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ABSTRACT

Algorithms increasingly serve as information mediators – from social media feeds
and targeted advertising to the increasing ubiquity of LLMs. This engenders
a joint process where agents combine private, algorithmically-mediated signals
with observational learning from peers to arrive at decisions. To study such set-
tings, we introduce a model of controlled sequential social learning in which an
information-mediating planner (e.g., an LLM) controls the information structure
of agents while they also learn from the decisions of earlier agents. The planner
may seek to improve social welfare (an altruistic planner) or to induce a specific
action the planner prefers (a biased planner). Our framework presents a new op-
timization problem for social learning that combines dynamic programming with
decentralized action choices and Bayesian belief updates.
In this setting, we prove the convexity of the value function and characterize the
optimal policies of altruistic and biased planners, which attain desired tradeoffs
between the costs they incur and the payoffs they earn from induced agent choices.
The characterization reveals that the optimal planner operates in different modes
depending on the range of belief values. The modes include investing the max-
imum allowed resource, not investing any resource, or the investment increas-
ing or decreasing with increase in the belief. Notably, for some ranges of belief
the biased planner even intentionally obfuscates the agents’ signals. Even under
stringent transparency constraints—information parity with individuals, no lying
or cherry-picking, and full observability—we show that information mediation
can substantially shift social welfare in either direction. We complement our the-
ory with simulations in which LLMs act as both planner and agents. Notably,
the LLM-based planner in our simulations exhibits emergent strategic behavior
in steering public opinion that broadly mirrors the trends predicted, though key
deviations suggest the influence of non-Bayesian reasoning—consistent with the
cognitive patterns of both human users and LLMs trained on human-like data. To-
gether, we establish our framework as a tractable basis for studying the impact and
regulation of LLM information mediators that corresponds to real behavior.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly deployed as information mediators in socially-
critical functions, from search engines and news aggregators (Zhang et al., 2024a; Gao et al., 2024)
to personal assistants offering medical or political advice (Huo et al., 2025; Haupt & Marks, 2023;
Schiele et al., 2024; Argyle et al., 2023). While promising, LLMs have also demonstrated the
ability to be persuasive (Potter et al., 2024; Carrasco-Farre, 2024; Rogiers et al., 2024), manipulative
(Williams et al., 2025; Liu et al., 2025; Jones & Bergen, 2024), and strategic (Lorè & Heydari, 2024;
Payne & Alloui-Cros, 2025; Zhang et al., 2024b) in their user interactions. When deployed at scale,
this algorithmic influence does not occur in a vacuum. It intersects with the organic spread of
information as people observe and learn from one another, creating complex social dynamics that
can magnify or mitigate the models’ impact.

To make this concrete, consider an LLM-powered recommendation system that suggests a new
restaurant to a sequence of potential customers. The quality of the restaurant—the true state of the
world—is either good or bad, but this is unknown to the users and the system alike. Each user
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sees a personalized recommendation (a private signal) and then decides whether to patronize the
restaurant. The recommendation system (the planner) can invest resources to make its signal more
informative; for example, by having the LLM generate a highly tailored review based on the user’s
known preferences. This investment represents a realistic cost, corresponding to expenditures on
market research, user surveys, or data acquisition needed to tailor information effectively.

Crucially, however, a user’s decision is not based solely on this private signal. They also observe
the actions of those who came before them—if the last ten users decided to patronize the restaurant,
the next user will infer that they likely received positive information. This phenomenon, known as
social learning, is a powerful force in shaping human opinion in a variety of settings including the
adoption of vaccines (e.g., Rao et al. (2007); Bauch & Bhattacharyya (2012)), new technology (e.g.
Gillingham & Bollinger (2021); Weber (2012)), and the evolution of political and moral opinions
(e.g., Brady et al. (2021); Guilbeault et al. (2018)). Our work’s central contribution is to study the
strategic interaction between a planner who controls private information and a population of agents
who engage in social learning. The planner must therefore anticipate how its actions will not only
influence the current user but also create an information externality that shapes the public belief
confronting all future users.

While real-world interactions are immensely complex, we distill this dynamic into a tractable formal
model of controlled social learning, where an algorithmic planner strategically chooses the precision
of private signals for a sequence of agents at some cost. The planner’s influence is thus subtle: it
does not falsify information, but rather decides how much to invest in making its signals clear and
informative. Our study aims to answer the critical questions that arise from this new paradigm: How
might a planner wield its power to steer collective beliefs? How should its strategy adapt to evolving
public opinion? And what are the ultimate impacts on social welfare?

The answers depend critically on the planner’s objective. An altruistic planner, like an ideal recom-
mendation system, seeks to maximize user utility by helping them make the correct choice (patronize
the restaurant if and only if it is good). In contrast, a biased planner, perhaps receiving a kickback
from the restaurant, wants to induce a specific action (patronize) regardless of the true state.

This distinction is different from, though related to, the concept of alignment. An altruistic planner’s
objective is, by definition, aligned with maximizing the agent’s expected utility under state uncer-
tainty. A biased planner’s objective, being state-independent, is not; however, this does not mean its
actions are always detrimental. If the true state happens to favor the planner’s preferred action (e.g.,
the restaurant is indeed good), its influence becomes aligned with the agent’s realized utility in that
specific instance. We explore the full spectrum of these interactions, examining both altruistic and
biased planners in scenarios where their goals may be aligned or misaligned with that of the user.

1.1 CONTRIBUTIONS AND OUTLINE

This paper makes the following principal contributions:

1. A Novel Theoretical Framework for Controlled Social Learning. We introduce the
first formal model that integrates a dynamic control problem for a centralized information
planner with the mechanism of sequential social learning. The planner strategically chooses
the precision of agents’ private signals to achieve an objective, which may be altruistic
(maximizing social welfare) or biased (inducing a specific action).

2. A Rigorous Characterization of Optimal Planner Policies. We characterize the optimal
policies for both altruistic and biased planners as a function of the evolving public belief.
For the altruistic case, our results are founded upon a novel proof of the value function’s
convexity. These characterizations illuminate the strategic trade-offs a planner must make
when its actions create informational externalities for future agents.

3. Empirical Validation and Strategic Analysis Using LLMs. We conduct simulations
where LLMs act as both planner and agents. Our experiments demonstrate three key find-
ings: (a) A planner that accounts for social learning can dramatically influence public opin-
ion and social welfare, far more than a myopic one. (b) The strategic behavior that emerges
from the LLM planner largely aligns with our theoretical predictions, suggesting the model
is robust to more realistic, non-Bayesian agent behavior. (c) LLMs exhibit sophisticated
strategic reasoning, highlighting both their potential and the societal risks they present.
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We review related work in Section 2, introduce our formal model in Section 3, and derive the optimal
policies in Sections 4 and 5. We then evaluate our findings with LLM-based simulations in Section 6
and conclude in Section 7. Proofs and additional results are relegated to the appendices.

2 RELATED WORK

We build on three main fields: social learning, information design, and some nascent work on LLMs.

Social Learning Bikhchandani et al. (1992) and Banerjee (1992) introduced the sequential so-
cial learning framework in economics, and subsequent work has thoroughly characterized social-
learning dynamics in more general settings (e.g., Smith & Sørensen (2000); Arieli & Mueller-Frank
(2021)). This literature has also studied many variations in the kind of social information available
to agents and various biases and misperceptions of the agents (see Dasaratha & He (2022); Bistritz
et al. (2022); Eyster & Rabin (2010) as well as Bikhchandani et al. (2024) and the references therein).

The literature on the control of social learning is relatively limited (Wei & Anastasopoulos, 2022;
Krishnamurthy, 2012; Bhatt & Krishnamurthy, 2021). Perhaps the closest work to ours is Wei &
Anastasopoulos (2022) which takes a mechanism design approach that assumes two-way communi-
cation between the planner and agents (i.e., agents can report their private signals to the planner, and
the planner can provide action recommendations based on all previous agents’ reports). Our model
does not rely on two-way communication between the agents and the planner, making it more suited
for information-mediating algorithms which are often invisible or black-boxed to the users.

Information Design In our setting, the planner optimizes their objective function by choosing
the agents’ private signal precision. This is a constrained form of more classical information de-
sign questions (Bergemann & Morris, 2019). These models came into prominence with Kamenica
& Gentzkow (2011)’s model of Bayesian persuasion — a planner chooses the signal structure in-
forming a rational, Bayesian agent about an unknown state. Our planner’s problem is then a costly,
constrained information design problem in each period, where the planner must choose a binary,
symmetric signal at some cost. While many variations of information design have been studied (e.g.
Castiglioni et al. (2020); Agrawal et al. (2023); Celli et al. (2020)), our primary innovation is to
incorporate social learning between the agents.

LLMs More recently, some works have specifically studied LLMs in the context of information
design (Harris et al., 2025; Dutting et al., 2025). This builds on the notion that LLMs can mimic
humans as economic agents (Dillion et al., 2023; Horton, 2023). The most similar work in this
area is Dutting et al. (2025). They study information design where a sender chooses both a signal
structure and a ’framing’ that conditions the posterior belief of the receiver, possibly non-Bayesian.
They implement an LLM-based approach for the computationally difficult task of optimizing over
the framing space. Their work does not address our main considerations of repeated interactions or
social-learning; but we adapt parts of their methodology for our empirical study in Section 6.

3 SOCIAL LEARNING MODEL

We consider a planner and a countable sequence of Bayes-rational agents indexed by i ∈ N>0. At
time i = 0, nature determines a fixed, unknown exogenous state of the world ω ∈ Ω := {G,B},
where P(ω = G) = b1, and b1 is known to everyone. In the recommendation system example of
Section 1, the state G corresponds to the case where the restaurant is good.

At each time i, the planner decides whether or not to invest in personalization for agent i. Subse-
quently, it provides agent i with a private signal si ∈ Ω to aid in decision-making. In our model,
si is assumed binary and it matches the state of the world ω with probability qi ∈ [0.5, 1] i.e.
P(si = ω) = qi. We refer to qi as agent i’s signal precision.

Each agent’s signal is independent of those of other agents and the history when conditioned on ω.
Based on this signal and the observed actions of previous agents j < i, agent i selects an action
ai ∈ Ω. The agent receives utility 0 if her action matches the true state (ai = ω), and utility −C
otherwise, where C > 0. Each player chooses her action to maximize her own expected utility. For
example, this corresponds to patronizing a business if and only if the state is G.
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3.1 AGENTS’ DECISION PROBLEMS

Each agent observes the actions of all her predecessors and their respective signal precisions. This
history is denoted Hi := (b1, (qj , aj)j<i). Because all agents and the planner have identical in-
formation Hi, there is a shared public belief about ω, which is updated after each agent acts. The
public belief bi just before agent i acts is P(ω = G|Hi), that before any agent acts is the a priori
distribution over Ω, b1. As in the classic model of Banerjee (1992) and Bikhchandani et al. (1992),
(bi)i∈N is a Markov process and a sufficient statistic for the history Hi (see Appendix B.3 for proof).

Informed by Hi (equivalently, by the Markov property, bi) and qi, agent i chooses action ai ∈ Ω so
as to maximize her utility. If both actions fetch the same utility, she chooses the action that matches
si. Agent i obtains a private belief b̃i about ω (see Appendix B.1) using Hi and her private signal
si of precision qi. Using this private belief, she chooses the action corresponding to the state of
the world that is more likely as per her posterior belief b̃i. In other words, she chooses ai = G if
b̃i > 0.5; ai = B if b̃i < 0.5; and ai = si if b̃i = 0.5. Substituting for b̃i, we find:

ai =


si 1− qi ≤ bi ≤ qi
G qi < bi
B qi < 1− bi

(1)

Agent i’s action is then observed by subsequent agents and incorporated into the updated public
belief bi+1 as follows (see Equation (13), Appendix B.2):

bi+1 = f(bi, qi) =

{
b̃i 1− qi ≤ bi ≤ qi
bi o.w.

(2)

Remark 1. When 1 − qi ≤ bi ≤ qi, agent i’s action perfectly reveals her private signal via
Equation (1). Thus, the updated public belief is identical to the private belief of agent i. Otherwise,
from Equation (1), agent i’s private signal is uninformative and has no effect on her action. Thus,
the public belief is unchanged, and an absorbing state, referred to as information cascade or herding
in classic social learning literature such as Bikhchandani et al. (1992); Banerjee (1992), is reached.
At such points, society (public belief) stop learning from agents’ private information.

Agent i’s expected utility is −C P(ai ̸= ω|bi, qi) which has the following form (see Appendix C.1):
−C P(ai ̸= ω|bi, qi) = −Cmin(bi, 1− bi, 1− qi). (3)

3.2 THE PLANNER’S PROBLEM

We consider two types of planners: (1) an altruistic planner who wishes to induce agents to take
the correct action (ai = ω) and (2) a biased planner who wishes to induce a specific action, say G,
regardless of ω. We denote these different planners with subscripts A and B, respectively. In each
case, the planner determines the precision of the private signal of each agent. A function β(·), which
is non-negative, increasing, continuous, and concave in its argument, will denote the cost associated
with the chosen precisions. The planner has an information set Hi identical to those of the agents.

Altruistic Planner At time i, the altruistic planner chooses the precision qi for agent i and incurs
a cost of β(qi) where β(p) = 0, p ∈ [0.5, 1). For the altruistic planner, decreasing precision is never
beneficial (see Appendix C.9). Thus, to simplify notation, the planner incurs additional cost only if
it increases the precision above a baseline value of p, and the additional cost increases with further
increase in the precision, with decreasing marginal costs. The agents know p and the function β(·).
The planner seeks to maximize social welfare minus the cost of precision investment, where social
welfare is the expected total utility of the agents. Let rA(bi, qi) be the instantaneous reward of the
altruistic planner beginning at public belief bi and choosing signal precision qi for agent i. Starting
from a public belief b1 and following a sequence of policies π = (πi)

∞
i=1 such that πi(Hi) = qi, the

planner attains the following expected total discounted utility, for a discount factor δ ∈ [0, 1):

V π
A (b1) =

∞∑
i=1

δi−1rA(bi, π(bi)), where rA(bi, qi) = −β(qi)− C P(ai ̸= ω|bi, qi). (4)

The optimal utility and policy of the altruistic planner are then defined as the supremum and arg
supremum of V π

A (·) over π ∈ Π where Π is the set of all policies.

4
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Biased Planner The difference between the biased planner’s problem and the altruistic planner’s
is in their objectives and, therefore, in the cost and reward functions. Refer to the example for a
political campaign in Section A for elucidation of a biased planner. The biased planner seeks to
induce action G from each agent regardless of ω. When an agent chooses action G (respectively,
B), the planner, incurs cost 0 (respectively, C > 0), regardless of ω. The biased planner can make a
private signal more or less precise than the baseline value of p, both of which incur costs.Any choice
of precision other than p incurs a cost for the biased planner as it requires him to tailor the ad to
an agent, which in turn needs research on how the agent best understands any content. The biased
planner incurs cost β(|qi − p|) for choosing signal precision qi, with β(0) = 0.

The biased planner’s expected instantaneous reward at time i is then defined as follows:

rB(bi, qi) = −β(|qi − p|)− C P(ai = B|bi, qi) (5)

Using Equation (5), V π
B (·), V ∗

B(·), and π∗
B(·) can now be defined for the biased planner, as V π

A (·),
V ∗
A(·), and π∗

A(·) were defined for the altruistic planner using Equation (4).

As noted in the first paragraph of Section 3, each agent still receives a higher utility by choosing an
action that matches ω. Thus, if ω = B, the biased planner’s success with an agent lowers the agent’s
utility. In contrast, since the altruistic planner seeks to have each agent’s action match ω, regardless
of what ω is, his success increases the agent’s utility. Thus, the altruistic planner’s objective is
always aligned with that of each agent, while for the biased planner, this is only true when ω = G.

Both planners’ utility maximization problems constitute infinite horizon discounted stationary
Markov Decision Processes (MDPs) with state bi ∈ [0, 1], control qi ∈ [0.5, 1], and transi-
tion function defined by Equation (2) (Puterman, 1990). Thus, there exists a unique optimal
value function (Kallenberg, 2011). We restrict our focus to deterministic Markov policies, thus
Π := {π : [0, 1] → [0.5, 1]} such that π(bi) = qi.
Remark 2. There are a few noteworthy assumptions we make in our model: (1) The planner has
the exact history as the agents. This is limiting when the planner could have richer data, but not
restrictive when all parties rely on the same public signals, such as early findings or survey data.
(2) The planner can change agents’ signal precision, but signals are still passed through a binary
symmetric channel. This is limiting if planners can cherry-pick, censor, or falsify signals, but not
restrictive when their role is only to improve the quality of noisy data sources without altering
content. (3) The planner’s control choices are fully observable. This is limiting when covert policies
or framing are possible, but not restrictive in more transparent environments.

4 OPTIMAL ALTRUISTIC POLICIES

We first consider the myopic case which corresponds to disregarding the role of social learning. In
our formulation, this is achieved by setting the discount factor to be δ = 0, i.e., the planner ignores
all future costs. When δ = 0, V π

A (b) = rA(b, π(b)). The optimal myopic policy π0
A(·) is:

π0
A(b) ∈ arg sup

q∈[0.5,1]

rA(b, q) ∀b ∈ [0, 1] (6)

Note that the myopic altruistic problem can equivalently be stated as a decentralized case in which
each agent chooses the precision of her own private signal and incurs the associated cost with the
goal of maximizing the sum of her own expected utility and cost.
Theorem 1. The optimal myopic altruistic policy π0

A is given as follows:

π0
A(b) =

{
1 b ∈ (tM , 1− tM )

p o.w.
where tM =

{
β(1)
C β(1) < C(1− p)

0.5 o.w.
Proof in Appendix C.2.

Thus the myopic optimal policy takes a threshold form: if the public belief is sufficiently strong,
the planner chooses the baseline precision p, which incurs 0 cost. If public belief is weak, then he
provides a perfect signal, i.e., precision 1. The threshold value depends only upon the costs of the
perfect signal (β(1)) and an incorrect action (C). When β(1) ≥ C, then the perfect signal is overly
expensive relative to the cost of an incorrect action and never applied. Thus, tM = 0.5, and the
interval of public belief corresponding to myopic optimal precision of 1 is empty.

5
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We now present a fundamental result for the altruistic optimal value function:

Theorem 2. V ∗
A(·) is convex with respect to public belief.

The proof of Theorem 2 (Appendix C.3) is quite involved and may be of independent interest. The
challenge is rooted in the dependence of agents’ actions on the public belief. In contrast, if the
actions did not depend on the public belief process (e.g., as in Nyarko (1994)), the expected utility
is linear function of the belief state, and the convexity of the value function then directly follows.
The convexity of the value function is instrumental in characterizing the optimal policy.

Theorem 3. There exist dA, tA such that 0 < dA ≤ tA ≤ tM ≤ 0.5 and

π∗
A(b) =


p b ∈ [0, dA) ∪ (1− dA, 1]

1 b ∈ (tA, 1− tA)

max(b, 1− b) o.w.

Furthermore, if tM < 0.5, then dA < tM . Proof in Appendix C.5.

The optimal policy has three distinct phases with respect to public belief. First, as in the myopic
optimal, the overall optimum policy does not invest in signal precision for extreme values of the
public belief. Notably, the overall optimum requires a stronger public belief than the myopic optimal
for this to happen since, unlike the former, the latter does not weigh the effect on future agents.

When public belief is close to 0.5 and contains very little information, the overall optimum selects
signal precision 1 if it is not cost-prohibitive. In such a case, (from Equation (1)) the agent’s action
equals the true state of the world with probability 1. Thus, the public belief collapses to either 0 or 1.

In the remaining case, the overall optimum chooses the minimum precision max(b, 1− b) such that
the agent’s action will reflect her private signal (refer to Equation (1)). For any precision lower, the
agent’s action carries no information beyond what other agents already know. Put differently, this is
the lowest-cost precision for social learning through observation of the actions of peers.

5 OPTIMAL BIASED POLICIES

We will begin with the myopic optimal policy as we did for the altruistic planner in Section 4.
Similar to Section 4, the myopic biased optimal policy, denoted as π0

B(·), is the arg supremum of
the instantaneous reward rB(b, q). We now characterize π0

B(·), noting that an optimal policy does
not always exist in the biased case (Puterman, 1990, sec. 2.3.1). When necessary we instead pursue
ϵ-optimal policies denoted with ϵ superscript.

Theorem 4. There exist t1, . . . , t5 ∈ (0, p) with t1 < 1 − p ≤ t2 ≤ t3 < 0.5 ≤ t4 ≤ t5 < p so
that:

(A) If b ∈ [0, t1] ∪ (1− p, t2) ∪ [t3, t4] ∪ (p, 1], then π0
B(b) = p.

(B) If b ∈ (t1, 1− p] ∪ [t2, t3), then π0
B(b) = 1− b.

(C) If b ∈ (t4, t5), then π0
B(b) = 1.

(D) If b ∈ [t5, p], then π0
B(b) does not exist, and πϵ,0

B (b) = b− ϵ for sufficiently small ϵ > 0.

Proof in Appendix C.6. We now apply Theorem 4 to characterize the optimal biased policy.

Theorem 5. There exist t1, t2 ∈ [0, p] with t1 ≤ 1− p ≤ 0.5 < t2 < p so that:

(A) If b ≤ t1 or b > p, then π∗
B(b) = p.

(B) If b ∈ (t1, 1− p], then π∗
B(b) ≥ p.

(C) If b ∈ (1− p, 0.5), then π∗
B(b) ≥ 1− b

(D) If b ∈ [0.5, t2) and π∗
B(b) exists, then π∗

B(b) ≥ b.

(E) If b ∈ (t2, p], then π∗
B(b) does not exist, and π∗ϵ

B (b) = b− ϵ for sufficiently small ϵ > 0.
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Theorem 5 (proven in Appendix C.8) shows five possible phases.

When public belief is sufficiently strong (i.e., (A)), the cost required to steer the system may be too
great, despite potential the negative consequences for the planner’s utility if b < 0.5. In this case,
the chosen precision p is less than max(b, 1− b). Therefore, from Equation (1), the agent will act in
accordance with the public belief regardless of her private signal. Since this action is uninformative,
it does not change the public belief, and, because the policy is Markovian, this process repeats ad
infinitum. This corresponds to an unfavorable cascade if b < 0.5 and a favorable cascade otherwise.

When public belief is close to an unfavorable cascade, as in (B), the planner increases signal pre-
cision so that it is high enough to affect the agent’s action despite the fact that, in expectation, the
resulting signal will be B. Thus, the agent will act in accordance with her private signal, which
has some non-zero chance of leading to a favorable action for the planner. Essentially, the planner
invests in a last-ditch effort to steer away from the unfavorable cascade.

For belief slightly higher (i.e., (C)), the planner may decrease precision below p. In these ranges,
b < 0.5; therefore, more precise signals are more likely to yield unfavorable news. Thus, the planner
maintains a precision strong enough to influence the agent’s action (q ≥ 1−b) in the hopes of moving
to a more favorable public belief but will do so with the least precise signal possible.

When public belief weakly favors the planner’s desired action (i.e., (D)), the planner adopts precision
at least p. Since b > 0.5, an increase in precision makes the agent more likely to infer that ω = G.
Investment in this regime is the planner’s attempt to bolster public belief.

When public belief is still higher (i.e., (E)), the planner decreases signal precision just below
max(b, 1 − b) to b − ϵ. Thus, agents ignore private signals and take action G. Here, the risk of
a private signal overturning the favorable public belief outweighs both the cost of decreasing preci-
sion and the potential for public belief to increase further.

6 EVALUATION VIA LLM-BASED SIMULATION

To understand the implications and applicability of our theoretical results, we return to our motivat-
ing case: LLMs. We now utilize LLMs to empirically study the policies of information-mediating
planners and the resultant dynamics in a setting with more realistic, non-Bayesian agents. Our evalu-
ation proceeds in three steps: we first analyze the behavior of LLM agents to identify key deviations
from Bayesian rationality, then examine how an LLM planner adapts its strategy in response, and
finally evaluate the resulting impact on social welfare.

To simulate the controlled social learning setting, we operationalize our theoretical model using a
scenario where agents decide whether to buy a new car. The abstract concept of signal precision (qi)
is translated into a concrete, context-aware message. We use LLMs in three distinct roles (figure 1a):
(1) the agents, who make decisions based on public history and private messages; (2) the planner,
who chooses a precision level based on the history; and (3) a belief oracle. Given the planner’s
chosen precision qi and the agent’s profile, the oracle generates a tailored message (a textual car
review) designed to have that specific level of informativeness.

We compare the outcomes of these LLM-based simulations with numerical evaluations of the plan-
ner’s MDP. In both LLM and numerical experiments, we assume a linear cost function, β(q) =
k|q − p|, and vary k, baseline precision p, and discount factor δ, with the cost of an incorrect action
C fixed at 1. See Appendix E for further detail on experimental setup and prompting.

6.1 LLMS AS NON-BAYESIAN AGENTS

While our analytical results assume Bayesian agents, it is well-documented that both humans and
LLMs exhibit systematic cognitive biases (Rupprecht et al., 2025). To first isolate these behaviors,
we test how an LLM agent updates its belief in response to a single piece of evidence. These results,
shown in figure 1b, reveal non-Bayesian patterns in LLM belief updating:

(NB1) LLM agents underreact to private signals which align with their prior beliefs.
(NB2) LLM agents overreact to private signals which run counter to their prior beliefs.
(NB3) As a result, LLM agents require a stronger public belief to enter an information cascade.
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Figure 1: (a) A system diagram for our LLM simulations. The instance parameters detail are color-
coded according to which of the LLM roles uses them. (b) Here we show the change in LLM (solid)
and Bayesian (dashed) agents’ beliefs after receiving a positive (black) or negative (red) signal.

The consequences of these individual updating biases with greater detail are shown in Appendix E.3.

6.2 VALIDATION OF PLANNER POLICY STRUCTURE AND THE ROLE OF SOCIAL LEARNING

We now compare the policies of LLM planners with the optimal policies derived in Sections 4 and 5.
As shown in figure 2a, despite the deviations in agent behavior, the emergent strategies of the LLM
planner show remarkable structural similarity to the theoretical optimum. This shows that, even
when the optimal policy is highly non-trivial (e.g., the biased policy in figure 2a), the LLM planner
exhibits sophisticated strategic behavior which accounts for and capitalizes upon social learning.

In the altruistic case, both planners cease investment when public belief is strong and invest heavily
when it is uncertain. In the biased case, both planners exhibit the same qualitative trends: high
investment to escape an unfavorable belief, reduced precision near the midpoint, and no investment
once a favorable belief is established. The magnitude of the policy deviation is often modest as
shown in figure 2b. For both altruistic and biased planners, the deviation is less than 10% for the
majority of belief states, underscoring the broad structural alignment between the emergent LLM
strategy and our theoretical characterization.

However, there are notable structural differences, which are best understood as the planner’s strategic
adaptations to the specific non-Bayesian behaviors identified in Section 6.1. (1) The LLM planner
tends to avoid extreme precisions (0.5 or 1.0), consistent with a known central tendency bias (Rup-
precht et al., 2025). (2) The LLM planner’s policy shows a more gradual tapering of investment
rather than a sharp cutoff. This is a direct response to the agents’ resistance to cascades (NB3); the
planner learns that it is never entirely ”safe” to stop investing, as even agents with strong priors can
be swayed by a countervailing private signal. (3) Similarly, the biased LLM planner continues to
invest at very low beliefs. This reflects an understanding that its agents might overreact (NB2) to a
surprisingly positive signal, making a ”last-ditch effort” more viable than in the Bayesian case.

6.3 WELFARE IMPLICATIONS OF ALTRUISM, BIAS, AND ALIGNMENT

We define social welfare Wπ(b) as the total expected discounted utility of all agents. As better
information never harms an agent’s expected utility, social welfare is monotonic in signal precision
(see C.9).

This implies the altruistic planner always increases social welfare relative to the baseline. To quan-
tify these effects, we compare social welfare and planner expenditure across three settings: (1)
the analytical setting (optimal policy, Bayesian agents), (2) the LLM setting (LLM planner, LLM
agents), and (3) a hybrid setting (optimal policy, LLM agents).

The results in figure 2c confirm that planners in all settings can significantly alter social welfare.
Furthermore, neglecting social learning (Myopic) substantially worsens outcomes for the planner.
In particular, the biased analytical and LLM planners decreased social welfare by 40 to 50% when
misaligned. This was accomplished by intentionally obscuring information about true state via poli-
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Figure 2: (a) Example policies from the LLM planner (black) and the analytically optimal planner
(red) in altruistic (solid) and biased (dashed) settings. (b) A histogram showing the distribution of
the percentage deviation between the LLM and optimal policies. (c) Planner expenditure and social
welfare change as a percent of the no-control baseline welfare. The true state was fixed to B. The
left half shows a biased planner seeking action G, and the right shows an altruistic planner.

cies which decrease signal precision. The magnitude of the detriment to social welfare is especially
striking consider the harsh constraints placed upon the planners in question (see Remark 2).

The results also highlight the cost of using a miscalibrated model of agent decision-making. In the
hybrid setting, the analytically optimal policy, designed for Bayes-rational agents, is ”brittle” and
its performance suffers when applied to non-Bayesian LLM agents. The LLM policy on the other
hand, closely resembles the analytical policy, but is better adjusted to non-Bayesian agents with
human-like biases.

7 CONCLUSION

We introduced a novel framework for studying the strategic control of social learning by an algorith-
mic information mediator and developed a formal model of this increasingly relevant dynamic. We
demonstrated that even a constrained planner can drastically impact social welfare, for better or for
worse, and that accounting for social learning is integral to wielding this influence effectively. Our
simulations confirmed these insights, revealing that LLMs are capable of strategic reasoning that
mirrors the character of our analytical results while being more adapted to non-Bayesian agents.

Taken together, these findings highlight several important takeaways for the age of algorithmic me-
diation: (1) the impact of human-AI or human-algorithm interaction cannot be effectively studied
in a vacuum—neglecting their interplay with other interactions (e.g. social learning) means failing
to capture their potential, whether positive or negative; (2) information mediators, even when exer-
cising relatively subtle influence, have immense power to guide or derail social learning and public
opinion, warranting further study in ways to mitigate the risks therein; and (3) modern LLMs exhibit
emergent strategic behavior which can account for and take advantage of social learning as well as
non-Bayesian human-like biases. The latter two points emphasize the need to better understand how
the risks of algorithmic information mediators and LLMs in particular, might be mitigated.

We conclude by highlighting two notable future directions: (1) generalization to agents with diverse
preferences and (2) mitigation of the negative welfare effects of biased planners. The problem of
the altruistic planner can be easily generalized to allow for agents with different preferences, i.e.,
agents whose utilities are maximized by different actions for the same true state (see Section D).
However, the biased planner’s problem is inherently asymmetric and, thus, does not allow for the
same generalization. The question of how a biased planner interacts with individuals of diverse
preferences remains open. Would the planner concentrate efforts on agents whose preferences align
with the planner’s or focus on swaying agents who may be predisposed otherwise?

Another important area for future exploration is how one might prevent the decrease in welfare
caused by biased planners. Here, one might explore regulations or mechanisms that seek to align
the incentives of planners and agents to avoid detrimental impacts on welfare.
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A APPLICATIONS ELABORATED

Consider a sequence of individuals (agents in our terminology) deciding whether to patronize a business or
service provider (e.g., a restaurant, contractor, realtor, etc.) and a recommendation system (the planner) serving
the agents information about the business. The true state of the world, assumed to be binary, is whether the
business is good, which is unknown. Both the recommendation system and the agents want to be consistent
with the unknown true state. That is, if and only if the business is good, agents want to patronize it, and
the recommendation system wants to induce the agents to do so. The recommendation system is an altruistic
planner in this sense.

The recommendation system can show an agent a highly targeted (precise in our terminology) ad that showcases
the strengths and weaknesses of the business in contexts that she can relate to, given her background and
characteristics, or it can show her a generic or confusing ad that would not help inform her action. The precise
signal will be more informative, comprehensible, and relatable for the agent. As such, it is more likely to drive
her to the correct conclusion, i.e., patronize the business if and only if it is good. Social welfare increases as
more agents arrive at correct decisions. However, changing the precision of an ad also incurs cost, as it involves
tailoring to the agent’s specific background. The recommendation system must then choose the precisions so
as to maximize social welfare minus the costs.
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We now provide a real-life example of a biased planner. Consider a group of voters (agents) motivated to
support the candidate most likely to win in their community. The motivation to ”back a winner” has been
shown to influence electoral outcomes, e.g., this is why US states with early primary elections have an outsized
impact on election results (see Bartels (1988)). The planner is a specific candidate’s campaign and, therefore,
seeks to motivate agents to back the candidate. The binary true state of the world indicates if the candidate is
winning or otherwise. Thus, if an agent knew the true state, she would back the candidate if and only if he were
winning.

Each agent understands her community well and would know if the candidate is winning (i.e., the true state
of the world) if she knows his stances and policies. She would know the latter correctly if those are provided
to her in a manner that she digests information best. For example, some agents understand audio-visuals best,
some long-form articles backed by facts, figures, and citations, some only brief and focused contents, and some
only their native language, etc.

The campaign sends digital ads (i.e., private signals) to agents in varying degrees of precision. The precision
represents how much the content is tailored to the agent’s taste. Note that a precise signal accurately conveys the
true state of the world to an agent by helping her clearly understand the candidate’s policies, track record, and
character, which enables her to correctly infer if the candidate will win. A precise signal does not necessarily
mean that the agent backs the planner’s candidate, though. For example, if the candidate loses in the agent’s
community as per the true state of the world, a highly precise signal would induce the agent to oppose him.
However, an imprecise signal is more likely to induce the agent into backing him since it obfuscates the true
state of the world from the agent (possibly by being vague or confusing), thus increasing the chance that she
thinks he is winning. Thus, the biased planner may be incentivized to decrease an agent’s signal precision if he
thinks that his candidate is losing. To tailor the ad to an agent, the planner must research how the agent best
understands any content, which incurs costs for the planner. Even rendering the signal to be really imprecise
is costly, as it still requires tailoring to the specific agent, e.g., the planner needs to know that an agent best
understands focused and brief messages to be able to decrease precision by confusing her with long-form
verbose, detailed articles. The planner selects the precisions so as to maximize the expected number of backers
minus the cost incurred in generating the precisions.

B SOCIAL LEARNING DYNAMICS

We first summarize the sequence of developments at step i:

1. The planner determines qi based on Hi and, qi is observed by all agents.

2. Agent i receives private signal si such that P{si = ω} = qi.

3. Agent i takes action ai based on the observable history and their private signal with the aim of
maximizing their own utility.

4. All other agents (and the planner) observe ai and the public belief at the end of step i, bi+1 is updated
accordingly.

Note that from (1), qi is a function of Hi. Thus, if a random variable is conditioned upon both qi and Hi, the
conditioning on qi is redundant. We will use this principle throughout.

B.1 PRIVATE BELIEF UPDATE

We now describe how agent i chooses action ai. Let αi := bi
1−bi

be the public likelihood ratio based on

observed actions. Agent i forms a private belief about ω, b̃i = P{ω = G|Hi, qi, si}, by combining the current
public belief with her private signal, si. We consider a private likelihood ratio, α̃i :=

b̃i
1−b̃i

. We now describe

how α̃i and b̃i are computed.

1. If private signal is si = G, then

α̃i =
b̃i

1− b̃i
=

P{ω = G|Hi, qi, si = G}
P{ω = B|Hi, qi, si = G}

=
P{si = G|ω = G,Hi, qi}P{ω = G|Hi, qi}
P{si = G|ω = B,Hi, qi}P{ω = B|Hi, qi}

=
qi

1− qi

bi
1− bi

(7)

=
qi

1− qi
αi (8)
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In obtaining Equation (7), we apply the assumption that, conditioned upon ω, agents’ signals are
independent of one another and the history to assert that P{si = G|ω = G,Hi} = P{si = G|ω =
G} = qi. The same is done when conditioning upon ω = B. We additionally use the fact that qi is a
function Hi.

2. If private signal is si = B, following the logic above,

α̃i =
1− qi
qi

αi (9)

We let y(b, q) and z(b, q) denote the probability of realizing signal G or B, with public belief b and signal
precision q conditioned upon the history. By conditioning on ω and applying the Law of Total Probability,
these probabilities can be expressed as follows:

y(bi, qi) = P{si = G|Hi}

=
∑

k∈{G,B}

P{si = G|Hi, ω = k}P{ω = k|Hi}

= qibi + (1− qi)(1− bi) = 1 + 2qibi − qi − bi (10)

Similarly,

z(bi, qi) = qi + bi − 2qibi (11)

Combining Equation (8), Equation (9), Equation (10), and Equation (11) yields the following:

b̃i = P(ω = G|Hi, qi, si) = f(bi, qi, si) =

{
qi

y(bi,qi)
bi si = G

1−qi
z(bi,qi)

bi si = B
(12)

Note that if si = G then y(bi, qi) = P(si = G|Hi) cannot be 0. Similarly, if si = B, then z(bi, qi) cannot be
0. Thus, the equation above is well-defined.

B.2 AGENT ACTIONS AND PUBLIC BELIEF

Agent i’s action ai will be G if b̃i exceeds 0.5 (equivalently, if α̃i > 1), B if b̃i < 0.5 (equivalently, if α̃i < 1),
and si otherwise as per the tie-breaking rule. This action and i’s precision qi are observed by all peers, resulting
in an updated public belief bi.

When bi < 1− qi, then αi <
1−qi
qi

. Therefore, if si = G, α̃i < 1 by Equation (8); if si = B, α̃i <
(1−qi)

2

q2i
≤

1 (since qi ≥ 0.5) by Equation (9). Thus, no matter the private signal realization si, ai = B when bi < 1− qi.
Similar arguments can be used to show that when bi > qi, ai = G. Intuitively these cases are when the strength
of the public belief overpowers the precision of the private signal.

Now consider the case that 1− qi ≤ bi ≤ qi. Then if si = G, α̃i ≥ 1 from Equation (7) and since bi ≥ 1− qi.
If si = B, then α̃i ≤ 1 from Equation (9) and since bi ≤ qi. Together with the tie-breaking rule, this results in
action ai = si. This leads to Equation (1), reproduced below.

ai =


si 1− qi ≤ bi ≤ qi
G qi < bi
B qi < 1− bi

Thus, agent i’s action is only informative in the first case of Equation (1) where it allows future agents to
perfectly infer i’s private signal. Thus, in this case, public belief will update just as the private belief from
Equation (12). In the latter two cases of Equation (1), the action contains no information about the true state.
Thus, the public belief will not change. This yields Equation (2) reproduced below:

bi+1 = f(bi, qi) =

{
b̃i 1− qi ≤ bi ≤ qi
bi o.w.

(13)

B.3 MARKOVIANITY AND SUFFICIENCY OF PUBLIC BELIEF

We now prove that P{ai = a|Hi, qi} is a function of bi, qi for a ∈ {G,B}, regardless of the rest of Hi. It
follows then that

P(ai = a|Hi, qi) = P(ai = a|bi, qi) (14)
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From Equation (1), for the second and third cases, it is clear that P{ai = a|Hi, qi} is a function of bi, qi for
a ∈ {G,B}, regardless of the rest of Hi. We consider the first case next.

P(ai = G|Hi, qi)

=
∑

w∈{G,B}

P(ω = w|Hi, qi)P(ai = G|Hi, qi, ω = w)

= bi P(ai = G|Hi, qi, ω = G)

+ (1− bi)P(ai = G|Hi, qi, ω = B)

= bi P(si = G|bi, qi, ω = G)

+ (1− bi)P(si = G|bi, qi, ω = B)

= biqi + (1− bi)(1− qi) (15)

The first step applies the law of total probability. In the second step, using the fact that qi is a function of Hi,
we substitute bi for P(ω = w|Hi, qi). In the third step, we use the fact that, for 1 − qi ≤ bi ≤ qi, ai = si,
and, further, that si is independent of the history when conditioned upon ω. The result follows.

This leads to the following theorem:

Theorem 6. Markovianity of the Public Belief Process

bi+1 = P{ω = G|bi, qi, ai} (16)

In other words, bi captures the entire information pertinent to the update of bi+1 that is contained in Hi.

Proof. Note that, from step (1) in section B, qi is a function of Hi. It suffices to show

bi+1 =
P{ai ∩ ω = G|bi, qi}

P{ai|bi, qi}

We will prove the claim via induction on i.

For our base case, consider i = 1 so that H2 = {b1, (q1, a1)} and bi = b1. An application of Bayes’ Theorem
provides the following:

b2 =
P{ω = G|b1, q1}P{a1|ω = G, b1, q1}

P{a1|b1, q1}
=

b1 P{a1|ω = G, b1, q1}
P{a1|b1, q1}

=
b1 P{a1 ∩ ω = G|b1, q1}

P{a1|b1, q1}P{ω = G|b1, q1}

=
P{a1 ∩ ω = G|b1, q1}

P{a1|b1, q1}

where the final step follows as the unconditioned belief of ω is equal to the prior belief b1.

Now, assume the claim holds for all i ≤ n.

bn+1 = P{ω = G|Hn, an, qn} =
P{ω = G|Hn, qn}P{an|ω = G,Hn, qn}

P{an|Hn, qn}

=
bn P{an|ω = G,Hn, qn}

P{an|Hn, qn}

=
bn P{an ∩ ω = G|Hn, qn}

P{an|bn, qn}P{ω = G|Hn, qn}

=
P{an ∩ ω = G|bn, qn}

P{an|bn, qn}

where the final two steps follow from Equation (14) and the definition of bn.

This completes the proof.

Note that we have shown that the public belief is Markovian adapting the arguments in Banerjee (1992) and
Bikhchandani et al. (1992). The modifications were required because of the differences in selections of the
agents’ precisions caused by the introduction of the central planner.
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C PROOFS

C.1 DERIVATION OF EQUATION (3)

Lemma 7.
P(ai ̸= ω|bi, qi) = min(bi, 1− bi, 1− qi)

Proof. We prove this for each case of ai delineated in Equation (1). In the second case, we can reason as
follows:

P(ai ̸= ω|bi, qi) = P(ω ̸= G|bi, qi) = 1− bi

Similarly, in the third case of Equation (1), we obtain:

P(ai ̸= ω|bi, qi) = P(ω ̸= B|bi, qi) = bi

For the case when 1− qi ≤ bi ≤ qi and ai = si from Equation (1), we can reason as follows:

P(ai ̸= ω|bi, qi) =
∑

a∈{G,B}

P(ai = a|bi, qi)P(ω ̸= a|bi, qi, ai = a)

= P(si = G|bi, qi)P(ω ̸= G|bi, qi, si = G)

+ P(si = B|bi, qi)P(ω ̸= B|bi, qi, si = B) Eqn 1 (17)
= y(bi, qi)P(ω = B|bi, qi, si = G)

+ z(bi, qi)P(ω = G|bi, qi, si = B) Eqns 10, 11, Thm 6 (18)

=

{
y(0, qi) bi = 0

y(bi, qi)(1− biqi
y(bi,qi)

) + z(bi, qi)
bi(1−qi)
z(bi,qi)

bi ̸= 0
Eqn 12 (19)

=

{
1− qi bi = 0

y(bi, qi)− biqi + bi(1− qi) bi ̸= 0

=

{
1− qi bi = 0

y(bi, qi)− biqi + bi − biqi bi ̸= 0

=

{
1− qi bi = 0

1− qi bi ̸= 0

Combining the three cases yields the claim.

C.2 PROOF OF THEOREM 1: MYOPIC ALTRUISTIC POLICY

Applying Equation (3) to rA(b, q) in Equation (4) allows us to reason as follows

∂rA(b, q)

∂q
=

{
−β̇(q) q < max(b, 1− b)

−β̇(q) + C q ≥ max(b, 1− b)
(20)

As stated in Section 3.2, we can restrict the altruistic planner to precision q ∈ [p, 1] because social welfare is
increasing in precision (see Appendix C.9). Accordingly, β(p) = 0.

Because β(·) is increasing, the first case of Equation (20) leads to optimal precision p if p < max(b, 1 − b).
That is, if the signal is not precise enough to influence the agent’s action, then the planner will not expend
resources for it. In the latter case, because β(·) is increasing and concave, β̇(·) is positive and decreasing.
Thus, rA(b, q), if the optimal lies in this range it must be attained at q = 1.

We now identify the regime in which the latter case is optimal.

rA(b, p) < rA(b, 1)

−Cmin(b, 1− b, 1− p) < −β(1)

min(b, 1− b, 1− p) >
β(1)

C

If 1− p ≤ β(1)
C

, the above inequality is never satisfied, and it is never optimal to select precision 1. Otherwise,

the inequality above yields b ∈
[
β(1)
C

, 1− β(1)
C

]
. This yields Theorem 1. ■
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C.3 PROOF OF THEOREM 2: ALTRUISTIC VALUE FUNCTION CONVEXITY

Proof Sketch We inductively prove that the expected k-th stage reward, i.e., the expected utility of the
planner from the control and action of the k-th agent, is convex. The instantaneous reward (Equation (4)),
which is convex with respect to public belief, provides our base case.

The first challenge encountered is the unusual nature of the public belief update. Although the state space
is uncountably infinite, the belief update only takes support on a maximum of 2 values. To manage this, we
define a decision tree, i.e., the complete binary tree of all possible trajectories once an initial belief and policy
are fixed. Each node has two children corresponding to each possible signal realization the next agent might
receive. The root is the expected instantaneous reward at time 1, i.e., from the first agent’s action. The induction
moves down the levels of this tree with the k-th level containing 2k−1 nodes, each associated with a sequence
of realizations of k − 1 signals.

We then show that for a node in the (k − 1)-th level that has convex expected reward, its two children in
the k-th level satisfy the same property. This is where we must deal with the dependence of agents’ actions
on public belief. Note that even when applying the same precision and receiving the same signal realization,
two agents beginning at different public beliefs may take opposing actions (see Equation (1)). Thus, standard
results that provide easy ways of bounding the future terms of the Markov process do not apply. Here, our
specific belief update is actually helpful. We can leverage the fact that Bayesian updates are martingales (i.e.,
E[bi+1] = bi). Along with the convexity of instantaneous rewards, this allows us to complete the inductive step
and, subsequently, the proof.

Preliminaries We first prove the following lemma containing a few useful properties of the optimal value
function V ∗

A(·).
Lemma 8.
V ∗
A(·) is non-positive, V ∗

A(b) = V ∗
A(1− b)∀b ∈ [0, 1], and V ∗

A(0) = V ∗
A(1) = 0 with π∗

A(0) = π∗
A(1) = p.

Proof.
Non-positivity
r(bi, qi) ≤ 0 ∀bi, qi → V ∗

A ≤ 0

Symmetry
Let ni = 1− bi and let Λn and Λb be the decision trees rooted at states n0 and b0, respectively. Showing that
Λn and Λb are symmetric suffices to show the symmetry of V ∗(·). This will be accomplished by showing that
the expected rewards, belief state values, and branching probabilities of the trees are reflections of one another.

First consider the instantaneous reward function rA. Note that the decision function of the agents when choos-
ing their actions is symmetric from Equation (1), thus, P{ai = G|bi} = P{ai = B|ni}. Applying this, we
obtain

r(ni, qi) = −β(qi)− Cni P{ai = B|ω = G,ni} − C(1− ni)P{ai = G|ω = B,ni}
= −β(qi)− C(1− bi)P{ai = B|ω = G,ni} − Cbi P{ai = G|ω = B,ni}
= −β(qi)− C(1− bi)P{ai = G|ω = B, bi} − Cbi P{ai = B|ω = G, bi}
= r(bi, qi)

Thus, the instantaneous reward function is symmetric about 0.5.

Now consider the belief state update when beginning with belief ni assuming signal precision qi. we will use
x̄ and x to represent updated beliefs from x after observing action G or B, respectively. From Equation (12):

n̄i =
qi

y(ni, qi)
ni =

qi
z(bi, qi)

(1− bi) = 1− 1− qi
z(bi, qi))

bi = 1− bi

ni =
1− qi
z(ni, qi

ni =
qi

y(bi, qi
(1− bi) = 1− qi

y(bi, qi)
bi = 1− b̄i

Thus, the belief updates are also symmetric. Combining this with the symmetry of the reward we obtain:
r(n̄i) = r(1− bi) = r(bi)

r(ni) = r(1− b̄i) = r(b̄i)

Thus, the expected rewards and belief state values of Λn and Λb are mirror images of one another.

Finally, consider the branching probabilities which we will denote as y(b, q) = 1 + 2bq − b− q for observing
action G and z(b, q) = 1− y(b, q) for observing action B.

y(n, q) = 1 + 2nq − n− q = 1 + 2(1− b)q − (1− b)− q = b+ q − 2bq = z(b, q)

z(n, q) = 1− y(n, q) = 1− z(b, q) = y(b, q)
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Thus, the branching probabilities of Λn and Λb are also symmetric, completing the proof.

Extremal values
We will show that V ∗

A(0) = 0 and rely on the symmetry about 0.5 proven above to show that V ∗
0 (1) = 0.

From Equation (2), when b0 = 0, b+0 = b−0 = 0 for any value of precision. Thus, regardless of signal
realizations or control actions, the agents’ actions and, subsequently, the public belief, will remain unchanged.
That is, bi = 0∀i and, from Equation (1), ai = B∀i.

From Equation (4), we can then write:

V ∗
A(0) = max

π∈Π
E

[
∞∑
i=0

δir(bi, π(bi))

]

= max
π∈Π

E

[
∞∑
i=0

δir(0, π(0))

]

= max
π∈Π

E

[
∞∑
i=0

δi [−β(π(0))− Cbi P{ai = B|ω = G, bi = 0} − C(1− bi)P{ai = G|ω = B, bi = 0}]

]

= max
π∈Π

E

[
∞∑
i=0

δi [−β(qi)]

]
(21)

Thus, to attain V ∗
A(0), it suffices to choose π(0) such that β(π(0)) is minimized for each i. Recall that β(·)

is increasing on [0.5, 1] and takes its minimum at β(p) = 0. Thus, by choosing qi = p∀i, Equation 21 yields
V ∗
A(0) = 0 with corresponding optimal policy π∗

A(0) = p.

The aforementioned symmetry about 0.5, shows that V ∗
A(1) = 0, completing the proof.

We now introduce the concept of decision trees for Markovian and more general policies. A policy can be
represented by a decision tree, which is a complete binary tree as in figure 3. Every node of the decision tree
represents the state of the system, i.e., the corresponding belief value when the controller sends its private sig-
nal to the agent corresponding to the level of the node. The branches represent the actions taken by the agent
corresponding to the level once it receives its private signal. The controller’s policies (i.e. choice of precision)
determine the probabilities of the actions from each node and the belief resulting from the action. The proba-
bilities of an action at a certain node can be considered the weight of the branch. A decision tree is uniquely
identified by the belief values associated with nodes and the weights of the branches. For a deterministic sta-
tionary Markovian policy, the controller’s choice of precision, and therefore the probability associated with an
action, is a deterministic function of the belief value of the node, regardless of the level of the node in the tree
and the path to the node from the root. Thus, the decision tree of any such policy, i.e. the belief values at the
nodes and the weights of the branches, is determined entirely by the value of the initial state. For an arbitrary
policy of the controller, the controller’s decision at a given node can depend on the entire path leading to the
node.

Proof of Theorem 2 We now prove the convexity of V ∗
A(·) with respect to public belief.

Proof.
We will first show that, for fixed precision, the instantaneous reward rA is convex in public belief. We can
rewrite rA as follows using Lemma 7:

rA(x, q) = −β(q)− Cmin(x, 1− x, 1− q) (22)

The pointwise minimum of linear functions is concave. As we are subtracting the minimum, the overall function
is convex with respect to x.

We consider arbitrary x0,m0, n0 such that tm0 + (1− t)n0 = x0 for some t ∈ [0, 1]. To show the convexity
of V ∗

A(·) we must show that V ∗
A(x0) ≤ tV ∗

A(m0)+(1−t)V ∗
A(n0). By definition of the optimal value function,

V ∗
A(x) ≥ V π

A (x) for any policy π. Thus, it will suffice to show that there exist π̃ such that

V ∗
A(x0) ≤ tV π̃

A (m0) + (1− t)V π̃
A (n0) (23)

We refer to the decision tree of π∗ when the initial state is x0 as Λ.

We consider π̃ to be a policy of the controller that chooses the precision at each node to be the same as what
Λ does at the counterpart node. The nodes of decision trees are considered to be counterparts if they can be
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reached via the same sequence of actions from the root (see figure 3 for illustration). Thus, the precision chosen
by this policy is the same as what Λ does after the same set of actions of the agents. We refer to the decision
trees for π̃ with initial state m0 (respectively, n0) as Λm (Λn).

We now illustrate the policy π̃ for initial values m0 and n0 considering the decision trees Λm and Λn. While
doing so, we illustrate counterpart nodes and the weights of the branches. We will select one path of actions λ
out of these decision trees by specifying set G as the epochs where action G is taken and B as its complement.
Refer to figure 3 for illustration. Considering the decision tree Λ, we will refer to xi as the state at epoch i when
beginning with belief x0 and following π∗ along this path of actions. That is, xi assumes one of 2i possible
belief values at epoch i starting from x0. In decision tree Λm (respectively, Λn), we use mi (ni) to denote the
public belief after beginning with m0 (n0), following the path λ. Node mi (respectively ni) in decision tree Λm

(Λn) is the counterpart of node xi from decision tree Λ. Note that, π̃(mi) can now be illustrated notationally.
Specifically, π̃(mi) = π̃(ni) = π∗

A(xi). Similarly, π̃ can be defined at each node of Λm, considering the
action taken by π∗ at each counterpart node in Λ. Note that y(xi, π

∗
A(xi)) (respectively, z(xi, π

∗
A(xi))) is the

weight of the branch corresponding to G (B) emanating from xi in Λ. Because π̃(mi) = π̃(ni) = π∗
A(xi),

y(mi, π̃(mi)) = y(mi, π
∗
A(xi)) is the weight of the branch emanating from mi for action G in Λm. This

extends similarly to branches associated with action B and Λn. Thus, the three decision trees differ in both
the values of the nodes and the weights of the branches. Since π∗ is deterministic, so is π̃. Therefore, from
Equation (12) and Equation (2), xi, mi, and ni are deterministic quantities once the specific path of actions is
specified by G.

Now let ϕπ
k (b0) = E[rA(bk, π(bk)] be the expected instantaneous reward at epoch k when beginning with state

b0 and applying policy π and ϕ∗(x) = ϕπ∗
A(x). Applying Fubini’s Theorem, we can rewrite our value function

as

V π
A (b0) = E

[
∞∑
i=0

δirA(bi, π(bi))

]
=

∞∑
i=0

δiE[rA(bi, π(bi))] =
∞∑
i=0

δiϕπ
i (b0) (24)

Thus, we can rewrite (23), as
∞∑
i=0

δiϕ∗
i (x0) ≤ t

[
∞∑
i=0

δiϕπ̃
i (m0)

]
+ (1− t)

[
∞∑
i=0

δiϕπ̃
i (n0)

]
(25)

To prove this, we show that for all i = 0, 1, 2, . . .

ϕ∗
i (x0) ≤ tϕπ̃

i (m0) + (1− t)ϕπ̃
i (n0) (26)

leading directly to (25), (23), and finally the convexity of V ∗(·) with respect to public belief.

Now let us consider general i = k. ϕπ
k−1(x0) will have 2k−1 terms each corresponding to one path of possible

actions in the set {G,B}k−1. Thus, at epoch k − 1, the path λ will yield the following term in ϕ∗
k−1(x0)(∏

i∈G

y(xi, π
∗
A(xi))

)(∏
i∈B

z(xi, π
∗
A(xi))

)
rA(xk−1, π

∗
A(xk−1)) (27)

We now define P ∗
λ (x0) =

(∏
i∈G y(xi, π

∗
A(xi))

) (∏
i∈B z(xi, π

∗
A(xi))

)
, that is, the probability of following

the specified path λ when beginning with state x0 and following policy π∗
A. Again, we will use x̄i and xi to

represent updated beliefs from xi after observing action G or B, respectively. Thus, x̄i and xi constitute belief
values of the children nodes (in the (i + 1)th level) of the node with belief value xi in the i-th level. Refer to
levels k − 1 and k in figure 3a. Considering the children x̄k−1 and xk−1 (in the k-th level) of the node xk−1

(in the (k − 1)-th level), we obtain the following two terms in ϕ∗
k(x0):

P ∗
λ (x0)

[
y(xk−1, π

∗
A(xk−1))rA(x̄k−1, π

∗
A(x̄k−1)) + z(xk−1, π

∗
A(xk−1))rA(xk−1, π

∗
A(xk−1))

]
(28)

Similarly, we define P π̃
λ (m0) =

(∏
i∈G y(mi, π̃(mi))

) (∏
i∈B z(mi, π̃(mi))

)
, that is, the probability of fol-

lowing the specified path λ when beginning with state m0 and following policy π̃. Because π̃(mi) = π∗
A(xi),

P π̃
λ (m0) =

(∏
i∈G y(mi, π

∗
A(xi))

) (∏
i∈B z(mi, π

∗
A(xi))

)
. We also define P π̃

λ (n0) by replacing {mi} with
{ni}.

The corresponding terms in ϕπ̃
k (m0) and ϕπ̃

k (n0) are
P ∗
λ (m0)

[
y(mk−1, π

∗
A(xk−1))rA(m̄k−1, π

∗
A(x̄k−1)) + z(mk−1, π

∗
A(xk−1))rA(mk−1, π

∗
A(xk−1))

]
(29)

P π̃
λ (n0)

[
y(nk−1, π

∗
A(xk−1))rA(n̄k−1, π

∗
A(x̄k−1)) + z(nk−1, π

∗
A(xk−1))rA(nk−1, π

∗
A(xk−1))

]
(30)

We will show that
P ∗
λ (x0)

[
y(xk−1, π

∗
A(xk−1))rA(x̄k−1, π

∗
A(x̄k−1)) + z(xk−1, π

∗
A(xk−1))rA(xk−1, π

∗
A(xk−1))

]
≤ tP ∗

λ (m0)
[
y(mk−1, π

∗
A(xk−1))rA(m̄k−1, π

∗
A(x̄k−1)) + z(mk−1, π

∗
A(xk−1))rA(mk−1, π

∗
A(xk−1))

]
+ (1− t)P π̃

λ (n0)
[
y(nk−1, π

∗
A(xk−1))rA(n̄k−1, π

∗
A(x̄k−1)) + z(nk−1, π

∗
A(xk−1))rA(nk−1, π

∗
A(xk−1))

]
(31)
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(a) Decision tree Λ rooted at x0

GB GB GB GB

mk−1 ∈

m2 ∈

m1 ∈

mk ∈

m0

(∏
i∈𝒢

π(xi)
y(mi, π(xi)) ) ( ∏

i∈ℬ

1 − π(xi)
z(mi, π(xi)) ) m0

π(x0)
y(m0, π(x0)) m0

…

GB
y(m0, π(x0))z(m0, π(x0))

GB
y(m1, π(x1))z(m1, π(x1))

π(x1)
y(m1, π(x1)) m1

mk−1 m̄k−1
GB
y(mk−1, π(xk−1))z(mk−1, π(xk−1))

1 − π(x0)
z(m0, π(x0)) m0

GB
y(m0, π(x0))z(m0, π(x0))

1 − π(x0)
z(m0, π(x0))

m0
π(x0)

y(m0, π(x0))
m0

  
possible states


…

2k−1

… … …

  
possible states


…

2k

GB

… … …

1 − π(x1)
z(m1, π(x1))

π(x0)
y(m0, π(x0)) m0

(b) Decision tree Λm rooted at m0
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(c) Decision tree Λn rooted at n0

Figure 3: Here we depict the belief evolution in the form of three binary trees. The tree begins with
state x0,m0, and n0, respectively, and level i contains 2i possible states reachable after i epochs.
Left branches correspond to action B leading to updated belief x0 (respectively, m0 and n0). Right
branches correspond to action G leading to updated belief x̄0 (respectively, m̄0 and n̄0). Each branch
is labeled with the corresponding probability, and the bold states indicate an example path, like λ.
In the example path, 0 ∈ G and 1, k − 1 ∈ B. The bold states in each level of the three trees are
counterparts.

Similarly, each pair of children for each term in the (k − 1)-th level of the belief tree can be combined and
the corresponding inequalities can be obtained following the same process. Summing the resulting inequalities
will yield (26), leading to (25), (23), and the convexity of V ∗(·).

Proof of (31)

We now focus on the latter of the two terms of (28). We will show the following two properties

xk−1 = t

(∏
i∈G

y(mi, π
∗
A(xi))

y(xi, π∗
A(xi))

) ∏
i∈B∪{k−1}

z(mi, π
∗
A(xi))

z(xi, π∗
A(xi))

mk−1

+ (1− t)

(∏
i∈G

y(ni, π
∗
A(xi))

y(xi, π∗
A(xi))

) ∏
i∈B∪{k−1}

z(ni, π
∗
A(xi))

z(xi, π∗
A(xi))

nk−1 (32)
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1 = t

(∏
i∈G

y(mi, π
∗
A(xi))

y(xi, π∗
A(xi))

) ∏
i∈B∪{k−1}

z(mi, π
∗
A(xi))

z(xi, π∗
A(xi))


+ (1− t)

(∏
i∈G

y(ni, π
∗
A(xi))

y(xi, π∗
A(xi))

) ∏
i∈B∪{k−1}

z(ni, π
∗
A(xi))

z(xi, π∗
A(xi))

 (33)

Defining t̃ = t
(∏

i∈G
y(mi,π

∗
A(xi))

y(xi,π
∗
A
(xi))

)(∏
i∈B∪{k−1}

z(mi,π
∗
A(xi))

z(xi,π
∗
A
(xi))

)
, it follows from (32) and (33) that

xk−1 = t̃mk−1 + (1− t̃)nk−1 (34)

From the expressions for t̃, P ∗
λ (x0), P

π̃
λ (m0), it follows that:

t̃z(xk−1, π
∗
A(xk−1))P

∗
λ (x0) = tz(mk−1, π

∗
A(xk−1))P

π̃
λ (m0) (35)

Similarly, we can show

t̃z(xk−1, π
∗
A(xk−1))P

∗
λ (x0) = (1− t)z(nk−1, π

∗
A(xk−1))P

π̃
λ (n0) (36)

We apply this as follows to the latter term of (28):

P ∗
λ (x0)z(xk−1, π

∗
A(xk−1))rA(xk−1, π

∗
A(xk−1))

≤ P ∗
λ (x0)z(xk−1, π

∗
A(xk−1))[

t̃rA(mk−1, π
∗
A(xk−1)) + (1− t̃)rA(nk−1, π

∗
A(xk−1))

]
(Convexity of r,Eqn 34)

= t
[
P π̃
λ (m0)z(mk−1, π

∗
A(xk−1))rA(mk−1, π

∗
A(xk−1))

]
+ (1− t)

[
P π̃
λ (n0)z(nk−1, π

∗
A(xk−1))rA(nk−1, π

∗
A(xk−1))

]
(Eqns 35, 36) (37)

Applying the same argument to the first term of (28) yields:

P ∗
λ (x0)y(xk−1, π

∗
A(xk−1))rA(x̄k−1, π

∗
A(x̄k−1))

≤ t
[
P π̃
λ (m0)y(mk−1, π

∗
A(xk−1))rA(m̄k−1, π

∗
A(x̄k−1))

]
+ (1− t)

[
P π̃
λ (n0)y(nk−1, π

∗
A(xk−1))rA(n̄k−1, π

∗
A(x̄k−1))

]
(38)

Summing (37) and (38) yields (31).

We now complete the proof of (31) and, therefore, the entire proof, by proving (32) and (33).

Proof of (32)

From the recurrence relation in Equation (12) and Equation (2), we can write xk−1,mk−1, and nk−1 as the
product of all belief updates with x0,m0, and n0, respectively, as follows. Each term in the products corre-
sponds to the multiplicative state update after a single action.

xk−1 =

(∏
i∈G

π∗
A(xi)

y(xi, π∗
A(xi))

) ∏
i∈B∪{k−1}

1− π∗
A(xi)

z(xi, π∗
A(xi))

x0 (39)

mk−1 =

(∏
i∈G

π∗
A(xi)

y(mi, π∗
A(xi))

) ∏
i∈B∪{k−1}

1− π∗
A(xi)

z(mi, π∗
A(xi))

m0 (40)

nk−1 =

(∏
i∈G

π∗
A(xi)

y(ni, π∗
A(xi))

) ∏
i∈B∪{k−1}

1− π∗
A(xi)

z(ni, π∗
A(xi))

n0 (41)
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These equations may be best understood via the illustration in figure 3. We then reorganize terms to relate xk−1

to mk−1 and nk−1, using the fact that x0 = tm0 + (1− t)n0.

xk−1 =

(∏
i∈G

π∗
A(xi)

y(xi, π∗
A(xi))

) ∏
i∈B∪{k−1}

1− π∗
A(xi)

z(xi, π∗
A(xi))

 [tm0 + (1− t)n0] (from 39)

= t

(∏
i∈G

y(mi, π
∗
A(xi))

y(xi, π∗
A(xi))

) ∏
i∈B∪{k−1}

z(mi, π
∗
A(xi))

z(xi, π∗
A(xi))

mk−1

+ (1− t)

(∏
i∈G

y(ni, π
∗
A(xi))

y(xi, π∗
A(xi))

) ∏
i∈B∪{k−1}

z(ni, π
∗
A(xi))

z(xi, π∗
A(xi))

nk−1 (from 40 and 41) (42)

This proves (32).

Proof of (33)

We first consider the numerator of the first term in (33):
∏

i∈G y(mi, π
∗
A(xi))

∏
i∈B∪{k−1} z(mi, π

∗
A(xi)). We

now prove that this can be written as α0m0 + β0 for some α0, β0 which depend only on {π∗
A(xi)}i=1,...,k−1

and the nature of the dependence is determined by the sequence of actions along this path in stages 1 to k − 1.
We will prove this via induction working backwards from the final term (i.e. the (k−1)-th term) of the product.
Therefore our base case will be the the final term of this product which can be either y(mk−1, π

∗
A(xk−1)) or

z(mk−1, π
∗
A(xk−1)), depending on the preceding action (in the (k − 1)-th stage).

y(mk−1, π
∗
A(xk−1)) = 1 + 2mk−1π

∗
A(xk−1)−mk−1 − π∗

A(xk−1)

= (2π∗
A(xk−1)− 1)mk−1 + (1− π∗

A(xk−1))

z(mk−1, π
∗
A(xk−1)) = mk−1 + π∗

A(xk−1)− 2mk−1π
∗
A(xk−1)

= (1− 2π∗
A(xk−1))mk−1 + (π∗

A(xk−1))

Thus, the final term of the product is of the form αk−1mk−1 + βk−1 where αk−1 and βk−1 depend only upon
π∗
A(xk−1), and the nature of the dependence is determined entirely by the (k − 1)-th action (since this action

determines whether the final term is y(·) or z(·)).

For the inductive step, assume that
∏

i∈G,i>j y(mi, π
∗
A(xi))

∏
i∈B∪{k−1},i>j z(mi, π

∗
A(xi)) can be written

as αj+1mj+1 +βj+1 for some αj+1, βj+1 which depend only {π∗
A(xi)}i>j and the nature of the dependence

is determined entirely by the sequence of actions in this path for i > j to i = k − 1. We will now show that∏
i∈G,i>j−1 y(mi, π

∗
A(xi))

∏
i∈B∪{k−1},i>j−1 z(mi, π

∗
A(xi)) can be written as αjmj+βj again with αj , βj

depending only on {π∗
A(xi)}i>j−1 with the nature of the dependence determined by the sequence of actions on

this path for i > j−1 to i = k−1. We define f(b, q, a) =

{
y(b, q) a = G

z(b, q) a = B
and g(q, a) =

{
q a = G

1− q a = B
.

Thus, ∏
i∈G,i>j−1

y(mi, π
∗
A(xi))

∏
i∈B∪{k−1},i>j−1

z(mi, π
∗
A(xi))

= f(mj , π
∗
A(xj), aj+1)

∏
i∈G,i>j

y(mi, π
∗
A(xi))

∏
i∈B∪{k−1},i>j

z(mi, π
∗
A(xi))

= f(mj , π
∗
A(xj), aj+1) [αj+1mj+1 + βj+1] (inductive hypothesis)

= f(mj , π
∗
A(xj), aj+1)

[
αj+1

g(π∗
A(xj), aj+1)

f(mj , π∗
A(xj), aj+1))

mj + βj+1

]
(Equation (12))

= αj+1g(π
∗
A(xj), aj+1)mj + βj+1f(mj , π

∗
A(xj), aj+1))

Thus, from the definitions of f(·), g(·), y(·), and z(·),

αj =

{
αj+1π

∗
A(xj) + βj+1(2π

∗
A(xj)− 1) aj+1 = G

αj+1(1− π∗
A(xj)) + βj+1(1− 2π∗

A(xj)) aj+1 = B
and βj =

{
βj+1(1− π∗

A(xj)) aj+1 = G

βj+1π
∗
A(xj) aj+1 = B

In both cases, by our inductive hypothesis, αj+1, βj+1 depend only on {π∗
A(xi)}i>j and the actions in this

path from i > j to i = k − 1. Thus, the claim holds for αj , βj , completing the induction.

Now recall that the denominator of (33) is
∏

i∈G y(xi, π
∗
A(xi))

∏
i∈B∪{k−1} z(xi, π

∗
A(xi)). Note that the

policy and sequence of actions is the same as those for the numerator. Thus, because, as shown, the coefficients
α0, β0 depend only on {π∗

A(xi)} and the path of actions, the same logic can be applied to write the denominator
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as α0x0 + β0 for the same α0, β0. This can be done similarly for the numerator of the second term in (33).
Thus, we can reason about the coefficients in (32) as follows:

t

(∏
i∈G

y(mi, π
∗
A(xi))

y(xi, π∗
A(xi))

) ∏
i∈B∪{k−1}

z(mi, π
∗
A(xi))

z(xi, π∗
A(xi))


+ (1− t)

(∏
i∈G

y(ni, π
∗
A(xi))

y(xi, π∗
A(xi))

) ∏
i∈B∪{k−1}

z(ni, π
∗
A(xi))

z(xi, π∗
A(xi))


=

t(α0m0 + β0) + (1− t)(α0n0 + β0)

α0x0 + β0

=
α0x0 + β0

α0x0 + β0
(Since x0 = tm0 + (1− t)n0)

= 1

Thus, (33) holds, completing the proof.

C.4 ALTRUISTIC MYOPIC POLICY BOUND

Lemma 9.

π0
A(b) ≤ π∗

A(b) ∀b ∈ [0, 1]

Assume by way of contradiction that there exists b ∈ [0, 1] such that π0
A(b) > π∗

A(b). We will show that
V ∗
A(b) < V π

A (b) for a policy π we construct, violating the optimality of V ∗
A(·).

Let π be such that, when starting at public belief b, the policy π applies precision π0
A(b) at the current time step

and then applies the optimal policy at all future time steps. We now elaborate V ∗
A(b)− V π

A (b) by breaking the
value function into instantaneous reward rA and future discounted reward. We will refer to b+ and b− as the
updated beliefs after receiving signals G and B, respectively when applying the optimal policy and b+m and b−m
as the same when applying the myopic policy.

V ∗
A(b)− V π

A (b) = rA(b, π
∗
A(b))− rA(b, π

0
A(b))

+ δy(b, π∗
A(b)V

∗
A(b+) + δz(b, π∗

A(b))V
∗
A(b−)

− δy(b, π0
A(b))V

∗
A(b+m)− δz(b, π0

A(b))V
∗
A(b−m)

< δy(b, π∗
A(b)V

∗
A(b+) + δz(b, π∗

A(b))V
∗
A(b−)

− δy(b, π0
A(b))V

∗
A(b+m)− δz(b, π0

A(b))V
∗
A(b−m) (definition of π0

A)

≤ 0 (Theorem 2)

Here, we applied the fact that the instantaneous reward under π0
A(·) must be greater from the definition of the

myopic optimal policy.

We then relied on the convexity of V ∗
A(·) from Theorem 2 for the future cost. From Equation (12), note that

b−m ≤ b− ≤ b ≤ b+ ≤ b+m. Along with this convexity, this leads to the last step above and completes the proof.
■

C.5 PROOF OF THEOREM 3: OPTIMAL ALTRUISTIC POLICY

Consider V π
A (b) with policy π applying precision q in the current time step and applying the optimal policy

at all future time steps. The q that maximizes V π
A (b) provides the optimum precision starting at public belief

b. Because the planner never benefits from decreasing precision below the baseline p (see Appendix C.9), we
restrict q to [p, 1] without loss of generality.

We will let b+ and b− denote the positive and negative belief updates possible after receiving a signal with
precision q. Taking the second derivative of V π

A (b) with respect to q for q ≥ max(b, 1− b):

∂2

∂q2
V π
A (b) =

{
−β̈(q) + δb2(1− b)2

[
V̈ ∗
A(b+)

y3(b,q)
+

V̈ ∗
A(b−)

z3(b,q)

]
q ≥ max(b, 1− b)

−β̈(q) otherwise

With the convexity and concavity of V ∗
A(·) and β(·), respectively, the above shows that V π

A (b) is convex with
respect to q on [max(b, 1 − b), 1]. Thus, on this interval, it is maximized at one of the two extreme points.
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For q ∈ [0.5,max(b, 1 − b)), the derivative of V π
A (b) with respect to q is negative; thus, the optimal choice

will be the baseline precision p to minimize the cost. Thus, there are three possible optimal precisions: p,
max(b, 1− b), and 1.

Note that the expected value under the latter two candidates is always strictly negative. Under precision p,
however, the expected value is 0 at b = 0 and b = 1. This, combined with the non-positivity and symmetry
of the value function (Lemma 8) implies the existence of dA such that π∗

A(b) = p for b ∈ [0, dA) ∪ (1− dA].
Furthermore, from Theorem 1 and applying Lemma 9, dA ∈ (0, tM ) where tM is defined as in the statement
of Theorem 1.

Finally, Theorem 1 and applying Lemma 9, also imply the existence of tA ∈ [dA, tM ] such that π∗
A(b) = 1 for

b ∈ (tA, 1− tA). This completes the proof.

■

C.6 PROOF OF THEOREM 4: MYOPIC BIASED POLICY

Preliminaries Applying the action rule from (1), the instantaneous reward (5) can be written as follows:

rB(b, q) =


−β(|q − p|)− Cz(b, q) q ≥ max(b, 1− b)

−β(|q − p|)− C b < 1− q

−β(|q − p|) b > q

(43)

Note that z(b, q) = b+ q− 2bq increases with respect to q when b < 0.5 and decreases with respect to q when
b > 0.5.

At b = 0.5, z(b, q) = z(0.5, q) = 0.5 regardless of the precision chosen. Furthermore, at this public belief,
q ≥ max(b, 1 − b) because q ≥ 0.5 for any q, falling in the first case of (43). In this case, the second term
of rB(b, q) is unchanging with respect to q, so the planner seeks to maximize only the first term, which is
accomplished at q = p.

We now prove a series of lemmas (10-14) which will assist us in our proof of Theorem 4.

Lemma 10.
If π0

B(b) ≥ max(b, 1− b), then π0
B(b) ∈ {max(b, 1− b), p, 1}.

Proof. The reward is differentiable everywhere except q = p. Thus, we can write its derivative with respect to
the chosen precision as follows (except at q = p):

∂rB(b, q)

∂q
=


− sign(q − p)β̇(|q − p|)
−C(1− 2b) q ≥ max(b, 1− b)

− sign(q − p)β̇(|q − p|) otherwise
(44)

In the former case, we can write the second derivative of the reward with respect to q as follows, for q ̸= p:

∂2

∂q2
rB(b, q) = −β̈(|q − p|)

Because β(·) is concave, this expression is non-negative, and rB(b, q) is convex with respect to q. Thus, the
reward is maximized at one of the extreme points {max(b, 1− b), 1} or p because rB(b, q) is not differentiable
at q = p.

Lemma 11.
For b ∈ [0, 1− p), π0

B(b) ∈ {p, 1− b}.

Proof. Because p > 0.5, for b ∈ [0, 1− p), max(b, 1− b) = 1− b > p.

First, consider the case when π0
B(b) < max(b, 1 − b) = 1 − b. From (43), in such instances, the reward is

maximized by minimizing |q − p|. Thus, the optimal precision lower than max(b, 1− b) is p.

Now consider π0
B(b) ≥ max(b, 1 − b) = 1 − b. By Lemma 10, π0

B(b) ∈ {1 − b, p, 1}. What remains is
to rule out π0

B(b) = 1. To do so, we compare rB(b, 1) and rB(b, 1 − b). Both fall under the first case of
(43). Because β(·) is increasing in its argument and p < 1 − b ≤ 1, the first term of the reward from (43)
is greater for precision 1 − b than for precision 1. Since z(b, q) is increasing with respect to q for b < 0.5,
rB(b, 1) ≤ rB(b,max(b, 1− b)) so we can rule out precision 1. This completes the proof.
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Lemma 12.
For b ∈ (p, 1], π0

B(b) = p.

Proof. The reward is strictly negative for any q ̸= p because of the term −β(|q−p|). For b ∈ (p, 1] and q = p,
p < max(b, 1− b) = b, leading to the third case of (43) and yielding reward 0. Thus, the optimal precision is
p.

Lemma 13.
For b ∈ [1− p, 0.5], π0

B(b) ∈ {p, 1− b}.

Proof. When p = 0.5, the interval [1− p, 0.5] contains only {0.5}. At b = 0.5 p = 1− b, thus π0
B(b) = p =

1− b = 0.5. We deal with p > 0.5 ≥ b for the remainder of the proof.

For b ∈ [1 − p, 0.5], max(b, 1 − b) = 1 − b ≤ p. Thus, from the first case of (43), precision p yields reward
rB(b, p) = −Cz(b, p). We now consider two cases: q < max(b, 1− b) and q ≥ max(b, 1− b).

Suppose q < max(b, 1− b) = 1− b. This leads to the second case of (43) and yields reward −β(|q−p|)−C.
Furthermore, z(b, q) is increasing with respect to q for b < 0.5 and takes values between z(b, 0.5) = 0.5 and
z(b, 1) = 1− b. Thus, z(b, q) < 1 for all q. Therefore, the reward from policy q < 1− b is strictly lower than
rB(b, p), and we can rule out this case.

When q ≥ max(b, 1− b), applying Lemma 10 yields that the remaining candidate precisions are {1− b, p, 1}.
We rule out precision 1 by comparing it to precision p. The first term of the reward from (43) is greater for
precision p than for precision 1. Since z(b, q) is increasing with respect to q for b < 0.5, the second term is
also greater for precision p, and we can rule out precision 1. This completes the proof.

We now define the notion of ϵ-optimal policies.

Definition 1. ϵ-optimal policies

An ϵ-optimal policy πϵ(b) is any policy such that the following holds

V ∗(b) ≤ V πϵ

(b) + ϵ

for ϵ > 0.

Note that from the definition, any optimal policy is also ϵ-optimal for any ϵ > 0. Thus, π0
B(b) is also ϵ-optimal

Following this definition, let πϵ,0
B (b) denote an ϵ-optimal myopic policy for the biased planner.

Lemma 14.
For b ∈ (0.5, p] and any ϵ > 0, there are two possibilities:

1. π0
B(b) ∈ {p, 1}, or

2. πϵ,0
B (b) = b− ϵ

Proof. For b ∈ (0.5, p], max(b, 1 − b) = b ≤ p. We consider two cases: q ≥ max(b, 1 − b) or q <
max(b, 1− b).

In the first case, Lemma 10 yields that π0
B(b) ∈ {b, p, 1}. We rule out precision b by comparing it to precision

p. The first terms of the reward from (43) is greater for precision p. Furthermore, since z(b, q) is decreasing
with respect to q for b > 0.5, the second term of the reward is also greater for precision p. Thus, we can rule
out precision b. This yields the first claim.

In the latter case, q < max(b, 1− b) = b. Therefore, (1) since q ≥ 0.5, q ∈ [0.5, b), and (2) the third case of
(43) applies leading to reward −β(|q − p|). Thus, the reward rB(b, q) is an increasing function of q ∈ [0.5, b)
because 0.5 < b ≤ p. This leads directly to the second claim.

Remark 3. As noted in Puterman (1990) Section 2.3.1, an optimal policy may not exist for infinite action
spaces because the supremum may not be attained. When an optimal policy does not exist, we instead seek
ϵ-optimal policies, i.e., policies that yield reward within ϵ > 0 of the supremum. In particular, this is true for
case 2 of Lemma 14.
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Proof of Theorem 4 We consider the myopic biased policy in 4 cases: b ∈ [0, 1 − p), b ∈ [1 − p, 0.5),
b ∈ (0.5, p], and b ∈ (p, 1], making use of the fact that p ≥ 0.5. Based on Lemmas 11-14, these cases have the
following candidate policies: {p, 1− b}, {1− b, p}, {1, p, b− ϵ}, and {p}, respectively.

Case 1: b ∈ [0, 1− p), π0
B(b) ∈ {p, 1− b} (Lemma 11)

We will show the existence of a threshold t1 such that π0
B(b) = p for b ∈ [0, t1] and π0

B(b) = 1 − b for
b ∈ (t1, 1− p).

We can express the reward under the two candidate policies as follows by applying (43):

rB(b, p) = −C

rB(b, 1− b) = −β(1− b− p)− C(1− 2b(1− b))

The derivative of rB(b, 1− b) with respect to b is

∂

∂b
rB(b, 1− b) = β̇(1− p− b) + 2C(1− 2b)

which is positive as β(·) is increasing and b < 1 − p ≤ 0.5. Furthermore, when evaluated at b = 0 and
b = 1− p we obtain

rB(0, 1) = −β(1− p)− C < rB(b, p)

rB(1− p, p) = −C(1− 2p(1− p)) > rB(b, p)

Thus, rB(b, 1 − b) is increasing on [0, 1 − p) with rB(b, 1 − b) < rB(b, p) for b = 0 and vice versa for
b = 1 − p. Because β(·) is continuous, so are both reward functions. Thus, there exists t1 ∈ (0, 1 − p) such
that π0

B(b) = p for b ∈ [0, t1] and π0
B(b) = 1− b for b ∈ (t1, 1− p).

Case 2: b ∈ [1− p, 0.5], π0
B(b) ∈ {1− b, p} (Lemma 13)

If p = 0.5, this interval contains only {0.5}, and, for b = 0.5, 1− b = p. Thus, the two candidate policies are
equivalent, and the optimal policy is π0

B(b) = p. For the remainder of this case, we consider p > 0.5.

We now prove the existence of t2, t3 such that such that π0
B(b) = 1 − b for b ∈ [t2, t3), and π0

B(b) = p for
b ∈ [1− p, t2) ∪ [t3, 0.5].

We can express the reward under the candidate policies as follows by applying (43):

rB(b, 1− b) = −β(p− 1 + b)− Cz(b, 1− b)

rB(b, p) = −Cz(b, p)

This leads to the following condition for the optimal policy to be 1− b:

rB(b, 1− b) ≥ rB(b, p)

β(p− 1 + b) ≤ C [z(b, p)− z(b, 1− b)]

β(p− 1 + b) ≤ C(p− 1 + b)(1− 2b) (45)

The LHS of (45) is a concave, increasing function of b on [1-p,0.5). The RHS of (45) is a concave parabola that
increases in the first half of [1− p, 0.5) and decreases in the second half.

Now consider the two halves of the interval [1 − p, 0.75 − 0.5p] and [0.75 − 0.5p, 0.5). In the first half, the
LHS and RHS of (45) are increasing and concave, with the RHS also being a parabola. Thus, in the first half,
the two intersect at most two points (one of which is at b = 1 − p). In the second half, the LHS of (45) is
increasing while the LHS is decreasing. Thus, they intersect at most once. Let the two possible intersections
for b > 1− p be t2 and t3 with t2 ≤ t3. Thus, what remains is to determine the optimal on each of (1− p, t2),
(t2, t3), and (t3, 0.5). At b = 0.5, rB(b, p) > rB(b, 1− b) because p > 0.5, thus π0

B(b) = p for b ∈ (t3, 0.5).
Subsequently, π0

B(b) = 1− b for (t2, t3), and π0
B(b) = p for (1− p, t2).

Case 3: b ∈ (0.5, p], πϵ,0
B (b) ∈ {1, p, b− ϵ} (Lemma 14)

In this case, we show the existence of 0.5 ≤ t4 ≤ t5 ≤ p such that the optimal precisions on intervals (0.5, t4],
(t4, t5), and [t5, p) are p, 1, and b− ϵ, respectively.

We can express the reward under the candidate policies as follows by applying (43):

rB(b, 1) = −β(1− p)− C(1− b)

rB(b, p) = −Cz(b, p)

rB(b, b− ϵ) = −β(p− b+ ϵ)
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When evaluated at b = p, rB(b, b− ϵ) is arbitrarily close to 0, and, therefore, b− ϵ is the optimal precision on
some interval (t5, p] for 0.5 ≤ t5 < p.

Now, note that rB(b, 1) and rB(b, p) are linear functions in b while rB(b, b − ϵ) is convex in b (from the
concavity of β). Thus, rB(b, b − ϵ) − rB(b, p) and rB(b, b − ϵ) − rB(b, 1) are convex and, as a result, have
convex level sets. This implies that the set on which both of these expressions are positive, i.e., the set for which
b− ϵ is the optimal policy, must also be convex. Therefore, b− ϵ cannot be optimal on any subset of (0.5, t5).

What remains is to compare precisions 1 and p on the interval (0.5, t5]. To do so, we inspect the values of
rB(b, 1) and rB(b, p) at 0.5 and their derivatives.

rB(0.5, 1) = −β(1− p)− 0.5C

rB(0.5, p) = −0.5C

Because rB(0.5, 1) < rB(0.5, p) there exists interval (0.5, t4) with t4 ≤ t5 such that π0
B(b) = p. Furthermore,

because both are linear in b, there is at most one crossover point where their ordering changes. Thus, if t4 < t5,
then pi0B(b) = 1 on (t4, t5).

Case 4: b ∈ (p, 1], π0
B(b) = p

This follows directly from Lemma 12 and completes the proof of Theorem 4. ■

C.7 BIASED VALUE FUNCTION MONOTONICITY

Lemma 15. For any b1, b2 ∈ [0, 1] such that b1 ≤ b2,

V ∗
B(b1) ≤ V ∗

B(b2)

Proof. Applying (43), the derivative of the biased reward with respect to b can be written as follows:

∂

∂b
rB(b, q) =

{
−C(1− 2q) q ≥ max(b, 1− b)

0 otherwise
(46)

Because q ≥ 0.5 and z(b, q) ∈ [0, 1], it follows that rB(b, q) is increasing with respect to b.

Next, note that the Bayesian nature of belief updates implies that the belief process is a martingale. That is,
for any fixed qi, E[bi+1] = bi. To demonstrate this consider two cases: (1) qi < max(bi, 1 − bi), and (2)
qi ≥ max(bi, 1− bi).

In the former case, it follows from (2) that bi+1 = bi, satisfying the claim.

In the latter case, (12) gives the distribution of bi+1 which yields the same.

The monotonicity of V ∗
B(·) then follows from Proposition 5 of Smith & McCardle (2002).

C.8 PROOF OF THEOREM 5: OPTIMAL BIASED POLICY

We first prove that the optimal value function is continuous in the following lemma:

Lemma 16. Biased value function continuity

V ∗
B(·) is continuous w.r.t. b.

Proof. First consider the one-stage value function defined as V 0
B(b) = supq∈[0.5,1] rB(b, q). From Theorem 4,

we know that πϵ,0
B (b) ∈ {1 − b, 1, b − ϵ, p}. Thus, we can equivalently write the one-stage value function as

follows:

V 0
B(b) = sup

ϵ>0
rB
(
b, πϵ,0

B (b)
)

= sup
ϵ>0

max
q∈{p,1−b,1,b−ϵ,p}

rB(b, q) (47)

Using the above expression, we now argue that V 0
B(·) is continuous on b ∈ [0, 1]. First, consider b ≤ 0.5. From

Theorem 4, an ϵ-optimal policy applies precision 1−b or p for b ≤ 0.5. In either case, the instantaneous reward
will not depend upon ϵ, and the supremum in (47) can be omitted, leaving V 0

B(b) = maxq∈{1−b,p} rB(b, q).
For b ≤ 0.5, rB(b, 1−b) falls in case one of (43) and is thus continuous with respect to b. On the same interval,
rB(b, p) has one discontinuity at b = 1− p where it switches from case two to case one of (43). At b = 1− p,
Theorem 4 shows that the optimal myopic policy switches from 1− b to p. Both policies fall in the first case of
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(43), and, at b = 1 − p, p = 1 − b, so the controls are equal. Thus, the left and right limits coincide with the
optimal value, and V 0

B(·) is continuous.

For b ≥ 0.5, Theorem 4 gives the candidate ϵ-optimal policies q ∈ {1, b− ϵ, p}. When the inner maximum in
(47) is attained for q = b− ϵ, the resulting value is V 0

B(b) = supϵ>0rB(b, b− ϵ). From the third case of (43),
we can rewrite this as V 0

B(b) = supϵ>0 − β(|b− ϵ− p|). Since b− ϵ is only selected for b ≤ p (Theorem 4),
this reduces to V 0

B(b) = −β(|p− b|). Thus, exchanging the order of the maximum and supremum in (47), we
obtain V 0

B(b) = max{rB(b, 1),−β(|p− b|), rB(b, p)} for b ≥ 0.5. For the first expression in this maximum,
rB(b, 1) falls into case one of (43) and is thus continuous. The continuity of −β(|p − b|) follows from the
continuity of β(·). For rB(b, p), since b ≥ 0.5, the first case of (43) applies for b ≤ p and the third case
applies for b > p. Thus, rB(b, p) is potentially discontinuous at b = p. Therefore, what remains is to show the
continuity of V 0

B(·) at b = p.

At b = p, the myopic ϵ-optimal policy switches from q = b− ϵ to q = p by Theorem 4 with πϵ,0
B (p) = b− ϵ.

Thus, for b = p, the inner maximum of (47) is attained at q = b− ϵ and, from the third case of (43), V 0
B(p) =

supϵ>0 −β(ϵ) = 0. Similarly, from Theorem 4, for each ϵ > 0, there exists t5 < p such that on [t5, p] the inner
maximum of (47) is attained by q = b− ϵ. On this interval, V 0

B(b) = supϵ>0 −β(|p− b+ ϵ|) = −β(|p− b|).
Therefore, limb↑pV

0
B(b) = 0. For b > p, the myopic optimal policy is q = p from Theorem 4, and this yields

reward V 0
B(b) = 0 for all b > p from the third case of (43). This proves the continuity of V 0

B(·) at b = p and
completes the proof that V 0

B(·) is continuous on [0, 1].

Applying Theorem 4.2 of Hinderer (2005), then yields the continuity of V ∗
B(·).

Remark 4. Given the continuity of V ∗
B(·) with respect to public belief and the fact that the control variable

lies in the compact set [0.5, 1], one might conclude that the optimal is guaranteed to exist at all public beliefs.
However, there is an important subtlety which prevents such a conclusion: while V ∗

B(·) is continuous with
respect to public belief, it need not be continuous with respect to precision. Specifically, bi+1 is a function
of both bi and qi (see Equation (2)); thus, E[V ∗

B(bi+1] may be denoted as ϕ(bi, qi). Now, bi+1 need not be
continuous with respect to qi, thus ϕ(·) may not be continuous with respect to qi. Thus, there may be regimes
in which the optimal value is not attained by any policy. Indeed, we will show that such cases exist.

Proof of Theorem 5 We now leverage Lemma 16 to prove Theorem 5. We again let z(b, q) = b+q−2bq be
the probability of an agent receiving signal B with precision q and prior public belief b and y(b, q) = 1−z(b, q)
be the corresponding probability of the agent receiving signal G. We abuse notation to allow VB(b, q) to be
the expected utility when beginning at public belief b, applying precision q in the current time step, and then
following the optimal policy π∗

B(·) in all future steps. We can express VB(b, q) as follows by applying (12),
(2), and (43):

VB(b, q) =



−β(|q − p|)− Cz(b, q)

+δy(b, q)V ∗
B (f(b, q,G))

+δz(b, q)V ∗
B (f(b, q, B)) q ≥ max(b, 1− b)

−β(|q − p|)
−C1(b < 0.5)

+δV ∗
B(b) otherwise

(48)

Consider the latter case of (48) when q < max(b, 1− b). Here, the only term affected by the precision policy
is −β(|q − p|), which is maximized by choosing q as close to p as possible. Thus, if the optimal precision is
less than max(b, 1− b), then it will be as close to p as possible.

We now consider four cases: (1) b ∈ [0, 1− p), (2) b ∈ [1− p, 0.5), (3) b ∈ [0.5, p], and (4) b ∈ (p, 1].

Case 1: b ∈ [0, 1− p), claims (A) and (B)

In this case, we will prove the existence of t1 such that π∗
B(b) = p for b ≤ t1. First note that if π∗(b) <

max(b, 1 − b), we fall into the second case of Equation (48). Here, the only term affected by the precision
policy is −β(|q − p|), which is maximized by minimizing |q − p|. Because p ∈ [0.5, 1], when b ∈ [0, 1− p),
p < max(b, 1− b). Thus, for b ∈ [0, 1− p), if π∗

B(b) < max(b, 1− b), then π∗
B(b) = p.

Now, we evaluate the value function at belief b = 0. At b = 0, the state of the world is known to be B and,
thus, no signal, regardless of its precision, will move the public belief. This can be seen mathematically by
substituting b = 0 into the updated belief expressions in (12). Furthermore, at b = 0, if q ≥ max(b, 1 − b),
then q = 1. As argued above, if the precision is less than max(b, 1 − b), the optimal precision is q = p. We
can compare the resultant value under these two candidate policies as follows from Equation (48):

VB(0, 1) = −β(1− p)− C + δV ∗
B(0) (49)

VB(0, p) = −C + δV ∗
B(0) (50)
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Because VB(0, 1) < VB(0, p), π∗
B(0) = p and V ∗

B(0) = VB(0, p). Thus, from Equation (50), V ∗
B(0) = −C

1−δ
.

By Lemma 15, this is a lower bound for the value function at any public belief. Therefore, and since V ∗
B(b) ≤ 0,

|V ∗
B(b)| ≤ C

1−δ
for all b ∈ [0, 1].

We now show that there exists an interval [0, ϵ) with ϵ > 0 on which the optimum of the first case of Equa-
tion (48) is less than the optimum of the second case of Equation (48). Thus, in this interval the optimum
control lies in the second case of Equation (48) so π∗

B(b) < max(b, 1− b). It follows from our initial argument
earlier in this case that π∗

B(b) = p in this interval, which would complete the proof.

We define function g(·) to be the maximum of the first case of the RHS of Equation (48):

g(b) = max
q≥max(b,1−b)

[
− β(|q − p|)− Cz(b, q)

+ δy(b, q)V ∗
B (f(b, q,G))

+ δz(b, q)V ∗
B (f(b, q, B))

]
(51)

For b ∈ (0, 1), f(b, q,G) and f(b, q, B) are both continuous with respect to q from Equation (12). Thus, the
maximum in Equation (51) must exist because it is of a function which is continuous with respect to q over a
compact set q ∈ [max(b, 1− b), 1].

We now take the limit of g(ϵ) as ϵ tends to 0. Because q ∈ [max(ϵ, 1− ϵ), 1], when ϵ → 0, q → 1 (inside the
maximum in Equation (51)). We now reason about each of the four terms in Equation (51). As ϵ → 0, q → 1
so that 1) from the continuity of β(·), β(|q − p|) → β(1 − p), 2) from the continuity of z(·), z(ϵ, q) → 1,
y(ϵ, q) → 0. Thus, the second term goes to C. Because V ∗

B(·) is bounded and y(ϵ, q) → 0, the third term goes
to 0. Finally, because z(ϵ, q) → 1 and f(ϵ, q, B) → 0 and since V ∗

B(·) is continuous from Lemma 16, the last
term approaches δV ∗

B(0). Thus,

lim
ϵ→0

g(ϵ) = −β(1− p)− C+ δV ∗
B(0) (52)

Applying precision p, however, yields the following from the second case of Equation (48):

lim
ϵ→0

VB(ϵ, p) = lim
ϵ→0

[−β(p− p)− C + δV ∗
B(ϵ)] (53)

= −C + δV ∗
B(0) (54)

The last equality follows from the continuity of V ∗
B(·) from Lemma 16.

Note that the expression in Equation (52) is strictly less than that in Equation (54). Thus, there exists an interval
[0, ϵ) with ϵ > 0 on which the optimum of the first case of Equation (48) is less than the optimum of the second
case of Equation (48). The result follows.

Case 2: b ∈ [1− p, 0.5), Claim (C)

We now argue that for bi ∈ [1− p, 0.5), π∗(bi) ≥ 1− bi, yielding claim (C). Consider a stationary policy π(·)
such that π(bi) < 1 − bi. Note that, from Equation (2), the public belief will remain unchanged under such a
policy. Thus, the same control will be applied at every future time step, and, from Equation (1), every agent will
select action B. Using the facts that 1− bi ≤ p in this belief range, P(ai = B|bi, π(bi)) = 1, and bi+1 = bi,
we can apply Equation (5) to write the expected total discounted utility under such a policy as follows:

V π
B (bi) = −β(p− π(bi))− C + δV π

B (bi)

Thus, if this policy is applied, it will result in expected value V π
B (bi) = −β(p−π(bi))−C

1−δ
. That is, the cost of

every agent choosing action B and continuing to apply precision π(bi). This is strictly lower than the value
function lower bound of −C

1−δ
established using Lemma 15 in Case 1 because π(bi) < 1 − bi ≤ p. Therefore,

if an optimal policy exists at this point, it must be the case that π∗
B(bi) ≥ 1− bi.

The remaining candidate policies are qi ∈ [1−bi, 1]. Applying Bellman’s principle we can write the following:

V ∗
B(bi) = sup

qi∈[1−bi,1]

rB(bi, qi) + δE[V ∗
B(bi+1)] (55)

Because qi ≥ max(bi, 1 − bi) and b ∈ [1 − p, 0.5) ⊂ (0, 1), Equation (12) and Equation (2) imply that
bi+1 = biqi

y(bi,qi)
or bi+1 = bi(1−qi)

z(bi,qi)
. Both of these expression are continuous with respect to qi and V ∗

B(·) is
continuous by Lemma 16, thus the RHS of Equation (55) inside the supremum is continuous with respect to qi.
Therefore, in Equation (55), the supremum over a compact set qi ∈ [1− b, 1] of a function which is continuous
with respect to qi must be attained, implying the existence of an optimal policy. Thus, π∗

B(bi) ≥ 1− bi.

Case 3: b ∈ [0.5, p] Claims (D) and (E)

For b = 0.5, q ≥ b as we assumed q ∈ [0.5, 1]. This places us in the first case of Equation (48). Furthermore,
β(·), y(b, q), z(b, q), f(b, q,G), and f(b, q, B) are all continuous with respect to q for b = 0.5. Thus, the
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supremum over q ∈ [0.5, 1] of V (b, q) must be attained as it is of a continuous function of q over a compact
set of q. Therefore, an optimal policy must exist at b = 0.5.

Now consider b ∈ (0.5, p] and a stationary policy π′(·) such that π′(b) < b. From Equation (2) and
Equation (1), applying such a policy will result in public belief remaining unchanged, every agent select-
ing action G, and the same control being applied at every future time step. Using the facts that bi ≤ p,
P(ai = G|bi, π′(bi)) = 1, and bi+1 = bi, we can apply Equation (5) to write the total expected discounted
utility under such a policy as follows:

V π′
B (bi) = −β(p− π′(bi)) + δV π′

B (bi)

Thus, the policy results in expected value V π′
B (bi) = −β(p−π′(bi))

1−δ
. Note that, in this case, V π′

B (bi) is an
increasing function of π′(bi). Thus, the supremum of V ∗(π′)B(bi) over π′(bi) ∈ (0.5, b) is not attained.

We now consider two cases: (1) maxqi∈[bi,1] V (bi, qi) ≥ supπ′(bi)∈(0.5,bi)
−β(p−π′(bi))

1−δ
, and (2) the com-

plement. In the former case, we can argue as we did for b = 0.5 that the supremum must be attained and
an optimal policy exists such that π∗

B(bi) ≥ bi. In the latter case, as argued above, no optimal policy exists.
Instead, for sufficiently small ϵ > 0, there exists an ϵ-optimal policy such that πϵ

B(bi) = bi − ϵ. This yields
claims (D) and (E).

What remains is to show that there exists t2 ∈ (0.5, p) such that for bi ∈ (t2, p] we fall into the latter case,
yielding claim (F). We define functions m(·) and n(·) as follows corresponding to the resultant value from
choosing precisions less than b or greater than or equal to b, respectively:

m(b) = sup
π′(b)∈[0.5,b)

−β(p− π′(b))

1− δ

n(b) = max
q≥b

V (b, q)

Taking the limit of m(·) as b → p yields:

lim
b→p

m(b) = 0 (56)

When q ≥ b we fall into the first case of Equation (48). Thus we can expand n(b) as follows:

n(b) = max
q≥b

[
− β(|q − p|)− Cz(b, q)

+ δy(b, q)V ∗
B(b, q)

+ δz(b, q)V ∗
B(b, q)

]
(57)

We will argue that, for b ∈ (0.5, p] and q ≥ b, n(b) ≤ −C(1 − p). Since p is a fixed parameter strictly less
than 1, this means from Equation (56) that n(b) ≤ −C(1 − p) < limb→p m(b), which implies the existence
of an open interval (t2, p] where an optimal policy does not exist, yielding claim (F). We now argue that, for
b ∈ (0.5, p] and q ≥ b, n(b) ≤ −C(1− p). Note that every term of Equation (57) is bounded above by 0, so it
suffices to show that any one term, say the second term −Cz(b, q), is upper bounded by −C(1− p). First note
that z(b, q) = q(1−2b)+b so z(b, q) is decreasing in q since b > 0.5. Thus, z(b, q) ≥ z(b, 1) = 1−b ≥ 1−p.
The last inequality follows because b ∈ (0.5, p]. The claim follows since p < 1.

Along with Equation (56), this implies the existence of an open interval (t2, p) where an optimal policy does
not exist, yielding claim (F).

Case 4: b ∈ (p, 1] Claim (A)

For b ∈ (p, 1], consider applying stationary policy π(·) such that π(b) = p. Because b > p, Equation (2) and
Equation (1) imply that such a policy results in public belief remaining unchanged, every agent selecting action
G, and the same control being applied at every future time step. We can apply Equation (5) to write

V π
B (b) = −β(p− p) + δV π

B (b) = δV π
B (b)

Thus, V π
B (b) = 0. Since this is also an upper bound of the optimal value function for any b, π∗

B(b) = p. ■

C.9 SOCIAL WELFARE MONOTONICITY

Lemma 17. Precision Monotonicity of Social Welfare

If π1(b) ≤ π2(b) ∀b ∈ [0, 1], for policies π1(·), π2(·), then

Wπ1(b) ≤ Wπ2(b) ∀b ∈ [0, 1]
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Proof. It is clear that the one-step welfare −Cmin(bi, 1− bi, π(bi)) is increasing in π(bi).

Furthermore, note that the convexity of social welfare with respect to public belief follows from the same
argument as in the proof of Theorem 2. This is because social welfare is equivalent to the altruistic value
function in the special case where β(·) = 0.

We can then follow the same argument as in the proof of Lemma 9 (Appendix C.4) to show that increasing
precision increases welfare.

D EXTENSION TO HETEROGENEOUS AGENT PREFERENCES

Here we argue that, for the altruistic planner, the problem we consider is equivalent to one that involves two
types of individuals with differing preferences.

Assume that there are two types of agents G and B with the type of agent i denoted ti. The first type receives
unit reward when ai = ω and no reward otherwise. The second receives unit reward when ai ̸= ω and no
reward otherwise. Further, assume that all agents know their own type and the types of all other agents. All
other aspects of the model remain the same.

The private belief update of agent i can be expressed as below. This remains unchanged because it only depends
on the signal structure, i.e., P(si = ω) = qi.

b̃i = P(ω = G|Hi, qi, si) =

{
q

1+2biqi−bi−qi
bi si = G

1−q
bi+qi−2biqi

bi si = B
(58)

Using Equation (58), agent i’s action can be written as follows with superscript indicating the type of agent i
and ! indicating negation:

aG
i =


si 1− qi ≤ bi ≤ qi
G qi < bi
B bi < 1− qi

aB
i =


!si 1− qi ≤ bi ≤ qi
B qi < bi
G bi < 1− qi

Because we assume the type of each agent is known to all, when qi ≥ max(bi, 1− bi), all agents can perfectly
infer the private signal of agent i. If qi < max(b, 1− bi), the action of agent i is uninformative.

Thus, after observing agent i’s type ti, precision qi, and action ai, the public belief is updated as follows:

bi+1 = f(bi, qi) =

{
b̃i 1− qi ≤ bi ≤ qi
bi o.w.

(59)

In this setting, an altruistic planner seeks to induce type-G agents to take action ω and type-B agents to take
action !ω as these choices align with the personal utility functions of the agents.

Thus, we can express the planner’s instantaneous reward as follows with superscript denoting the type of agent
i:

rG(bi, qi) = −β(|qi − p|)− C P(ai ̸= ω)

=

{
−β(|qi − p|)− C(1− qi) qi ≥ max(bi, 1− bi)

−β(|qi − p|)− Cmin(bi, 1− bi) qi < max(bi, 1− bi)

rB(bi, qi) = −β(|qi − p|)− C P(ai = ω)

=

{
−β(|qi − p|)− C(1− qi) qi ≥ max(bi, 1− bi)

−β(|qi − p|)− Cmin(bi, 1− bi) qi < max(bi, 1− bi)

These are identical and equal to the reward function in Equation (4), leading to the equivalence of the altruistic
planner’s problem when we have heterogeneous but observable types. ■
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E EXPERIMENTS

E.1 EXPERIMENTAL SETUP

To simulate the controlled social learning setting, we consider a sequence of agents deciding whether or not
to buy a new model of car informed by observations of past actions and an ad of precision selected by the
planner. LLMs served three distinct roles: (1) the agents, (2) the planner, and (3) a belief oracle. Each agent
was assigned a ’profile’ containing demographic information and their car use cases and preferences. At the
onset, we select the good or bad car as the offering. The information sets and objectives of the planner and
agents were exactly as in the model of Section 3.

The belief oracle’s role was two-fold: (1) it generated a generic message to serve as the baseline precision
signal without intervention by the planner, and (2) once the planner chose a precision, it generated a message
with the prescribed precision, customized to the profile of the target agent.

The oracle was provided with a fact sheet (safety rating, customer satisfaction, etc.) for each type of car along
with the agents’ profiles. Together, the fact sheet and profile facilitated the generation of a tailored message
with precision prescribed by the planner. More detail on the experimental setup and prompting can be found in
Appendix E.

Each agent was tasked with making a binary decision based on observations of previous decisions and their
private signal. The agents’ goal was to match the true parameter value.

The planner was provided the same decision history and tasked with choosing a precision level for each agents’
message. They were also given the precision of a generic, un-tailored message which they could send for free.
In the altruistic case, the planner’s objective was to induce correct decisions, while in the biased case, their goal
was to induce agents to buy the car.

We compare the LLM simulations to the analytic solutions obtained via JuliaPOMDP (Egorov et al., 2017).

E.2 PARAMETERS AND PROMPTS

Instance Parameters
Experiments were run using the LG AI EXAONE Deep 32B model (LG AI Research, 2025). We solve the
model analytically and run the LLM simulations for the parameters in Table 1.

Parameter Description Values
C Cost of a bad action 1
k Scaling factor for control cost {0.1, 0.3, 0.5, 0.7, 0.9}
p Baseline signal precision {0.6, 0.7, 0.8, 0.9}
δ Discount Factor {0, 0.25, 0.5, 0.75, 1}

Table 1: Instance parameters

Agent LLM Prompt:

sys = (
f"You are deciding whether to buy a car. "
f"Your profile is {profile}"
f"You start believing there’s a 50% chance it’s GOOD. "
f"You have two information sources: "
f"1. Previous agents’ decisions "
f"2. An advisor’s message about the car "
f"Your goal is to maximize your reward "
f"i.e. BUY if the car is GOOD and "
f"NOT BUY if the car is BAD. "
f"If you BUY a GOOD car, you GAIN ${C}. "
f"If you NOT BUY a BAD car, you GAIN ${C}. "
f"If you BUY a BAD car, you LOSE ${C}. "
f"If you NOT BUY a GOOD car, you LOSE ${C}. "
f"belief = your probability (0.0-1.0) that the car is GOOD. "
f"decision = exactly ’BUY’ or ’NOT BUY’."

)
user = (

f"PREVIOUS DECISIONS:\n{history_txt or ’(none)’}\n\n"
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f"ADVISOR MESSAGE:\n{ad}\n\n"
f"TASK: Use the previous decisions and the advisor message. "
f"Decide BUY or NOT BUY. "
f"Update your belief about car quality (0.0-1.0). "\n"
f’JSON response:{{"belief": <number>,"decision":"<BUY or NOT BUY>"}}’

)

Planner LLM Prompt:

sys = (
f"You are providing messages to potential car buyers. "
f"Each potential car buyer (or agent) has the same information. "
f"Your goal is to get agents to {objective}."
f"Each decision according to your objective, earns you {C} dollars. "
f"You and the agents have the same information. "
f"Initially there is a 50% chance the car is GOOD. "
f"The agents’ aim to BUY if the car is GOOD "
f"and NOT BUY if the car is BAD. "
f"You can send a baseline message for free "
f"or tailor the message to the agent at a cost. "
f"Tailoring costs {k} dollars times the change in precision. "
f"(Message precision is the probability (0.5 to 1.0) "
f"that the message leaves the buyer with the correct impression. "
f"For example, if the car is likely GOOD: "
f"a high precision message will likely suggest BUY "
f"and a low precision message will likely suggest NOT BUY. "
f"You may choose to increase or decrease precision. "
f"Agents decide based on your message and the decision history. "
f"They update beliefs by observing previous decisions. "
f"IMPORTANT: Thus your objective is to maximize:"
f"{C} * (# of agents who choose according to your objective) "
f"- sum of ({d}ˆi*{k}*abs(message_precision - baseline_precision))\n"
f"where {d} is your discount factor for future cost. "

)
user = (

f"BASELINE MESSAGE precision:\n{pi_base:.2f}\n"
f"DECISION HISTORY:\n{history_txt}\n"
f"TASK:"
f"Based on the history and your objective, "
f"choose your desired precision.\n"
f’JSON response: {{"message_precision": <number>}}\n’

)

Oracle LLM Prompt:

sys = (
f"You will be given "
f"1. an agent profile, "
f"2. information about a car, "
f"3. the true quality of the car, "
f"4. a baseline message and the ’precision’ of that message, and "
f"5. a desired precision for the message you output. "
f"(Message precision is the probability (0.5 to 1.0) "
f"that the message leaves the buyer with the correct impression. "
f"For example, if the car is likely GOOD: "
f"a high precision message will likely suggest BUY "
f"and a low precision message will likely suggest NOT BUY. "
f"IMPORTANT: Output a message with the requested precision. "
f"IMPORTANT: The message should be tailored to the profile. "

)
user = (

f"AGENT PROFILE:{profile}\n"
f"TRUE CAR QUALITY: {omega}\n\n"
f"CAR FACTS: {car_facts}\n"
f"BASELINE MESSAGE:{baseline_message}}\n"
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f"BASELINE MESSAGE precision: {p}\n"
f"DESIRED MESSAGE precision: {q}\n"
f"IMPORTANT: Output a mesage with the requested precision. "
f"TASK: Write a message (MAX 100 words) with the desired precision."
f’JSON response: {{"spec_message": "<message>"}}’

)

Profiles and the list of car facts were generated programmatically. Profiles included an agent’s name, age, city
of residence, interests, planned use case for the car (e.g., commuting, road trips, etc.), and major pain points or
concerns (e.g., fuel efficiency, winter driving, etc.). The car facts were designed so that the good car was good
for everyone and the bad car was bad for everyone.

E.3 LLM EXPERIMENT ADDITIONAL DATA

Sample Belief Trajectories We now unpack belief trajectories from an example instance of the LLM
experiment to elucidate the impact of non-Bayesian belief updating. Here we fix the policy be to be the ana-
lytically optimal policy and apply it to LLM-simulated agents. When the car is bad (right panel), the altruistic
planner drives the Bayesian belief (dotted black line) rapidly towards 0. The LLM belief (solid black line),
however, is more ”stubborn.” This macro-level trajectory is a direct result of the micro-level biases: the public
belief resists entering a cascade (NB3) because individual agents overreact to the occasional positive signal that
runs counter to the group’s increasingly negative belief (NB2).

2 4 6 8 10
Step

0.0

0.2

0.4

0.6

0.8

1.0

B
el

ie
f

Good Car

2 4 6 8 10
Step

Bad Car

Planner Objective
Altruistic
Biased
Belief Type
LLM
Bayesian

Figure 4: Agent Belief Updating trajectories for the true Bayesian belief and the belief reported by
the LLM agent under analytically optimal policies for different planner objectives and true states of
the world.
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