorithmic stability parameters |Hardt et al.| (2016)), as noted by [Bassily
et al. (2020). Therefore, we see that the conditions of Lemmamcan be satisfied in numerous cases,
such as optimization of convex, smooth, and Lipschitz continuous functions |Hardt et al.| (2016).
Under these conditions, it is obtained that the stability parameter is of order 8, = O(k/n), hence,
yielding random set stability with a parameter of order O(72/n), in the worst case.

Projected SGD. Fix T" € N. Let us consider the projected SGD recursion on a loss function ¢, which

can be non-convex, i.e., given a dataset S = (21, ..., 2z,) € Z", consider the following algorithm:
Wh+1 :HR [wk _nkv‘g(wkazik+1)} 5 ASGD(Sa U) = WS,U = {wl,...,wT} (7)
where iy, ~ U({1,...,n}) are random indices, U := {i) };>1, and Il is the projection on the ball

Bpg/(0). The next corollary uses Lemmato establish the random set stability of SGD for Lipschitz
and smooth losses, and is an adaptation of (Hardt et al.,[2016, Theorem 3.12) to our setting.

Corollary 3.3. Suppose that, for all z, {(-, z) is L-Lipschitz, V(-, z) is G-Lipschitz, and that n, <
c/k for some ¢ < 1/G. Then, Asgp is random-set-stable with parameter

1/Ge+1
o= (gr)

3.2 WORST-CASE GENERALIZATION BOUND FOR DATA-DEPENDENT STABLE RANDOM SETS

We now leverage Assumption [3.1]to prove worst-case generalization bounds over random sets. The
next lemma shows that the expected worst-case generalization error can be bounded in terms of the
random set stability parameter and a Rademacher complexity term (Bartlett & Mendelson, [2002).

Lemma 3.4. Let S ~ p$™ be a dataset. Let J, K € N* be such that n = JK, and Sy~ u27 be
independent of S. Assume that algorithm A satisfies Assumption with parameter 3, > 0, then:

E[supyeps, (R(w) — Rs(w))] < 2E [Radg, Wsv)] + 278, (8)
where Rad (W) denotes the Rademacher complexity, whose definition is recalled in Definition

Most existing data-dependent worst-case generalization bounds rely on an information-theoretic
approach |Simsekli et al.|(2020); [Hodgkinson et al.|(2022); Andreeva et al.|(2024). In particular, this
theorem can be seen as an analog of (Dupuis et al., 2024, Theorem 6), which provided a bound in

3 Ay is an algorithm with values in R?, i.e., its output is the k-th iterate of the optimization algorithm.
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terms of Rademacher complexity and information-theoretic terms. Instead of information-theoretic
terms, our framework makes use of the random set stability parameter 3,,.

In Lemma [3.4] the number J is a free parameter. Before discussing the main applications of our
methods, we show that a certain choice of J recovers: (1) classical algorithmic stability bounds
(J = 1) and (2) worst-case bounds over fixed hypothesis sets (J = n). Therefore, the parameter J
can be seen as interpolating between these two settings, while yielding new data-dependent worst-
case generalization bounds for intermediary values of J.

Corollary 3.5 (Recovering stability bounds). Consider an algorithm A as in Example[I.3|and as-

sume that A satisfies Assumption with parameter B,,. Then, A is algorithmically stable in the
sense of Equation (6). By setting J = 1 in Lemma[3.4] we obtain:

E[R(A(S,U)) — Rs(A(S,U))] < 2B,

Up to the absolute constant 2, this recovers classical algorithmic stability-based expected general-
ization bounds |Bousquet & Elisseeff] (2002); Bassily et al.|(2020).

Corollary 3.6 (Recovering bounds on fixed hypothesis sets). Consider the setting of Example
Then, the algorithm satisfies Assumption 3.1l with parameter [3,, = 0. By using J = n we obtain:

E[sup,eyy (R(w) — ﬁg(w))] < 2E [Rads(W)],
where we observe that S,, ~ @™ and S ~ pS™ have the same distribution.

We observe that when 3,, = O (n’l), Corollary|3.5|recovers the classical convergence rate of Hardt
et al| (2016). Corollary [3.6] shows that our framework tightly recovers the classical Rademacher
complexity bounds (for fixed hypothesis set V) Bartlett & Mendelson| (2002), as well as all known
consequences of these bounds, such as VC dimension bounds (Vapnik & Vapnikl[1998)) and covering
number bounds (Shalev-Shwartz & Ben-David, [2014). In particluar, Corollary@]shows that in the
data-independent case we obtain the usual worst-case convergence rate of O (n‘l/ 2).

4  APPLICATIONS

In this section, we apply our random set stability framework to improve recently proposed data-
dependent worst-case generalization bounds in terms of fractal dimensions and topological com-
plexities |/Andreeva et al.| (2024). We assume that a learning algorithm A(S,U) =: Wg y is given,
in the sense of Equation (E]) One may think of W 7 as a learning trajectory as in Example|[T.1}

Assumptions. Before presenting our main applications, we introduce some structural assumptions.
We first note that the Rademacher complexity (RC) term appearing in Lemma[3.4]is computed using
a sample Sy~ 127 independent of the random set W 7. Despite this, the set over which the RC
term is computed is the data-dependent random set Wg 17, while the independent sample S5 is only
used to evaluate the loss inside the RC. In order to exploit this property, we assume that the loss has
a “local” Lipschitz regularity, in the following sense.

Assumption 4.1 (Lipschitz on random sets). There exists a measurable map (S,U) — Lg ¢y such
that for all S and all U, for all w,w' € Wg y, forall z € Z, [{(w,z) — (v, z)| < Lgyllw—w'|.

Lipschitz continuity assumptions are commonly used in the context data-dependent worst-case
bounds|Simsekli et al.| (2020); [Birdal et al.| (2021)); |/Andreeva et al.| (2023). However, our framework
crucially only requires the Lipschitz continuity on each set Vg ;7 individually, with a Lipschitz con-
stant Lg y that depends both on the dataset S € Z™ and the noise U. This makes the assumption
much weaker. For instance, in the case of Examples [I.T] and [I.2} where Ws 1y is almost surely
compact, if the loss £(w, 2) is of class C*, then Assumptionis automatically satisfied.

As is typical in this literature |Andreeva et al.| (2024); Dupuis et al| (2024); Birdal et al.| (2021);
Bartlett & Mendelson| (2002)), we also assume the boundedness of the loss function.

Assumption 4.2. We assume that the loss ¢ is bounded in [0, B, with B > 0 being a constant.

4.1 INTRINSIC DIMENSIONS AND TOPOLOGICAL BOUNDS

Recent studies [Simsekli et al.| (2020); |Dupuis et al.| (2023); /Andreeva et al.| (2023); Dupuis et al.
(2024); Birdal et al.|(2021); |Andreeva et al.| (2024) have established upper-bounds on Equation ()
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and drawn links between the topological structure of Ws 1y and the generalization error. These
bounds are of the form presented in Equation (5). As mentioned in Section [T} one of the main
drawbacks of these bounds is that they contain intractable and poorly understood mutual information
terms. One of our main contributions is to show that, under random set stability, we are able to obtain
data-dependent worst-case generalization bounds featuring many of the most popular complexity
measures, without the need of the intractable mutual information terms (denoted IT in Equation (E])).

We first present an adaptation to our setting of the intrinsic dimension-based bounds of (Simsekli
et al.,[2020), without any mutual information term.

Theorem 4.3. Suppose that Assumptions and {.1| hold, and that Ws iy is a.s. of finite

diameter. Without loss of generality, assume that (3, 23 s an integer divisor of n. There exists
0n > 0 such that for all § < 6,

~ B - I 1

E{ sup (R(w) - Rg(w)> } <2E { +0Lsy + B3 [ 14 B\/4dimB(WS,U) log = ] ,
weWs, U n 4]

where dimp(Ws i) is the upper box-counting dimension (Falconer| |2013), which we define in the

appendix in Definition We refer to the Appendix|B.4|for a discussion of the parameter 0,,.

In many cases, the upper box-counting dimension of Wg iy is much smaller than the ambient di-
mension d (Falconer, |2013). Under mild assumptions, the upper box-counting dimension can be
replaced by other notions like the persistent homology dimension (Birdal et al.,[2021)) and the mag-
nitude dimension (Andreeva et al.,|2023)), which have provided promising empirical results.

However, it was argued by |Andreeva et al|(2024) that such intrinsic dimensions are not well-suited
to the practically used stochastic optimizers due to their discrete nature, as for instance in Exam-
ple To overcome this issue, these authors proposed to use two new notions of topological
complexity, called the a-weighted lifetime sums (denoted E®(WWs 7)) and the positive magnitude
(denoted PMag(s - Wg 7)), and significantly improved the empirical results. Intuitively, the a-
weighted lifetime can be understood as tracking the evolution of ‘connected components’ of a set
across different scales and summing their contributions. On the other hand, the magnitude may be
thought of as capturing the effective number of distinct points in a finite space at different scale
Leinster| (2013)). We defer a precise definition of these notions to Definition and

In the next theorem, we provide IT free versions of the topological generalization bounds of |An-
dreeva et al.|(2024) under our assumption of random set stability (Assumption [3.1)).

Theorem 4.4. Suppose that Assumptions and [ 1) hold. We further assume that the set

Weg v is almost surely finite. Without loss of generality, assume that 3, 2/3

n. Then, for any o € (0, 1], we have

is an integer divisor of

]E{ sup  (R(w) — ﬁs(w))] < L3 (2 + 2B+ 2BE [\/2 log(1 + Kn,aEa(WS,U))]> ,

UJEWSYU

where K, o := 2(2Lg y+/n/B)*. Moreover, for any A > 0, let s(\) := )\LS,UﬂEI/?’/B. We have

E[ sup (R(w) — ﬁs(w))} <L (2 +AB + ?E [log PMag (s()) 'WS,U)]) -

’wGWs,U

This result suggests that a theoretically justified choice of the magnitude scale would be s(\) =

Bn /3 which amounts to O(n'/3) in the event that 3,, = O(1/n). As a reminder, in the classical
setting Corollary we recover the standard convergence rate of (’)(n_l/ ).

Unlike trajectory-dependent topological bounds [Simsekli et al.| (2020); [Birdal et al.| (2021)); [Dupuis
et al.|(2023)); |Andreeva et al.| (2024), our bounds do not involve IT terms, which can be unbounded.
While our bounds result in a slower convergence rate, this represents a deliberate trade-off to main-
tain boundedness. In addition to replacing IT terms with a stability assumption, the stability param-
eter (,, acts as a multiplying constant in the bound, hence increasing the impact of the topological
complexity on the bound. Compared to the IT terms, /3, is easily interpretable and can be expected
to decrease with n at a polynomial rate, as discussed above.
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5 EMPIRICAL EVALUATIONS

In Section |4 we provided the first fully computable topological/worst-case generalization bounds,
without the need for intractable mutual information terms, which limited the empirical analysis of
previous works. Instead, our bounds are mainly based on the stability parameter 3,,, which allows us
to assess how they empirically compare with the worst-case generalization error and whether their
structure aligns with observations, thus validating the framework and its practical applicability.

All experiments are performed using a Vision Transformer (ViT) Dosovitskiy et al.|(2021) on the
CIFAR-100 dataset and GraphSAGE |Hamilton et al.|(2017) on the MNISTSuperpixels dataset Monti
et al| (2017). All models are implemented in PyTorch and trained with the ADAM optimizer
(Kingma & Bal,2014). Further implementation details for both models are provided in Appendix[C]

Experimental Design. We follow the protocol of previous works |Dupuis et al.[ (2023); Andreeva
et al.|(2024) and train models until convergence, using this checkpoint as a starting point for further
analysis. Our empirical analysis is structured in two main parts.

First, we analyze the order of magnitude of our bounds, offering initial insights into the tightness
of our framework. We fine-tune each model for 500 iterations on a previously unseen dataset, with
fixed batch sizes (b) and learning rates (n), in particular b € {64,128} and n € {107°,107}. For
each (b, n) configuration, we estimate the stability coefficient Assumptionover 5 different seeds.

Then we examine the relationship between stability and topological complexity (i.e., weighted life-
time sums and positive magnitude in Theorem [.4). This analysis is motivated by the dependence
of the stability parameter on the sample size n and the multiplicative interaction between stability
and topological complexity in Theorem To this end, we fine-tune the models for further 5 - 103
iterations. The experiments are structured on a 4 x 4 x 5 grid based on the learning rate 7, the batch
size b, and n. For detailed information about the hyperparameter, we refer to Appendix

Quantity Estimation. In this paragraph, we describe the quantities used in our empirical analysis
and their estimation. Implementation details are provided in the Appendix.

* Generalization error: We approximate Gs(Ws ) (Equation ) by tracking train and test risk
at every iteration and reporting max;{test risk —train risk}. This refines prior proxies
based on either the final gap Birdal et al.| (2021]) or the worst test risk |Andreeva et al.| (2024).

* Topological complexities: We compute PMag(Ws 17) via a Krylov subspace PCG approxima-
tion [Salim/ (2021), and E*(Ws 7) using giotto-ph[Pérez et al.| (2021) with o = 1.

* Distance matrix: For trajectories Wg 7, we form a Euclidean distance matrix p(w,w’) = |lw —
w'||. To reduce computational cost, we uniformly sample 1500 of the 5000 iterations.

* Stability parameter: For random set stability (Assumption [3.I)), we replace 50 unseen samples
per training set, retrain to obtain Wg iy and Wy 7, and measure worst-case loss deviations across
iterations maxy ey, Milwew,, , SUPzcz |[((w,Z) — ((w', Z)|. With M = 500 held-out
points Z (see Algorithm [I)), we average results over 5 different random seeds.

5.1 RESULTS AND DISCUSSION

We now present our main empirical results. First, we numerically evaluate our bounds. Next, we
investigate the interplay between stability and the topological quantities appearing in Theorem 4.4]

Order of the bounds. Our goal is to have an estimate of the order of magnitude of the worst-
case error predicted by our bounds. To avoid the computationally costly evaluation of Lipschitz
constants, we estimate a simple upper bound on the Rademacher complexity that is common to
all our theoretical results. Concretely, we use Massart’s lemma (Shalev-Shwartz & Ben-David,

2014)) to bound the right-hand side of Equation by 24/2log(T)/J + 2J5,, where T is the
number of iterations. We estimate [3,, using the procedure detailed above and optimize over J (see

Appendix [C.3).

We present the resulting estimation of our bound in Table [I] for different learning rates and batch
sizes. A consistent pattern can be observed: the estimated bounds are typically close to an order
of magnitude larger than the actual worst-case generalization error. However, in most experimental
settings, the estimated bounds remain below 100% accuracy, hence, provide meaningful guarantees.
We also find that the stability parameter /3,, varies with the hyperparameters (7, b) and, therefore, en-
codes the impact of the learning algorithm on generalization error. Moreover, the estimated (3,, cap-
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Figure 3: Variation of E! with sample size n
for the model GraphSage. Pearson correlation
coefficients r are reported for each subgroup.

tures the generalization behavior: specifically, Gs(Wg 7) tends to decrease as (3,, becomes smaller,
a trend that holds for both ViT and GraphSage.

To the best of our knowledge, we are
the first to fully estimate a bound on
the worst-case error, thereby provid-
ing a stronger guarantee than in prior

Table 1: Comparison of ViT and GraphSage across differ-
ent learning rates (1) and batch sizes (b). We report 3,
Gs(Ws,r), and the resulting bound. We use the 0-1 loss.

work. In contrast, previous stud- Model | 7 b | 10°.8. 10°.Gs(Wsy) 10° Bound
ies focused on bounds for a sing]e 10’?l 64 | 4724052 10.24 £+ 0.36 104.43
. . ) 1074 128 | 5524067 12.84 £ 0.55 105.24

ViT

\yelght vector and similarly reported i 10-° 64 | 2161036 716 £ 0.33 6847
discrepancies of one to two orders 1075 128 | 2244022 6.36 & 0.33 68.67
of magnitude between the estimated 10°% 64 | 2.564036 5.48 + 0.36 75.63
bound and the actual error/Chen et al.|  Graphsage 1070 128 | 264022 5.20 +0.40 75.79
e . . 1075 64 | 0.64+0.22 4.60 +0.14 47.79
(2018); L1 et al.| (2019); Dupuis et al. 1075 128 | 0.80+0.00 484+0.17 48.59

(2023)); [Harel et al.[(2025). This sug-
gests that our worst-case generalization bounds are reasonable tight. Moreover, the fact that smaller
estimated generalization gaps are consistently associated with smaller stability parameters and,
therefore, smaller bounds, shows that the bounds adapt meaningfully to model performance.

Interplay between Stability and C(Ws 17). In Figure 2|and [3| we observe that the sensitivity of
E!(Ws,7) with respect to the generalization gap (i.e., the slope of the affine regression of E*(Ws /)
by the value of Gg(Wg y)) increases when n gets larger, which is what is predicted by our the-
ory. Indeed, Theorem assert that log E*(Ws, ;) should be (approximately) of order at least

Bn 3G 5(Ws,r), which amounts to n'/3G¢(Ws,y/) in the event that 8, = ©(1/n). Therefore,
our experimental results strongly support Theorem 4.4 Together, these observations unveil a strong
coupling between stability and the topological complexity of the training trajectories. Moreover,
the topological complexities increase for large n and therefore become more relevant to the bound.
The empirically observed coupling is supported by the theoretical results of Section [3] through the
product of the stability parameter 3,, and the topological complexities.

6 CONCLUDING REMARKS

In this work, we present a new framework for obtaining worst-case generalization bounds over data-
dependent random sets. This framework is based on a new concept of random set stability, which
we demonstrate holds for practically used algorithms, and is related to classical stability notions.
‘We then bound the worst-case generalization error by the (weighted) sum of the random set stability
parameter and a Rademacher complexity term. We present several applications of our new tech-
niques by recovering classical generalization bounds and proving mutual information-free versions
of existing fractal and topological bounds, which makes them for the first time fully computable.
We supported our theory through a series of experiments conducted in practically relevant settings.

Limitations & future work. Despite providing the first mutual information-free topological and
fractal bounds, our main results have two main disadvantages: (i) we only provide expected bounds,
and (ii) our framework only allows for Euclidean-based topological complexities, and we typically
do not cover the case of the data-dependent pseudometric introduced by |Dupuis et al.[(2023)).
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APPENDICES

We now provide additional technical details and proofs that are omitted from the main write-up.
Further, we provide additional technical and empirical results. The appendix is thus organized in the
following way:

* Appendix[A] provides supplementary technical background.
« Appendix [B|contains the omitted proofs of all our theoretical results.
» Appendix [C]details the experimental setup and procedures required for reproducibility.

« Appendix D] presents additional empirical results.

A ADDITIONAL TECHNICAL BACKGROUND

In this section, we provide the relevant definitions as well as the technical background for our results.

A.1 RADEMACHER COMPLEXITY

Recent advances on topological generalization bounds are based on a data-dependent Rademacher
complexity, leveraging PAC-Bayesian theory on random sets |Dupuis et al.|(2024). In our stability-
based approach, the Rademacher complexity also plays a central role. We define the standard
Rademacher complexity [Shalev-Shwartz & Ben-David| (2014); Bartlett & Mendelson|(2002) as:

Definition A.1. Let W C R%, S € 2", and € := (ey,...,€,) ~ U({—1,1})®" be i.i.d Rademacher
random variables (i.e., centered Bernoulli variables). Let £ : W x Z — R be a loss function. We
define the Rademacher complexity of W (relative to ¢) as:

Rads(W) := E. lsup 1 Zeiﬁ(’w,zi)] .

n
wew i—1

Intuitively, the Rademacher complexity measures the ability of a model to fit random labels. Using
this definition, we now establish our main result.

A.2 COVERING AND PACKING NUMBERS

In this section, we provide definitions of covering and packing numbers. These quantities have long
been central in learning theory, particularly in the context of classical covering-based arguments for
Rademacher complexity [Shalev-Shwartz & Ben-David|(2014); Bartlett & Mendelson| (2002).

Definition A.2 (Covering number). Let (W, p) be a metric space with YW C R? of finite diameter,
and let 6 > 0. The covering number Ns(W) is the smallest integer K € N* such that there exist
points z1,...,rx € W satisfying

K

W c | By(zx,9),
k=1

where B, (x,0) denotes the open ball of radius ¢ centered at = with respect to the metric p.

In this definition, we take the centers (x1,...,x k) of the covering to be in V. This allows us
to leverage the "local” Lipschitz continuity assumption defined in Assumption[d.I] This definition
does not lose any generality compared to taking the points in R?. In particular, both definitions yield
the same fractal dimensions (Falconer, 2013)).

Definition A.3 (Packing number). Let (W, p) be a metric space and § > 0. The packing number
P?(W) is the cardinality of a maximal set of points in W such that the closed balls of radius §
centered at these points are pairwise disjoint.

13
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A.3 INTRINSIC DIMENSIONS

In this section, we focus on the upper box-counting dimension (also known as the upper Minkowski
dimension), one of the most widely used notions of fractal dimension [Falconer| (2013)); Mattila
(1999). This notion has also found applications in machine learning, for instance in the works of
Simsekli et al.| (2020); Dupuis et al.|[(2023)).

Definition A.4 (Upper box-counting dimension). Let (W, p) be a metric space of finite diameter
and let (|[Ns(W)|)s>o denote the covering numbers introduced in Definition The upper box-
counting dimension is defined by:

—— . log [Ns(W)|
d W) :=1 —_—
) = e S

We refer the reader to (Falconer] 2013)) for more technical background on this notion.

Remark A.1. It has been shown in|Kozma et al.| (2006)); Schweinhart (2020) that, for any compact
metric space, several notions of dimension coincide with the well-known upper box-counting di-
mension (see Definition [A.4). In particular, the celebrated persistent homology dimension [Adams
et al.| (2020) has been connected to generalization |Birdal et al.| (2021 and has also been studied
empirically in various works /Andreeva et al.[(2024); Tan et al.| (2024).

A.4 ToprPoLOGICAL COMPLEXITIES

In this section, we define the topological quantities appearing in Theorem {.4]

a-weighted lifetime sum (E“). The weighted lifetime sums is a central notion in the study of
persistent homology, a subfield of topological data analysis (TDA). The interested reader may find a
full exposition of these notions in (Boissonnat et al., 2018}; |Schweinhart, [2020; [Kozma et al., [2006).
There exist several equivalent definitions the weighted lifetime sums of degree 0, see (Andreeva
et al.| 2024) for a concise review of these definitions in the context of machine learning.

In this section, we present an intuitive approach to the weighted lifetime sum, which we also restrict
to finite subsets of R% and to homology of dimension 0. Note that this is a simplified, non-standard
(though equivalent) definition of PH°.

Definition A.5 (Persistent homology of degree 0 PH”). Let WW C R? be a finite set with cardinality
N, endowed with the Euclidean metric. For each ¢ > 0 (which is often referred to as a “time”
variable in the TDA literature), we construct an undirected graph G; with edges given by

Ve, y e W, {z,y} € G <= p(z,y) <t

There exists a finite sequence of times 0 < ¢ < - - < ¢} < 400 such that the number of connected
components in Gy, changes compared to G; for ¢t < t;. Let ¢; denote the number of connected
components in G,. By convention, set co = N and ¢y = 0, and define n; := ¢; — ¢;—1. Then PH’
is defined as the multi-set,

PHO(W) := {{tl,...,tl,tg...,tk,...,tk}},
—— ——

n1 times Ny times

where the notation {{-}} denotes a multi-set.

Remark A.2. The construction of the graph above consists in looking at the 1-dimensional simplices
of the Rips complex associated with W, see (Boissonnat et al., 2018 Chapter 2).
We now use PH® to define the key quantities in our work, in particular the a-weighted sum E7.

Definition A.6 (a-weighted lifetime sums). Let YW C R? be a finite subsets of R?, endowed with
the Euclidean metric. For o > 0, the a-weighted lifetime sum of VV is defined as

E°W):= Y %
tePHO (W)

where PH denotes the set of lifetimes of the 0-dimensional persistent homology intervals of W, or,
equivalently, the above definition.
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Magnitude and positive magnitude. Magnitude is another known topological invariant used in
TDA, it was introduced by |Leinster| (2013)). In the context of machine learning, it has been used in
particular by |Andreeva et al.|(2023)) to analyze the generalization error of neural networks.

A detailed account of this theory can be found in (Meckesl 2013} 2015). In this paragraph, we
restrict ourselves to a particular case, that is enough for our purpose. In particular, we only define
these notions for finite sets, but all our theoretical results can be seamlessly extended to compact
subsets of R? (see (Andreeva et al.| [2024] Remark B.15)).

In all this paragraph, we fix a finite set W C R?. The key notion behind both magnitude and positive
magnitude is that of a weighting of WV, which is defined below.

Definition A.7 (Weighting). Let A > 0. A \-weighting of W is a vector 35 € R such that:

Vaew, Y e Meblig () = 1.
bew

The existence of such a weighting has been shown by |[Leinster| (2013).

We can now define the magnitude of W.

Definition A.8 (Magnitude, (Leinster, 2013)). With the notations of Definition the magnitude
function of W is defined as:

(0,4+00) 3 A — Mag(A- W) := Z Ba(a).
aceW

Recently,|Andreeva et al.| (2024) demonstrated that by slightly adapting the definition of magnitude,
one obtains an object that is naturally related to the Rademacher complexity (Definition[A.T), hence,
relating it to learning theory. Therefore, they introduced the notion of positive magnitude, which we
recall below.

Definition A.9 (Positive magnitude, (Andreeva et al., 2024)). With the notations of Definition
the positive magnitude function of WV is defined as:

(0,400) 3 A +— PMag(A- W) := Y (), (a),
aeW

where z := max(z,0).

B OMITTED PROOFS

In this section, we present the omitted proofs in full detail. We also present a few additional technical
results that are useful for our proofs and may be of independent interest.

B.1 PROOF OF COROLLARY [3.3]

We give below the proof of Corollary which provides a random set stability assumption for
projected SGD, in smooth and Lipschitz continuous settings.

Corollary 3.3. Suppose that, for all z, ((-, z) is L-Lipschitz, V{(-, z) is G-Lipschitz, and that my, <
¢/ k for some ¢ < 1/G. Then, Asgp is random-set-stable with parameter

1/Ge+1
B =35 (@)

Ge
Ge+1
e kGetT,

Z1gkgT

Proof. To show the trajectory-stability of SGD, we will first show that it is argument-stable in the
sense of Definition 2.1} then we will use Lemma 3.2]to establish random set stability.

To prove the argument stability, we almost exactly follow the steps in (Hardt et al.l 2016, Theorem
/

3.12). Let us consider a neighboring dataset S = (z1,...,2,) € Z" that differs from S by one

r n

element, i.e., z; = z. except one element. Consider the SGD recursion on S’

Wi = g [wh, = mVE(wh, 2,
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Since most of S and S’ coincide, at the first iterations it is highly likely that wj, and w), will be
identical, since they will pick the same data points. Let us denote the random variable x > 1 that is
the first time z;, # zl’»m. Consider K € Nwith 1 < K < T'. By using this construction, we have:

Eullwk — wil] =Ev [wx — wi|| Le<t,] + Bu [lwx — wie| Lise] -
We now focus on the first term in the right-hand-side of the above equation:
Ey [lwk — will] <Ev [(Jwr |l + |wi[]) Lr<eo]
<2RP(k < tg)
2Rt
=20 ©))

n

The second parameter is upper-bounded in the proof of (Hardt et al.; 2016, Theorem 3.12) (adapted
to our setting by noting that the projection on the ball is 1-Lipschitz), which reads as follows:

Ge
2L K
E — wh| 1, <—— | — .
oo = el L) < e (1)
By combining these two estimates, we obtain:
2Rty 2L (K G
n G(n—1) '

Ey[llwk — wi] <

Choosing

yields

1
4R L\ Gett Ge
E —wlf] < =2 (= K@i
o il < 225 (g) T K#
=:5K.

Since d is independent of S and S’, this shows that the k-th iterate of SGD is d; argument-stable.
Finally, we conclude by Lemma3.2] that SGD is trajectory-stable with parameter

K
Bo=L> 6.
k=1

This concludes the proof. O

B.2 A KEY TECHNICAL LEMMA: RADEMACHER BOUND FOR TRAJECTORY-STABLE
ALGORITHMS

A key technical element of our approach is the following theorem, which presents an expected
Rademacher complexity bound for the worst-case generalization error of trajectory-stable algo-
rithms. Before proceeding to the proof, we recall the following notation for the worst-case gen-
eralization error.

Gs(OW) = sup (R(w) - ﬁs(w)) :

Lemma 3.4. Let S ~ u®" be a dataset. Let J, K € N* be such that n = JK, and Sy ~ p2”’ be
independent of S. Assume that algorithm A satisfies Assumption with parameter 3, > 0, then:

E[sup,epg ,, (R(w) — Rs(w))] < 2E [Radg (Ws.v)] +2JBn, ®)
where Rad g (W) denotes the Rademacher complexity, whose definition is recalled in Definition

The proof is inspired by the data splitting technique used in (Dupuis et al., 2023, Theorem 3.8),
which we adapt to our purpose of using the trajectory stability assumption to remove the need for
information-theoretic terms.
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Proof. In the following, we consider tree independent datasets S, 5", S” ~ u@", with § =
(21,.-.,2n) (and similar notation for S’ and S”). Up to a slight change in the constant, we can
without loss of generality consider J, K € N* such that n = JK. We write the index et as a disjoint
union as follows:

K
{1,...,7’1,} = HNk,
k=1
with for all k, [Nx| = J, where ][] denotes the disjoint union. We also introduce the notation

S, € Z™, with:

P
Zi, 1€ Ng

vie{l,...,n}, (Sk)z:{ zi, i ¢ Ny

Given two datasets S1, 52 € Z", we also consider a measurable mapping w(5S1, S2) (whose exis-
tence is satisfied in our setting Molchanov| (2017)) such that, almost surely:

w(Ws,, S2) € arg max (R(w) ~Rs, (w)) .
weEWs,

Recall that Wg € CL(RY) (where CL(R?) denotes the closed subsets of R%) is a data-dependent
random trajectory, which we assume is a random compact set Molchanov| (2017). We also denote
ps the conditional distribution of Wg given S. Finally we recall the notation:

Gs(Ws,u) == sup (R(w) - 7€S(w)) :

weWs, U

We have:
E [Gs(Ws.0)] = E [R(@(Ws.0,5)) - Rs(@Ws.,5)))]

1
=—-FE
n

K
YD (UwWsp,S), =) E(W(WS,U,S%ZZ-))] :

k=14i€Ng

By Assumption there exists a measurable function w’ : CL(R?) x 2" — R? such that for any
z€Z

EU[|€(W(WS7U’ S)? Z) - E((JJ/(WSMU’ W(WS,U), S)a Z)H < Jﬁn

We now apply the stability assumption on each term of the sum to get:

1
E[GsWsv)] <2JB, + —E

k=14ieN,
1 [& 1
"
<2JB, + EE Zweiflvlf 7 Z (E(w,zi)—ﬁ(w,zi))]
k=1 k> 1E€EN
1 [& 1
<2JB, + =E - O w, 2! — (w, )|,
<2 B[S0 53 e st) - )
= ’ k

where the last equation follows by linearity of the expectation independence by interchanging z; and
z} for all i € Nj. By noting that all the terms inside the first sum have the same distribution, we
have:

K
1
E[GsWs,u)] <2J8, + T ;E

swp — 3 (0w, <) aw,z;-))]

wEWs.U ey,

=2JB, +E

sup % Z (U(w, ;") —g(wazz{))] )

weWS’U 1€N7
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As W s is independent of S’ and S”, we can apply the classical symmetrization argument. More
precisely, let (e1,...,€,) ~ U({—1,1})®" be i.i.d. Rademacher random variables (i.e., centered
Bernoulli random variables), independent from the other random variable. We have:

E [GS(WS,U)] S 2(]577, +E

sup %37 e (w2 - e(w,zm]

weWs, U ieN,
1 " 1 /
<2JB,+E| sup i Z el(w,z;)| +E| sup — Z (—€)l(w, z;)
weWs, U iEN, weWs, U ieN,
1
=2JB, +2E | sup = el(w,z})] .
weWS’U J ig\;l

Therefore, by denoting Sy = (20)ien, , we obtain by definition of the Rademacher complexity that:
E[Gs(Ws,v)] < 2J6, + 2E [Radg, (Ws,v)],
which is the desired result. O

This result is based on leveraging our stability assumption to enable the use of the classical sym-
metrization argument Shalev-Shwartz & Ben-David|(2014). Compared to previously proposed mod-
ified Rademacher complexity bounds, Foster et al.|(2019);|Sachs et al.| (2023)), the above theorem has
the advantage of directly involving the Rademacher complexity of the data-dependent hypothesis set
Ws, which tightens the bound and makes it significantly more empirically relevant.

Compared to previous studies |[Foster et al.[ (2019); Dupuis et al.| (2024), a drawback of our bound
compared to these studies is that it only holds in expectation. Moreover, while we directly involve
the data-dependent trajectory WWs, our Rademacher Rad(Ws) term uses an independent copy
of the dataset, hence, losing some data dependence compared to the term Radg(Wg) obtained
by Dupuis et al.| (2024). That being said, we show that our techniques still recover certain topo-
logical complexities, at the cost of requiring an additional Lipschitz continuity assumption. The
Rademacher complexity term appearing in Lemma uses the data-dependent trajectory WWs and
an independent dataset S of size J. Following classical arguments [Shalev-Shwartz & Ben-David
(2014); |Andreeva et al. (2024), we expect this term to behave as O(1/ VJ ), hence, optimizing the

value of J yields a bound of order O( = )

B.3 COVERING BOUNDS

In this section, we present worst-case generalization bounds over data-dependent random sets based
on covering numbers, as they have been defined in Definition These covering bounds serve as
a basis to derive some of our other main results, namely, our generalization bounds based on fractal
dimension and a-weighted lifetime sums. We believe that these additional contributions are also of
independent interest.

The following lemma is a consequence of classical covering argument for Rademacher complexity
(Shalev-Shwartz & Ben-David, [2014).

Lemma B.1 (Covering lemma). Let W C R be a set with finite diameter. We assume that Assump-
tion holds and that the loss {(-, z) is L-Lipschitz continuous for all z € Z. Let m € IN* and
S e Z™, we have

2log | N,
Radg(W) < gng <L6+B M)
>

m

The argument is very classical, we reproduce it briefly for the sake of completeness.

Proof. Let$ > 0and N := |Ns(W)| and let (21, . ..,z ) be a minimal d-cover of WW. By Lipschitz
continuity, we have that:

Rads(W) < Lé + Rads({z1,...,zn}).
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By Massart’s lemma (Shalev-Shwartz & Ben-David, [2014) Lemma 26.8), we have that

2log N 210e |N
Rads(W)SL6+B\/?:L5+B w_

We conclude by taking the infimum over § > 0. O

To illustrate the power of our framework, we present in the next theorem a data-dependent worst-
case bounds for stable random sets in terms of covering numbers of Wg 7.

Theorem B.2. Suppose that Assumptions and{. 1| hold, and that Ws s is almost surely of
finite diameter. Without loss of generality, assume that 3, 3 is an integer divisor of n*} We have:

< 2F {gr;% <5LS,U + BL/3 (1 + By/2log |N6(WS,U)|>)] ;

where |Ns(Ws )| is covering number, i.e., the minimum number of balls of radius 6 that are nec-
essary to cover Wg /.

E| sup (R(w) - ﬁs(w))

weEWSs, U

Proof. By Lemma[3.4] we have (recall that G g has been defined in Equation ()):
E[Gs(Wsv)] < 2E [Radg, (Ws,v)] + 2J By,

with the notations of Lemma [3.4 for S;. By Assumption for fixed (S,U) the loss ¢(-, Z) is
L-Lipschitz continuous for all z € Z. Therefore, we can apply Lemma [B.|to obtain that

. 210g|N5(WS,U)|
-

E[Gs(Ws.v)] < 2E +2J B,

We make the choice J := 3, 2/ %, which we assumed for simplicity is an integer dividing 7, so that
it is a valid choice. This immediately gives the result. O

Covering bounds are widely used for worst-case bounds over data-independent hypothesis sets (i.e.,
Example (Shalev-Shwartz & Ben-David, 2014). Theorem extends these results to data-
dependent hypothesis sets. Theorem B.2]also improves over the data-dependent covering bounds of
Dupuis et al.| (2024, Corollary 33) by avoiding the use of complicated information-theoretic terms
and by allowing the Lipschitz constant to be defined only on the data-dependent set Wg 1.

B.4 PROOF OF THEOREM [4.3]

We now present the proof of Theorem [£.3] This theorem is based on our key technical lemma
(Lemma[3.4), the covering lemma (Lemma [B.T}), and a limit argument that is inspired from previous
works (Simsekli et al., [2020; |Dupuis & Viallard, [2023)).

Theorem 4.3. Suppose that Assumptions and {.1| hold, and that Ws i is a.s. of finite

diameter. Without loss of generality, assume that (3, 23 s an integer divisor of n. There exists
0n > 0 such that for all § < 6,

E{ sup (R(w) ~ Rs(w)) } < 2E {B +38Lsy + By (1 + B\/4dimB(Ws,U) log 1) ]
wEWSs . U n 1)

where dimp(Ws i) is the upper box-counting dimension (Falconer, 2013), which we define in the
appendix in Definition We refer to the Appendix|B.4|for a discussion of the parameter §,,.

Proof. Let (2, Fu,Py) denote the probability space to which belongs U, with Py denoting the law
of U. We also denote F the o-algebra associated with the data space Z. As Wg 17 is almost-surely

*Not making this assumption would only lead to minor changes in the bound
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of finite diameter, by definition of the upper box-counting dimension, we have p&" @ Py -almost
surely that:

— . log |[Ns(Ws,v)| . log [N:(Ws.v)|
a = timsup 2 oWVs o)l =l
1mpg (WS,U) Hglj(l)lp 10g(1/6) 61_I>% 0117%25 10g(1/7’)

Let (0x ) x>0 be a decreasing positive sequence in (0, 1) with d — 0. Let also v > 0. By Egoroff’s
theorem (Bogachevl, [2007)), there exists a set {2, € F&" @ Fy such that " @ Py (Qy) >1—7,

and such that the convergence of log fs, (Ws.i) —, log dimp(Ws, 1) is uniform on 2. Therefore,
there exists &, , > 0 such that for all £ > k,, -, we have for (S,U) € €,

log f5, Ws,u) < log dimp(Ws,) + log 2.
Therefore, for all 0 < § < dy, we have by taking the exponential that for (S, U) € Q,:

log | Ns(Ws,v)| < 2log(1/8)dimp(Ws,u).
Now we use Lemma [3.4]to get that for all J we have
E[GsWs )] < 280 + 2Eg ;5 [Radg, (Wsv)]
< 28,J +2BEg 5 [152(8,U)] + 2Eg .5 [1a, (S, U)Radg, Ws,0)]
< 2B,J + 2By +2Eg ;5 [1a,(S,U)Radg, (Ws.v)] -

=: }1_13(1) fsWs,u).

We make the choice J := f3,, 2/ ®_ which we assumed for simplicity is an integer dividing n, so that it
is a valid choice. We conclude the proof by Lemmaand settingy := 1/nand 0y, := ky, 1,,. O

Remark B.1. The careful reader might notice that the proof above requires some measure-theoretic
conditions to hold, in particular, the measurability of the mappings (S,U) — Radg(Ws ) and
(S,U) — |Ns(Ws,u)|. These aspects have been extensively studied in existing works on covering /
fractal bounds on random sets (Dupuis et al., 2023} [2024). In our paper, we implicitly assume these
conditions to be satisfied for the sake of simplicity, and refer to these works for more details. This
choice is justified as our main application regards finite trajectories (Example [I.1)), where all this
conditions are satisfied.

Remark B.2. The parameter J,, appearing in the statement of Theorem 4.3| might seem intriguing.
It can be seen from the proof that this parameters quantifies the uniformity in n of the limit defining
the upper box-counting dimension (i.e., if this convergence is uniform in n, then ¢ is independent of
n). Such a parameter already appears in (Dupuis et al., 2023) in a similar context and it was shown
in (Dupuis et al.|[2024)) that 6 can be made independent of n under a convergence assumption of the
random sets distributions. We refer to these works for further details.

B.5 PROOF OF THEOREM [4.4]

Before presenting the proof of Theorem we present two technical lemma, whose proof can
be found in |Andreeva et al.| (2024)). The first lemma relates the Rademacher complexity to the
a-weighted lifetime sums.

LemmaB.3. Letm € N*, S € Z™ and W C R be a finite set. Assume that Assumptionand
that {(-, z) is L-Lipschitz continuous on W for all z € W. For any o € (0, 1], we have:
B \/2 log(1 + K, oE*(W))

<—+B
Rads(W)_\/ﬁ‘F

’
m

with K, o := 2(2L\/n/B)*.

Proof. This result is a particular case of a bound by |Andreeva et al.| (2024) as part of the proof
of their Theorem 3.4. The assumptions of (Andreeva et al., 2024, Theorem 3.4) are satisfied by
Assumption[4.2] the Lipschitz continuity assumption, and by considering the Euclidean distance of
R? as a pseudometric on W. O

The second lemma relates the Rademacher complexity to the positive magnitude introduced by
Andreeva et al.| (2024)).
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LemmaB4. Letm € N*, S € 2™ and W C R be a finite set. Assume that Assumption holds
and that £(-, z) is L-Lipschitz continuous on W for all z= € W. Then, we have for any A > 0 that:

2

AB 1
Rads(W) < m + X log (PMag(LAW)) .

This result was obtained in the proof of (Andreeva et al., 2024, Theorem 3.5) under a quite general
Lipschitz regularity condition. For the sake of completeness, we present the proof in our particular
case, as it might be more concrete for some readers.

Proof. Letus fix S := (21,...,2m) € Z™.

It was shown by [Meckes| (2015) that a finite set VV has magnitude. More precisely, for any A > 0
there exists a vector 3, : W — R, such that for any a € WV we have:

1= e Metlp,(0).

bew

Lete = (e1,...,6m) ~ U({—1,1})®™ be Rademacher random variables (see Definition |A.1). By
Lipschitz continuity, we have for all a € W that

1 < Z eiALHaib”ﬂ)\La))—&-

bew

bew (
bew (

exp <:;L Z eil(a, z7:)> <) exp (:; > eillb, Zi)) Bar(b)+. (10)
=1 1=1

bew

[€(a, zi) — £(b, 2z‘)|> Bz (D) +

h
Il
_

NE

A A
1 ]
g &
I~ II>
. M-

€i(l(a,z;) — (b, Zz))) BaL(b)+-

«
I
—

Therefore:

We apply it to the following choice of a:
)\ m
a = a(€) := argmax — eil(a,z;).
(@ = argmax 23 et(an )
Thus, by Jensen’s inequality, we have:

Rads(W) = E, lmaXZe L(a, 2 ]

acW m

_E. l; 3" eit(ale), zi)]

i=1

exp (;; Z el(a(e), zﬁ)]

i=1

A m
Z exp (m Zeiﬁ(b, zz)> BAL(b)+‘| .
bew i=1

By Assumption[4.2] independence, and Hoeffding’s lemma, we obtain:

1 o 4B%)\?
Radgs(W) < Xlog Z Hexp = Bar(b)+

bew i=1
- ) > /BAL(b)Jr)

_ 1 B?)\?
= og | exp 5
bew

B2 1
=27 | " logPMag(L) -
o +)\ og ag(LA-W),

which is the desired result. ]

1
X log E.

IN

IN

1
X log Ee
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We can finally prove Theorem[4.4]

Theorem 4.4. Suppose that Assumptions and 1| hold. We further assume that the set

Wes v is almost surely finite. Without loss of generality, assume that 3, 2/3
n. Then, for any a € (0, 1], we have

is an integer divisor of

IEJ[ sup (R(w) — ﬁs(w))] < B3 (2 + 2B + 2BE [\/2 log(1 + Kn,aEa(WS,U))]> ;

weEWs, U

where K,, o := 2(2Lg v/n/B)®. Moreover, for any A > 0, let s(\) := )\LS,Uﬂﬁl/B'/B. We have

E{ sup (R(w) — ﬁs(w))} < B3 (2 + AB + ?E [log PMag (s(A) - Ws,U)]) )

’LUEWSYU

Proof. Persistent homology bound. By Lemma [3.4] we have (recall that Gg has been defined in
Equation (@)):

E[Gs(Wsv)] < 2E [Radg, (Ws,0)] + 2J By,
with the notations of Lemma for S7. Now we can apply Lemma to obtain that:

\/210g(1 + Kn,aEa(WS,U))
J

o

We make the choice J := (5, 2/ 3, which we assumed for simplicity is an integer dividing n, so that
it is a valid choice. This immediately gives the result.

E[GsWsu)] <2 <B + BE

> +2JB,,

Positive magnitude bound By Lemma [3.4] we have (recall that Gs has been defined in Equa-
tion (@)):
E[GsWs,v)] < 2E [Radg, (ALs,uWs,v)] + 2J B,

with the notations of Lemma for S7. Now we can apply Lemma to obtain that:

. AB?2 1
E(GsWso)] < 28 [jut (45 + § os (PMoag(\LarWar) ) +275,).

We make the change of variable A — \v/.J /B, which gives that for any A > 0, we have:

AB 2B ALsuv'J
E |G <E|— log PMag(—=—— 2J6, | -
[GsWsp)] < Nai + Wk ag( B Wsu) +2J83
We make the choice J := 3, 2/ %, which we assumed for simplicity is an integer dividing 7, so that
it is a valid choice. This immediately gives the result. O

To complete this section, we also show Lemma|[3.2]

B.6 PROOF OF LEMMA[3.D]

Lemma 3.2. Consider a fixed K € N*, 1 < k < K, and algorithmsE] Ak (S,U) = wg. Let
A(S,U) = Ws,u = {Ax(S,U) Y| be an algorithm in the sense of Equation (3). Assume that for
all k, Ay, is Ox-uniformly argument-stable in the sense of Deﬁnitionand that the loss {(w, 2) is
L-Lipschitz-continuous in w. Then, A is trajectory-stable with parameter at most 3,, = L 2521 Ok

Proof. Consider a data-dependent selection of A, denoted wSW, S), in the sense of Definition
We consider a measurable mapping w’ : CL(R?) x R? — R such that for any closed set YW C R*
and any w € R4, we have:

W' (W, w) € argmin (sup (w, z) — é(w',z)) .
w'ew z€EZ

3 Ay, is an algorithm with values in R?, i.e., its output is the k-th iterate of the optimization algorithm.
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Such a mapping can be constructed in our setting where the sets are compact and the loss continuous.
Consider two datasets S, S’ in Z™ differing by J elements. Let us denote:

g = sug EU [|€(w(Ws,U7 S), Z) — é(w'(WS/yU, CL)(VV&U7 S)), Z)H
z€
We use the definition of w’ and the Lipschitz-continuity of £ to obtain that:

e <supEy LE}&XK [0(AR(S,U), z) — l(w' Wsr v, Ak(S,U)), z)]

zZ€EZ

K
< sup ZEU [M(Ak(sa U),Z) - E(WI(WS/,U,A]C(S, U)),Z)”

z€EZ =1

K
< Z]EU |:Sup M(Ak(S, U),Z) - E(W/(WS’,U7AIC(S; U)),Z)|:|

h—1 zEZ

=

<S By [sup (AR, V), 2) — £(AL(S", ), z)]

k=1 Z€2

K
< LY Eu [ A(S,U) = Ax(S, V)]

k=1
K
=LJY b,
k=1

where the last step follows by applying the stability assumption J times and the triangle inequality.
The result follows by definition of the random trajectory stability assumption. O

C ADDITIONAL EXPERIMENTAL DETAILS

This section expands on our experimental analyis, providing additional discussion of the methodol-
ogy, implementation details, and technical setup.

C.1 IMPLEMENTATION DETAILS

We implement training and validation loops in PyTorch Lightning Version 2.4 using pytorch version
2.4.1. Both models are trained using the AdamW optimizer with a cosine annealing learning rate
scheduler. The training was stopped after reaching an accuracy of 95%. No regularization techniques
were used to prevent confounding factors in each fine-tuning task.

Vision Transformer (ViT). The ViT is configured for image classification on the CIFAR100 dataset.
For the Vision Transformer on CIFAR100, we utilize a model with approximately 1.2 million param-
eters. This represents a reduction in size compared to the ViT experiments in /Andreeva et al.|(2024),
as the empirical analyses we conduct require substantially more experiments due to the expansion
of training set size n and thus storage of weight iterates.

The ViT processes 32x32 pixel images with 3 color channels, and a patch size of 4x4. The trans-
former backbone consists of 6 layers, 8 attention heads and an MLP dimension of 512. Dropout
rates are set to 0.1 within the transformer blocks. Training is performed with a base learning rate of
0.0005, decaying to a minimum of 10~° via cosine annealing.

GraphSage. We analyze GraphSAGE Hamilton et al.| (2017) on the graph classification task for
MNISTSuperpixels Monti et al.| (2017). This model consists of approximately 0.2 million param-
eters. It processes graphs where each node has a single input feature. These features are initially
projected to a hidden dimension of 128. For graph-level predictions, node embeddings are aggre-
gated using ‘mean’ global pooling, followed by a linear layer for classification into 10 classes. The
model uses 2-dimensional positional encodings (representing X,y coordinates), which are added to
the node features. We use 4 GraphSAGE convolutional layers with a dropout rate of 0.05, a base
learning rate of 0.001, and weight decay of 0.0005 to achieve an adequate generalization gap.

23



Under review as a conference paper at ICLR 2026

C.2 STABILITY ANALYSIS

We first elaborate on our procedure to estimate random set stability in Section [5] The overall al-
gorithm, a proxy to asses Section [5] is summarized in Algorithm Stability experiments were
performed with a fixed learning rate () and batch size (b), while varying random seeds (e.g.
{100, 200, 300, 400,500}. The same setup is then conducted twice: once with the replacement
set of size J = 50, and once without. Since Assumption [3.1]requires taking the supremum over all
samples Z € Z, we approximate it by evaluating the stability parameter on 500 samples seen during
training and 500 unseen samples. In Table[I] we report the maximum value across both sets.

Algorithm 1 Stability Parameter Estimation

Require: S ={z,...,2,}
Require: S; = {z},...,2}}
Require: S;NS =0
Require: J <n
1: procedure PROCEDURE(Training)
Let I = {iy,...,is} be an uniformly random subset of {1, ..., n} > Indices to replace
Snew ;=S\ {zi:1 €I} US) :={Znew1; s Znewmn}
Generate Ws ¢y with [Ws | =T
Generate Ws, ., v with [Wg, . v| =T
. procedure PROCEDURE(Estimation)
: M = min{n, 500}
L ={j1, ..., ja } be an uniform random subset of {1, ...,n}
9: Seval = {znew,i NS L} \ Sy
10: N :=|Sepat] = M —
11:
12: Initialize A?, ..., AN € RT*T
13: Letw; € Wsy VI € {1,...,T}
14: Let wpew, € Ws,.0,U V0 E {1, sy T}
15: Let £(+, -) denote the used loss function.
16:
17: Foralli € {1, ..., N} compute
18: for j < 1toT do

A A S ol

19: for/ <+ 1toT do

20: A.’Lj,l = |€(wj, Zl) — E(wnewﬂl, ZZ)I > ZZ S Seyal
. | N i

gé Now we compute A := & > ;= A

23: Now we take the minimum over each row in matrix A

24: Initialize a € R and compute

25: form <+ 1toT do a,, = minlngT Am,l

26: The algorithm ends with max <<, an

C.3 BOUND ESTIMATION

In the first part of Section[5] we estimate the Rademacher complexity bound stated in Lemma [3.4]
In particular, we optimize the quantity

2/ B + 208,

1 2 1
J* = 2733,3 (logT)” 3.
Since J must be a divisor of the sample size n (see Lemma|3.4)), we define the effective choice of J
as

which is minimized at

J = argmin|d— J*|.
d|n

24



Under review as a conference paper at ICLR 2026

C.4 ToPOLOGICAL COMPLEXITY ANALYSIS

In this section we detail our approach for weight trajectory analysis in terms of topological quanti-
ties, particularly experiments which demonstrate the relationship between stability and our topolog-
ical complexity.

Following |/Andreeva et al.|(2024), we fine-tune each model from a local minimum for an additional
5000 iterations after training to convergence. We use a reduced parameter grid of 4 x 4 for n and
b (Andreeva et al.| (2024) use 6 x 6), due to computational constraints arising from the varying the
training set size n. Detailed hyperparameters are listed in Table

Hyperparameter  Vision Transformer GraphSage

Sample Size (n) {100, 500, 1000, 5000, 10000} {100, 500, 1000, 5000, 10000}
Learning Rate (7))  {107%,107%,5 x 107°,10™*}  {107°,107%,5 x 107*,107%}
Batch Size (b) {32,64,128,256} {32,64,128,256}

Table 2: Summary of hyperparameter configurations for Vision Transformer and GraphSage models.

C.5 HARDWARE AND RUNTIME

Models are trained on a cluster with 40GB A40/A100 GPUs; although the experiments are repro-
ducible with lower memory requirements. For our grid experiments, computing topological features
alongside hyperparameter variations (sample size, learning rate, and batch size) demanded approx-
imately 57 GPU hours for GraphSage and 140 GPU hours for the Vision Transformer (ViT). In
contrast, the stability analysis required about 50 total GPU hours.

D ADDITIONAL EMPIRICAL RESULTS

In this section, we present additional empirical results. The first part complements the second part
of Section E} In the main text, we focused on the a-weighted lifetime sum in Theorem [ZEF} The
second bound, given in terms of the positive magnitude PMag will be discussed here.

Motivated by the dependence of the stability parameter in Assumption[3.1]on the sample size n, we
also investigate the topological complexity measures introduced in Theorem [4.4] To the best of our
knowledge, this behavior has not been addressed in previous work. We study it here to provide a
more complete picture of the a-weighted lifetime sum and the positive magnitude.

D.1 INTERPLAY BETWEEN STABILITY AND C(Ws /)

In this subsection, in addition to the results presented in Section[5} we provide the results specifically
for the positive magnitude. The second bound in Theorem depends on the scaling parameter
s(A). Recall that in Theorem the parameter s(\) can be chosen arbitrarily. The theoretically
justified choice is s(\) = O(n~1/3) in order to obtain the optimal convergence rate. Nevertheless,
alternative choices of s(\) have also led to remarkable correlation results in previous work|Andreeva
et al.[(2024).We focus on the setting s(\) = n~1/3 with n € {100, 10*}.

Results and Discussion. We observe the same behavior as in the main text (Section [5). We note
that the effects for GraphSage Figure 4 and Figure[5]are less pronounced than for the ViT (Figure [6]
and Figure ; nonetheless, the general trend remains visible. Interestingly, for s(A) = 0.01, we
observe a different behavior. While for higher values of s(\) the steepness varies with the sample
size, as predicted by Theorem and also observed for E', the steepness remains consistent across
different values of n.

The same behavior for PMag(s(\) - Ws,r), with s(A) = n3, can be explained theoretically. In
Theorem 4.4, we observe the product structure. Indeed, Theorem asserts that log E'(Ws 1)

should be approximately of order at least 3, 3q s(Ws.ur), which corresponds to n'/3Gs(Ws 1)
when 8, = ©(1/n). Therefore, our experimental results provide strong empirical support for
Theorem [4.4]both for E* and PMag.
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D.2 COMPLEXITY MEASURES C(Wg 17) AS FUNCTIONS OF THE SAMPLE SIZE n

While the main write-up in Section [5] focused on order of the bound values of Lemma [3.4] and
overall behavior, in this section we investigate the behavior of the topological complexity measure
introduced in[Andreeva et al| (2024). In particular, in Theorem 4.4 we recover the same complexity
measures C(Wg ) within our stability framework. Motivated by the dependence of the stability
parameter in Assumption [3.1] on the sample size n, we investigate the positive magnitude and the
a-weigthed lifetime sum with respeect to the training data size.

Experimental Design. Similarly to Section [5] we investigate the behavior of two conceptually
different models: a Vision Transformer (ViT) and GraphSage. The implementation details remain
consistent with the main experimental setting. In particular, we analyze the behavior of E!(Wg 1)
as a function of the sample size n, for fixed learning rates = 10~% and = 1075 for ViT,
and n = 1073 and ) = 10~* for GraphSage, across all batches. Our focus is on E!(Wg /) and

PMag(s(\) - Ws,pr), with s(\) = n3 and n € {100, 10%}.

Results and Discussion. For fixed learning rates, we observe that both E! and PMag increase
with increasing n and appear to stabilize for large values of n (see Figures [9] [8] [LT} [I0] [13] [12] .
This suggests a relationship between the sample size and the topology of the training trajectory, a
phenomenon that has not been previously highlighted in the literature.

At first glance, the increase of E'(Wg,U) with n may seem counterintuitive, since we typically
expect generalization error (and related bounds) to decrease as the sample size grows. However,
this behavior is consistent with theory: the a-weigthed lifetime sum is expected to grow at most
polynomially with n. The positive magnitude remains bounded in terms of the number of iterations.
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