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Abstract
Emotion recognition models are a key compo-001
nent of several downstream applications, such002
as mental health assessments. These mod-003
els are usually trained on small, clean, and004
synthetically controlled datasets, which leads005
to high failure rates in presence of ‘unseen’006
background noises, promoting noise-overlay007
based adversarial attacks. Noisy data augmen-008
tation has aided robustness of speech recog-009
nition and classification models, wherein, the010
ground truth label remains consistent even in011
the presence of noise which, isn’t always true012
for subjectively perceived emotion labels. In013
this work, we create realistic noisy samples014
of IEMOCAP, using multiple categories of en-015
vironmental and synthetic noise. We evalu-016
ate how ground truth labels (human) and pre-017
dicted labels (model) change as a function of018
these noise source introductions. We show019
that some commonly used noisy augmentation020
techniques, impact human perception of emo-021
tion, thus, falsifying the ‘clean’ ground truth022
label. Our experiments show that the perfor-023
mance of both, baseline, and even denoised024
emotion recognition models significantly de-025
clines on noisy samples as compared to that026
on the clean set. This performance degrada-027
tion prevails when model is trained on a com-028
bination of clean and test set mismatched noisy029
samples. We investigate how using the above030
found ‘human-perceptible’ noise overlays can031
lead to inaccurate metrics when testing the032
model for robustness or vulnerability to adver-033
sarial attacks. Finally, we present a set of rec-034
ommendations for noise-based augmentation035
of speech emotion datasets and for deploying036
the models trained using those datasets.037

1 Introduction038

Emotion recognition models are often used for039

downstream applications such as advertising, men-040

tal health monitoring (Khorram et al., 2018), hir-041

ing (emo) and surveillance (Martin, 2019). There-042

fore, accuracy and adversarial robustness is critical,043

as incorrect emotion predictions can have devas-044

tating consequences. However, robust and gener-045

alizable emotion recognition systems remain out046

of reach due to the complexity and variability that 047

is inherent in the production of emotion. Further, 048

emotion recognition is a low-resourced domain, 049

and hence, the performance of emotion recognition 050

models is often improved when techniques such 051

as data augmentation or transfer learning are ap- 052

plied (Pappagari et al., 2021; Deng et al.). But, data 053

augmentation, used incorrectly, has the potential to 054

be a further source of noise and may lead to vul- 055

nerabilities against maliciously manipulated input 056

data. In this paper we investigate noise based data 057

augmentation techniques, their effects on labels ob- 058

tained from both, human and emotion recognition 059

models, an assessment of how these augmentation 060

techniques could introduce errors in evaluation of 061

targeted misclassification attacks, and finally pro- 062

vide recommendations for how to move forward. 063
One of the prime weaknesses of emotion recog- 064

nition techniques centers on the very nature of the 065

data; common datasets are generally collected in 066

controlled laboratory environments where one of 067

the goals is to avoid as much variation due to noise 068

as possible. This collection method ensures that the 069

collected data are variable only due to the presence 070

of emotion or predefined control variables. The 071

benefit is that the trained models generally avoid 072

spurious correlations between noise and emotion la- 073

bels, correlations that may exist in real-world data 074

(e.g., data from frustrated users occur in an environ- 075

ment with traffic noise and from non-frustrated 076

users occur in a quiet environment). However, 077

these clean and small datasets promote a mismatch 078

between training and testing conditions allowing 079

an adversary to effectively probe a model, which 080

may be overfitted on a small corpus data due to 081

spurious and learned correlations. 082
Researchers have addressed these challenges sep- 083

arately. For emotion recognition, low resource 084

challenge is handled by augmenting the controlled 085

collected datasets of emotion via signal manipu- 086

lation (e.g., adding background noise) aiming for 087

enhanced generalizability to real-world noise con- 088

ditions or mitigating the risk of overfitting to vari- 089

ations particular to a small dataset (Zheng et al., 090
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2016). These manipulations have included distribu-091

tion shift (Abdelwahab and Busso, 2018), phys-092

iological factors (Jaiswal et al.), or pink/white093

noise (Parada-Cabaleiro et al., 2017; Scharenborg094

et al.). In speech recognition and speaker iden-095

tification, the scope of these manipulations is096

larger, encouraging models to learn task-salient097

features (Mošner et al., 2019). Biberger and Ewert098

(2016) analyzed robust augmentation methods for099

automatic speech recognition including the omis-100

sion of letters, changes in the speed of speech,101

and the presence of environmental noise through102

psycho-acoustic masking. They found that humans103

have surprisingly robust speech processing systems104

that can easily overcome these modulations. How-105

ever, the resulting effect of similar modulations on106

gestalt emotion perception is understudied. The107

challenge associated with adversarial attacks (in-108

tentionally forcing the model to misclassify sam-109

ples), has been addressed by addressed by various110

methods, such as noisy augmentation (Pappagari111

et al., 2021). But, without actually linking these112

two challenges together it is unlikely that emotion113

recognition models will be sufficiently robust and114

resilient due to the inherent link between them.115

In this paper, we address these two challenges116

jointly. We first augment a subset of the Interactive117

Emotional Dyadic MOtion Capture (IEMOCAP)118

dataset (Busso et al., 2008), a common speech emo-119

tion recognition corpus by introducing noise, both120

by manipulating the signal and adding real-world121

noise. We analyze how both human perception and122

state-of-the-art emotion recognition algorithms, in-123

cluding noise-robust methods, perform differently124

given this noise. We then look into methods to125

offset these effects by first augmenting the train-126

ing dataset with examples of the noise category127

and then introducing a denoising method to the128

pipeline. Finally, we discuss an often overlooked129

effect of the choice of noise categories for data130

augmentation i.e., unreliable metrics during model131

evaluation, specifically for the case of evaluating132

adversarial attack accuracy. We end the paper with133

a set of recommendations for emotion dataset aug-134

mentation techniques and and deployment of these135

emotion recognition algorithms. We investigate the136

following research questions:137

Q1: Does the presence of noise effect emotion per-138

ception as evaluated by human raters? Is this effect139

dependent on the utterance length, loudness and140

type of the added noise, and the original emotion?141

Q2: How does the presence of noise affect the per-142

formance of emotion recognition models? Does 143

this effect vary based on the type of the added noise 144

in agreement with changes in human perception? 145

Q3: Does dataset augmentation or sample denois- 146

ing help improve the robustness of emotion recog- 147

nition models to unseen noise? 148

Q4: Does the separation of noise additions into ‘de- 149

sirable’ and ‘perceptible’ effect the accuracy of an 150

attacker aiming to force the model to misclassify? 151

Q5: What are the recommended practices for 152

speech emotion dataset augmentation and model 153

deployment based on insights from the aforemen- 154

tioned crowdsourcing experiments? 155
Our findings suggest that human emotion percep- 156

tion is usually unaffected by the presence of envi- 157

ronmental noise or common modulations such as 158

reverberations and fading loudness. However, it 159

is affected by signal manipulations such as speed, 160

pitch change, and even the presence of pauses and 161

fillers, which should therefore be used with cau- 162

tion. We show that the performance of the emotion 163

recognition models given noisy data is improved by 164

either dataset augmentation or sample denoising, or 165

both. However, the performance drops when an un- 166

seen noise category is tested. Further, we show that 167

these approaches are brittle to the introduction of 168

certain common types of noise that do not change 169

human perception, especially reverberation. Criti- 170

cally, we show how noise augmentation practices 171

can lead to a falsifiable improvement when measur- 172

ing efficiency of adversarial attacks, thus leading 173

to an unreliable metric for developing and choos- 174

ing methods that are best suited for avoiding these 175

attacks. Finally, we end the paper with a set of 176

augmentation and deployment suggestions. These 177

types of signal modulation are common;y observed 178

in virtual interactions. The fragility of emotion 179

recognition models to such distortions can pose a 180

security risk, a risk that must be well understood 181

before these technologies are widely deployed. 182

2 Relation to Prior Work 183

Previous work focused on understanding how noise 184

impacts machine learning models can be classified 185

into three main directions: (a) robustness in auto- 186

matic speech recognition or speaker verification; 187

(b) noise-based adversarial example generation; 188

and, (c) improvement in performance of machine 189

learning models when augmented with noise. 190
Existing work has looked at how to built speech 191

recognition systems that are robust to various kinds 192

and levels of noise (Li et al., 2014). The common 193

themes in these papers are a concentration on either 194
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data augmentation or gathering more real-world195

data to produce accurate transcripts (Zheng et al.,196

2016). Other lines of work have looked into pre-197

venting various attacks, e.g., spoofing or recording198

playback, on speaker verification systems (Shim199

et al.). Noise in these systems is usually consid-200

ered to be caused by reverberations or channel-201

based modulations (Zhao et al., 2014). Researchers202

have also looked into building noise robust emotion203

recognition models, using either signal transforma-204

tion or augmentation (Aldeneh and Provost, 2017).205

But data augmentation in this analysis was formu-206

lated in a similar manner to those for speech recog-207

nition, or, speaker identification systems, which208

have a fixed ground truth and are independent of209

human perception. Previous works have also inves-210

tigated adversarial example generation that aim to211

create audio samples that change the output of the212

classifier. However, these methods assume white-213

box access to the network and create modifications214

in either feature vectors or actual wav files (Carlini215

and Wagner; Gong and Poellabauer, 2017). This216

generally results in samples that either have percep-217

tible differences when played back to a human, or218

are imperceptible to a human but fail to attack the219

model when played over-air (Carlini and Wagner).220

The line of work closest to ours is data augmenta-221

tion aimed for training more generalizable models.222

Noise and manipulation-based data augmentation223

is a prime research field in the space of vision and224

text. Sohn et al. investivated how rotating and225

blackening out random pixels in images to create226

augmented datasets leads to better performance on227

the test set for digit and object recognition (Sohn228

et al., 2020). They also investigated how data aug-229

mentation can help with zero shot object recog-230

nition in sparse classes of the dataset, providing231

new options for sub sampling of classes. In the232

field of Natural Language Processing (NLP), re-233

searchers studied how replacing words with their234

semantic synonyms can lead to better performance235

on tasks such as Part of Speech (POS) tagging236

and semantic parsing (Wallace et al., 2019). Re-237

searchers have explored techniques for noise based238

data augmentation (Kim and Kim), mostly focus-239

ing on how model training can be improved to yield240

better performance. However, these augmentation241

techniques are mostly used for acoustic event detec-242

tion, speaker verification or speech recognition (Ko243

et al., 2015) , and has been sparingly used in audio244

based para-linguistic classification tasks.245

The common way to deal with noise in any au-246

dio signal is to use denoising algorithms. Hence, it 247

is a valid counterpoint to understand how machine 248

learning models trained to recognize emotions per- 249

form if they are tested on denoised samples. To 250

this end, we look at two major approaches to de- 251

noising algorithms in the audio space: Denoising 252

Feature Space (Valin, 2018) and Speech Enhance- 253

ment (Chakraborty et al., 2019). Denoising feature 254

space algorithms seek to remove noise from the 255

extracted front end features. Speech enhancement 256

algorithms seek to convert noisy speech to more in- 257

telligible speech. Both techniques are associated 258

with challenges, such as signal degradation (Valin, 259

2018) to harmonic disintegration (Valin, 2018). 260
Model robustness to noise or an adversarial at- 261

tack can be evaluated by adding noise to the dataset 262

and testing performance of the model. This method 263

is commonly used for various tasks, such as, speech 264

recognition, or speaker identification (Abdullah 265

et al., 2019), whose perception is independent of 266

noise as discussed before. The closest task to ours 267

where the ground truth varies based on noise in- 268

troduction is sentiment analysis. In this case, the 269

adversarial robustness is usually tested by flipping 270

words to their synonyms, such that the meaning of 271

the text remains the same, and analyzing how the 272

predictions of the model change (Ebrahimi et al., 273

2017). Unlike the lexical modality, speech can- 274

not be broken down into discrete components with 275

obvious replacements while maintaining speech 276

feature integrity. Hence, introduction of noise for 277

emotion recognition while assuring that the percep- 278

tion remains the same is more difficult. 279
To the best of our knowledge, this is the first 280

work that has studied the effect of different kinds 281

of real-world noise and varying amounts of noise 282

contamination on the human perception of emotion 283

and the implication of training on these datasets 284

from the perspective of machine performance and 285

robustness to adversarial attacks. 286

3 Emotion Dataset 287

For our study, we use the IEMOCAP dataset (Busso 288

et al., 2008), created to explore the relationship be- 289

tween emotion, gestures, and speech. 10 actors, 290

in pairs of two, one male and one female, were 291

recorded over five sessions (either scripted or im- 292

provised). The data were segmented by speaker 293

turn, resulting in a total of 10,039 utterances (5,255 294

scripted turns and 4,784 improvised turns). It con- 295

tains audio, video, and associated manual transcrip- 296

tions. We train the emotion classification models 297

on the full IEMOCAP dataset (Section 6.1). 298
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4 Noise299

4.1 Environmental Noise300

We define environmental noises (ENV) as addi-301

tive background noises, obtained from the ESC-302

50 dataset(Piczak)1, which is used for noise con-303

tamination and environmental sound classification.304

These environmental sounds are representative of305

many noises in real world deployments, especially306

in the context of virtual and smart home conversa-307

tional agents. We use the following categories:308
• Natural soundscapes (Nat), e.g., rain, wind.309

• Human, non-speech sounds (Hum), e.g., sneez-310

ing, coughing etc.311

• Interior/domestic sounds (Int), e.g., door312

creaks, clock ticks etc313
We manipulate two factors in addition to noise:314
• ENVPos: We vary the position of the introduc-315

tion of sound that (i) starts and then fades out in316

loudness(St), or (ii) occurs during the entirety317

of the duration of the utterance(Co). Complete318

additive background would represent a consis-319

tent noise source in real world, e.g., fan rotation.320

• ENVdB: We vary the signal to noise ratio (SNR)321

of additive background noise for the Co method322

at levels of 20dB, 10dB and 0dB.323

• ENVLen: We vary the length of the introduced324

background noise, from a short blip to the length325

of the entire clip. We denote this by: Sh: Short,326

Me: Medium, and, Co: Complete. A background327

noise over the entire clip emulates a consistent328

real world noise source (e.g. fan rotation).329

4.2 Synthetic Noise330

We define synthetic noise as modulations that aren’t331

additive in background. These kinds of noises in au-332

dio signal can occur from linguistic/paralinguistic333

factors, room environment, internet lags, or the334

physical locomotion of the speaker. We use the ten335

following categories:336
• SpeedSeg: We speed up a random segment of337

the utterance by 1.25×.338

• Fade: We fade the loudness of the utterance by339

2% every second, which emulates the scenario340

of a user moving away from the speaker. We341

increase the loudness for fade in, and decrease342

for fade out.343

• Filler: Insertion of non-verbal short fillers344

such as ‘uh’, ‘umm’ (from the same speaker) in345

the middle of a sentence. The insertion is either346

just the filler (S) or succeeded and preeceeded347

by a long pause (L).348

1https://github.com/karoldvl/ESC-50

• DropW: Dropping all non-essential word belong- 349

ing to the set :{a, the, an, so, like, and}. 350

• DropLt: Phonological deletion or dropping 351

of letters has been widely studied as a part 352

of native US-English dialect (pho; Yuan and 353

Liberman). Hence, we drop letters in accor- 354

dance with various linguistic styles chosen from 355

the set:{/h/+vowel, vowel+/nd/+consonant(next 356

word), consonant+/t/+consonant(next word), 357

vowel+/r/+consonant, /ihng/}. 358

• Laugh/Cry: We add “sob” and “short- 359

laughter” sounds obtained from AudioSet (Gem- 360

meke et al., 2017) to the end of utterance. 361

• SpeedUtt: Speed up the entire utterance by 362

1.25× or 0.75×. 363

• Pitch: Change the pitch by ± 3 half octaves. 364

• Rev: Add room reverbration to the utterance. 365

5 User study 366

We first analyze the effects of noise on human 367

perception using crowdsourcing. We use insights 368

from this experiment to guide the machine learning- 369

centric analyses that follow. 370

5.1 Sampling and Noise-Perturbations 371

We randomly select 900 samples from the IEMO- 372

CAP dataset for the human perception part of the 373

study, bounded by some constraints. The sample 374

size is far larger than the ones used for previous 375

perception studies (Parada-Cabaleiro et al., 2017; 376

Scharenborg et al.). We select 100 samples from 377

each activation and valence pair bin, i.e., 100 sam- 378

ples from the bin with activation: low, valence: 379

low; 100 samples from the bin with activation: low, 380

and valence: mid, and so on. This ensures that the 381

chosen 900 samples cover the range of emotions 382

expressed. We impose another constraint on these 383

100 samples from each bin, 30 of them are shorter 384

than first quartile or greater than fourth quartile of 385

utterance length in seconds to cover both extremi- 386

ties of the spectrum, and the remaining 70 belong 387

in the middle. We also ensure that the selected sam- 388

ples had a 50-50 even split amongst gender. We 389

introduce noise to 900 samples (Section 3). Each 390

sample is modulated in ten ways: four randomly 391

chosen types of environmental noise and six ran- 392

domly chosen synthetic noise modulations, giving 393

us a total of 9000 noisy samples. 394

5.2 Crowdsourcing Setup 395

We recruited workers using Amazon Mechanical 396

Turk belonging to the United States who are na- 397

tive English speakers, to reduce the impact of cul- 398
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tural variability. We ensured that each worker had399

> 98% approval rating and more than 500 ap-400

proved Human Intelligence Tasks (HITs). We en-401

sured that all workers understood the meaning of402

activation and valence using a qualification task403

that asked workers to rank emotion content simi-404

lar to Jaiswal et al. (2019). All HIT workers were405

paid a minimum wage ($9.45/hr), pro-rated to the406

minute. Each HIT was annotated by three workers.407
For our main task, we created original and mod-408

ulated sample pairs, and asked three workers to409

annotate if they perceived the pair to have the same410

emotion. If they said yes for both activation and va-411

lence, the noisy sample was labeled same and they412

could directly move to the next HIT. If they said413

no, the noisy sample was labeled different. In this414

case, they were asked to assess the activation and415

valence of the noisy sample using Self Assessment416

Manikins (Bradley and Lang, 1994) on a scale of417

[1, 5] (similar to original IEMOCAP annotation).418

We ensured the quality of the annotations by pay-419

ing bonus based on time spent, not just number of420

HITs, and by disqualifying annotators if their level421

of agreement with our attention checks was low.422
We created final labels for the noisy examples by423

taking the majority vote over each pair. The final424

label was either same emotion perception or differ-425

ent emotion perception and an averaged valence426

and activation score. The inter annotator agreement427

was 79% for activation and 76% for valence. All428

the samples along with the paired noisy examples429

and their annotations will be made available for430

further research.431

5.3 Human Perception Study Results432

Based on crowdsourcing experiment, we find that:433
(a) The presence of environmental noise, even434

when loud, rarely affects human perception,435

verifying our initial judgement that humans436

are able to psycho-acoustically mask the back-437

ground noise in various cases, as also shown438

in prior work (e.g., (Stenbäck, 2016)).439

(b) Addition of laughter or crying does, as one440

might expect, change human perception.441

(c) Addition of laughter or crying increases per-442

ceived activation while laughter increases per-443

ceived valence and crying decreases it.444

(d) Increasing the pitch usually increases per-445

ceived activation and vice-a-versa.446

(e) Increases in the speed of an utterance increases447

activation and vice-versa (Busso et al., 2009).448

(f) The impercebtility of noise for emotion per-449

ception is not statistically correlated to dataset450

variables, such as, original emotion of the ut- 451

terance, the gender of the speaker, and the 452

length of the utterance. 453

We report our human perception results below, 454

focusing on the five synthetic modulations that sig- 455

nificantly change human perception of either acti- 456

vation or valence. The values represent the ratio of 457

the utterances that were marked as different based 458

on majority vote amongst all the utterances intro- 459

duced with that noise. The results are as follows: 460
Act Val

Filler(L) 0.10 0.06
Filler(S) 0.06 0.03
Laugh 0.16 0.17
Cry 0.20 0.22
SpeedUtt(0.75x) 0.13 0.03
SpeedUtt(1.25x) 0.28 0.06
Pitch(1.25x) 0.22 0.07
Pitch(0.75x) 0.29 0.10

461

This suggests that the modifications presented in 462

Table 1 that are imperceptible by humans for emo- 463

tion perception, should not impact performance of 464

an ideal machine learning model. 465

6 Methods 466

We first outline our baseline state-of-the-art emo- 467

tion classifier (Section 6.1). We describe methods 468

to denoise the data (Section 6.3) and to augment 469

training with both the noise augment samples and 470

the denoised samples (Section 6.2). Finally, we de- 471

scribe the setup and evaluation of the use case, the 472

adversarial attack (Section 6.4). 473

6.1 Network 474

To focus on the effect of types of noise contami- 475

nation on performance of emotion classifiers, we 476

initially use the state-of-art single utterance emo- 477

tion classification model which has been used in 478

previous research (Khorram et al., 2017; Krishna 479

et al.). In the sections that follow, we introduce 480

noise-robust methods to understand their ability to 481

mitigate the problems that arise. 482

Acoustic Features. We extract 40-dimensional 483

Mel Filterbanks (MFB) features using a 25- 484

millisecond Hamming window with a step-size of 485

10-milliseconds. Each utterance is represented as 486

a sequence of 40-dimensional feature vectors. We 487

z-normalize the acoustic features by each speaker. 488

Emotion Labels. The target emotion labels repre- 489

sented in a dimensional format are binned into three 490

classes to represent {low, medium, high} 491

for both activation and valence. 492

Architecture. We use a well known architec- 493

ture (Aldeneh et al., 2017) in emotion recognition 494

to be ensure a consistent baseline for comparison 495
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of performance over different setups. The extracted496

MFBs are processed using a set of convolution lay-497

ers and Gated Recurrent Units (GRU), which are498

fed through a mean pooling layer to produce an499

acoustic representation which is then fed into a set500

of dense layers to classify activation or valence.501

Training. We use a subject independent five-fold502

cross validation scheme to select our train, test and503

validation sets. We generate noisy samples for each504

sample in the test as described in Section 4. We505

use a weighted cross-entropy loss function for each506

task and learn the model parameters using the RM-507

SProp optimizer. We implement models using the508

Keras library (Chollet, 2015). We train our net-509

works for a maximum of 50 epochs but use early510

stopping to stop the training if the validation loss511

does not improve after 5 consecutive epochs. Once512

the training process ends, we revert the network’s513

weights to those that achieved the lowest validation514

loss on the emotion classification task. We use Un-515

weighted Average Recall (UAR) (chance is 0.33) as516

our metric and report average over all test samples517

in 5 runs.518

6.2 Noise Augmented Model Training519

We then augment the dataset with noise. We test520

environmental and synthetic noise separately. We521

perform leave-one-noise-out cross-validation by522

augmenting each fold with one kind of noise from:523

{Hum, Int, Nat}. We train on two kinds of environ-524

mental noise and test on the third. We do the same525

with synthetic noise by augmenting each fold with526

the most impactful augmentations from: {Speed-527

Seg, Fade and Reverb}. We then repeat this experi-528

ment, including both the noise augmented data and529

the same data after denoising (Section 6.3).530

6.3 Denoising531

Our procedure to make a ‘noise-robust’ emotion532

recognition model is two fold: first we pass all533

the noisy (and non-noisy samples) in the dataset534

through a common denoising algorithm, Recurrent535

Neural Network Noise Suppression (RNNNoise,536

denoising feature space) (Valin, 2018), proposed537

in 2017 for noise suppression, and create ‘noise-538

suppressed’ samples in the training, validation and539

testing sets. RNNNoise is trained on environmental540

noises, and these noises overlap considerably with541

those in our dataset. We use the default parameters542

used in the algorithm and use it on an ‘as-is’ basis543

for our experiments. We assume that the system544

does not have the knowledge of ‘which’ noise is in-545

troduced and therefore do not compare with other546

Table 1: The original activation (Act) and valence (Val) per-
formance is 0.67 and 0.59, respectively. The table shows
the change in UAR on IEMOCAP (Iem) and the Augmented
IEMOCAP (Iem(Aug)) datasets. The rows are augmentation
methods that were evaluated as imperceptible for emotion by
human annotators.

UAR
Iem Iem(Aug)

Act Val Act Val

Environmental Noise

NatSt -.25 -.24 .22 .18
NatdB (Co) 20dB -.33 -.34 .22 .13

10dB -.37 -.41 .33 .31
0dB -.40 -.41 .27 .26

HumSt -.22 -.24 .15 .13
HumdB (Co) 20dB -.33 -.37 .16 .16

10dB -.37 -.42 .21 .26
0dB -.40 -.42 .25 .21

IntSt -.21 -.25 .15 .18
IntdB (Co) 20dB -.31 -.39 .20 .22

10dB -.34 -.39 .23 .19
0dB -.40 -.41 .30 .26

Synthetic Noise

SpeedSeg -.09 -.12 .03 .02
Fade In -.07 -.10 .05 .04

Out -.09 -.14 .02 .06
DropW -.04 -.05 .02 .00
DropLt -.03 -.02 .06 .03
Reverb -.36 -.37 .05 .04

denoising algorithms that assume a-priori knowl- 547

edge of noise category (e.g., (Tibell et al., 2009)). 548

We then train a network with the architecture and 549

hyperparameter ranges described in Section 6.1. 550

The network is trained on features derived from 551

the denoised samples. Therefore, it can learn to 552

recognize emotion, even if the chosen RNNNoise 553

algorithm introduces unusual signal properties. 554

6.4 Use Case: Adversarial Attack 555

The methods thus far present techniques to gen- 556

erate noisy data, understand the fragility of the 557

model with respect to these noise modulations, 558

and then to counteract this fragility. Finally, we 559

present methods to investigate the implications of 560

model fragility. We frame the problem as a decision 561

boundary untargeted attack, which tries to find the 562

minimal amount of noise perturbation possible in 563

k-queries such that the decision of a model changes, 564

while having no knowledge about the internal work- 565

ings of the model (probabilities or gradients). This 566

framing allows us to understand what may happen 567

if we deploy a fragile model into the real world. 568

A decision-based attack starts with a large ad- 569

versarial perturbation and seeks to reduce this per- 570

turbation while staying adversarial. In our case, 571

because we are considering noise augmentation, 572

we define the distance between an adversarial sam- 573
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ple and the original sample as the degradation in574

signal to noise ratio (SNR). The input to this at-575

tack model is a set of permissible noise categories576

(e.g., white, Gaussian, or categorical), and the orig-577

inal signal. We also modify the decision boundary578

attack to first use any random sound from four cate-579

gories at the lowest SNR level. If the attack model580

is successful, it then shifts to using other additive581

noise options from that category.582

Optionally, we provide information about how583

much performance degradation of the model is ob-584

served given a particular noise type, to the attack585

model, such that it is more successful given the586

same limited budget of k-queries. The modified587

sample is considered a successful attack only when588

both, the noise addition chosen by the algorithm589

is at SNR > 10dB, and the model changes its out-590

put label. The former condition ensures that the591

sample is not audibly judged as contaminated by592

humans (Kidd Jr et al., 2016). We use the Fool-593

box Tooklit (Rauber et al., 2017) to implement a594

decision boundary attack (Brendel et al., 2017).595

For our purpose, we assume that an attacker596

has access to a subset of labelled data from the597

set of users (U) in IEMOCAP and that the train-598

ing and the testing conditions remain the same as599

that of the black-box emotion recognition model.600

We calculate the average accuracy of a success-601

ful attack, Accatt, for any sample from user Ua602

using k queries. We calculate Accatt varied over603

two variables, each with two possible values: 1)604

Corr ∈ {Y,N} to represent if the attacker has605

access to the information about the correlation606

between the performance deterioration of emo-607

tion recognition and the noise category and 2)608

Noises ∈ {All, Im} to indicate if the evaluation609

is performed on All noises or only noises that are610

Imperceptible by humans for emotion perception.611

7 Analysis612

7.1 Baseline (SoTA) Model Performance613

We assess the performance of the model on the614

original IEMOCAP data and find that the model615

obtains a performance of 0.67 UAR on the activa-616

tion and 0.59 UAR on the valence task. Next, we617

augment the test samples of each fold with each of618

the noise types (Section 4) and investigate how the619

performance of the model changes. We do not in-620

clude noise types that were found to often affect621

human perception (e.g., Pitch, SpeedUtt, Laugh).622

We find that the machine learning model’s per-623

formance decreases by an average of 33% for envi-624

ronmental noise, fading, and reverberation. There 625

is also a smaller drop in performance for speeding 626

up parts of the utterance and dropping words, show- 627

ing the brittleness of these models. Table 1 reports 628

the percentage change in performance when test- 629

ing on noisy test data as over clean test data (0.67 630

for activation and 0.59 for valence). 631

7.2 Baseline Model Performance with 632

Augmentation 633

We find that data augmentation improves perfor- 634

mance on noisy test data over a baseline system 635

trained only on the original IEMOCAP data. This 636

is very pronounced (an increase of 22%) when the 637

environmental noise is introduced at the start of the 638

utterance, e.g., when the test set is introduced with 639

NatSt and the train set is introduced with HumSt 640

and IntSt. We speculate that the network learns 641

to assign different weights to the start and end of 642

the utterance to account for the initial noise. 643

Though the performance increases on the contin- 644

uous background noise contaminated test samples, 645

is aided by addition of training samples that have a 646

continuously present background noise as well, the 647

performance is still affected due to introduction of 648

new noise in the test set. We also find that it is hard 649

to improve the performance of the system on utter- 650

ances contaminated with reverberation, a common 651

use case, even when the training set is augmented 652

with other types of noise. This can be because, re- 653

verberation adds a continuous human speech signal 654

in the background delayed by a small period of 655

time. None of the other kind of noises have speech 656

in them, and hence augmentation doesn’t aid the 657

model to learn robustness to this kind of noise. 658

7.3 Denoising Algorithms and Model 659

Performance 660

We find that adding a denoising component to the 661

models leads to a significant improvement (average 662

of 23% ± 3% across all environmental noise cat- 663

egories) in continuous noise introduction at 20dB 664

SNR as compared to when there is no denoising or 665

augmentation performed. We observe a decline in 666

performance when using noise suppression algo- 667

rithms to deal with other signal to noise ratios of 668

continuous noise additions, possibly due to mask- 669

ing of emotional information from the speech to 670

maintain comprehensibility which may flatten the 671

tone in the obtained denoised signal (Spadini and 672

Suyama, 2019). We further show that the addition 673

of a denoising component does not significantly 674

improve performance in presence of signal manip- 675
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Table 2: Attacker efficiency (Accatt) using noise-based ad-
versarial methods over the number of black box queries an
attacker can access (k), the knowledge of correlation between
performance deterioration of emotion recognition and noise
category (Corr), and whether the attack efficiency is evaluated
only on those noise categories that human perception doesn’t
change (Noises). Higher values are better. Maximum value
for each k is in bolds. Significance is established using paired
t-test, adjusted p-value < 0.05

Corr Noises k=5 k=15 k=25

No Im 0.22 0.29 0.39
Yes Im 0.32 0.38 0.53
No All 0.31 0.36 0.45
Yes All 0.36 0.43 0.58

ulation rather than just noise addition, for example,676

when samples were faded in or out or segments677

were sped up. While we did see an improvement in678

performance (an average of +36%) for unseen re-679

verberation contaminated samples as compared to680

data augmentation, the performance is still signifi-681

cantly lower (−28%) than when tested on a clean682

test set. Finally, we observe an general trend of in-683

crease in emotion recognition performance for the684

combined dataset (noisy and non-noisy samples),685

as compared to when the model is trained on the686

clean training set, which supports the findings from687

previous dataset augmentation researches.688

7.4 Use Case: Adversarial Attack Evaluation689

In this section, we aim to show how the addition690

of ‘non-allowed’ noises can not only impact the691

brittleness of already trained models, but also lead692

to inaccurate evaluation metrics. We use the term693

‘non-allowed’ noises to refer to the set of noises694

that have been shown to change human perception,695

because they lead to unpredictable shifts in ground696

truth labels. We use the downstream task of noise697

contamination for adversarial attacks as an example698

to show how the noise-augmentation criterion can699

lead to incorrect evaluation metrics. Table 2 shows700

the attacker efficiency. We find that an attack is701

more likely to succeed if the attacker can corrupt702

the sample with ‘non-allowed’ noises. For example,703

the attacker, with no additional knowledge has a704

success rate of 0.31 with five allowed queries (k=5)705

when using complete set of noises for corruption706

as compared to 0.22 where they only use noises707

that do not change human perception of emotion,708

demonstrating fragile benchmarking and evaluation709

of adversarial efficiency and robustness.710

8 Recommendations711

We propose a set of recommendations, for both aug-712

mentation and deployment of emotion recognition713

models in the wild, that are grounded in human714

perception. For augmentation, we suggest that: 715
1. Environmental noise should be added to datasets 716

to improve generalizability to varied noise con- 717

ditions, whether using denoising, augmentation, 718

or a combination of both. 719

2. It is good to augment datasets by fading the loud- 720

ness of the segments, dropping letters or words, 721

and speeding up small (no more than 25% of the 722

total sample length) segments of the complete 723

sound samples in the dataset. But it is important 724

to note that these augmented samples should not 725

be passed through the denoising component as 726

the denoised version loses emotion information. 727

3. One should not change the speed of the entire 728

utterance more than 5% and should not add in- 729

tentional pauses or any background noises that 730

elicit emotion behavior, e.g., sobs or laughter. 731
Regarding deployment, we suggest that: 732
1. Noisy starts and ends of utterances can be han- 733

dled by augmentation, hence, if the training set 734

included these augmentations, there is no issue 735

for deployed emotion recognition systems. 736

2. Reverberation is hard to handle for even aug- 737

mented emotion recognition models. Hence, the 738

samples must either be cleaned to remove the re- 739

verberation effect, or must be identified as low 740

confidence for classification. 741

3. Deploy auxilary models that classify the noise 742

types, and degree/intent of signal manipulation 743

are useful filters for identifying maliciously ma- 744

nipulated data before the data is sent to be pro- 745

cessed by the emotion recognition model. 746

9 Conclusion 747

In this work, we study how the presence of real 748

world noise, environmental or synthetic, affects hu- 749

man emotion perception. We identify noise sources 750

that do not affect human perception, such that they 751

can be confidently used for data augmentation. We 752

look at change in performance of models that are 753

trained on the original dataset when tested on these 754

noisy samples and if augmentation of the training 755

set leads to an improvement. We conclude that, 756

unlike humans, machine learning models are ex- 757

tremely brittle to the introduction of many kinds 758

of noise. While the performance of the machine 759

learning model on noisy samples is aided from 760

augmentation, the performance is still significantly 761

lower when the noise in the train and test environ- 762

ments does not match. In this paper, we demon- 763

strate fragility of the emotion recognition systems 764

and valid methods to augment the datasets, which 765

is a critical concern in real world deployment. 766
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10 Ethical Considerations767

Data augmentation is often applied to speech emo-768

tion recognition to improve robustness. Better aug-769

mentation methods are an important way to not770

only ensure reliability and robustness of these mod-771

els, but also improve the real-life adoption in high-772

stakes downstream applications. Knowing when773

human perception of emotion can change in the774

presence of noise is needed to design better model775

unit tests and adversarial tests for verifying the776

reliability of the system. However, emotion vari-777

ability is often dependent on multiple factors, such778

as, culture, race, gender, age etc, some of which779

are highly protected variables. These models can780

also encode stereotypical expected behavior from781

a certain group, and hence have a higher error rate782

for other groups. It is important to note that this pa-783

per considers a small set of crowd-sourced workers784

as human raters of emotion perception, who are lo-785

cated in the United States and are well versed in786

English, the language this dataset is collected in,787

and the model is trained on.788
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