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ABSTRACT 

By 2022 more than 20% of Internet of Things (IoT) endpoint 

devices are expected to have autonomous Machine Learning (A-

ML) capabilities [1]. The A-ML capabilities allow IoT edge 

devices to efficiently (by applying Machine Learning) and 

autonomously (without cloud compute assistance) process local 

information and respond accordingly in various scenarios. 

Moreover, employing A-ML reduces power consumption and 

response time related to the edge device’s communication with 

the cloud.  In this paper, we demonstrate the feasibility of 

integrating A-ML inference tasks on memory and performance 

limited (low cost) Micro Control Units (MCUs). The paper 

presents design tradeoffs based on quantitative performance 

analysis on existing low cost products. 
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1 Introduction 

The principle barriers preventing widely distributed machine 

intelligence in low cost Internet of Things (IoT) edge devices are 

the constraints on Micro Control Unit (MCU) processing 

resources and power budget (i.e. Million Instructions per second 

(MIPS) and amount of on-chip memory).  

 

Current research on novel Machine Learning (ML) specific HW 

acceleration addresses these power aware Autonomous-ML (A-

ML) challenges. Novel Application Specific Integrated Circuit 

(ASIC) architectures include custom analog circuits [2]–[4] and 

computation-in-memory (CIM) architectures [5], [6] that explore 

the limits of the flexibility-efficiency tradeoff.  

 

New products are also addressing these challenges in the present. 

Lately ARM has proposed a general-purpose micro Neural 

Processing Unit (microNPU) based on Helium vector-processing 

technology [7] and Syntiant has introduced an Audio Neural 

Decision Processor boasting sub-mW always-on power [8].   

These A-ML proposed architectures require major silicon changes 

and one interesting question is can we do more with our existing 

low cost MCUs? In this case study we evaluate the effect of 

executing A-ML workloads on existing low cost, off-the-shelf 

MCU platforms. 

 

For the sake of this analysis, we distinguish between two major 

classes of A-ML operation scenarios:  

1. Time critical event processing (less than sub-second response 

time applications). 

2. Sustained (long term) system/state classification – i.e. detect 

a transition (state/event) and generate a known, non-time 
critical event (A-ML event). 

A generated A-ML event in a low-cost MCU (performance and 

memory constrained MCU) may trigger: 

• A high-performance auxiliary MCU (class 1). 

• A ML cloud server. 

• A local alert or indication. 

 

In this paper we explore design tradeoffs for class 2 applications, 

that is, applications that are required to generate non-time critical 

A-ML events. To prove feasibility of implementing such 

applications we benchmark runtime and power consumption of 

the CIFAR-10 Neural Network (NN) model, aimed at image 

classification. While image classification may not be required for 

many IoT edge devices. We will use this model as a representative 

upper bound on memory requirements, compute resources and 

classification complexity. For the sake of simplicity, we will also 

restrict the method for model memory footprint reduction to 

simple binary quantization of the original model’s parameters. 

mailto:email@email.com


  

 

 

 

Design of a specific A-ML solution requires hardware-software 

co-design awareness - the A-ML algorithm implementation is 

tailored to fit the platforms dimensions (i.e. embedded memory 

footprint, CPU performance and power consumption restrictions). 

In practice, most of the existing low-end MCU solutions are not 

employed today for complex A-ML applications. The main 

inhibiting factors are: 

1. Many variants of off-the-shelf A-ML software frameworks 

(CMSIS-NN, uTensor, cube.ai, EdgeML+ ELL), none of 

which generically support small platform dimensions out of 

the box. 

2. Lack of a ML Software Development Kit (SDK) to smoothly 

integrate A-ML on user platforms.  

3. Lack of consistent A-ML benchmarking methodology to 

reflect the expected performance on specific platforms/HW 
architecture. 

These challenges are shared by many embedded platforms (STM 

[9], NXP [10], etc.) and new benchmarking methodologies are 

being developed [11,13]. 

 

This paper is divided to the following sections: 

A-ML Benchmarking Methodology - describes the selection of 

platforms and design of benchmarking methods.  

Analysis Results – presents results and key observations. 

Discussion – presents a summary of guidelines for current and 

next generation edge devices 

 

2  A-ML Benchmarking Methodology 

In this paper the common CMSIS-NN framework was selected as 

a baseline for A-ML benchmarking methodology. This framework 

does not require a specific Integrated Development Environment 

(IDE) or platform, and supports Cortex-M processors. 

 

The Cortex-M4 and M4F based solutions were selected since 

vectored Multiply Accumulate Command (MAC) support is 

essential for high performance and power efficient 

implementations of A-ML inference engines (The Cortex-M0 and 

M3 do not support MAC). 

The following low cost and performance platforms were selected: 

CM4F-SMALL, CM4F-LARGE, and CM4-LARGE, where F 

stands for floating point support and SMALL/LARGE refers to 

the relative SRAM size. Architectures that do not support byte 

level instructions or ARM instruction set were excluded from 

analysis since they required major adjustments to the CMSIS 

framework. These platforms were optimized for cost and power 

efficiency, not ML workload performance. As such, we were 

required to remove identifying information before releasing our 

results to the technical community. For a summary of the platform 

characteristics, see Table 1. 

 

 

The pre-quantized 8 bit fixed-point CIFAR-10’s model was 

generated based on the CMSIS_5-5.6.0 framework (The model 

code was generated with minor adjustments to the framework in 

order to support missing macros and compiler intrinsics). More 

advanced techniques such as model pruning and ternaryvalue 

representation were not employed. 

 

All benchmarks were developed with GNU v9.2.1 (Linaro) 

compiler; All models reuse the same CMSIS-NN static library 

optimized for Cortex M4 processors and optimized for area (-Os). 

 

The CIFAR-10 inference model[12] is considered a high-end 

benchmark for MCUs since it receives as input three channels 

(R,G,B) of a 32-by-32 image,  and the inference task consists of 

correctly classifying the image as a member of one out of ten 

categories (bird, cat, dog, airplane, etc.). The amount of memory 

required to hold the model parameters and the computational 

complexity of each of the model’s layers is described in Table 2.  

 

The number of cycles it takes to execute each layer and the entire 

inference model were measured eight times via clock cycle event 

counter breakpoints. Computation was completely deterministic 

and showed no computational instability or cold start effects. 

Clock division factors and correct clock frequency were verified 

by examining the CSTL1 register and Runtime Object Viewer 

(ROV).  

 

Average power was measured eight times on platforms that 

support built-in power measurement (CM4F-SMALL, CM4F-

LARGE). The CM4F-SMALL model parameters could not fit into 

SRAM and were placed on FLASH. Other platforms performance 

was measured both on FLASH and SRAM. The absolute runtime 

was calculated by multiplying the cycles by the MCU clock 

period. Other standard figures of merit include: inferences per 

second (the inverse of the model’s runtime) and GOPS/W (Giga 

operations per second per Watt). 

 

Experimental Setup 

Normalized  

System  

Parameters 

Edge Device Type 

CM4F-SMALL CM4F-LARGE CM4-LARGE 

Processor Cortex-M4F Cortex-M4F Cortex-M4 

Frequency 1 1.0 × 1.6 × 

SRAM 1 3.2 × 3.2 × 

Flash 1 5.8 × 2.9 × 

Cache 1 - - 

Unit Price 1 2.2 × 1.4 × 

Table 1: Comparison of the system parameters of the edge 

devices selected for benchmarking compared to the CM4F-

SMALL baseline. Cortex-M4F CPUs contain a Floating Point 

Unit (FPU) and a Memory Protection Unit (MPU). No floating 

point operations are used in the benchmark. 



  

 

 

CIFAR-10 Model Parameters 

Layer Memory[B] MACs 

conv1 2432 2.46E+6 

relu1 0 1.64E+4 

pool1 0 3.69E+4 

conv2 12816 3.28E+6 

relu2 0 2.05E+3 

pool2 0 4.61E+3 

conv3 12832 8.19E+5 

relu3 0 1.02E+3 

pool3 0 1.02E+3 

ip1 5130 5.12E+3 

softmax 0 1.50E+1 

Table 2: The required memory in bytes (parameter weights & 

bias) and theoretical number of multiply – accumulate 

(MACs), operations. Each pair of non-MAC operations is 

counted as a single MAC operation 

3  Analysis Results 

3.1  Cycle-by-Cycle Analysis 

A Cycle-by-Cycle methodology was utilized to analyze the 

number of cycles it takes for a single inference to complete. The 

analysis outcomes (demonstrated in Fig. 1) show that the memory 

space limited CM4F-SMALL (FLASH based) edge device would 

have superior performance compared to SRAM based edge 

devices, and by proxy - superior power consumption (this 

contradicts the SRAM based fast memory access superiority 

assumption). The CM4F-SMALL performance boost is related to 

a tightly connected 8-KB 4-way random replacement cache that 

minimizes the A-ML active power consumption and reduces the 

number of wait states. In the CM4F-LARGE and CM4-LARGE 

edge devices, though SRAM access is faster than FLASH, the 

SRAM configuration is such that both instruction fetch and read 

access of model parameters compete for access to the SRAM. 

 

3.2  Energy Efficiency Analysis 

The energy efficiency power measurement analysis demonstrated 

that although the CM4F-SMALL is faster than the CM4F-

LARGE, it also consumes more power for this application 

(24.482mW compared to 18.182mW). The relation between the 

performance (measured in inferences per second) and energy 

efficiency measured by GOPS/W (Giga-operations per second, 

per Watt) is presented in Fig. 2. The analysis shows that when 

both systems execute from flash they have similar energy 

efficiency, i.e. battery life on both systems is more or less the 

same.  

 

 

 

Figure 1: Inference time measured in cycles for each test 

configuration. The location of model parameters is explicitly 

stated as SRAM or FLASH accordingly.   

 

 

Figure 2: Inference time measured in cycles for each test 

configuration. The location of model parameters is explicitly 

stated as SRAM or FLASH accordingly.   

The A-ML benchmarking methodology proposed in this paper 

also illustrates the CM4F-SMALL user experience and 

performance superiority.  The standard performance benchmarks 

do not capture this distinction, as the Coremark an Dhrystone 

scores for both edge devices are comparable (performance 

presented in the datasheets are: 1.25 and 1.22 DMIPS/Mhz, and 

3.083 and 3.41 Coremark/Mhz respectively). 

 

3.3 Additional Performance Acceleration 

Provided by Local SRAM 

The paper analysis also compares the relative performance    

speed-up from storing model parameters in SRAM compared to 

FLASH in the CM4F-LARGE and CM4-LARGE edge devices 

(see Fig. 3); the CM4F-LARGE exhibits improved performance 

on all layer operations, however the CM4-LARGE does not.  

A possible explanation for this behavior is due to additional wait 

states inserted by SRAM memory access arbitration between 

instruction and data access. 



  

 

 

 

3.4  Inference Response Time Analysis 

Figure. 4 demonstrates the inference response time analysis 

results. The analysis shows that if the most important criterion is 

maximum absolute performance, the CM4F-SMALL, which has 

model parameters stored on FLASH, exhibits performance 

comparable to that of the CM4-LARGE with model parameters 

stored on SRAM. 

 

 

Figure 3: Relative speedup for each device, between 

configuration with model storage on SRAM and that of model 

storage on FLASH. 

 

 

Figure 4: Total response time measured in seconds from the 

moment a new image is available to the time it has been 

successfully classified. The location of model parameters is 

explicitly stated as SRAM or FLASH accordingly. 

4  Discussion 

The analysis in this paper demonstrated that very large A-ML 

complex models (i.e. CIFAR-10) can be implemented on low cost 

off the shelf MCUs within reasonable performance for class 2 

applications. This class of models can easily be added to 

embedded platform offerings and add additional opportunities for 
Machine Learning based use cases.  

 

3.5  Power Consumption Profile 

Figure. 5 presents a representative power consumption profile 

over time for a convolutional neural network. The profile clearly 

has two phases during operation. This means that accurate power 

measurements require multiple samples and that the sampling 

interval should not fall solely on the minimum or maximum value 

 

 

Figure 5: Power consumption vs. time on multiple inference  

iterations  

A smart selection of cache based products can also boost 

performance (both power efficiency and response time) 

considerably. One step further in performance improvement can 

be achieved by FLASH-RAM partitioning optimization and 
increasing CPU clock frequency.  

The performance impact of the edge device selection and memory 

partitioning strategies cannot be quantified by traditional 

benchmarking (i.e. Coremark, Dhrystone) therefore, new A-ML 

specific benchmarks, as demonstrated in this paper need to be 
applied.  

An interesting area of investigation outside the scope of this paper 

is an end-to-end analysis of power consumption when taking into 

account communication patterns. For example, an anomaly 

detection application may be required to communicate a state 

change only when a low probability anomaly occurs. In this 

scenario power consumption will be much lower than that of a 

cloud based compute system which is required to continuously 

transfer large amounts of data. 

 

Additional performance improvements and wider use of A-ML 

solutions can be achieved by:  

1. Tuning next generation architecture to support A-ML needs. 

2. Providing SDK, maintenance and debugging features. 
3. Developing an integrated A-ML benchmarking environment. 
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