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Abstract

Despite its broad range of applications in science, the theoretical foundations of learning
with invariances have been only sparsely explored. Even in the case of polynomial re-
gression, it has remained unclear whether one can efficiently compute an ezactly invariant
regression function, as traditional methods such as data augmentation, group averaging,
and canonicalization fail to provably solve the task in polynomial time. Recent work (So-
leymani et al., 2025b) has examined the statistical-computational trade-off of learning with
invariances, demonstrating that for finite groups there exists a polynomial-time algorithm
(in the data dimension, sample size, and logarithm of the group size) that yields functions
which both generalize well and are exactly invariant. However, this approach is intrinsically
limited to finite groups, leaving the tractability for learning with infinite groups unresolved.

In this paper, we design and analyze a polynomial-time algorithm that applies to any
group, including infinite ones, and learns functions that generalize well in polynomial time
with respect to data dimension and sample size, independent of the group. This closes
the gap and provides strong theoretical evidence that computationally efficient algorithms
for learning under invariances can indeed generalize effectively, a phenomenon consistently
supported by the empirical success of geometric machine learning.
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1. Introduction

Invariances have been central to learning since the earliest days of machine learning, and
their importance has only deepened with modern advances (Hinton, 1987; Kondor, 2008).
Models that explicitly respect underlying symmetries consistently deliver remarkable gains
in practice, combining efficiency with strong generalization (Bronstein et al., 2017). This
empirical success has fueled an active line of research, though much of the theory remains
focused on classic questions of expressivity, sample complexity and detection (Elesedy, 2021;
Bietti et al., 2021; Behboodi et al., 2022; Tahmasebi and Jegelka, 2023; Mei et al., 2021; Kiani
et al., 2024; Soleymani et al., 2025a; Chen et al., 2023; Diaz et al., 2025; Petrache and Trivedi,
2023). What is still missing is a systematic understanding of the computational price of
incorporating invariances—particularly in fundamental settings such as kernel methods.
How do we actually build invariances into algorithms? The most direct answer is brute
force: expand the dataset through augmentation or sum over symmetries via group aver-
aging. Unfortunately, both become infeasible once the symmetry group is large, sometimes
even growing super-exponentially with input dimension. More “clever” alternatives, like
canonicalization or frame averaging, often replace intractability with discontinuities, poor
scalability, or the need for group-specific designs (Dym et al., 2024; Tahmasebi and Jegelka,
2025). Given these observations, especially the prohibitively large size of the group, one
might expect that learning with exact invariances is not computationally tractable even in
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the basic setting of kernel regression. Surprisingly, recent work (Soleymani et al., 2025b) in-
troduced spectral-averaging, an exact invariant algorithm that achieves desirable population
risk in poly(n, d,log |G|) time, that is, polynomial in the number of samples n, the input
dimension d, and the logarithm of the group size |G|. For finite groups, this amounts to an
effectively polynomial-time procedure since log |G| is polynomial in the input dimension d.

This result naturally begs the same question for infinite groups. In particular, one would
hope for algorithms that achieve desirable population risk with time complexity independent
of the group cardinality |G|. Remarkably, we provide an affirmative answer to this problem
by designing a randomized algorithm. We begin by formalizing the setting with a precise
problem statement.

1.1. Problem statement

We consider supervised learning on a smooth, compact, boundaryless Riemannian manifold
M of dimension d. Given n independent samples S = {(x;,y;)}; with z; € M drawn
uniformly!, the labels follow y; = f*(z;) + €;, where f* € C(M) is the unknown regression
function and ¢; are independent, zero-mean, variance-o? noise. The performance of an
estimator fiS measured by its population risk

R(F) =E[IF = £*1172(00))

When f* lies in an RKHS H, kernel ridge regression (KRR) provides efficient estimators.
For H = H*(M), the KRR estimator achieves risk O(n~%/(s+4/2)) with O(n?) computational
cost (Bach, 2024).

Suppose that we are given a group G that acts smoothly and isometrically on M, denoted
by gx for any ¢ € G and x € M. A regression function is G-invariant if f:(gx) = f*(x)
for all g € G,z € M. In this case, the learner must find an estimator f that is both
accurate and invariant. For learning with Sobolev kernels, the KRR estimator fxrg is not
G-invariant. As a result, fxkrr cannot serve as a solution for learning under invariances,
and additional care is required to construct estimators that explicitly respect the group
structure. With these notations in place, we now formally state the problem.

Can we design an exactly G-invariant estimator that achieves the same excess pop-
ulation risk, O(n_s/ (el 2)), as in learning without invariances, while running in
poly(n,d) time?

The recent breakthrough work of Soleymani et al. (2025b) introduced spectral-averaging,
which achieves (’)(n*S/ (s+d/ 2)) risk in poly(n, d, log |G|) time, thereby reducing the complex-
ity exponentially compared to the poly(n,d, |G|) time required by canonical approaches to
learning with invariances such as group averaging. While this algorithm indeed runs in
polynomial time for finite groups G, it falls short when extended to infinite groups, such
as rotation invariances. In effect, any polynomial-time algorithm for learning with exact
invariance over infinite groups must be independent of the group cardinality |G|, which is
the focus of this work. We address this problem affirmatively by designing a novel algorithm
based on spectral-averaging.

1. Uniformity is assumed for simplicity; results extend to bounded densities.
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2. Main Result

The spectral-averaging algorithm of Soleymani et al. (2025b) reduces the nonconvex op-
timization problem of learning with exact invariances to an infinite collection of finite-
dimensional quadratic convex programs with linear constraints—one for each eigenspace of
the Laplace—Beltrami operator on the data manifold—using machinery of differential geom-
etry and spectral theory. Subsequently, by truncating the number of quadratic programs
to be solved separately, they derive efficient approximations to the original nonconvex opti-
mization problem, yielding approximate kernel solutions for learning with invariances. This
deterministic procedure achieves an estimator with population risk of O(n_s/ (s+d/ 2)) in
poly(n,d,log|G|) time for finite groups.

The poly(log |G|) dependence on the group cardinality arises from the number of linear
constraints imposed in the quadratic convex programs associated with the eigenspaces of the
spectral-averaging algorithm. These constraints are determined by the minimal generating
set S of the group G, with one constraint required for each generator. Since the size of a
minimal generating set of a finite group is bounded by |S| < log |G|, this fully accounts for
the polylogarithmic dependence of computational complexity on |G|. For infinite groups, the
group cardinality |G| is unbounded, and no efficient reduction of the nonconvex optimization
problem is known.

In Algorithm 1, we introduce a new randomized procedure that, with high probability,
identifies a set .S governing the sufficient linear constraints in the quadratic convex programs
associated with each eigenspace for general groups. This procedure returns a suitable subset
S C G in (’)(n log %) time with probability at least 1 — § as formalized in Proposition 1,
and its complexity is independent of the group cardinality |G|, holding even when G is
infinite. The key idea is that, perhaps surprisingly, random group elements are sufficient
to impose the necessary linear constraints with high probability. This stands in contrast
to alternative approaches, such as generating sets, which are either inapplicable for infinite
groups or require preprocessing the entire group, making them computationally inefficient.

Algorithm 1 Randomized Subset Selection
Input: Query access to a group representation D(g) € R™*" for any g € G, a parameter T'
Output: A subset S C G
1: Initialization: S < {idg} and Bg = {e; : i € [r|} where e;, i € [r], is the unit vector in
i-th coordinate.
:fort=1,...,T do
Sample g € G uniformly at random
Sample z = 3 . Nyv, such that N, ~ N(0, IBilsl) independently for all v € Bg
if ||(D(g) — I,)z||? > 0 then
S« SuU{g}
Bg < orthonormal basis for span(Bg) () ker(I, — D(g))
end if
end for
return The final subset S C G.
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Algorithm 2 Spectral Averaging (Spec-Avg) with Randomized Subset Selection
Input: &= {(x;,y;) i € [n]} and a = 2s/d € (1,00).

Output: f(x).

1: Initialize D « n!'/(0+®),

2: for each A such that Dy < D do
3 for each £ € [m,] do

4 P 230 v e(x).

5. end for
6
7
8
9

: end for
: Initialize S <— Randomized Subset Selection (G) > [Algorithm 1]
: for each A such that Dy < D do

Solve the following linearly constrained quadratic program over m) variables:

my
f)\’g — ar% min Z(f%f — f)\’g)2, S.t. Vg €S D/\(g)f)\ = f>\.
p W4 /=1

10: end for R
11: Return: f(a:) = ZA:DASD 2221 f)\7g¢)\7g($).

Proposition 1 Define V, := ker(I, — D(g)),Yg € G. If T = (’)(7“2 log %), then with
probability at least 1 — &, Algorithm 1 returns a subset S C G, |S| = (9(7‘2 log %), such
that ﬂgeS Vy = ﬂgGG Vy. For the group representations considered in this paper, we have
r = O(y/n). Therefore, the overall iteration complexity of Algorithm 1 is T = O(n log %)

With the randomized subset selection of Algorithm 2 in place to find sufficiently small
representer sets S for each quadratic convex program, we are now ready to state our full
algorithm, which builds upon the spectral-averaging framework of Soleymani et al. (2025b).

Theorem 2 Let G be a general group, and let {z;,y;}1, be a labeled dataset of size n
sampled from a d-dimensional manifold M. Suppose the optimal regression function sat-
isfies f* € H*(M) for some s > d/2, and set o = 2s/d. Then, Spec-Avg with Ran-
domized Subset Selection (Algorithm 2) returns, with probability at least 1 — &, an exactly
G-invariant estimator f in poly(n,d,log(1/d)) time that achieves excess population risk
R(f) _ O(nfs/(s+d/2)) _

3. Conclusion

We have designed the first randomized polynomial-time algorithm for learning with exact
tnvariances under general groups, accommodating both finite and infinite cases. This marks
a significant step toward settling the computational complexity of learning with invariances.
For finite groups, spectral averaging with group generators (Soleymani et al., 2025b) is
known to run in polynomial time. For infinite groups, however, our approach—spectral
averaging with subset selection—is inherently randomized, and it remains open whether
a deterministic polynomial-time algorithm exists or not. We leave this as an intriguing
direction for future work.
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Appendix A. Related Work

Invariance has long been recognized as a powerful inductive bias in statistical learning:
incorporating symmetry into models can reduce sample complexity and improve generaliza-
tion by restricting hypotheses to symmetry-respecting subsets (Hinton, 1987; Poggio and
Vetter, 1992; Haussler et al., 1999; Kondor, 2008; Sokolic et al., 2017). A classical way of
achieving this is through invariant kernels, constructed by averaging over transformation
groups (Scholkopf and Smola, 2002; Haasdonk and Burkhardt, 2007).

Invariance in kernel methods is not limited to group averaging. Alternative strate-
gies include frame averaging (Puny et al., 2022), canonicalization (Kaba et al., 2023; Ma
et al., 2024), random projections (Dym and Gortler, 2024), and parameter sharing (Ravan-
bakhsh et al., 2017). Each of these methods has distinct strengths, but also drawbacks.
In particular, canonicalization and frame averaging can introduce discontinuities or vio-
late smoothness assumptions, a limitation highlighted in recent work on equivariant frames
(Dym et al., 2024). By contrast, our spectral projection approach preserves Sobolev regu-
larity while enforcing exact invariances via linear constraints.

Beyond kernel methods, symmetries have played a central role in the design of spe-
cialized learning architectures. Graph Neural Networks (GNNs) exploit permutation sym-
metries in graphs (Scarselli et al., 2008; Xu et al., 2019), Convolutional Neural Networks
(CNNs) leverage translation invariance in image data (Krizhevsky et al., 2012; Li et al.,
2021), and PointNet architectures encode permutation invariance for point clouds (Qi et al.,
2017a,b). Symmetry principles have also been integrated into generative models, includ-
ing permutation-invariant normalizing flows and equivariant flows (Bilos and Giinnemann,
2021; Niu et al., 2020; Kohler et al., 2020). For a broad discussion on geometric invariances
across modalities, we refer to the survey of Bronstein et al. (2017).

Compared with these approaches, our contribution can be seen as a post-hoc invarianti-
zation procedure: starting from spectral estimates of regression coefficients, we project onto
the fixed-point subspaces determined by a randomized set of group elements. This yields
estimators that are exactly invariant, with statistical guarantees matching kernel regression
without invariances. Prior work on finite groups established this using generating sets of
size at most log |G| (Soleymani et al., 2025b), while our randomized subset selection algo-
rithm removes the dependence on |G| altogether, extending polynomial-time learning with
exact invariances to infinite groups (Soleymani et al., 2025b).

Appendix B. Proofs

Setting and notation. Let (M, g) be a smooth, compact, connected, boundaryless d-
dimensional Riemannian manifold, and let a (possibly infinite) group G act smoothly and
isometrically on M (so z — gx is an isometry for each g € G). We observe i.i.d. samples
S = {(z4,yi) }1=; with x; uniform on M and

yi = (@) + i
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where f* € H*(M) for some s > d/2 and ¢; are independent, mean 0, variance o2. H*(M)
is the space of s-Sobolov functions on the Riemannian manifold M, defined as,

H*(M) = {f =33 Pudne@) sy = DD DS fRe < OO}’

A =1 A /=1

where a = 2s/d.

Let A denote the Laplace-Beltrami operator; by spectral theory there is an L?(M)-
orthonormal basis {¢y ¢}, of eigenfunctions, grouped by eigenvalues A € {0 = \g < A; <
A2 < .-} with multiplicities my, such that

F@) =" hupa).

A =1

For each A, the G-action induces an orthogonal representation Dy : G — O(my) on V) :=
span{py ¢}y, because Ay commutes with the isometries Ty : f — (z — f(gz)).? We will
write Dy(g)fx = f» for the linear invariance constraints on the coefficient vector

= ()i

B.1. Proof of Proposition 1

Proof For any subset S C G, let us define a probability measure ug as follows. Consider
the set Bg, which is an orthonormal basis for the subspace ) ges Vy. We construct pg as
the distribution of random linear combinations of vectors in this basis:

us = law of Z Ny,
vEBg

where the coefficients N,, are independent Gaussian random variables, each drawn as IV, ~
N(0, \8715\) This choice ensures that pg is isotropic in the span of Bg, i.e., the covariance

of the distribution is proportional to the identity restricted to span(Bg). Intuitively, this

means that pg places uniform weights along all directions in the subspace () ges Vy.
Now define the functional
A(S) = Eg Epnp[l(D(9) — Ir)|3, (1)

where g € G is sampled uniformly at random. This quantity measures, in expectation, how
much the action of D(g) deviates from the identity transformation on vectors x sampled
from pg. In other words, A(S) introduces some kind of discrepancy between invariance
under the full group G and invariance under the restricted subset S.

Step 1. The case A(S) = 0. If A(S) =0, then for every g € G and every z in the support
of ug we must have

(D(g9) — Ir)x =0,

2. This commutativity, together with the induced blockwise orthogonal actions, is discussed in detail in
Soleymani et al. (2025b).



i.e., D(g)z = x. This means that x € (| ¢ Vy-

Since the support of pg is exactly span(Bg), it follows that the entire subspace span(Bg)
is fixed by the group G. We claim that span(Bs) = (,cg Vy, which follows from the way
we update it in Algorithm 1. This implies

AVe<\Ve = (Vo=[)Ve
ges geG geSs geG

so in this case the invariant subspace with respect to G is already fully captured by the
smaller intersection over S.

Step 2. The case A(S) > 0. Suppose now that A(S) > 0. We will prove a quantitative
lower bound on A(S). Namely, we prove that

A(S) >

<IN

Expanding the square inside the definition of A(S) gives
A(S) = ByBamyg [I21l3 + | D(9)2]13 — = D(g)w — 2" D(g) ] (2)

Since the representation D(g) is orthogonal, we have ||D(g)z||3 = ||z||3. This allows us to
rewrite the expression as:

A(S) = EgEomps [ll2]3 + [l2]3 — = D(g)x — 27 D(g) <] (3)
=2~ By [¢T D(g)a + 2" D(g) ], (4)

where in above we used the fact that E,,4[[|z]|3] = 1, according to the definition of ug.
But since D(g) is orthogonal, averaging D(g) or D(g)" over g € G yields the same
expectation. We therefore obtain

A(S) = 2 — 2B, 5]z " Dal,

where we define the average

Step 3. Structure of D. From basic representation theory, the matrix D is the orthogonal
projection onto the subspace of invariant vectors (Schur’s lemma). Equivalently, there exists
an orthogonal change of basis U such that

D =UPU",

where P is the projection matrix onto the first r,, coordinates, with ri,, = dim <ﬂ 9eG th)
In other words,
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Thus, D corresponds to selecting exactly those elements invariant under the full group.
Moreover, since S C G, we automatically have

Vo< Ve

geG ges

That is, the invariant subspace for the full group is always contained within the invariant
subspace defined by any subset of group elements. Therefore, span(Bg) contains the true
invariant subspace, and the expectation E,.,¢[z" Dz] reflects the fraction of L?norm of
the elements in the support of pg lying in this smaller subspace.

Step 4. Dimension ratio interpretation. Since jug is isotropic over [ g Vy, the expectation

_ geS
of the quadratic form = Dz is equal to the ratio

dim(ﬂg€G Vy)
dim((,es Vo)
Substituting this back, we find
dim(Nyeq Vo)
A(S) =2 jp—— =L (5)
< dlm(ﬂges Vg))

Step 5. Lower bound on A(S). If A(S) > 0, then necessarily
dim( () V) > dim( ("] Vy).
ges geqG

The smallest possible difference between the two dimensions is exactly one, so

dim (e Vo) o1
dim(ﬂges Vg) = 1

Therefore,

(6)

This establishes the claimed lower bound.

Step 6. Probabilistic argument. Thus, whenever A(S) > 0, the expectation is at least %
By Hoeffding’s inequality, the probability of failing to detect the strict inequality

N Ve# (Ve

geG geSs

after T independent trials is at most exp(—$(771/r)). Since detecting such discrepancies in
dimensions requires at most O(r) successful events, the total number of iterations needed
is upper-bounded as

T = O(r210g %) .
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Conclusion. Putting everything together, with T' iterations we guarantee that, with prob-
ability at least 1 — §, the subspace defined by S coincides with the true invariant subspace:

Vo=V

geG geSs

while |S| = O(T2 log %) since at each iteration at most one group element is chosen. This
completes the proof. [ |

B.2. Proof of Theorem 2

Proof The proof follows the structure of the finite-group proof (Soleymani et al., 2025b,
Theorem 1) and differs only in how the constraint set S is chosen and analyzed; the statistical
analysis is mostly unchanged.

Step 1: Spectral reduction and decoupled convex programs. Because Ajpq com-
mutes with all isometries (hence with the G-action), G preserves each eigenspace V) and
acts on it through an orthogonal matrix Dy(g). Therefore f is G-invariant iff Dy(g)fx = f
for all A and all ¢ € G. As in the finite-group analysis, minimizing the population risk
E|lf — f*||I7: over G-invariant f reduces to independent quadratic problems (QP) on the
retained eigenspaces V), with linear constraints D) (g)u = u. Replacing the intractable pop-
ulation coefficients by their empirical means ‘]?)\7[ yields the empirical QPs mentioned above;
their minimizers are the orthogonal projections of .]/C\)\ onto the fixed-point subspaces (Soley-
mani et al., 2025b).

Step 2: A single random subset S suffices for all retained eigenspaces. Define
the block-diagonal representation

R(g) == @D Dilg) €0(r), r:= Y my=D.

X Dy<D \:Dy<D

Let Vj := ker(I, — R(g)) be its fixed-point subspace. Run Algorithm 1 (Randomized Subset
Selection) once on the representation R(-) with T = ©(r?log(1/6)) iterations to obtain a
set S C G of size |S| = O(r?1log(1/d)) such that, with probability at least 1 — 6,

Ve = (Ve

ges geqG

This result follows from Proposition 1 and its proof is discussed in Appendix B.1: the
statistic A(S) := Ey Epupg||(R(g) — I)z||3 either vanishes (in which case the intersections
coincide) or is bounded below by a positive constant depending on r; a standard concentra-
tion argument then shows that each time A(S) > 0 one detects it in O(r) trials and reduces
the candidate basis dimension by 1, hence O(r?log(1/4)) trials suffice.

Because R(g) is block-diagonal, Vy = D,. p, <p ker(I,,, — Dy(g)) and therefore

NVa= B [)ke(lm, —Dalg)), (Vo= P () ker(lm, — Dalg)).

ges XDy <D geS geqG A D) <D geG

12
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Thus the equality of intersections at the block level implies, for every retained A, that

() ker(Im, — Da(g)) = () kex(Zm, — Da(9)).

geSs geG

Consequently, projecting J?A onto the fixed-point subspace defined by S is the same as
projecting onto the G-invariant subspace of V). Hence the resulting estimator f is exactly
G-invariant with probability at least 1 — 4.

Finally, note that by construction » = D. Since a > 1, we have D = pl/(A+e) < pl/2,
hence r = O(y/n), matching the choice of r in Proposition 1.

Step 3: Risk bound (classic bias-variance analysis). Write f* = fZ, + fZ, for the
orthogonal decomposition into the retained and discarded spectral parts. Exactly as the
proof of Soleymani et al. (2025b, Theorem 1), we decompose

E[If - 3] < 2E[IF - £2pll3a] + 20142 pl132.

The bias term obeys || f2 pl|7. < D‘O‘Hf*H?{S(M) by f* € H*(M) and the spectral definition
of the Sobolev norm. This is because,

Hf;DH%?: Z Z(f§,4)2

ADy>D =1

= > ) DyDN(f3)?

ADy>D =1

<D™ Y Y DY)’

ADy>D =1

mx
<D™“ Z Z DS(f30)?
A =1
- 2
= D™ s ()
In turn, we focus on the variance term,

B1fen - f2oli] = 30 SoE[1Bu— Auf)

D,<D (=1

By definition, we obtain
e =Ealf*(@)ox0(2)] = Eqy[yon e(2)], (7)

for every A, £. In addition, J?M denotes the empirical estimate derived from the data:

Fae= % > vidae(@i). (8)
i=1
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Thus, we get

Elle — o) = ~E [[963.(2) — Elybr ()]
= LB [lcon (@) + 1@ @) — ELF*@)n )]
= L (B + E [ (@)0n (@) — ELF (@)6r,(2)]])
< (0 + B/ (@), (@)
< (0 41 Bany)

since the ¢y ¢’s are orthonormal and f), are empirical means. Summing over dimensions
up to D, we obtain

~ D
E[If = fplaun) < = (0 + 1F Wmirn)) -

Because f is the orthogonal projection (in each V) of f onto a linear subspace, the
projection can only reduce squared error, so

~ ~ D
E[IF - f2pl3s] <E[Ifen - f2pl3a] < = (02 + 1 B mrg ) -
Putting the two parts (bias and variance) together and taking D = nt/(+2) vields

~ D _ __a
EIf = £l < (41 Wmng) =+ (151 ug) D™ = O(n775%).
exactly as for the finite group settings. All the calculations of this step are borrowed verbatim
from the proof of for finite groups in Soleymani et al. (2025).

Step 4: Running-time bound. Computing the primary coefficients .]?)\7[ for D) <

D takes O(nD) = O(n%) time. Forming the constraint matrices {Dyx(g)}ges costs
O(|S| > -Dy<D m3) < O(|S| D?) oracle calls, because > m3 < (> my)? = D?. Solving
the QPs by the closed form uses a pseudoinverse of a matrix of size (|S|my) x (|S|my)
and hence time O(|S|*m3) per A; summing gives O(|S> Y- m3) < O(|S|*D?). By Step 2,
with probability at least 1 — § we have |S| = O(r?log(1/d)) = ©(D?log(1/5)), and since
D = p'/(+9) < nl/2 this is polynomial in n (and independent of |G|). Thus the total
running time is poly(n, d, log(l/é)).

Combining Steps 1—4 concludes the proof: the estimator f is exactly G-invariant (with
probability > 1 — 4), achieves the same excess-risk rate as in the finite-group case, and the
algorithm runs in time polynomial in n,d,log(1/4), independent of the cardinality of G.
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