Best Practices for Noise-Based Augmentation to Improve the Performance
of Deployable Speech-Based Emotion Recognition Systems

Anonymous ACL submission

Abstract

Emotion recognition models are a key compo-
nent of several downstream applications, such
as mental health assessments. These mod-
els are usually trained on small, clean, and
synthetically controlled datasets, which leads
to high failure rates in presence of ‘unseen’
background noises, promoting noise-overlay
based adversarial attacks. Noisy data augmen-
tation has aided robustness of speech recog-
nition and classification models, wherein, the
ground truth label remains consistent even in
the presence of noise which, isn’t always true
for subjectively perceived emotion labels. In
this work, we create realistic noisy samples
of IEMOCAP, using multiple categories of en-
vironmental and synthetic noise. We evalu-
ate how ground truth labels (human) and pre-
dicted labels (model) change as a function of
these noise source introductions. We show
that some commonly used noisy augmentation
techniques, impact human perception of emo-
tion, thus, falsifying the ‘clean’ ground truth
label. Our experiments show that the perfor-
mance of both, baseline, and even denoised
emotion recognition models significantly de-
clines on noisy samples as compared to that
on the clean set. This performance degrada-
tion prevails when model is trained on a com-
bination of clean and test set mismatched noisy
samples. We investigate how using the above
found ‘human-perceptible’ noise overlays can
lead to inaccurate metrics when testing the
model for robustness or vulnerability to adver-
sarial attacks. Finally, we present a set of rec-
ommendations for noise-based augmentation
of speech emotion datasets and for deploying
the models trained using those datasets.

1 Introduction

Emotion recognition models are often used for
downstream applications such as advertising, men-
tal health monitoring (Khorram et al., 2018), hir-
ing (emo) and surveillance (Martin, 2019). There-
fore, accuracy and adversarial robustness is critical,
as incorrect emotion predictions can have devas-
tating consequences. However, robust and gener-
alizable emotion recognition systems remain out

of reach due to the complexity and variability that
is inherent in the production of emotion. Further,
emotion recognition is a low-resourced domain,
and hence, the performance of emotion recognition
models is often improved when techniques such
as data augmentation or transfer learning are ap-
plied (Pappagari et al., 2021; Deng et al.). But, data
augmentation, used incorrectly, has the potential to
be a further source of noise and may lead to vul-
nerabilities against maliciously manipulated input
data. In this paper we investigate noise based data
augmentation techniques, their effects on labels ob-
tained from both, human and emotion recognition
models, an assessment of how these augmentation
techniques could introduce errors in evaluation of
targeted misclassification attacks, and finally pro-

vide recommendations for how to move forward.
One of the prime weaknesses of emotion recog-

nition techniques centers on the very nature of the
data; common datasets are generally collected in
controlled laboratory environments where one of
the goals is to avoid as much variation due to noise
as possible. This collection method ensures that the
collected data are variable only due to the presence
of emotion or predefined control variables. The
benefit is that the trained models generally avoid
spurious correlations between noise and emotion la-
bels, correlations that may exist in real-world data
(e.g., data from frustrated users occur in an environ-
ment with traffic noise and from non-frustrated
users occur in a quiet environment). However,
these clean and small datasets promote a mismatch
between training and testing conditions allowing
an adversary to effectively probe a model, which
may be overfitted on a small corpus data due to

spurious and learned correlations.
Researchers have addressed these challenges sep-

arately. For emotion recognition, low resource
challenge is handled by augmenting the controlled
collected datasets of emotion via signal manipu-
lation (e.g., adding background noise) aiming for
enhanced generalizability to real-world noise con-
ditions or mitigating the risk of overfitting to vari-
ations particular to a small dataset (Zheng et al.,



2016). These manipulations have included distribu-
tion shift (Abdelwahab and Busso, 2018), phys-
iological factors (Jaiswal et al.), or pink/white
noise (Parada-Cabaleiro et al., 2017; Scharenborg
et al.). In speech recognition and speaker iden-
tification, the scope of these manipulations is
larger, encouraging models to learn task-salient
features (MosSner et al., 2019). Biberger and Ewert
(2016) analyzed robust augmentation methods for
automatic speech recognition including the omis-
sion of letters, changes in the speed of speech,
and the presence of environmental noise through
psycho-acoustic masking. They found that humans
have surprisingly robust speech processing systems
that can easily overcome these modulations. How-
ever, the resulting effect of similar modulations on
gestalt emotion perception is understudied. The
challenge associated with adversarial attacks (in-
tentionally forcing the model to misclassify sam-
ples), has been addressed by addressed by various
methods, such as noisy augmentation (Pappagari
et al., 2021). But, without actually linking these
two challenges together it is unlikely that emotion
recognition models will be sufficiently robust and
resilient due to the inherent link between them.

In this paper, we address these two challenges
jointly. We first augment a subset of the Interactive
Emotional Dyadic MOtion Capture IEMOCAP)
dataset (Busso et al., 2008), a common speech emo-
tion recognition corpus by introducing noise, both
by manipulating the signal and adding real-world
noise. We analyze how both human perception and
state-of-the-art emotion recognition algorithms, in-
cluding noise-robust methods, perform differently
given this noise. We then look into methods to
offset these effects by first augmenting the train-
ing dataset with examples of the noise category
and then introducing a denoising method to the
pipeline. Finally, we discuss an often overlooked
effect of the choice of noise categories for data
augmentation i.e., unreliable metrics during model
evaluation, specifically for the case of evaluating
adversarial attack accuracy. We end the paper with
a set of recommendations for emotion dataset aug-
mentation techniques and and deployment of these
emotion recognition algorithms. We investigate the
following research questions:

Q1: Does the presence of noise effect emotion per-
ception as evaluated by human raters? Is this effect
dependent on the utterance length, loudness and
type of the added noise, and the original emotion?
Q2: How does the presence of noise affect the per-

formance of emotion recognition models? Does
this effect vary based on the type of the added noise
in agreement with changes in human perception?
Q3: Does dataset augmentation or sample denois-
ing help improve the robustness of emotion recog-
nition models to unseen noise?

Q4: Does the separation of noise additions into ‘de-
sirable’ and ‘perceptible’ effect the accuracy of an
attacker aiming to force the model to misclassify?
Q5: What are the recommended practices for
speech emotion dataset augmentation and model
deployment based on insights from the aforemen-

tioned crowdsourcing experiments?
Our findings suggest that human emotion percep-

tion is usually unaffected by the presence of envi-
ronmental noise or common modulations such as
reverberations and fading loudness. However, it
is affected by signal manipulations such as speed,
pitch change, and even the presence of pauses and
fillers, which should therefore be used with cau-
tion. We show that the performance of the emotion
recognition models given noisy data is improved by
either dataset augmentation or sample denoising, or
both. However, the performance drops when an un-
seen noise category is tested. Further, we show that
these approaches are brittle to the introduction of
certain common types of noise that do not change
human perception, especially reverberation. Criti-
cally, we show how noise augmentation practices
can lead to a falsifiable improvement when measur-
ing efficiency of adversarial attacks, thus leading
to an unreliable metric for developing and choos-
ing methods that are best suited for avoiding these
attacks. Finally, we end the paper with a set of
augmentation and deployment suggestions. These
types of signal modulation are common;y observed
in virtual interactions. The fragility of emotion
recognition models to such distortions can pose a
security risk, a risk that must be well understood
before these technologies are widely deployed.

2 Relation to Prior Work

Previous work focused on understanding how noise
impacts machine learning models can be classified
into three main directions: (a) robustness in auto-
matic speech recognition or speaker verification;
(b) noise-based adversarial example generation;
and, (c) improvement in performance of machine

learning models when augmented with noise.
Existing work has looked at how to built speech

recognition systems that are robust to various kinds
and levels of noise (Li et al., 2014). The common
themes in these papers are a concentration on either



data augmentation or gathering more real-world
data to produce accurate transcripts (Zheng et al.,
2016). Other lines of work have looked into pre-
venting various attacks, e.g., spoofing or recording
playback, on speaker verification systems (Shim
et al.). Noise in these systems is usually consid-
ered to be caused by reverberations or channel-
based modulations (Zhao et al., 2014). Researchers
have also looked into building noise robust emotion
recognition models, using either signal transforma-
tion or augmentation (Aldeneh and Provost, 2017).
But data augmentation in this analysis was formu-
lated in a similar manner to those for speech recog-
nition, or, speaker identification systems, which
have a fixed ground truth and are independent of
human perception. Previous works have also inves-
tigated adversarial example generation that aim to
create audio samples that change the output of the
classifier. However, these methods assume white-
box access to the network and create modifications
in either feature vectors or actual wav files (Carlini
and Wagner; Gong and Poellabauer, 2017). This
generally results in samples that either have percep-
tible differences when played back to a human, or
are imperceptible to a human but fail to attack the
model when played over-air (Carlini and Wagner).

The line of work closest to ours is data augmenta-
tion aimed for training more generalizable models.
Noise and manipulation-based data augmentation
is a prime research field in the space of vision and
text. Sohn et al. investivated how rotating and
blackening out random pixels in images to create
augmented datasets leads to better performance on
the test set for digit and object recognition (Sohn
et al., 2020). They also investigated how data aug-
mentation can help with zero shot object recog-
nition in sparse classes of the dataset, providing
new options for sub sampling of classes. In the
field of Natural Language Processing (NLP), re-
searchers studied how replacing words with their
semantic synonyms can lead to better performance
on tasks such as Part of Speech (POS) tagging
and semantic parsing (Wallace et al., 2019). Re-
searchers have explored techniques for noise based
data augmentation (Kim and Kim), mostly focus-
ing on how model training can be improved to yield
better performance. However, these augmentation
techniques are mostly used for acoustic event detec-
tion, speaker verification or speech recognition (Ko
etal., 2015) , and has been sparingly used in audio
based para-linguistic classification tasks.

The common way to deal with noise in any au-

dio signal is to use denoising algorithms. Hence, it
is a valid counterpoint to understand how machine
learning models trained to recognize emotions per-
form if they are tested on denoised samples. To
this end, we look at two major approaches to de-
noising algorithms in the audio space: Denoising
Feature Space (Valin, 2018) and Speech Enhance-
ment (Chakraborty et al., 2019). Denoising feature
space algorithms seek to remove noise from the
extracted front end features. Speech enhancement
algorithms seek to convert noisy speech to more in-
telligible speech. Both techniques are associated
with challenges, such as signal degradation (Valin,

2018) to harmonic disintegration (Valin, 2018).
Model robustness to noise or an adversarial at-

tack can be evaluated by adding noise to the dataset
and testing performance of the model. This method
is commonly used for various tasks, such as, speech
recognition, or speaker identification (Abdullah
et al., 2019), whose perception is independent of
noise as discussed before. The closest task to ours
where the ground truth varies based on noise in-
troduction is sentiment analysis. In this case, the
adversarial robustness is usually tested by flipping
words to their synonyms, such that the meaning of
the text remains the same, and analyzing how the
predictions of the model change (Ebrahimi et al.,
2017). Unlike the lexical modality, speech can-
not be broken down into discrete components with
obvious replacements while maintaining speech
feature integrity. Hence, introduction of noise for
emotion recognition while assuring that the percep-
tion remains the same is more difficult.

To the best of our knowledge, this is the first
work that has studied the effect of different kinds
of real-world noise and varying amounts of noise
contamination on the human perception of emotion
and the implication of training on these datasets
from the perspective of machine performance and
robustness to adversarial attacks.

3 Emotion Dataset

For our study, we use the IEMOCAP dataset (Busso
et al., 2008), created to explore the relationship be-
tween emotion, gestures, and speech. 10 actors,
in pairs of two, one male and one female, were
recorded over five sessions (either scripted or im-
provised). The data were segmented by speaker
turn, resulting in a total of 10,039 utterances (5,255
scripted turns and 4,784 improvised turns). It con-
tains audio, video, and associated manual transcrip-
tions. We train the emotion classification models
on the full IEMOCAP dataset (Section 6.1).



4 Noise

4.1 Environmental Noise

We define environmental noises (ENV) as addi-
tive background noises, obtained from the ESC-
50 dataset(Piczak)', which is used for noise con-
tamination and environmental sound classification.
These environmental sounds are representative of
many noises in real world deployments, especially
in the context of virtual and smart home conversa-
tional agents. We use the following categories:

e Natural soundscapes (Nat), e.g., rain, wind.

e Human, non-speech sounds (Hum), e.g., sneez-

ing, coughing etc.
e Interior/domestic sounds (Int), e.g., door

creaks, clock ticks etc
We manipulate two factors in addition to noise:
e ENVPos: We vary the position of the introduc-

tion of sound that (i) starts and then fades out in
loudness(St), or (ii) occurs during the entirety
of the duration of the utterance(Co). Complete
additive background would represent a consis-
tent noise source in real world, e.g., fan rotation.

e ENVJB: We vary the signal to noise ratio (SNR)
of additive background noise for the Co method
at levels of 20dB, 10dB and 0dB.

e ENVLen: We vary the length of the introduced
background noise, from a short blip to the length
of the entire clip. We denote this by: Sh: Short,
Me: Medium, and, Co: Complete. A background
noise over the entire clip emulates a consistent
real world noise source (e.g. fan rotation).

4.2 Synthetic Noise

We define synthetic noise as modulations that aren’t
additive in background. These kinds of noises in au-
dio signal can occur from linguistic/paralinguistic
factors, room environment, internet lags, or the
physical locomotion of the speaker. We use the ten

following categories:
e SpeedSeg: We speed up a random segment of

the utterance by 1.25x.

e Fade: We fade the loudness of the utterance by
2% every second, which emulates the scenario
of a user moving away from the speaker. We
increase the loudness for fade in, and decrease
for fade out.

e Filler: Insertion of non-verbal short fillers
such as ‘uh’, ‘umm’ (from the same speaker) in
the middle of a sentence. The insertion is either
just the filler (S) or succeeded and preeceeded
by a long pause (L).

"https://github.com/karoldvl/ESC-50

e DropW: Dropping all non-essential word belong-
ing to the set :{a, the, an, so, like, and}.
e DropLt: Phonological deletion or dropping
of letters has been widely studied as a part
of native US-English dialect (pho; Yuan and
Liberman). Hence, we drop letters in accor-
dance with various linguistic styles chosen from
the set: {/h/+vowel, vowel+/nd/+consonant(next
word), consonant+/t/+consonant(next word),
vowel+/r/+consonant, /ihng/}.
Laugh/Cry: We add “sob” and “short-
laughter” sounds obtained from AudioSet (Gem-
meke et al., 2017) to the end of utterance.
SpeedUtt: Speed up the entire utterance by
1.25x% or 0.75x.
Pitch: Change the pitch by + 3 half octaves.
e Rev: Add room reverbration to the utterance.

S User study

We first analyze the effects of noise on human
perception using crowdsourcing. We use insights
from this experiment to guide the machine learning-
centric analyses that follow.

5.1 Sampling and Noise-Perturbations

We randomly select 900 samples from the IEMO-
CAP dataset for the human perception part of the
study, bounded by some constraints. The sample
size is far larger than the ones used for previous
perception studies (Parada-Cabaleiro et al., 2017;
Scharenborg et al.). We select 100 samples from
each activation and valence pair bin, i.e., 100 sam-
ples from the bin with activation: /low, valence:
low; 100 samples from the bin with activation: low,
and valence: mid, and so on. This ensures that the
chosen 900 samples cover the range of emotions
expressed. We impose another constraint on these
100 samples from each bin, 30 of them are shorter
than first quartile or greater than fourth quartile of
utterance length in seconds to cover both extremi-
ties of the spectrum, and the remaining 70 belong
in the middle. We also ensure that the selected sam-
ples had a 50-50 even split amongst gender. We
introduce noise to 900 samples (Section 3). Each
sample is modulated in ten ways: four randomly
chosen types of environmental noise and six ran-
domly chosen synthetic noise modulations, giving
us a total of 9000 noisy samples.

5.2 Crowdsourcing Setup

We recruited workers using Amazon Mechanical
Turk belonging to the United States who are na-
tive English speakers, to reduce the impact of cul-



tural variability. We ensured that each worker had
> 98% approval rating and more than 500 ap-
proved Human Intelligence Tasks (HITs). We en-
sured that all workers understood the meaning of
activation and valence using a qualification task
that asked workers to rank emotion content simi-
lar to Jaiswal et al. (2019). All HIT workers were
paid a minimum wage ($9.45/hr), pro-rated to the
minute. Each HIT was annotated by three workers.

For our main task, we created original and mod-
ulated sample pairs, and asked three workers to
annotate if they perceived the pair to have the same
emotion. If they said yes for both activation and va-
lence, the noisy sample was labeled same and they
could directly move to the next HIT. If they said
no, the noisy sample was labeled different. In this
case, they were asked to assess the activation and
valence of the noisy sample using Self Assessment
Manikins (Bradley and Lang, 1994) on a scale of
[1, 5] (similar to original IEMOCAP annotation).
We ensured the quality of the annotations by pay-
ing bonus based on time spent, not just number of
HITs, and by disqualifying annotators if their level

of agreement with our attention checks was low.
We created final labels for the noisy examples by

taking the majority vote over each pair. The final
label was either same emotion perception or differ-
ent emotion perception and an averaged valence
and activation score. The inter annotator agreement
was 79% for activation and 76% for valence. All
the samples along with the paired noisy examples
and their annotations will be made available for
further research.

5.3 Human Perception Study Results

Based on crowdsourcing experiment, we find that:
(a) The presence of environmental noise, even

when loud, rarely affects human perception,
verifying our initial judgement that humans
are able to psycho-acoustically mask the back-
ground noise in various cases, as also shown
in prior work (e.g., (Stenbick, 2016)).

(b) Addition of laughter or crying does, as one
might expect, change human perception.

(c) Addition of laughter or crying increases per-
ceived activation while laughter increases per-
ceived valence and crying decreases it.

(d) Increasing the pitch usually increases per-
ceived activation and vice-a-versa.

(e) Increases in the speed of an utterance increases
activation and vice-versa (Busso et al., 2009).

(f) The impercebtility of noise for emotion per-
ception is not statistically correlated to dataset

variables, such as, original emotion of the ut-
terance, the gender of the speaker, and the
length of the utterance.

We report our human perception results below,
focusing on the five synthetic modulations that sig-
nificantly change human perception of either acti-
vation or valence. The values represent the ratio of
the utterances that were marked as different based
on majority vote amongst all the utterances intro-
duced with that noise. The results are as follows:

Act Val

Filler (L) 0.10 0.06
Filler (S) 0.06 0.03
Laugh 0.16 0.17
Cry 020 0.22

SpeedUtt (0.75x%) 0.13  0.03
SpeedUtt (1.25x%) 0.28 0.06
Pitch (1.25x) 0.22  0.07
Pitch (0.75x%) 0.29 0.10

This suggests that the modifications presented in
Table 1 that are imperceptible by humans for emo-
tion perception, should not impact performance of
an ideal machine learning model.

6 Methods

We first outline our baseline state-of-the-art emo-
tion classifier (Section 6.1). We describe methods
to denoise the data (Section 6.3) and to augment
training with both the noise augment samples and
the denoised samples (Section 6.2). Finally, we de-
scribe the setup and evaluation of the use case, the
adversarial attack (Section 6.4).

6.1 Network

To focus on the effect of types of noise contami-
nation on performance of emotion classifiers, we
initially use the state-of-art single utterance emo-
tion classification model which has been used in
previous research (Khorram et al., 2017; Krishna
et al.). In the sections that follow, we introduce
noise-robust methods to understand their ability to
mitigate the problems that arise.

Acoustic Features. We extract 40-dimensional
Mel Filterbanks (MFB) features using a 25-
millisecond Hamming window with a step-size of
10-milliseconds. Each utterance is represented as
a sequence of 40-dimensional feature vectors. We
z-normalize the acoustic features by each speaker.
Emotion Labels. The target emotion labels repre-
sented in a dimensional format are binned into three
classes to represent {low, medium, high}
for both activation and valence.

Architecture. We use a well known architec-
ture (Aldeneh et al., 2017) in emotion recognition
to be ensure a consistent baseline for comparison



of performance over different setups. The extracted
MEBs are processed using a set of convolution lay-
ers and Gated Recurrent Units (GRU), which are
fed through a mean pooling layer to produce an
acoustic representation which is then fed into a set
of dense layers to classify activation or valence.
Training. We use a subject independent five-fold
cross validation scheme to select our train, test and
validation sets. We generate noisy samples for each
sample in the test as described in Section 4. We
use a weighted cross-entropy loss function for each
task and learn the model parameters using the RM-
SProp optimizer. We implement models using the
Keras library (Chollet, 2015). We train our net-
works for a maximum of 50 epochs but use early
stopping to stop the training if the validation loss
does not improve after 5 consecutive epochs. Once
the training process ends, we revert the network’s
weights to those that achieved the lowest validation
loss on the emotion classification task. We use Un-
weighted Average Recall (UAR) (chance is 0.33) as
our metric and report average over all test samples
in 5 runs.

6.2 Noise Augmented Model Training

We then augment the dataset with noise. We test
environmental and synthetic noise separately. We
perform leave-one-noise-out cross-validation by
augmenting each fold with one kind of noise from:
{Hum, Int, Nat}. We train on two kinds of environ-
mental noise and test on the third. We do the same
with synthetic noise by augmenting each fold with
the most impactful augmentations from: {Speed-
Seg, Fade and Reverb}. We then repeat this experi-
ment, including both the noise augmented data and
the same data after denoising (Section 6.3).

6.3 Denoising

Our procedure to make a ‘noise-robust’ emotion
recognition model is two fold: first we pass all
the noisy (and non-noisy samples) in the dataset
through a common denoising algorithm, Recurrent
Neural Network Noise Suppression (RNNNoise,
denoising feature space) (Valin, 2018), proposed
in 2017 for noise suppression, and create ‘noise-
suppressed’ samples in the training, validation and
testing sets. RNNNoise is trained on environmental
noises, and these noises overlap considerably with
those in our dataset. We use the default parameters
used in the algorithm and use it on an ‘as-is’ basis
for our experiments. We assume that the system
does not have the knowledge of ‘which’ noise is in-
troduced and therefore do not compare with other

Table 1: The original activation (Act) and valence (Val) per-
formance is 0.67 and 0.59, respectively. The table shows
the change in UAR on IEMOCAP (Iem) and the Augmented
IEMOCAP (Iem(Aug)) datasets. The rows are augmentation
methods that were evaluated as imperceptible for emotion by
human annotators.

UAR
lem Iem(Aug)
Act  Val Act Val

Environmental Noise

NatSt -25  -24 22 18
NatdB (Co) 20dB  -33 -34 22 13
10dB -37 -41 33 31
0dB -40  -41 27 26
HumSt =22 -24 15 13
HumdB (Co) 20dB -33 -37 .16 .16
10dB  -37 -42 21 .26
0dB -40  -42 25 21
IntSt -21 -25 15 18

IntdB (Co) 20dB -31 -39 20 22
10dB  -34 -39 23 .19
0dB -40  -41 30 .26
Synthetic Noise
SpeedSeg -09 -12 .03 .02
Fade In -07 -10 .05 .04
Out -09 -14 .02 .06
DropW -04  -05 .02 .00
DropLt -03 -02 .06 .03
Reverb -36  -37 .05 .04

denoising algorithms that assume a-priori knowl-
edge of noise category (e.g., (Tibell et al., 2009)).
We then train a network with the architecture and
hyperparameter ranges described in Section 6.1.
The network is trained on features derived from
the denoised samples. Therefore, it can learn to
recognize emotion, even if the chosen RNNNoise
algorithm introduces unusual signal properties.

6.4 Use Case: Adversarial Attack

The methods thus far present techniques to gen-
erate noisy data, understand the fragility of the
model with respect to these noise modulations,
and then to counteract this fragility. Finally, we
present methods to investigate the implications of
model fragility. We frame the problem as a decision
boundary untargeted attack, which tries to find the
minimal amount of noise perturbation possible in
k-queries such that the decision of a model changes,
while having no knowledge about the internal work-
ings of the model (probabilities or gradients). This
framing allows us to understand what may happen
if we deploy a fragile model into the real world.

A decision-based attack starts with a large ad-
versarial perturbation and seeks to reduce this per-
turbation while staying adversarial. In our case,
because we are considering noise augmentation,
we define the distance between an adversarial sam-



ple and the original sample as the degradation in
signal to noise ratio (SNR). The input to this at-
tack model is a set of permissible noise categories
(e.g., white, Gaussian, or categorical), and the orig-
inal signal. We also modify the decision boundary
attack to first use any random sound from four cate-
gories at the lowest SNR level. If the attack model
is successful, it then shifts to using other additive
noise options from that category.

Optionally, we provide information about how
much performance degradation of the model is ob-
served given a particular noise type, to the attack
model, such that it is more successful given the
same limited budget of k-queries. The modified
sample is considered a successful attack only when
both, the noise addition chosen by the algorithm
is at SNR > 10dB, and the model changes its out-
put label. The former condition ensures that the
sample is not audibly judged as contaminated by
humans (Kidd Jr et al., 2016). We use the Fool-
box Tooklit (Rauber et al., 2017) to implement a
decision boundary attack (Brendel et al., 2017).

For our purpose, we assume that an attacker
has access to a subset of labelled data from the
set of users (U) in IEMOCAP and that the train-
ing and the testing conditions remain the same as
that of the black-box emotion recognition model.
We calculate the average accuracy of a success-
ful attack, Accyyt, for any sample from user U,
using k queries. We calculate Accyy varied over
two variables, each with two possible values: 1)
Corr € {Y, N} to represent if the attacker has
access to the information about the correlation
between the performance deterioration of emo-
tion recognition and the noise category and 2)
Noises € {All, Im} to indicate if the evaluation
is performed on A/l noises or only noises that are
Imperceptible by humans for emotion perception.

7 Analysis
7.1 Baseline (SoTA) Model Performance

We assess the performance of the model on the
original IEMOCAP data and find that the model
obtains a performance of 0.67 UAR on the activa-
tion and 0.59 UAR on the valence task. Next, we
augment the test samples of each fold with each of
the noise types (Section 4) and investigate how the
performance of the model changes. We do not in-
clude noise types that were found to often affect
human perception (e.g., Pitch, SpeedUtt, Laugh).
We find that the machine learning model’s per-
formance decreases by an average of 33% for envi-

ronmental noise, fading, and reverberation. There
is also a smaller drop in performance for speeding
up parts of the utterance and dropping words, show-
ing the brittleness of these models. Table 1 reports
the percentage change in performance when test-
ing on noisy test data as over clean test data (0.67
for activation and 0.59 for valence).

7.2 Baseline Model Performance with
Augmentation

We find that data augmentation improves perfor-
mance on noisy test data over a baseline system
trained only on the original [IEMOCAP data. This
is very pronounced (an increase of 22%) when the
environmental noise is introduced at the start of the
utterance, e.g., when the test set is introduced with
Nat St and the train set is introduced with HumSt
and IntSt. We speculate that the network learns
to assign different weights to the start and end of
the utterance to account for the initial noise.
Though the performance increases on the contin-
uous background noise contaminated test samples,
is aided by addition of training samples that have a
continuously present background noise as well, the
performance is still affected due to introduction of
new noise in the test set. We also find that it is hard
to improve the performance of the system on utter-
ances contaminated with reverberation, a common
use case, even when the training set is augmented
with other types of noise. This can be because, re-
verberation adds a continuous human speech signal
in the background delayed by a small period of
time. None of the other kind of noises have speech
in them, and hence augmentation doesn’t aid the
model to learn robustness to this kind of noise.

7.3 Denoising Algorithms and Model
Performance

We find that adding a denoising component to the
models leads to a significant improvement (average
of 23% =+ 3% across all environmental noise cat-
egories) in continuous noise introduction at 20dB
SNR as compared to when there is no denoising or
augmentation performed. We observe a decline in
performance when using noise suppression algo-
rithms to deal with other signal to noise ratios of
continuous noise additions, possibly due to mask-
ing of emotional information from the speech to
maintain comprehensibility which may flatten the
tone in the obtained denoised signal (Spadini and
Suyama, 2019). We further show that the addition
of a denoising component does not significantly
improve performance in presence of signal manip-



Table 2: Attacker efficiency (Accqtt) using noise-based ad-
versarial methods over the number of black box queries an
attacker can access (k), the knowledge of correlation between
performance deterioration of emotion recognition and noise
category (Corr), and whether the attack efficiency is evaluated
only on those noise categories that human perception doesn’t
change (Noises). Higher values are better. Maximum value
for each k is in bolds. Significance is established using paired
t-test, adjusted p-value < 0.05

Corr  Noises | k=5 k=15 k=25
No Im 022 0.29 0.39
Yes Im 032 0.38 0.53

No All 031 036 045
Yes All 036 043 0.58

ulation rather than just noise addition, for example,
when samples were faded in or out or segments
were sped up. While we did see an improvement in
performance (an average of +36%) for unseen re-
verberation contaminated samples as compared to
data augmentation, the performance is still signifi-
cantly lower (—28%) than when tested on a clean
test set. Finally, we observe an general trend of in-
crease in emotion recognition performance for the
combined dataset (noisy and non-noisy samples),
as compared to when the model is trained on the
clean training set, which supports the findings from
previous dataset augmentation researches.

7.4 Use Case: Adversarial Attack Evaluation

In this section, we aim to show how the addition
of ‘non-allowed’ noises can not only impact the
brittleness of already trained models, but also lead
to inaccurate evaluation metrics. We use the term
‘non-allowed’ noises to refer to the set of noises
that have been shown to change human perception,
because they lead to unpredictable shifts in ground
truth labels. We use the downstream task of noise
contamination for adversarial attacks as an example
to show how the noise-augmentation criterion can
lead to incorrect evaluation metrics. Table 2 shows
the attacker efficiency. We find that an attack is
more likely to succeed if the attacker can corrupt
the sample with ‘non-allowed’ noises. For example,
the attacker, with no additional knowledge has a
success rate of 0.31 with five allowed queries (k=5)
when using complete set of noises for corruption
as compared to 0.22 where they only use noises
that do not change human perception of emotion,
demonstrating fragile benchmarking and evaluation
of adversarial efficiency and robustness.

8 Recommendations

We propose a set of recommendations, for both aug-
mentation and deployment of emotion recognition
models in the wild, that are grounded in human

perception. For augmentation, we suggest that:
1. Environmental noise should be added to datasets

to improve generalizability to varied noise con-
ditions, whether using denoising, augmentation,
or a combination of both.

2. Itis good to augment datasets by fading the loud-
ness of the segments, dropping letters or words,
and speeding up small (no more than 25% of the
total sample length) segments of the complete
sound samples in the dataset. But it is important
to note that these augmented samples should not
be passed through the denoising component as
the denoised version loses emotion information.

3. One should not change the speed of the entire
utterance more than 5% and should not add in-
tentional pauses or any background noises that
elicit emotion behavior, e.g., sobs or laughter.

Regarding deployment, we suggest that:

1. Noisy starts and ends of utterances can be han-

dled by augmentation, hence, if the training set
included these augmentations, there is no issue
for deployed emotion recognition systems.

2. Reverberation is hard to handle for even aug-
mented emotion recognition models. Hence, the
samples must either be cleaned to remove the re-
verberation effect, or must be identified as low
confidence for classification.

3. Deploy auxilary models that classify the noise
types, and degree/intent of signal manipulation
are useful filters for identifying maliciously ma-
nipulated data before the data is sent to be pro-
cessed by the emotion recognition model.

9 Conclusion

In this work, we study how the presence of real
world noise, environmental or synthetic, affects hu-
man emotion perception. We identify noise sources
that do not affect human perception, such that they
can be confidently used for data augmentation. We
look at change in performance of models that are
trained on the original dataset when tested on these
noisy samples and if augmentation of the training
set leads to an improvement. We conclude that,
unlike humans, machine learning models are ex-
tremely brittle to the introduction of many kinds
of noise. While the performance of the machine
learning model on noisy samples is aided from
augmentation, the performance is still significantly
lower when the noise in the train and test environ-
ments does not match. In this paper, we demon-
strate fragility of the emotion recognition systems
and valid methods to augment the datasets, which
is a critical concern in real world deployment.



10 Ethical Considerations

Data augmentation is often applied to speech emo-
tion recognition to improve robustness. Better aug-
mentation methods are an important way to not
only ensure reliability and robustness of these mod-
els, but also improve the real-life adoption in high-
stakes downstream applications. Knowing when
human perception of emotion can change in the
presence of noise is needed to design better model
unit tests and adversarial tests for verifying the
reliability of the system. However, emotion vari-
ability is often dependent on multiple factors, such
as, culture, race, gender, age etc, some of which
are highly protected variables. These models can
also encode stereotypical expected behavior from
a certain group, and hence have a higher error rate
for other groups. It is important to note that this pa-
per considers a small set of crowd-sourced workers
as human raters of emotion perception, who are lo-
cated in the United States and are well versed in
English, the language this dataset is collected in,
and the model is trained on.
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