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ABSTRACT

Graph Neural Networks (GNNs), which effectively learn from static graph-
structured data become ineffective when directly applied to streaming data in a
continual learning (CL) scenario. A few recent works study this so-called “catas-
trophic forgetting” problem in GNNs, where historical data are not available dur-
ing the training stage. However, they make a strong assumption that full access of
historical data is provided during the inference stage. This assumption could make
the graph learning system impractical to deploy due to a number of reasons, such
as limited storage, GDPR1 data retention policy, to name a few. In this work,
we study continual graph learning without this strong assumption. Moreover,
in practical continual learning, models are sometimes trained with accumulated
batch data but required to do on-the-fly inference with a stream of test samples.
In this case, without being re-inserted into previous training graphs for inference,
streaming test nodes are often very sparsely connected. It makes the inference
more difficult as the model is trained on a much more dense graph while required
to infer on a sparse graph with insufficient neighborhood information. We propose
a simple Replay GNN (ReGNN) to jointly solve the above two challenges without
memory buffers (i.e., data-free): catastrophic forgetting and poor neighbour in-
formation during inference. Extensive experiments demonstrate the effectiveness
of our model over baseline models, including competitive baselines with memory
buffers.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Hamilton et al., 2017) have been recog-
nized as a valid tool for graph learning, showing promising performance on a variety of tasks. In
a practical scenario, the graphs are often evolving over time, and meanwhile, previous data (e.g.,
some nodes and edges) are inaccessible sometimes. Traditional graph learning models (Hamilton
et al., 2017; Kipf & Welling, 2016) often have limited performance in this setting because the un-
availability of previous data leads to catastrophic forgetting (McCloskey & Cohen, 1989).

Continual learning (Thrun, 1995) aims to develop an intelligent system that can continuously learn
from new tasks without forgetting learnt knowledge in the absence of previous data. Common
continual learning scenarios can be roughly divided into two categories (Van de Ven & Tolias, 2019):
task-incremental learning (TI) and class incremental-learning (CI) (Rebuffi et al., 2017). Recently,
a few works (Liu et al., 2021; Zhou & Cao, 2021; Wang et al., 2020; 2022; Galke et al., 2021)
begin to study Continual Graph Leaning (CGL), which is helpful when accumulating all history
data over time is not feasible due to storage pressure or customer data storage consent, for instance,
the 30-days right-of-erasure in General Data Protection Regulation (GDPR) 2.

However, an unique challenge in continual graph learning is overlooked: in addition to the catas-
trophic forgetting problem, the unavailability of previous data further poses challenges during in-
ference. When existing works evaluate their models under the continual graph learning setting
with citation graphs, social networks, or co-purchase graphs, during the inference, they re-insert
test nodes into the previous training graph and then aggregate the neighborhood information of test
nodes to make a prediction (Figure 2). Such evaluation method is common in a traditional graph
learning setting. Nevertheless, in continual graph learning, it is not always practical. This is because

1https://en.wikipedia.org/wiki/General Data Protection Regulation
2https://gdpr-info.eu/
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Figure 1: Node degree statistics of training and test data from a graph that records user interactions
in Stack Exchange (an online platform). We extract data accumulated for a month as the training
graph and data from the following few days as the test data. Obvious difference between training
and test data density can be observed under continual graph learning setting (previous training nodes
are unavailable).

in continual learning, training data (previous nodes) from previous tasks are no longer available at
the current stage, including both training and inference stage. In a typical continual graph learning
scenario, on-the-fly inference is sometimes required. For instance, in node classification, the model
needs to infer the labels of streaming test nodes once it receives them, instead of accumulating a
large number of test nodes to do a inference. Without re-inserting back to the training graph, the
streaming test nodes of a relatively smaller size are often very sparsely connected. It means while
the model is trained on a dense graph, it is required to infer on a much more sparse graph. Figure 1
showcases the above point in a real-world scenario. We study with the user interaction graph from
the Stack Exchange platform 3 and observe notable difference between training and test data density
under the continual graph learning setting. The above facts lead to a key challenge in addition to
catastrophic forgetting in continual graph learning: the neighborhood information available during
the inference is very limited. Different from existing works, we consider this practical yet ignored
case in our paper and solve this challenge.

Besides, different form existing works that either focus on task-incremental and data-incremental,
or focus class-incremental but use a buffer to store previous data for replay to prevent forgetting,
in this paper, we focus on CI graph learning problem without memory buffers, i.e., data-free class-
incremental graph learning. We further propose a generative replay based model, Replay GNN
(ReGNN), to solve the above challenges. It outperforms baseline models including competitive
baselines with memory buffers on several benchmark graph datasets.

The main contributions of this paper are as follows. We find an interesting and important case
overlooked by existing works in continual graph learning in addition to catastrophic forgetting: the
unavailability of previous training nodes and edges further lead to poor neighborhood information
during the inference stage. Then we study continual graph learning with this ignored case under data-
free class-incremental learning setting, which is a more difficult continual graph learning scenario
and not studied by existing works. We further propose Replay GNN to address the problems and the
experiments demonstrate its effectiveness.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Graph neural networks are popular models for graph representation learning. GNNs can be roughly
categorized into two groups: spatial methods and spectral methods. GraphSAGE (Hamilton et al.,
2017) is a typical spatial method, which directly aggregates node representations from a node’s
neighborhoods to obtain its representation, while graph convolutional network (GCN) (Kipf &
Welling, 2016), a typical spectral method, learns graph representation in the spectral domain, which
alleviates over-fitting on local neighbors via the Chebyshev expansion. Both classic spatial and spec-
tral methods need the entire graph during model training. To learn more effectively when scaling to
large evolving graphs. Sampling strategies (Hamilton et al., 2017; Chen et al., 2018) are developed
so that only part of the graph is required for each iteration during training.

3https://stackexchange.com/
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2.2 CONTINUAL LEARNING

Continual learning studies the problem of learning from streaming data, with the aim of continu-
ously acquiring new knowledge while maintaining its learnt knowledge. Current most studied con-
tinual learning settings can be roughly categorized into two categories (Van de Ven & Tolias, 2019)
:Task-Incremental Learning (TI), and Class-Incremental Learning (CI). Class-incremental learning
(CI) (Rebuffi et al., 2017) is a harder continual learning problem due to the unavailability of task-
IDs. Representative continual learning models, such as (Kirkpatrick et al., 2017) and (Li & Hoiem,
2017), achieve promising performance on TI benchmarks, but suffer from notably forgetting on
simple CI benchmarks. Existing approaches to solve the CI problem can be divided into three cate-
gories (Ebrahimi et al., 2020), including the replay-based methods (Rolnick et al., 2019; Chaudhry
et al., 2019), structure-based methods (Yoon et al., 2017), and regularization-based methods (Kirk-
patrick et al., 2017; Aljundi et al., 2018). Progress has been made in continual learning in recent
years, however, only a few of them study continual learning with GNNs.

2.3 CONTINUAL GRAPH LEARNING

Different continual graph learning settings are explored in recent studies, including Data Incremental
Learning (DI) (Wang et al., 2020; Xu et al., 2020; Cai et al., 2022; Han et al., 2020; Wang et al.,
2022), Task-Incremental Learning (TI) (Liu et al., 2021; Zhou & Cao, 2021; Zhang et al., 2021) and
Class-Incremental Learning (CI)(Wang et al., 2022). DI is not a typical continual learning setting,
but it is studied in the context of graph learning. In DI, all samples are streamed randomly, while
in CI and TI, all samples from a group of classes are streamed before switching to the next group.
TWP (Liu et al., 2021) is a regularization-based method without storing any data or prototypes while
(Zhou & Cao, 2021), (Zhang et al., 2021) and (Wang et al., 2022) need a buffer to store either raw
data or prototypes to prevent from forgetting.

However, existing works overlook an interesting and important fact that is unique in the context
of continual graph learning compared to regular continual learning in image classification: the un-
availability of previous training nodes and edges lead to limited neighborhood information during
inference, in addition to the catastrophic forgetting. Our work differs from existing works in that 1.
we consider this ignored fact and 2. we focus on CI setting without the use of a memory buffer to
store raw data or prototypes.

3 METHODOLOGY

In this paper, we focus on node classification. In this section, we first introduce a practical yet
ignored uniqueness of continual learning in the context of graph leaning. Then we discuss how it
poses new challenges for continual graph learning during the inference stage. Taking this case into
account, we further propose our ReGNN model that jointly solve the catastrophic forgetting problem
and the new challenge.

GNN

? ?

GNN

Training stage

?

?

?
?

? ?

Existing works

Ours

: Test node?

Task 1 Task 2 Task 3

Inference stage

: Unavailable node

Figure 2: Different cases during the inference stage. Compared with existing works (Liu et al., 2021;
Zhou & Cao, 2021; Wang et al., 2022), ours is the practical case for continual graph learning, where
previous training nodes and edges are no longer available during current stage, which includes both
the training stage and the inference stage.

3.1 PROBLEM FORMULATION

Data-Free Class-Incremental Graph Learning is defined as follows. Denote a graph as G =
{V, E}. A model learns from a sequence of data D = {D1,D2, ...,Dm}, where Di = {Vi, E i}.
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Each Di is the data distribution of the corresponding task T i, and the label space is Yi. During T t,
only Dt is available and all data {Di|i < t} is unavailable. The goal is to effectively learn from Dt,
while maintaining the model performance on learnt tasks. At the end of T m (i.e., all m tasks are
learnt), the model is required to map (test) samples from all seen data distributions toY1∪Y2...∪Ym

without task-IDs. Buffers to store raw data or prototypes are not allowed.

3.2 AN IGNORED CASE DURING THE INFERENCE STAGE

Different from typical image classification scenarios, where training data are not required for in-
ference, in graph learning, they are often required for better inference when learning with large
networks. This is because in image classification tasks, test samples are independent of training
samples. However, in graph learning, test nodes are often dependent of training nodes. For instance,
in many cases, test nodes are re-inserted into the training graph to exploit the dependency by neigh-
bor aggregation for better inference. Thus in continual graph learning, the unavailability of previous
data further poses a challenge during the inference stage in addition to the catastrophic forgetting
problem.

However, existing works Wang et al. (2022); Liu et al. (2021); Zhou & Cao (2021) on TI and
CI graph learning overlook this case. Fig 2 illustrates different inference cases in inductive node
classification task. We do not consider transductive learning because it requires all test samples to
appear in the graph for training from the beginning, which is not practical in CI graph learning,
where streaming test samples often appear over time. The scenario adopted by existing works is
not practical because in continual learning, data (i.e. nodes and edges) from previous tasks are no
longer available once learned. But in existing works, test nodes with labels from all learnt classes
are re-inserted into the graph and connected to previous nodes for inference.

Considering the unavailability of previous training data, we introduce ours as the practical inference
scenario in continual graph learning, where previous training nodes are unavailable and only connec-
tions among test nodes are kept. In this case, as discussed in section 1, the connections among test
nodes are very sparse. It leads to an unique challenge in graph continual learning: the neighborhood
information available for inference is very poor.

3.3 REGNN

To solve the major challenges in continual graph learning: (1) catastrophic forgetting and (2) limited
neighborhood information during the inference stage, we propose our model ReplayGNN (ReGNN).
Fig 4 illustrates the overview of ReGNN and Fig 3 illustrates how replay data is generated and used.
The idea of our model is that: to address the first problem, a generative model (GraphCVAE) is
maintained to generate old data for replay to prevent forgetting. To solve the second problem, the
NodeAE module effectively learns from node attributes with little or no neighborhood information
to adapt to our introduced inference case in Fig 2.

Note that We use a single-layer GNN in our model for simplicity. More advanced graph generation
techniques can be integrated into our graph encoder and decoder if multiple layers are required.
Experiments show our lightweight model is already effective. More details are discussed in Sec. 5

 Graph
 Decoder

(t-1)

generated 
data

real data

training
data 

Figure 3: Composition of training
data for current task t. It consists of
replay data generated by the copy of
the graph encoder from the last task
t − 1 and the training data from the
current task t.

3.3.1 GRAPHCVAE MODULE

The Graph Conditional Variational Autoencoder (GraphC-
VAE) module consists of the graph decoder and graph en-
coder. During T k, GraphCVAE is trained with real data
Dt and generated replay data Dg , which is generated by the
graph decoder Dt−1

graph from task T t−1. The generation is
conditioned on the class label c.

Graph Encoder. Given input nodes Dt with sampled neigh-
bors, the graph encoder first obtains the node embeddings
with the forward propagation steps. Denote the input node as
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Figure 4: Overview of our ReplayGNN (ReGNN) model. ReGNN consists of three modules with
shared components: a GraphCVAE, a classifier and a NodeAE. The input in the figure is a node
(node1) in a mini-batch with its sampled neighbors. The graph encoder consists of the convolution
layer of GNN, which outputs low-dimensional embeddings (red) of node1. The GraphCVAE mod-
ule consists of the graph encoder and graph decoder. The classifier is a single classification layer.
The NodeAE, which consists of the node encoder and the graph decoder (shared with GraphCVAE),
takes a single node embedding as input and (1) tries to reconstruct the structure information and (2)
yield node embedding (pink) that is distinguishable for classifier.

v and hin
u as the raw feature of a node u. The output embedding hout

v is calculated by:

hout
N (v) ← AGGREGATE

({
hin
u ,∀u ∈ N (v)

})
, (1)

hout
v ← φ

(
W · CONCAT

(
hin
v ,hout

N (v)

))
, (2)

where W is the learnable parameter and φ is the activation function. Then the mean zµ and standard
deviation zσ of the distribution are calculated from the embedding hout

v by:

zµ = ReLU(Wµ · hout
v ), zσ = ReLU(Wσ · hout

v ), (3)

where Rectified Linear Unit (ReLU) (Nair & Hinton, 2010) is the activation function. Wµ and Wσ

are learnable parameters. With mean zµ and standard deviation zσ , latent variable z is sampled from
N (zµ, zσ).

Graph Decoder. The decoder tries to reconstruct the input data from the latent variable z. It
first generates embedding fv from latent variable z with learnable parameter B, then the input
embedding is reconstructed:

fv = φ(B · z). (4)

[fout
v ;fout

N (v)]← φ(M · fv), (5)

where M is the learnable parameter and [a;b] is the concatenation of embedding a and b. The
decoded embeddings [fout

v ;fout
N (v)] try to match the input embedding [hin

v ,hout
N (v)], which is the

return value of the CONCAT function in Eq. (1). This embedding contains the neighbor information
of v as well as the feature of the node v itself. We do not further decode it to obtain {hin

u ,∀u ∈
N (v)} because the current decoded value already can be the input of graph encoder and be helpful
for replay. In other words, we replay the input embedding [hin

v ,hout
N (v)] instead of {hin

u ,∀u ∈
N (v)}. Then the loss functions in GraphCVAE are:

LRecon = DIST([fout
v ;fout

N (v)], [h
in
v ;hout

N (v))]), L
KLD = DKL[N (zµ, zσ)||N (c, 1)], (6)

where DIST measures the distance of the two embeddings. and DKL is the Kullback–Leibler diver-
gence. c is the class label of input data. The overall loss function then is:

Lcvae = LRecon + LKLD. (7)

3.4 NODEAE MODULE

Node Autoencoder (NodeAE) consists of the node encoder and the graph decoder. During the
training, given a node v, as graphSAGE aggregates the neighbors of v to obtain its representation,
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the classifier learns to classify hout
v in (1), i.e., φ(W · [hin

v ;hout
N (v)]). However, during the inference

stage, the neighbors of v are often unavailable as illustrated in Figure 2. Thus, for most test nodes
v, hout

v = φ(W · [hin
v ;0]) during inference, where 0 means this test node has no available neighbor

test nodes. In this case, the classifier fails to fully exploit its learnt knowledge on training graph for
inference because it only learns to classify nodes with rich neighbors. Thus given an isolated node
v, the feature, which is sent to classifier for classification, is also expected to contain the neighbor
information of the node. In this way, the node can be better classified by the classifier. We use an
autoencoder to achieve it.

Given a node v, while the graph encoder takes node v and its sampled neighbors as input, node
encoder only takes the node attribute of node v. But the decoder is required to reconstruct the em-
beddings of the aggregation of its neighbors as well as its own embedding. The forward propagation
of the encoder is:

xout
v ← φ(H · [hin

v ;0]), (8)

where H is the learnable parameter, whose size is the same as W . The loss function is:

Lae = DIST(φ(M · xout
v ), [hin

v ;hout
N (v)]). (9)

When trained properly, given an isolated node, the node encoder can map the node attribute into a
compressed embedding xout

v that contains its neighbor information and is then used for prediction.

3.5 CLASSIFIER

The classifier is a single classification layer and takes the output of the graph encoder and the node
encoder as input. The loss function for classification is:

Lcls = Lce(g(x
out
v ,hout

v ),y), (10)

where Lce is the cross entropy loss function, and g(·) is a function that combines two embeddings,
and we simply add them together. Note that the current training data are a mixture of real data and
replay data as Figure 3 illustrates. y are their corresponding labels.

By summarizing the three modules together, the overall loss function for our ReGNN model is:

LReGNN = Lcls + Lcvae + Lae. (11)

4 EXPERIMENTS

4.1 DATASETS

To evaluate the performance of ReGNN in our continual graph learning scenario, we conduct ex-
periments on three benchmark datasets that are also used to build datasets for CI or TI settings in
related works (Wang et al., 2022; Liu et al., 2021; Zhou & Cao, 2021): Cora (Sen et al., 2008), Cite-
Seer (Sen et al., 2008), and we use Amazon (McAuley et al., 2015) to refer to AmazonCoBuyPhoto,
a segment of Amazon co-purchasing graph. We split each dataset into several tasks, following Liu
et al. (2021); Zhou & Cao (2021); Wang et al. (2022). Details are provided in Appendix A.

4.2 BASELINES

We adopt the following baselines in our experiments. GraphSAGE (Hamilton et al., 2017) is a
representative GNN model, which is also used as the backbone for some other baselines for fair
comparison. LwF (Li & Hoiem, 2017) is a representative data-free continual learning model, which
uses the history state of itself as the teacher for knowledge distillation to avoid forgetting. ER-
GNN (Zhou & Cao, 2021) uses a buffer to store data for experience replay, in order to prevent
from forgetting. ContinualGNN (Wang et al., 2020) alleviates forgetting by storing data for replay
and adopts a model regularization similar to EWC (Kirkpatrick et al., 2017). Although in data-free
continual learning setting, no data can be stored for replay, we show that ReGNN outperforms ER-
GNN (Zhou & Cao, 2021) and ContinualGNN(Wang et al., 2020), which use memory buffers for
replay.
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Table 1: Accuracy on different datasets under class-incremental learning scenario.

Scenario Dataset
Model Data-free Memory size Citeseer Cora Amazon

M = 1% 34.13± 0.14 41.78± 0.62 50.53± 2.94

ER-GNN (Zhou & Cao, 2021) % M = 3% 41.46± 2.32 51.96± 1.65 60.53± 2.85
M = 5% 45.48± 2.35 57.96± 2.58 67.82± 2.23

M = 1% 35.94± 0.28 38.48± 0.17 49.53± 1.74

ContinualGNN (Wang et al., 2020) % M = 3% 46.08± 0.45 46.49± 0.51 56.78± 2.04
M = 5% 50.60± 0.49 60.41± 1.91 60.79± 2.23

GraphSAGE (Hamilton et al., 2017) - 31.02± 0.12 25.00± 0.14 37.01± 0.43

LwF (Li & Hoiem, 2017) - 36.74± 1.15 42.27± 1.54 50.01± 1.83

ReGNN (Ours) - 55.02± 2.01 64.33± 1.82 69.32± 1.48

4.3 EXPERIMENTAL SETUP

We use the neighborhood sampling strategy in GraphSAGE for all models when sampling is avail-
able. SGD optimizer is used and the initial learning rate is set to 0.01 for Cora and Citeseer and
0.005 for Amazon. The batch size it set to 128 and run 100 epochs for each dataset. For baselines,
the number of layers in GNN is set to the default value according to their papers. A standard two
layer GNN is used if the information is not provided. We run each experiment five times and report
the results with mean and standard deviation.

4.4 RESULTS AND DISCUSSIONS

We design experiments to answer the following questions: Q1: Can ReGNN outperform related
approaches in our class-incremental graph learning setting? Q2: How does each module contribute
to the performance of ReGNN? Q3: How does ReGNN perform when the neighborhood information
is given at different levels during inference? Q4: Are the generative replay data really effective in
preserving neighbor information?

Q1. Can ReGNN outperform other approaches in our class-incremental graph learning set-
ting? Table 1 shows the main results of our model and baselines. Our ReGNN outperforms LwF (Li
& Hoiem, 2017), which does not require a memory buffer, by a large margin. Experience Replay,
a typical memory based method is a competitive baseline because it is able to reach old data during
training by maintaining a memory buffer, and it often notably outperforms the regularization based
methods in class-incremental learning scenario (Buzzega et al., 2020; 2021) with a small buffer size
(e.g., 2% in (Buzzega et al., 2021)). The shortage of memory based methods is that they need a
memory buffer to store data, which is not always feasible. We experiment with memory size M =
{1%, 3%, 5%} for memory based models. Experiment results show the effectiveness of ReGNN in
class-incremental setting. Our model still outperforms ER-GNN (Zhou & Cao, 2021) and Continu-
alGNN (Wang et al., 2020) when they have a buffer with memory size M =5%, which is already a
relatively large buffer in CL.

Table 2: Ablation study results.

Method Accuracy

Full Method 55.02± 2.01
Ablate NodeAE 52.40± 2.14

Use separate GraphCVAE 51.21± 1.79

Ablate GraphCVAE (No replay) 31.02± 0.12

Q2. How does each module contribute to the perfor-
mance of ReGNN? Table 2 shows the ablation study
results on Citeseer. Full method refers to our ReGNN.
Note that when ablating NodeAE, only the node en-
coder is removed. A clear performance drop is ob-
served after removing NodeAE. It manifests the effec-
tiveness of learning to reconstruct the neighbors from
single node attribute embeddings with node AE mod-
ule.

To simplify the model structure, we use the graph convolution layer in GNN as the graph encoder
for the GraphCVAE. We are curious about whether sharing parameters can further improve the
performance. To study this point, we train a separate GraphCVAE that owns an separate graph
encoder. In this way, the GraphCVAE becomes a separate model without any shared parameters

7
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Table 3: Accuracy on Citeseer dataset at different levels of neighborhood information. Best results
in bold.

Model Default 3-hop 5-hop Full
ER-GNN (M=1%) 34.13± 0.14 36.44± 0.42 36.64± 0.25 38.65± 0.93
ER-GNN (M=3%) 41.46± 2.32 49.29± 2.76 50.20± 2.23 58.82± 3.32
ER-GNN (M=5%) 45.48± 2.35 55.82± 0.56 57.53± 1.27 61.44± 2.18

ContinualGNN (M=1%) 35.94± 0.28 40.06± 0.85 41.67± 0.99 41.46± 1.50
ContinualGNN (M=3%) 46.08± 0.45 52.71± 1.22 53.81± 1.44 55.02± 1.26
ContinualGNN (M=5%) 50.60± 0.49 57.22± 1.22 58.63± 1.35 60.14± 1.35

GraphSAGE 31.02± 0.12 31.02± 0.19 30.72± 0.39 31.92± 0.46

LwF 36.74± 1.15 40.65± 1.06 42.85± 1.34 48.97± 1.03

ReGNN (Ours) 55.02± 2.01 62.57± 2.12 64.57± 2.34 67.74± 2.12

with others. It follows the representative generative replay based framework (Shin et al., 2017),
where an separate generative model is trained for replay without any interactions, such as parameter
sharing, with the classification module.

Through the ablation experiment, We find that sharing part of the parameters (i.e., the graph encoder)
not only simplifies the model structure, but also improves the performance of the model. It indicates
proper parameter sharing can yield better results than using two separate modules in some cases.
Finally we ablate the GraphCVAE module to stop generative replay. The forgetting phenomenon
becomes obvious.

Q3. How does ReGNN perform when the neighborhood information is given at different levels
during inference? Table 1 shows the effectiveness of ReGNN in our practical scenario for continual
graph learning illustrated in Figure 1 and Figure 2, where the neighborhood information of test nodes
is very poor or none. A natural question is, whether ReGNN can also show good performance in
different cases, where the neighborhood information is given at different levels. This is practical
when additional information is available to help build richer connections between test nodes for
more neighborhood information and better inference. We further investigate the performance of
ReGNN in different cases.

Because we randomly split the data into training and test sets and detach the test nodes from the
original graph, we cannot control the level of neighborhood information among test nodes with the
random partition process. Instead, we change the level of neighborhood information by manually
linking test nodes according to their distance to each other in the original graph.

Specifically, given a pair of nodes (v, u) from detached test nodes, we denote the distance from v to
u as Dist(v, u), which is calculated by the number of hops from v to u in the original graph. Orig-
inal graph refers to the complete graph before training/test partition. In this way, we can increase
the neighborhood information of test nodes by manually linking pairs of test nodes. For instance,
(v, u) can be linked if Dist(v, u) is smaller than a certain threshold k. After linking all node pairs
{(v, u)|Dist(v, u) < k, v ∈ Vtest, u ∈ Vtest} in the test nodes, we denote the evaluation on the
test data with this additional neighborhood information as k-hop evaluation. Note that the way we
increase neighborhood information can involve noise if k is set as a very large number, which leads
to a performance drop. In our experiments, we choose proper k that is smaller than a threshold,
values larger than which fails to further improve the performance.

Experiments show that the manually added links are helpful for node classification. Because in k-hop
evaluations, we manually select a proper k and add these links according to the original complete
graph, an interesting topic is to train an additional task, for instance, link prediction, to predict these
links and then link them for better node classification. We leave it for future work. In this work, we
just manually add these links and focus on analyzing the ReGNN model with k − hop evaluation.
Table 3 shows the results of this study. Default means no additional links are added. k refers to k-hop
evaluation, and Full is the evaluation method adopted by existing works in Figure 2, i.e., linking the
detached test nodes back to the graph from which they are detached for inference. Intuitively, Full
should yield best results. Compared to the results of the default evaluation, increasing neighborhood
information can indeed improve our model performance. ReGNN constantly outperforms other
baselines under different settings, which manifests the reliability and effectiveness of our model
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Table 4: Results of replay based models on Citeseer when neighbors of the stored old nodes are not
available in the memory buffer.

Model Default 3-hop 5-hop Full
GraphSAGE (Hamilton et al., 2017) 31.02 31.02 30.72 31.92

ContinualGNN (Wang et al., 2020) 41.86 45.28 47.89 47.59

ER-GNN (Zhou & Cao, 2021) 43.37 41.56 40.69 42.21

ReGNN (Ours) 55.02 62.57 64.57 67.74

and indicates that our model can work well in different cases with either rich or poor neighborhood
information.

Q4. Are the generative replay data really effective in preserving neighbor information? Be-
cause each node is associated with a node attribute, simply replaying and using node attributes
can also make predictions. Although ReGNN outperforms other baselines, we are curious to know
whether generated replay data can really help ReGNN remember the neighbor information and ef-
fectively exploit them for inference.

We start with analyzing how ER-GNN remembers the neighborhood information. ER-GNN requires
a memory buffer to store old training nodes from previous tasks for replay to prevent forgetting.
When replaying stored old nodes from the buffer, the neighbor nodes of the old nodes need to
be sampled via the sampling strategy in graphSAGE for aggregation to compute the embeddings of
stored old nodes. Thus in earlier experiments, we allow ER-GNN to store the neighbors of the stored
old nodes to fulfill the model’s potential. In this case, the memory size of the buffet is in fact larger
than our reported 1% 3% 5%, because their neighbors are also stored for the neighbor aggregation
process in GraphSAGE. In this way, when ER-GNN uses old data for training, the neighborhood
information of the stored old nodes is also replayed. Thus ER-GNN can remember and exploit the
neighbor information during inference, which is proved by results in Table 3: as k − hop increases,
ER-GNN achieves better performance by using the richer neighbor information.

Here we experiment with another version of ER-GNN and ContinualGNN, where the neighbors of
stored old nodes are not available, which means only their own node attributes are used for replay.
Table 4 shows, in this case, ContinualGNN (Wang et al., 2020) still has improvements as k increases
because it also uses model regularization besides data replay. However, the performance of ER-
GNN, which fully relies on data replay, fails to be improved as k increases (i.e., richer neighborhood
information is provided), which means ER-GNN cannot exploit neighborhood information anymore.
This is because only isolated node attributes are replayed without neighbor aggregation thus model
forgets how to exploit given neighbors.

Our model performance consistently grows with richer neighborhood information, indicating
ReGNN remembers how to exploit given neighbors for better inference by replaying our gener-
ated data. It further manifests our generated data contains helpful neighborhood information, which
prevents ReGNN from forgetting it during generative replay.

5 CONCLUSION AND FUTURE WORK

In this paper, we find an important and practical case yet ignored by existing works in continual
graph learning, which leads to poor neighborhood information during inference, in additional to
catastrophic forgetting. We further propose ReGNN to jointly solve the challenges, whose effective-
ness is proved by experiments.

More advanced graph generation techniques can be integrated into our graph encoder and decoder
module for better generation with multi-layer GNNs. We leave this for future work because gener-
ating large graphs with different node attributes is rarely studied by existing works, most of which
focus on molecular graph generation. It is another under-explored topic and not our major focus but
could be interesting if combined. k − hop evaluations have better performance but we manually set
k and build links with ground truth. It is also interesting to automate this process and let model infer
the connections by itself to improve model performance.
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A DATASET

To evaluate the performance of ReGNN in our continual graph learning scenario, we conduct ex-
periments on three benchmark datasets that are also used to build datasets for CI or TI settings in
related works (Wang et al., 2022; Liu et al., 2021; Zhou & Cao, 2021).

Cora (Sen et al., 2008) is a citation network consisting of and 5429 links and 2708 nodes classified
into one of seven classes. Each node has a vector of size 1433 as its attribute. CiteSeer (Sen et al.,
2008) consists of 3312 publications classified into one of six classes. The citation network consists
of 4732 links. Each node has a vector of size 3073 as its attribute. We use Amazon (McAuley et al.,
2015) to refer to AmazonCoBuyPhoto, a segment of Amazon co-purchasing graph. It consists of
119,043 links with 7,650 nodes of 8 classes.

To construct datasets for class-incremental graph learning, we follow (Liu et al., 2021; Zhou & Cao,
2021; Wang et al., 2022) and divide each dataset into several tasks, where each task contains several
non-overlapping classes.

For Cora, we divide it into three tasks. The first and second tasks consist of two classes, and the last
task contains three classes. Citeseer are split into three tasks with two classes in each task. The first
task of Amazon contains two classes. The second and third tasks on Amazon contain three classes.
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