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ABSTRACT

Current machine learning algorithms are designed to work with huge volumes
of high dimensional data such as images. However, these algorithms are being
increasingly deployed to resource constrained systems such as mobile devices
and embedded systems. Even in cases where large computing infrastructure is
available, the size of each data instance, as well as datasets, can provide a huge
bottleneck in data transfer across communication channels. Also, there is a huge
incentive both in energy and monetary terms in reducing both the computational
and memory requirements of these algorithms. For non-parametric models that
require to leverage the stored training data at the inference time, the increased cost
in memory and computation could be even more problematic. In this work, we
aim to reduce the volume of data these algorithms must process through an end-
to-end two-stage neural subset selection model, where the first stage selects a set
of candidate points using a conditionally independent Bernoulli mask followed by
an iterative coreset selection via a conditional Categorical distribution. The subset
selection model is trained by meta-learning with a distribution of sets. We validate
our method on set reconstruction and classification tasks with feature selection as
well as the selection of representative samples from a given dataset, on which our
method outperforms relevant baselines. We also show in our experiments that our
method enhances scalability of non-parametric models such as Neural Processes.

1 INTRODUCTION

The recent success of deep learning algorithms partly owes to the availability of huge volume of
data (Deng et al., 2009; Krizhevsky et al., 2009; Liu et al., 2015), which enables training of very large
deep neural networks. However, the high dimensionality of each data instance and the large size of
datasets makes it difficult, especially for resource-limited devices (Chan et al., 2018; Li et al., 2019;
Bhatia et al., 2019), to store and transfer the dataset, or perform on-device learning with the data. This
problem becomes more problematic for non-parametric models such as Neural Processes (Hensel,
1973; Kim et al., 2019a) which require the training dataset to be stored for inference. Therefore, it is
appealing to reduce the size of the dataset, both at the instance (Dovrat et al., 2019; Li et al., 2018b;b)
and the dataset level, such that we selects only a small number of samples from the dataset, each of
which contains only few selected input features (e.g. pixels). Then, we could use the selected subset
for the reconstruction of the entire set (either each instance or the entire dataset) or for a prediction
task, such as classification.

The simplest way to obtain such a subset is random sampling, but it is highly sub-optimal in that
it treats all elements in the set equally. However, the pixels from each image and examples from
each dataset will have varying degree of importance (Katharopoulos & Fleuret, 2018) to a target
task, whether it is reconstruction or prediction, and thus random sampling will generally incur large
loss of accuracy for the target task. There exist some work on coreset construction (Huggins et al.,
2016; Campbell & Broderick, 2018; 2019) which proposed to construct a small subset with the most
important samples for Bayesian posterior inference. However, these methods cannot be applied
straightforwardly to deep learning with an arbitrary target task. How can we then sample elements
from the given set to construct a subset, such that it suffers from minimal accuracy loss on any target
task? To this end, we propose to learn a sampler that learns to sample the most important samples for
a given task, by training it jointly with the target task and additionally meta-learn a sampler over a
distribution of datasets for instance selection in the classification task.
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Figure 1: Concept: Our Stochastic Subset Selection method is generic and can be applied to many type of sets.
(a) Selecting a subset of features (pixels) out of an image. This reduces communication cost in data transfer
between devices and allows faster training or inference on resource-constrained devices due to the reduced
computational cost. (b) Selecting a subset of instances out of a dataset. This helps resource-constrained system
to train faster, or to make non-parametric inference more scalable.

Specifically, we learn the sampling rate for individual samples in two stages. First we learn a Bernoulli
sampling rate for individual sample to efficiently screen out less important elements. Then, to select
the most important elements out of this candidate set considering relative importance, we use a
Categorical distribution to model the conditional distribution of sampling each element given a set of
selected elements. After learning the sampling probability for each stage, we could perform stochastic
selection of a given set, with linear time complexity. Our Stochastic Subset Selection (SSS) is a
general framework to sample elements from a set, and it can be applied to both feature sampling and
instance sampling. SSS can reduce the memory and computation cost required to process data while
retaining performance on downstream tasks.

Our model can benefit from a wide range of practical applications. For example, when sending an
image to an edge device with low computing power, instead of sending the entire image, we could
send a subset of pixels with their coordinates, which will reduce both communication and inference
cost. Similarly, edge devices may need to perform inference on a huge amount of data that could be
represented as a set (e.g. video, point clouds) in real-time, and our feature selection could be used to
speed up the inference. Moreover, our model could also help with on-device learning on personal
data (e.g. photos), as it can select out examples to train the model at a reduced cost. Finally, it can
help with the scalability of non-parametric models which requires storage of training examples, such
as Neural Processes, to scale up to large-scale problems.

We validate our SSS model on multiple datasets for 1D function regression and 2D image recon-
struction and classification for both feature selection and instance selection. The results show that
our method is able to select samples with minimal decrease on the target task accuracy, largely
outperforming random or an existing sampling method. Our contribution in this work is threefold:

• We propose a novel two-stage stochastic subset selection method that learns to sample a
subset from a larger set with linear time complexity, with minimal loss of accuracy at the
downstream task.

• We propose a framework that trains the subset selection model via meta-learning, such that
it can generalize to unseen tasks.

• We validate the efficacy and generality of our model on various datasets for feature selection
from an instance and instance selection from a dataset, on which it significantly outperforms
relevant baselines.

2 RELATED WORK

Set encoding - Permutation invariant networks Recently, extensive research efforts have been
made in the area of set representation learning with the goal of obtaining order-invariant (or equivari-
ant) and size-invariant representations. Many propose simple methods to obtain set representations
by applying non-linear transformations to each element before a pooling layer (e.g. average pooling
or max pooling) (Ravanbakhsh et al., 2016; Qi et al., 2017b; Zaheer et al., 2017; Sannai et al., 2019).
However, these models are known to have limited expressive power and sometimes not capable of
capturing high moments of distributions. Yet approaches such as Stochastic Deep Network (De Bie
et al., 2018) and Set Transformer (Lee et al., 2018) consider the pairwise (or higher order) interactions
among set elements and hence can capture more complex statistics of the distributions . These
methods often result in higher performance in classification/regression tasks; however, they have run
time complexities of O(n2) or higher.
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Figure 2: Overview. The subset Ds is sampled by a stochastic 2-stage subset selection process. Dark shaded
boxes correspond to selected elements while lightly shaded boxes correspond to non-selected elements in
the given set. Also, Ber and Cat correspond to the Bernoulli and Categorical distributions respectively. (a)
Candidate(in blue) Selection. (b) Core Subset(in green) Selection using continuous relaxations of discrete
distributions.

Subset sampling There exist some works which have been proposed to handle large sets. Dovrat
et al. (2019) proposed to learn to sample a subset from a set by generating k virtual points, then
matching them back to a subset of the original set. However, such element generation and matching
process is highly inefficient. Our method on the other hand only learns to select from the original
elements and does not suffer from such overhead. Wang et al. (2018) proposed to distill the knowledge
of a large dataset to a small number of artificial data instances. However, these artificial data instances
are only for faster training and doesn’t capture the statistics of the original set. Moreover, the instances
are generated artificially and can differ from the original set making the method less applicable to
other tasks. Also several works (Qi et al., 2017a;c; Li et al., 2018b; Eldar et al., 1997; Moenning &
Dodgson, 2003) propose farthest point sampling, which selects k points from a set by ensuring that
the selected samples are far from each other on a given metric space.

Image Compression Due to the huge demand for image and video transfer over the internet,
a number of works have attempted to compress images with minimal distortion. These models
(Toderici et al., 2017; Rippel & Bourdev, 2017; Mentzer et al., 2018; Li et al., 2018a) typically consist
of a pair of encoder and decoder, where the encoder will transfer the image into a compact matrix
to reduce the memory footprint and communication cost, while the decoder is used to reconstruct
the image back. These methods, while achieving huge successes in the image compression problem,
are less flexible than ours. Firstly, our model can be applied to any type of sets (and instances
represented as sets), while the aforementioned models mainly work for images represented in tensor
form. Furthermore, our method can be applied both at the instance and dataset level.

Representation learning Our instance-sampling model is also related to the Variational Auto
Encoder (VAE) (Kingma & Welling, 2013). However, while VAE learns a compact representation of
a data point, our model learns a compact representation of a set. Balın et al. (2019) learns a global
feature selection model for reconstruction of the input data from selected features via unsupervised
learning. Chen et al. (2018) learns instancewise feature selection with the goal of model interpretation
by extracting subset of features most informative for a given sample. Our method also falls in this
category.

Active Learning Active learning methods are aimed at selection of data points for labeling given a
small labelled set. This domain is different from our method since active learning does not consider
the label information but our method does utilize label information. Also, our motivation is quite
different. We focus on efficiency in inference and training of non-parametric models by reducing the
sizes of the inputs, be it pixels or instances and this greatly differs from the goal of active learning.
Methods such as (Sener & Savarese, 2017; Coleman et al., 2019; Wei et al., 2015) all tackle the data
selection problem in the active learning setting.
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(a) (b) (c) (d)

Figure 3: Graphical Models: (a) Feature Selection for Reconstruction. (b) Feature Selection for Prediction
Task. (c) Instance Selection model. (d) Instance Selection model for Classification

3 APPROACH

3.1 PRELIMINARIES

In this work, we consider data of the type D = {d1, . . . , dn} where individual di’s are possibly
represented as input xi and target yi. D is the complete set and we assume that within D, there
exists a subset Ds = {si, . . . , sk} ⊂ D such that k � n and that for an arbitrarily defined loss
function `(., D) that we are interested in optimizing over the full set D, Ds can be used as a proxy
for D such that `(., D) ≈ `(., Ds). In what follows, we present a method that learns the conditional
distribution p(Ds|D) of the subsetDs via a two stage selection procedure dubbed candidate selection
and autoregressive subset selection. The overall objective is then to minimize the loss function with
respect to the subset Ds, Ep(Ds|D)[`(., Ds)]. When the set D itself follows a distribution of sets as in
the meta-learning framework, then the objective becomes ED[Ep(Ds|D)[`(., Ds)]]. In essence, we
seek to construct a subset Ds that is optimally representative of the full set D w.r.t `(.).

3.2 STOCHASTIC SUBSET SELECTION

In order to select Ds, we need to model the interactions among the elements of D and construct Ds

based on said interactions. However, when the cardinality |D| of the setD is large or it’s elements di’s
are high dimensional, modeling such pairwise interactions becomes computationally infeasible. As
such, we first present the candidate selection procedure used to construct a smaller set, Dc, without
considering inter-sample dependencies. This is then followed by the autoregressive subset selection
procedure used to construct Ds from Dc by modeling inter-sample dependencies. The complete
model is depicted in Figure 2.

3.3 CANDIDATE SELECTION

We model the task of candidate selection as a random Bernoulli process where the logits of the
Bernoulli function are conditioned on the set representation of the full set D and the individual
elements di ∈ D. For a set D with cardinality n we define Z := {zi}ni=1 such that zi ∈ {0, 1} and
zi = 1 implies that di ∈ Dc and for each di, zi is computed according to:

p(zi|di, D) = Ber(zi; ρ(di, r(D))), (1)

where r(D) is a permutation-invariant function that compresses D into a single vector set representa-
tion and ρ(di, r(D)) computes the logits used to calculate the probability of di belonging to Dc. We
implement both r(D) and ρ(di, r(D)) as neural networks and specifically for r(D), we use Deep
Sets (Zaheer et al., 2017). Since Ber is non-differentiable, we use the continuous relaxations of the
Bernoulli distribution introduced in (Maddison et al., 2016; Jang et al., 2016; Gal et al., 2017).

Specifically, to sample zi, we execute the following computational routine:

zi = σ
(1
τ

(
log

πi
1− πi

+ log
u

1− u

))
, πi = ρ(di, r(D)), u ∼ Unif(0, 1), (2)

where σ is the Sigmoid function, τ is the temperature for the continuous relaxation and u is sampled
from the uniform distribution. τ is set to 0.05 in all our experiments. Given that pair-wise interactions
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Algorithm 1 Fixed Size Subset Selection
Input k(subset size), q(# elements selected at each iteration), D = {d1, d2, . . . , dn} (Full Set)
Output Ds = {s1, s2, . . . , sk} (selected subset)
1: procedure STOCHASTIC SUBSET SELECTION(k, q,D)
2: (π1, π2, . . . , πn)← (ρ(d1, r(D)), . . . , ρ(dn, r(D)))
3: zi ∼ Ber(πi) for i = 1, . . . , n.
4: Dc ← {di for i = 1 : n if zi} . Candidate Selection

5: Ds ← ∅
6: for i = 1, . . . , k/q do . AutoRegressive Subset Selection
7: Ds ← Ds ∪ AUTOSELECT(q,Ds, Dc) . Select q elements
8: return Ds
9: procedure AUTOSELECT(q,Ds, Dc)

10: C = {w1, w2, . . . , wm} ← Dc \Ds
11: (p1, p2, . . . , pm)← (f(w1, Dc, Ds), f(w2, Dc, Ds), . . . , f(wm, Dc, Ds))
12: (p1, p2, . . . , pm)← (p1, p2, . . . , pm)/

∑m
j=1 pj

13: Q← Select q elements from C with probability (p1, p2, . . . , pm)
14: return Q

between elements are not considered in this stage, learning p(zi|di, D) ensures that highly activating
samples are selected instead of a random subset of the original set.

3.4 AUTOREGRESSIVE SUBSET SELECTION

The candidate selection stage can introduce samples with redundant information in Dc since no effort
was made to compare the informativity of the elements. To alleviate this issue, we must first model
the interactions between the elements of Dc and construct Ds based on the relative importance of
individual elements. To construct a representative subset Ds with |Ds| = k, k iterative steps are
required and at step i the probability of an element in Dc \ D(i−1)

s belonging to Ds is computed
according to:

p(si = d|Dc, D
(i−1)
s ) =

f(d,Dc, D
(i−1)
s )∑

d′∈Dc\D(i−1)
s

f(d′ , Dc, D
(i−1)
s )

∀d ∈ Dc \D(i−1)
s , (3)

where D(i−1)
s is the constructed subset at iteration i − 1 and f is a positive function. The key to

avoiding samples with redundant information in D(k)
s lies in the fact that for each element added to

Ds, it’s selection is conditioned on both Dc and all elements in D(i−1)
s . We further propose a method

that samples q elements from Cat(p1, . . . , pm) in a single pass for efficient training. Specifically,
instead of sampling q times from the categorical distribution, we can sample the selection mask
for element j from Ber(q ∗ pj). In this routine, the probability of the element j being selected is
q ∗ pj which is very close to the original distribution. Algorithm 1 details the entire procedure. The
inference complexity depends heavily on the choice of the function f . If f considers the pairwise
interactions between all candidate elements and the selected elements, the inference complexity is
O(n)+O(k2d/q) where n, d, k correspond to |D|, |Dc| and |Ds| respectively. In our experiments, for
the choice of the function f , we utilize either a Set Transformer(Lee et al., 2018) or DeepSets(Zaheer
et al., 2017) to model the pairwise interactions between the elements of a given set.

3.5 CONSTRAINING THE SIZE OF Dc

For computational efficiency, we may desire to restrict the size of Dc to save computational cost
when constructing Ds. We adopt the idea of Information Bottleneck and constrain the distribution of
Z for Dc. Specifically,

Ep(D)[Ep(Ds|D)[`(., Ds)] + βKL[p(Z|D)||r(Z)]] (4)
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(a) (b) (c)
Figure 4: Models’ performance on set reconstruction and classification task (lighter-color areas present the
standard deviations). (a) 1D Function reconstruction. (b) CelebA (reconstruction). (c) CelebA (classification)

Figure 5: 1D Function Reconstruction.

where r(Z) is a sparse prior. In our experiments, we set the parameter of the Bernoulli spares prior
r(Z) to either 0.1 or 0.01 for different levels of sparsity and β is set to 1.0 or 0.001.

3.6 TASKS

We now present four tasks for which the described subset selection method is applied.

Set Reconstruction Given Ds and a network pθ(Y |X,Ds) parameterized by θ, the task is to
reconstruct D = (X,Y ). The objective function for this task is given as:

Ep(D)[Ep(Ds|D)[− log pθ(Y |X,Ds)] + βKL[p(Z|D)||r(Z)]] (5)

Minimizing this objective ensures that we learn a compact subset(Ds) most representative of D and
Ds can then be used for other tasks. We implement pθ(Y |X,Ds) as an Attentive Neural Process
(ANP) (Kim et al., 2019b). An ANP takes as input a context(Ds in this case) and predicts a
distribution of the elements in the original set D. It mimics the behaviour of a Gaussian Process
but with reduced inference complexity. The complete model is depicted in Figure 3a.Experimental
results for this task can be found in Section 4.1.

Set Classification/Prediction We can also opt to train the network to predict a single target yD for
the set D. For instance, the target could be the class of an image(classification) or the statistics of the
set(regression problem). Here, pθ(yD|Ds) is a neural network that predicts the target yD. A set in
this task, may be the features from a single example like an image and experimental results can be
found in Section 4.2.The model for this task is depicted in Figure 3b. The objective function for this
task is given as:

Ep(D)[Ep(Ds|D)[− log pθ(yD|Ds)] + βKL[p(Z|D)||r(Z)]] (6)

Model # Pixels Storage mAUC

Full Image All 38804 114KB 0.9157
RS 500 5KB 0.8471

SSS(rec) 500 5KB 0.8921
SSS(MC) 500 5*5KB 0.9132
SSS(ours) 500 5KB 0.9093

Table 1: CelebA Attributes Classification.

Dataset Distillation: Instance Selection For
this task, we are given a dataset D =
{D1, . . . , Dn} where each Di is a set of data
points sampled from the entire dataset. Using
CelebA as in illustrative example, some Di may
consist of |Di| randomly sampled faces from the
whole dataset. The goal is to construct Ds for
each Di ∈ D. We describe a model capable of
taking as input Di ∈ D to perform a task such
as the reconstruction of all elements in the given
dataset.

For a single dataset Di ∈ D, we apply the subset construction method already described to a Ds

that can be used to reconstruct all the elements in Di. In essence, Di is distilled into a new dataset
Ds with k < |Di| elements. The task then is to reconstruct the entire set Di back conditioned only
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#Instances 2 5 10 15 20 30

FPS 6.50 4.51 3.07 2.75 2.71 2.29
Random 3.73 1.16 0.90 0.38 0.39 0.20

SSS(ours) 2.53 1.02 0.59 0.33 0.24 0.17

Table 2: . FID Score for varying Instance Selection

#Instances 1 2 5 10

FPS 0.432 0.501 0.598 0.636
Random 0.444 0.525 0.618 0.663

SSS(ours) 0.475 0.545 0.625 0.664

Table 3: Accuracy on miniImagenet

on Ds. As a first step, we represent Ds as a unique representative vector c for each element in the
dataset akin to the statistics network used in the Neural Statistician (Edwards & Storkey, 2016) model.
Specifically, to reconstruct an element di ∈ Di given Ds, c is computed by applying a stochastic
cross-attention

mechanism on Ds where the stochasticity is supplied by a query α which is computed using di.
To obtain varying styles in the generated images, we additionally learn a latent variable w used to
perturb c and both are combined to obtain a new element x. The graphical model for this process is
depicted in Figure 3c. Additionally, to ensure that c is properly learnt, we add an informativity loss
by reconstructing c from the generated samples from the given dataset. The objective for the model
depicted in Figure 3c for a single dataset D is :

L(θ, φ, ψ) =
∑
di∈D

[Eqφ(wi|di)[pθ(di|wi, ci)]− KL[qφ(wi|di)||pψ(w)]

−KL[qφ(αi|di)||pψ(α)]− KL[qφ(ci|Ds, αi)||pφ(c)]]
(7)

where pψ(·) are priors on their respective latent variables and qφ(·)’s are implemented with neural
networks. All priors are chosen to be Gaussian with zero mean and unit variance. This objective is
combined with the informativity loss on all samples in Di. It is important to note that c is computed
using only Di for every element in D. In addition to Equation 7 and the informativity loss, the model
is optimized together with the subset selection model already described. When the model is fully
optimized, it is applied to the instance selection task on the given dataset. In summary, the purpose of
the generative model introduced is to train the subset selection module for the instance selection task.
Experimetal results for this task can be found in Section 4.3.

Dataset Distillation: Classification Finally in the dataset distillation task, we consider the problem
of selecting prototypes to be used for few-shot classification. Here, we adopt Prototypical Net-
works (Snell et al., 2017) and apply the subset selection model to the task of selecting representative
prototypes from each class to be used for classifying new instances. By learning to select the proto-
types, we can remove outliers that would otherwise change the class prediction boundaries in the
classification task. The complete graphical model for this task is given in Figure 3d where again Ds

corresponds to the selected prototypes and x∗ and y∗ correspond to query and class label respectively.
Experimental results for this task can be found in Section 4.3.

4 EXPERIMENTS

In this section, we present our experimental results. Model architectures and training hyper parameters
are specified in the Appendix C.

4.1 FEATURE SELECTION EXPERIMENTS

Function Reconstruction - Approximation Our first experiment is on 1D function reconstruction.
Suppose that we have a function f : [a, b]→ R. We first construct a set of data points of that function:
D = {(x1, y1 = f(x1)), (x2, y2 = f(x2)), . . . , (xn, yn = f(xn))} where (x1, x2, . . . , xn) are
uniformly distributed along the x-axis within the interval [a, b]. Now if we have a family of functions
(f (1), f (2), . . . , f (N)), this will lead to a family of sets (D(1), D(2), . . . , D(N)). We train our model
which consists of the subset selection model p(Ds|D) and a task network p(Y |X,Ds) (e.g. ANP),
on this data set and report the reconstruction loss, which is the negative log-likelihood.
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Figure 6: CelebA reconstruction samples with varying number of pixels.
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Figure 7: Instance Selection Samples from a dataset of size 200.

We compare SSS with Random Select(RS) (randomly selects a subset of D and uses an ANP to
reconstruct the set), and Learning to Sample (LTS) (Dovrat et al., 2019) to sample k elements and
uses an ANP to reconstruct the set). Figure 4a shows the performance (reconstruction loss) of our
models(SSS) and the baselines.

SSS out-performs Random Select (RS), verifying that the subset selection model p(Ds|D) can learn
a meaningful distribution for the selected elements. Our model also out-performs the Learning to
Sample (LTS) baseline.

Through the visualization of the selected points in Figure 5, we can see that out model tends to pick
out more points (presented as red dots) in the drifting parts of the curve, which is reasonable since
these parts are harder to reconstruct. The other two baselines sometimes fails to do that, which leads
to inaccurate reconstructions.

Image Reconstruction Given an image we learn to select a core subset of pixels that best reconstructs
the original image. Here, x is 2-dimensional and y is 3-dimensional for RGB images. An ANP
is then used to reconstruct the remaining pixels from a set of context elements (selected subset in
our case). We conduct this experiment on the CelebA dataset (Liu et al., 2018). Figure 4b shows
that our model significantly outperforms ANP with RS (as in the original ANP paper) and the LTS
baseline. Figure 6 shows the reconstruction samples of our model which are visually better than the
reconstruction of the baselines for the same number of pixels.

4.2 CLASSIFICATION/REGRESSION

In this subsection, we validate our model on the prediction task. The goal is to learn to select a subset
for a target task such as classification or regression. We again use the CelebA dataset, but this time
the selected pixels are used to give predictions for 40 attributes of a celebrity’s face (in a multi-task
learning setting). For our proposed model, only the selected pixels are used for prediction (other
pixels’ values are set to zeros). Table 1 shows that using only 500 pixels (∼1.3% of total pixels in
an image), we can achieve a mean AUC of 0.9093 (99.3% of the accuracy obtained with the full
image). Figure 4c shows the classification performance (in terms of mean AUC) versus the number
of pixels selected. The AUC with selected pixels learned from our SSS is significantly higher than
that of the random pixels baseline, showing the effectiveness of our subset selection method. We also
include another baseline, namely SSS(rec). This is our stochastic subset selection model trained for
reconstruction, but then later used for classification. Our model outperforms this variant, showing the
effectiveness of training with the target task. Note that LTS cannot be applied to this experimental
setup because during training, the generated virtual points cannot be converted back to an image in
matrix form (due to the virtual coordinate), thus we cannot train the LTS model with CNN-based
classification on the target task.

Ablation Study Since our method is stochastic, the predictive distribution can be written as
Ep(Ds|D) [pθ(yD|Ds)], and we can use Monte Carlo sampling to get the prediction in practice.
However, throughout the experiment section, we only reported the result with one sampled subset,
since it gives the best reduction in memory and computational cost. This can be seen as MC sampling
with one sample. We compare it against another variant: SSS(MC) with MC sampling (5 samples). It
should be noted that by doing MC sampling with 5 samples, the computational cost (inference) is
increased by 5 times, and the memory requirement can be increased by up to 5 times too. Table 1
shows that our model achieves comparable performance with that variant, thus justifying that it can
achieve good performance for target tasks, while reducing memory and computation requirement.
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4.3 DATASET DISTILLATION

Instance Selection We present results on the instance selection task applied to a whole dataset. In
this task, we use the CelebA dataset since it has an imbalance both in terms of gender and race. A
dataset is constructed by sampling 200 random images from the full dataset. In this experiment, we
seek to select only a few(5-30) representative images from these generated datasets. On this task,
our subset selection module is trained via the procedure detailed in Section 3.6 on instance selection.
To evaluate the effectiveness of the SSS model, we evaluate the model in terms of the diversity in
the selected subset using the Fréchet Inception Distance(FID Score) (Heusel et al., 2017) which
measures the similarity and diversity between two datasets. We compare our model with the model
that randomly samples instances from the full dataset. Additionally, we compare our method with
the Farthest Point Sampling(FPS) algorithm which selects k points from a given set by computing
distances on a metric space between all elements and selecting those elements that are furthest from
each other. FPS in general seeks to obtain a wide coverage over a given set and hence is a suitable
baseline. The results of this experiment is presented in Table 4 where our selection method achieves
a lower FID score compared to FPS and Random Sampling. Additionally, given that the dataset
is highly imbalanced, FPS performs worst since by selecting the furthest elements in the given set
it cannot capture the true representation of the whole dataset even when compared with Random
Sampling. Also for small sample selection, our method outperforms FPS and Random Sampling
significantly since our method is able to model the interactions within the full dataset and hence can
select the most representative subset.

Classification We use the miniImageNet dataset (Vinyals et al., 2016) and go from a 20 shot
classification task to one of 1,2,5 or 10 shot classification task. We again compare with Random
Sampling and FPS and apply them together with SSS for the reduction in shot. The results for
this experiment is shown in Table 3, where it can be observed that SSS can learn to select more
representative prototypes compared to the other methods especially in the few-shot problems where
the choice of prototypes matters more. All models were trained for 300 epochs and the best model
was picked using a validation set.

5 CONCLUSION

In this paper, we have proposed a stochastic subset selection method to reduce the size of an arbitrary
set while preserving performance on a target task. Our selection method utilizes a Bernoulli mask
to perform candidate selection, and a stack of Categorical distributions to iteratively select a core
subset from the candidate set. As a result, the selection process does take the dependencies of the
set’s members into account. Hence, it can select a compact set that avoids samples with redundant
information. By using the compact subset in place of the original set for a target task, we can save
memory, communication and computational cost. We hope that this can facilitate the use of machine
learning algorithm in resource-limited systems such as mobile and embedded devices.
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A APPENDIX

Organization This supplementary file is organized as follows. We provide the full pseudo-code for
the Greedy Training Algorithm.We then show some visualization of our method for feature selection
(in both 1D function and CelebA dataset) and report the results with multiple runs of the instance
selection experiment, as well as its visualization. Qualitative results for Instance Selection as applied
to the few-shot classification task are provided together with model specifications.

A.1 GREEDY TRAINING ALGORITHM

Algorithm 2 shows our greedy training algorithm with stochastic gradient descent. The idea of the
greedy training algorithm is to train the auto-regressive model to select the best next q elements from
the candidate set to minimize the target loss on the selected samples. By doing this, we do not have
to run the auto-regressive model k/q time during training, thus reducing the computational cost.

Algorithm 2 Greedy Training Algorithm

Input k(max subset size)
q(# elements selected at each iteration)
p(D) (distribution of sets)
α (learning rate)
a target task with loss function `(·, ·)

Output trained model with converged θ and φ
1: θ, φ← initialization
2: while not converged do
3: Sample a minibatch with m sets D(1), D(2), . . . , D(m) from p(D)

4: D
(j)
c ∼ p(D(j)

c |D(j)) for j = 1 . . .m
5: i ∼ random sample from (0, . . . , k − q)
6: I(j) ∼ random i-element subset of D(j)

c for j = 1 . . .m

7: Q(j) ∼ select a q-element subset from D
(j)
c \ I(j) (with the auto-regressive model)

8: θ ← θ − α∇θ 1
m

∑m
j=1 `(·, I

(j) ∪Q(j)), φ← φ− α∇φ 1
m

∑m
j=1 `(·, I

(j) ∪Q(j))

B INSTANCE SELECTION SAMPLES

In this section, we show more examples of our 1D and CelebA experiments on how the models select
the set elements for the target task.

B.0.1 1D FUNCTION - RECONSTRUCTION

Figure 8 shows the reconstruction samples of our model on the 1D function dataset, which is
objectively better than that of Learning to Sample (LTS) or Random Subset (RS). Since RS selects the
set elements randomly, it can leave out important part of the 1D curve leading to wrong reconstructions.
LTS also selects insufficient amount of set elements in some parts of the curves, resulting in suboptimal
reconstructions.

B.1 CELEBA

Figure 9 shows the selected pixels of our model for both the classification and reconstruction task.
For the attribute classification task, the model tends to select pixels mainly from the face, since the
task is to classify characteristics of the person. For reconstruction, the selected pixels are more evenly
distributed, since the background also contributes significantly to the reconstruction loss.

B.2 DATASET DISTILLATION: INSTANCE SELECTION

In Table 4, we represent the full results for the Instance Selection model on the CelebA dataset. For
these experiments, we construct a set by randomly sampling 200 face images from the full dataset.
To evaluate the model, we create multiple such datasets and run the baselines(Random Sampling
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Figure 8: Reconstruction samples of 1D functions with different selection methods

Figure 9: Selected pixels for different tasks on CelebA.

and FPS) and SSS on the same datasets. The FID metric is then computed on the instances and
averaged on all the randomly constructed datasets. For FPS, we use the open-source implementation
in https://github.com/rusty1s/pytorch_cluster. Further, we provide qualitative results on a single
dataset in Figure 10 where we show how our model picks 5 instances from the full set of 200 images
face images.

Table 4: . FID Score for varying Instance Selection

#Instances 2 5 10 15 20 30

FPS 6.5014 ± 4.3502 4.5098 ± 2.3809 3.0746 ± 1.0979 2.7458 ± 0.6201 2.7118 ± 1.0410 2.2943 ± 0.8010
Random 3.7309 ± 1.1690 1.1575 ± 0.6532 0.8970 ± 0.4867 0.3843 ± 0.2171 0.3877 ± 0.1906 0.1980 ± 0.1080

SSS 2.5307 ± 1.3583 1.0186 ± 0.1982 0.5922 ± 0.3181 0.3331 ± 0.1169 0.2381 ± 0.1153 0.1679 ± 0.0807

B.3 DATASET DISTILLATION: CLASSIFICATION

In Figure 11 we provide visualizations for the instance selection problem as applied to the few-shot
classification task. Here, we go from a 20-shot to a 1-shot classification problem where the prototype
is selected from the support using SSS.

C MODEL SPECIFICATIONS

SSS consists of r(D), ρ(di, r(D)) and f(d,Dc, D
(i−1)
s . We describe the models in this section.
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Figure 10: Visualization of a set with 200 images for instance selection. The two stage selection method in SSS
is visualized as Candidate Set and SSS. A coreset of size 5 is visualized.
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Figure 11: Sample visualization of prototype selection for the miniImagenet dataset on the few-shot classifica-
tion task. Each row represents a set that corresponds to the support from which a prototype is selected for the
few-shot classification task.

For all experiments, r(D) is implemented as DeepSets. This means that we take the mean of all the
samples in a set to obtain the set representation.

ρ(di, r(D)) is implemented as a neural network with the following specifications: there are 3 Linear
layers each followed by ReLU activation. Also, all inputs are projected into feature space using 3
Linear layers, each followed by ReLU activation.

In the set classification task, f(d,Dc, D
(i−1)
s is implemented as a Set Transformer network. All other

experiments use DeepSets.
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