
Autonomous Machine Learning Workloads on Edge Devices

A Case Study

FirstName Surname
†

 Department Name

 Institution/University Name

 City State Country

 email@email.com

FirstName Surname
 Department Name

 Institution/University Name

 City State Country

 email@email.com

ABSTRACT

By 2022 more than 20% of Internet of Things (IoT) endpoint

devices are expected to have autonomous Machine Learning (A-

ML) capabilities [1]. The A-ML capabilities allow IoT edge

devices to efficiently (by applying Machine Learning) and

autonomously (without cloud compute assistance) process local

information and respond accordingly in various scenarios.

Moreover, employing A-ML reduces power consumption and

response time related to the edge device’s communication with

the cloud. In this paper, we demonstrate the feasibility of

integrating A-ML inference tasks on memory and performance

limited (low cost) Micro Control Units (MCUs). The paper

presents design tradeoffs based on quantitative performance

analysis on existing low cost products.

CCS CONCEPTS

•Computing methodologies•Hardware~Emerging

technologies~Analysis and design of emerging devices and

systems~Emerging tools and methodologies•Computer systems

organization~Embedded and cyber-physical systems~Embedded

systems~Embedded hardware•Computing

methodologies~Machine learning

KEYWORDS

Machine Learning, edge inference, CMSIS-NN, Deep Neural

Networks, ARM Cortex-M, low-power computing.

1 Introduction

The principle barriers preventing widely distributed machine

intelligence in low cost Internet of Things (IoT) edge devices are

the constraints on Micro Control Unit (MCU) processing

resources and power budget (i.e. Million Instructions per second

(MIPS) and amount of on-chip memory).

Current research on novel Machine Learning (ML) specific HW

acceleration addresses these power aware Autonomous-ML (A-

ML) challenges. Novel Application Specific Integrated Circuit

(ASIC) architectures include custom analog circuits [2]–[4] and

computation-in-memory (CIM) architectures [5], [6] that explore

the limits of the flexibility-efficiency tradeoff.

New products are also addressing these challenges in the present.

Lately ARM has proposed a general-purpose micro Neural

Processing Unit (microNPU) based on Helium vector-processing

technology [7] and Syntiant has introduced an Audio Neural

Decision Processor boasting sub-mW always-on power [8].

These A-ML proposed architectures require major silicon changes

and one interesting question is can we do more with our existing

low cost MCUs? In this case study we evaluate the effect of

executing A-ML workloads on existing low cost, off-the-shelf

MCU platforms.

For the sake of this analysis, we distinguish between two major

classes of A-ML operation scenarios:

1. Time critical event processing (less than sub-second response

time applications).

2. Sustained (long term) system/state classification – i.e. detect

a transition (state/event) and generate a known, non-time
critical event (A-ML event).

A generated A-ML event in a low-cost MCU (performance and

memory constrained MCU) may trigger:

• A high-performance auxiliary MCU (class 1).

• A ML cloud server.

• A local alert or indication.

In this paper we explore design tradeoffs for class 2 applications,

that is, applications that are required to generate non-time critical

A-ML events. To prove feasibility of implementing such

applications we benchmark runtime and power consumption of

the CIFAR-10 Neural Network (NN) model, aimed at image

classification. While image classification may not be required for

many IoT edge devices. We will use this model as a representative

upper bound on memory requirements, compute resources and

classification complexity. For the sake of simplicity, we will also

restrict the method for model memory footprint reduction to

simple binary quantization of the original model’s parameters.

mailto:email@email.com

Design of a specific A-ML solution requires hardware-software

co-design awareness - the A-ML algorithm implementation is

tailored to fit the platforms dimensions (i.e. embedded memory

footprint, CPU performance and power consumption restrictions).

In practice, most of the existing low-end MCU solutions are not

employed today for complex A-ML applications. The main

inhibiting factors are:

1. Many variants of off-the-shelf A-ML software frameworks

(CMSIS-NN, uTensor, cube.ai, EdgeML+ ELL), none of

which generically support small platform dimensions out of

the box.

2. Lack of a ML Software Development Kit (SDK) to smoothly

integrate A-ML on user platforms.

3. Lack of consistent A-ML benchmarking methodology to

reflect the expected performance on specific platforms/HW
architecture.

These challenges are shared by many embedded platforms (STM

[9], NXP [10], etc.) and new benchmarking methodologies are

being developed [11,13].

This paper is divided to the following sections:

A-ML Benchmarking Methodology - describes the selection of

platforms and design of benchmarking methods.

Analysis Results – presents results and key observations.

Discussion – presents a summary of guidelines for current and

next generation edge devices

2 A-ML Benchmarking Methodology

In this paper the common CMSIS-NN framework was selected as

a baseline for A-ML benchmarking methodology. This framework

does not require a specific Integrated Development Environment

(IDE) or platform, and supports Cortex-M processors.

The Cortex-M4 and M4F based solutions were selected since

vectored Multiply Accumulate Command (MAC) support is

essential for high performance and power efficient

implementations of A-ML inference engines (The Cortex-M0 and

M3 do not support MAC).

The following low cost and performance platforms were selected:

CM4F-SMALL, CM4F-LARGE, and CM4-LARGE, where F

stands for floating point support and SMALL/LARGE refers to

the relative SRAM size. Architectures that do not support byte

level instructions or ARM instruction set were excluded from

analysis since they required major adjustments to the CMSIS

framework. These platforms were optimized for cost and power

efficiency, not ML workload performance. As such, we were

required to remove identifying information before releasing our

results to the technical community. For a summary of the platform

characteristics, see Table 1.

The pre-quantized 8 bit fixed-point CIFAR-10’s model was

generated based on the CMSIS_5-5.6.0 framework (The model

code was generated with minor adjustments to the framework in

order to support missing macros and compiler intrinsics). More

advanced techniques such as model pruning and ternaryvalue

representation were not employed.

All benchmarks were developed with GNU v9.2.1 (Linaro)

compiler; All models reuse the same CMSIS-NN static library

optimized for Cortex M4 processors and optimized for area (-Os).

The CIFAR-10 inference model[12] is considered a high-end

benchmark for MCUs since it receives as input three channels

(R,G,B) of a 32-by-32 image, and the inference task consists of

correctly classifying the image as a member of one out of ten

categories (bird, cat, dog, airplane, etc.). The amount of memory

required to hold the model parameters and the computational

complexity of each of the model’s layers is described in Table 2.

The number of cycles it takes to execute each layer and the entire

inference model were measured eight times via clock cycle event

counter breakpoints. Computation was completely deterministic

and showed no computational instability or cold start effects.

Clock division factors and correct clock frequency were verified

by examining the CSTL1 register and Runtime Object Viewer

(ROV).

Average power was measured eight times on platforms that

support built-in power measurement (CM4F-SMALL, CM4F-

LARGE). The CM4F-SMALL model parameters could not fit into

SRAM and were placed on FLASH. Other platforms performance

was measured both on FLASH and SRAM. The absolute runtime

was calculated by multiplying the cycles by the MCU clock

period. Other standard figures of merit include: inferences per

second (the inverse of the model’s runtime) and GOPS/W (Giga

operations per second per Watt).

Experimental Setup

Normalized

System

Parameters

Edge Device Type

CM4F-SMALL CM4F-LARGE CM4-LARGE

Processor Cortex-M4F Cortex-M4F Cortex-M4

Frequency 1 1.0 × 1.6 ×

SRAM 1 3.2 × 3.2 ×

Flash 1 5.8 × 2.9 ×

Cache 1 - -

Unit Price 1 2.2 × 1.4 ×

Table 1: Comparison of the system parameters of the edge

devices selected for benchmarking compared to the CM4F-

SMALL baseline. Cortex-M4F CPUs contain a Floating Point

Unit (FPU) and a Memory Protection Unit (MPU). No floating

point operations are used in the benchmark.

CIFAR-10 Model Parameters

Layer Memory[B] MACs

conv1 2432 2.46E+6

relu1 0 1.64E+4

pool1 0 3.69E+4

conv2 12816 3.28E+6

relu2 0 2.05E+3

pool2 0 4.61E+3

conv3 12832 8.19E+5

relu3 0 1.02E+3

pool3 0 1.02E+3

ip1 5130 5.12E+3

softmax 0 1.50E+1

Table 2: The required memory in bytes (parameter weights &

bias) and theoretical number of multiply – accumulate

(MACs), operations. Each pair of non-MAC operations is

counted as a single MAC operation

3 Analysis Results

3.1 Cycle-by-Cycle Analysis

A Cycle-by-Cycle methodology was utilized to analyze the

number of cycles it takes for a single inference to complete. The

analysis outcomes (demonstrated in Fig. 1) show that the memory

space limited CM4F-SMALL (FLASH based) edge device would

have superior performance compared to SRAM based edge

devices, and by proxy - superior power consumption (this

contradicts the SRAM based fast memory access superiority

assumption). The CM4F-SMALL performance boost is related to

a tightly connected 8-KB 4-way random replacement cache that

minimizes the A-ML active power consumption and reduces the

number of wait states. In the CM4F-LARGE and CM4-LARGE

edge devices, though SRAM access is faster than FLASH, the

SRAM configuration is such that both instruction fetch and read

access of model parameters compete for access to the SRAM.

3.2 Energy Efficiency Analysis

The energy efficiency power measurement analysis demonstrated

that although the CM4F-SMALL is faster than the CM4F-

LARGE, it also consumes more power for this application

(24.482mW compared to 18.182mW). The relation between the

performance (measured in inferences per second) and energy

efficiency measured by GOPS/W (Giga-operations per second,

per Watt) is presented in Fig. 2. The analysis shows that when

both systems execute from flash they have similar energy

efficiency, i.e. battery life on both systems is more or less the

same.

Figure 1: Inference time measured in cycles for each test

configuration. The location of model parameters is explicitly

stated as SRAM or FLASH accordingly.

Figure 2: Inference time measured in cycles for each test

configuration. The location of model parameters is explicitly

stated as SRAM or FLASH accordingly.

The A-ML benchmarking methodology proposed in this paper

also illustrates the CM4F-SMALL user experience and

performance superiority. The standard performance benchmarks

do not capture this distinction, as the Coremark an Dhrystone

scores for both edge devices are comparable (performance

presented in the datasheets are: 1.25 and 1.22 DMIPS/Mhz, and

3.083 and 3.41 Coremark/Mhz respectively).

3.3 Additional Performance Acceleration

Provided by Local SRAM

The paper analysis also compares the relative performance

speed-up from storing model parameters in SRAM compared to

FLASH in the CM4F-LARGE and CM4-LARGE edge devices

(see Fig. 3); the CM4F-LARGE exhibits improved performance

on all layer operations, however the CM4-LARGE does not.

A possible explanation for this behavior is due to additional wait

states inserted by SRAM memory access arbitration between

instruction and data access.

3.4 Inference Response Time Analysis

Figure. 4 demonstrates the inference response time analysis

results. The analysis shows that if the most important criterion is

maximum absolute performance, the CM4F-SMALL, which has

model parameters stored on FLASH, exhibits performance

comparable to that of the CM4-LARGE with model parameters

stored on SRAM.

Figure 3: Relative speedup for each device, between

configuration with model storage on SRAM and that of model

storage on FLASH.

Figure 4: Total response time measured in seconds from the

moment a new image is available to the time it has been

successfully classified. The location of model parameters is

explicitly stated as SRAM or FLASH accordingly.

4 Discussion

The analysis in this paper demonstrated that very large A-ML

complex models (i.e. CIFAR-10) can be implemented on low cost

off the shelf MCUs within reasonable performance for class 2

applications. This class of models can easily be added to

embedded platform offerings and add additional opportunities for
Machine Learning based use cases.

3.5 Power Consumption Profile

Figure. 5 presents a representative power consumption profile

over time for a convolutional neural network. The profile clearly

has two phases during operation. This means that accurate power

measurements require multiple samples and that the sampling

interval should not fall solely on the minimum or maximum value

Figure 5: Power consumption vs. time on multiple inference

iterations

A smart selection of cache based products can also boost

performance (both power efficiency and response time)

considerably. One step further in performance improvement can

be achieved by FLASH-RAM partitioning optimization and
increasing CPU clock frequency.

The performance impact of the edge device selection and memory

partitioning strategies cannot be quantified by traditional

benchmarking (i.e. Coremark, Dhrystone) therefore, new A-ML

specific benchmarks, as demonstrated in this paper need to be
applied.

An interesting area of investigation outside the scope of this paper

is an end-to-end analysis of power consumption when taking into

account communication patterns. For example, an anomaly

detection application may be required to communicate a state

change only when a low probability anomaly occurs. In this

scenario power consumption will be much lower than that of a

cloud based compute system which is required to continuously

transfer large amounts of data.

Additional performance improvements and wider use of A-ML

solutions can be achieved by:

1. Tuning next generation architecture to support A-ML needs.

2. Providing SDK, maintenance and debugging features.
3. Developing an integrated A-ML benchmarking environment.

ACKNOWLEDGMENTS

I would like to thank my manager and department manager for

encouraging me to be curious and explore beyond the horizons of

my job function responsibilities.

REFERENCES

[1] S. Craske, “The next level of energyefficient edge computing”. In tinyML

Summit, 2019.

[2] M. V. Nair and G. Indiveri, “An ultra-low power sigma-delta neuron circuit”.

In 2019 IEEE International Symposium on Circuits and Systems (ISCAS),

2019, 1–5.

[3] A. Rubino, M. Payvand, and G. Indiveri, “Ultra-Low Power Silicon Neuron

Circuit for Extreme-Edge Neuromorphic Intelligence”. In 2019 26th IEEE

International Conference on Electronics, Circuits and Systems (ICECS), 2019,

458–461.

[4] R. D’Angelo, X. Du, C. D. Salthouse, B. Hollosi, G. Freifeld, W. Uy, H.

Huang, N. Tran, A. Chery, J.-S. Seo, and others, “Process Scalability of Pulse-

Based Circuits for Analog Image Convolution”. IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 65, no. 9, 2929–2938, 2018.

[5] X. Si, J.-J. Chen, Y.-N. Tu, W.-H. Huang, J.-H. Wang, Y.-C. Chiu, W.-C. Wei,

S.-Y. Wu, X. Sun, R. Liu, and others, “24.5 A twin-8T SRAM computation-in-

memory macro for multiple-bit CNN-based machine learning”. In 2019 IEEE

International Solid-State Circuits Conference-(ISSCC), 2019, 396–398.

[6] Z. Zhao, Y. Wang, X. Zhang, X. Cui, and R. Huang, “An Energy-Efficient

Computing-in-Memory Neuromorphic System with On-Chip Training”. In

2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2019, 1–4.

[7] “Embedded ML Inference for Cortex-M Systems,” 2019. [Online]. Available:

https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55.

[8] “Syntiant NDP101 Neural Decision Processor,” 2019. [Online]. Available:

https://www.syntiant.com/ndp101.

[9] D. Pau, M. Durnerin, V. D’Alto , M. Castro, “STM32Cube.AI: AI productivity

boosted on STM32 MCU,” In tinyML Summit, 2019.

[10] “Artificial Intelligence and Machine Learning.” [Online]. Available:

https://www.nxp.com/applications/solutions/enabling-technologies/ai-and-

machine-learning:MACHINE-LEARNING.

[11] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman, X. Huang,

R. Hurtado, D. Kanter, A. Lokhmotov, and others, “Benchmarking TinyML

Systems: Challenges and Direction” arXiv preprint arXiv:2003.04821, 2020.

[12] “Deploying a Convolutional Neural Network on Cortex-M with CMSIS-NN.”

[Online]. Available: https://community.arm.com/developer/ip-

products/processors/b/processors-ip-blog/posts/deploying-convolutional-

neural-network-on-cortex-m-with-cmsis-nn.

[13] “Ultra-low Power Machine Learning with ULPMark-ML”[Online].

Available:https://www.eembc.org/ulpmark/

