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Abstract

Multi-Agent Reinforcement Learning (MARL) has become a versatile tool for
tackling complex tasks, as agents learn to cooperate and compete across a wide
range of applications. Yet, reproducibility remains a persistent hurdle. We pinpoint
one key source of instability: the rotational dynamics that naturally arise when
agents optimize conflicting objectives—dynamics that standard gradient methods
struggle to tame. We reframe MARL approaches using Variational Inequalities
(VIs), offering a unified framework to address such issues. Leveraging optimiza-
tion techniques designed for VIs, we propose a general approach for integrating
gradient-based VI methods capable of handling rotational dynamics into existing
MARL algorithms. Empirical results demonstrate significant performance improve-
ments across benchmarks. In zero-sum games, Rock—paper—scissors and Matching
pennies, VI methods achieve better convergence to equilibrium strategies, and
in the Multi-Agent Particle Environment: Predator-prey, they also enhance team
coordination. These results underscore the transformative potential of advanced
optimization techniques in MARL.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) builds on Reinforcement Learning (RL) by addressing
environments where multiple agents interact—either by cooperating or competing—to achieve their
objectives. In fact, many real-world problems naturally involve multiple decision-makers, making
adaptive strategies essential for navigating these dynamic multi-agent settings. Competition among
agents can also foster more efficient and robust learning outcomes. As a result, MARL has found
applications across diverse domains, including autonomous driving, robotic coordination, financial
markets, and multi-player games, showcasing its ability to address complex challenges [see, for
example, Omidshafiei et al., 2017, Vinyals et al., 2017, Spica et al., 2018, Zhou et al., 2021, Bertsekas,
2021].

Despite its potential, advancing and deploying MARL research faces significant challenges. The
iterative training process in data-driven MARL is notoriously unstable and often struggles to achieve
convergence. Gradient-based optimization methods have difficulty in effectively exploring the joint
policy space [Li et al., 2023, Christianos et al., 2021], resulting in suboptimal solutions. Additionally,
certain MARL structures also exhibit inherent cycling effects [Zheng et al., 2021], further complicat-
ing convergence. Crucially, both actor-critic RL and MARL move beyond standard minimization,
instead operating within the framework of two- or multi-player games. The introduction of competi-
tive learning objectives and interaction terms generates unique learning dynamics, where conventional
gradient descent (GD) methods may fail to converge even in relatively simple scenarios [Korpelevich,
1976]. Performance is also highly sensitive to seemingly minor factors, such as the initial random
seed, making reliable benchmarking difficult. While similar issues exist in single-agent actor-critic
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RL-a form of two-player game—they are far more severe in MARL, contributing to what has been
called the MARL reproducibility crisis [Bettini et al., 2024b]. For example, Gorsane et al. [2022]
report considerable performance variability across different seeds in widely used MARL benchmarks,
such as the StarCraft multi-agent challenge[Samvelyan et al., 2019].

In mathematics and numerical optimization, equilibrium-finding problems can be modeled using
several frameworks, most notably the Variational Inequality [VIs, Stampacchia, 1964, Facchinei and
Pang, 2003] framework (see Section 3 for a formal definition). A key limitation of Gradient Descent
(GD) in solving simple VI problems stems from the “rotational component” of their associated
vector fields [Mescheder et al., 2018, Balduzzi et al., 2018]. For example, the GD method for the
min, cga, Max,, cgd, 21 - 22 game, rotates around the equilibrium (0, 0) for infinitesimally small
learning rates, and diverges away from it for practical choices of its value. Consequently, GD—along
with adaptive variants like Adam [Kingma and Ba, 2015]—fails to converge for a broad class of
equilibrium-seeking problems.

Recent advances in solving variational inequalities (VIs) have been heavily influenced by challenges
observed in training generative adversarial networks [GANs, Goodfellow et al., 2014]. This progress
spans both theoretical developments—with new convergence guarantees [e.g., Golowich et al.,
2020b, Daskalakis et al., 2020b, Gorbunov et al., 2022]—and practical algorithms for large-scale
optimization [Diakonikolas, 2020, Chavdarova et al., 2021]. We provide a detailed discussion of
these advances in Appendix A.

MARL problems are modeled with stochastic games [Littman, 1994]; refer to Section 3. Three main
MARL learning paradigms are commonly used:

* value-based learning—focuses on estimating so-called value functions (e.g., Q-learning, Deep
Q-Networks [Mnih et al., 2015]) to learn action-values first and infer a policy based on it,

* policy-based learning—directly optimizes the policy (e.g., REINFORCE [Williams, 1992]) by
adjusting action probabilities without explicitly learning the value functions, and

* actor-critic methods—combines value-based and policy-based approaches where an actor selects
actions, and a critic evaluates them.

Furthermore, MARL can be broadly categorized into centralized and independent learning approaches.
In centralized MARL, a global critic or shared value function leverages information from all agents
to guide learning, improving coordination [Sunehag et al., 2017, Lowe et al., 2017, Yu et al., 2021].
In contrast, independent MARL treats each agent as a separate learner, promoting scalability but
introducing non-stationarity as agents continuously adapt to each other’s evolving policies [Matignon
et al., 2012, Foerster et al., 2017]. In this work, we focus on Centralized Training Decentralized
Execution (CTDE) approaches, specifically the ones with centralized critics. Several of the new
algorithms in MARL belong to this category such as [MADDPG, Lowe et al., 2017], [MATD3,
Ackermann et al., 2019], [MAPPO, Yu et al., 2021], and [COMA, Foerster et al., 2018].

In summary, this paper explores the following:
Can VI methods counteract rotational dynamics in centralized MARL and enhance algorithmic
performance?

To address this question, we primarily focus on the CTDE actor-critic MARL learning paradigm, and
build VI approaches leveraging a (combination of) nested-Lookahead-VI [Chavdarova et al., 2021]
and Extragradient [Korpelevich, 1976] methods for iteratively solving variational inequalities (VIs).
These methods specifically target the rotational component through contraction in rotational spaces.
Our key contributions are:

* We formalize MARL optimization through a variational inequality lens.

* We propose LA-MARL (Algorithm 1), a scalable approach for neural network-based agents. While
presented for actor-critic systems, the method generalizes to other MARL settings. LA-MARL is
computationally efficient, making it well-suited for large-scale optimization tasks.

* We evaluate our proposed methods against standard optimization techniques in two zero-sum
games—Rock—paper—scissors and Matching pennies—and in two benchmarks from the Multi-
Agent Farticle Environments [MPE, Lowe et al., 2017].

Our code implementation: https://anonymous.4open.science/r/VI-marl-1436/README.md.
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As a side contribution, we empirically demonstrate the limitations of reward-based performance
metrics in MARL and propose an alternative evaluation approach.

2 Related Works

In the following, we discuss related works that study the optimization in centralized MARL. Our
approach primarily builds on two key areas, VIs, and MARL, which we review in Appendix A.
The necessary VI/MARL background is presented in Section 3. Works focused on optimization in
independent MARL are also discussed in Appendix A.

Convergence. Several works rely on two-player zero-sum Markov games to study the regret of an
agent relative to a perfect adversary. For instance, Bai and Jin [2020] introduces self-play algorithms
for online learning—the Value Iteration with Upper/Lower Confidence Bound (VI-ULCB) and an
explore-then-exploit algorithm—and show the respective regret bounds. In addition to the online
setting, Xie et al. [2020] also consider the offline setting where they propose using Coarse Correlated
Equilibria (CCE) instead of Nash Equilibrium (NE) and derive concentration bounds for CCEs.

For the classical linear quadratic regulator (LQR) problem [Kalman, 1960], single-agent policy
gradient methods are known to exhibit global convergence [Fazel et al., 2018]. The LQR problem
extends to the multi-agent setting through general-sum linear quadratic (LQ) games, where multiple
agents jointly control a (high-dimensional) linear state process. Unlike the zero-sum case [Bu
et al., 2019, Zhang et al., 2021], policy gradient faces significant challenges for general-sum LQ
games with n players. Mazumdar et al. [2020] highlight a negative result that contrasts sharply
with the corresponding result in the single-agent setting. In particular, policy gradient methods
fail to guarantee even local convergence in the deterministic setting [Mazumdar et al., 2020], and
additional techniques are required to guarantee convergence [Hambly et al., 2023]. Beyond LQ games,
policy gradient struggles with multi-agent settings more broadly. Ma et al. [2021] address gradient
descent limitations in multi-agent scenarios, introducing an alternative gradient-based algorithm for
finding equilibria in polymatrix games [Janovskaja, 1968], which model multi-agent interactions with
pairwise competition.

Convergence in MARL is challenging due to complex interactions and non-stationarity among agents.
While multi-agent actor-critic methods are widely used [Bettini et al., 2024a], their optimization and
convergence properties remain underexplored, making this an open problem.

3 Preliminaries

Notation. We denote (i) vectors with small bold letters, (ii) sets with curly capital letters, (iii) re-
al-valued functions with small letters, and (iv) operators Z +— Z with capital letters, e.g., F'. The
notation [n] denotes the set {1,...,n}. In the following, let Z be a convex and compact set in
the Euclidean space, equipped with the inner product (-, -). We adopt standard MARL notation to
describe the setting, as we discuss next.

MARL problem formulation. Markov games [MGs, also known as stochastic games, Shapley,
1953, Littman, 1994] generalize Markov Decision Processes [MDPs Puterman, 1994] to a multi-agent
setting. An MG is defined by the tuple:

(n, S { A}y P {ritize,7) (MG)
where n agents interact within an environment characterized by a common state space S. Each
agent i € [n] receives observation o; € O of the current state s € S of the environment. In the
most general case, agent i’s observation o, = f(s), where f: & — O;. For instance, f can be an
identity or coordinate-selection map with O; C S, or f can be a nontrivial mapping. Based on its
policy m;: O; — A;, each agent i € [n] selects an action a; € A;, where A; is its finite action set.
The joint actions of all agents are represented as @ = (a1, ..., a,), and the joint action space as

AE A x - x Ay

The environment transitions to a new state s’ € S according to a fransition function p: S x A —
A(S) , where A(S) is the space of probability distributions over S (non-negative |S|-dimensional
vector summing to 1). The function p specifies the probability distribution of the next state s, given
the current state s and the joint action a.



Each agent ¢ € [n] receives a reward r;, where the reward function r;: § X A X S — R depends on
the current state, the joint action, and the resulting next state. The importance of future rewards is
governed by the discount factor v € [0,1).

MGs generalize both MDPs and repeated games [Aumann, 1995] by introducing non-
stationary dynamics, where agents learn their policies jointly and adaptively. Each
agent ¢ € [n] aims to maximize its expected cumulative reward (return), defined as:

v T (s)=E [ Z Viri (8¢, ar, 8¢41)|80~p, atwfr(st)} , (MA-Return)
t=0
where w £ (7y,...,m,) represents the joint policy of all agents, _; denotes the policies of all

agents except agent ¢, and p is the initial state distribution. The interaction among agents introduces
challenges such as non-stationarity (due to evolving policies) and complex reward interdependencies,
leading to a distinct optimization landscape. Solutions often aim to find Nash equilibria, where no
agent can improve its return by unilaterally altering its policy.

MADDPG. Multi-agent deep deterministic policy gradient [MADDPG, Lowe et al., 2017], extends
Deep deterministic policy gradient [DDPG, Lillicrap et al., 2015] to multi-agent setting, leveraging a
centralized training with decentralized execution paradigm. Each agent ¢ € [n] has: (i) critic network
Qi: O x---x 0, x A — R, parametrized by w; € R%": acts as a centralized action-value function,
evaluating the expected return of joint actions a in state s and (ii) actor network p;: O; — A(A;),
parametrized by 8, € R% represents the agent’s policy, mapping agents’ observation of states s to a
probability distribution over actions a;.

For stability during training, MADDPG employs target networks, which are delayed versions of

the critic and actor networks: target critic ();, is parametrized by w; € R , and rarget-actor
[i;, parametrized by 6, . The parameters of the target networks are updated us1ng a soft update
mechanism: B B

w; + Tw; + (1 — 7)w; (Target-Critic) 0,710, +(1—1)6;, (Target-Actor)
where 7 € (0, 1] is a hyperparameter controlling the update rate of the target networks.

MATD3. Multi-agent TD3 [Ackermann et al., 2019] improves upon MADDPG by introducing two
key modifications: (i) Dual critics: each agent ¢ € [n] has two critic networks, @; 1 and @Q); 2. When
calculating the target for Q-learning, the smaller of the two values is used, mitigating overestimation
bias. (ii) Delayed actor updates: Actor policies and target networks are updated less frequently,
typically after every c critic updates, to improve training stability. Additionally, random noise is
added to the target actor’s outputs during training to introduce exploration and avoid deterministic
policies getting stuck in suboptimal regions. These enhancements make MATD3 more robust in
multi-agent settings compared to MADDPG.

Variational Inequality [Stampacchia, 1964, Facchinei and Pang, 2003]. Variational Inequalities
(VIs) extend beyond standard minimization problems to encompass a broad range of equilibrium-
seeking problems. The connection to such general problems can be understood from the optimality
condition for convex functions: a point z* is an optimal solution if and only if (z — 2*, V f(2*)) >
0,Vz € domf . In the framework of VlIs, this condition is generalized by replacing the gradient field
V f with a more general vector field F, allowing for the modeling of a wider class of problems.
Formally, the VI goal is to find an equilibrium z* from the domain of continuous strategies Z, such
that: (z—2"F(z¥) >0, Vze2Z, (VD)

where F': Z — R, referred to as the operator, is continuous, and Z is a subset of the Euclidean
d-dimensional space RY. VIs are thus characterized by the tuple (F, Z), denoted herein as VI(F,
Z). For a more comprehensive introduction to VIs, including examples and applications, see
Appendix B.1.

VI methods. The gradient descent method straightforwardly extends for the VI problem as follows:
Zi41 = 2t — 77F(Zt) , (GD)

where ¢ denotes the iteration count, and 1 € (0, 1) the step size or learning rate.



Extragradient [Korpelevich, 1976] is a modification of GD, which uses a “prediction” step to obtain
an extrapolated point z; 1 using GD: z, 1=z = 1F(z;), and the gradients at the extrapolated

point are then applied to the current iterate z; as follows:
ztr1=2t — Nk (Zt+%) : (EG)

Unlike gradient descent, EG converges in some simple game instances, such as in games linear in
both players [Korpelevich, 1976].

The nested-Lookahead-VI (LA) algorithm for VI problems [Alg. 3, Chavdarova et al., 2021], is
a general wrapper of a “base” optimizer B: R"™ — R" where, after every k iterations with B,
zt+1 = B(z:) an averaging step is performed as follows:

Zitk S 2 + Oé(Zt+}€ - Zt), o€ [0, 1] . (LA)

For this purpose a copy (snapshot) of the iterate after the averaging step is stored for the next LA
update. See Appendix B.1.1 for an alternative view.

This averaging can be applied recursively across multiple levels [, when using LA as base optimizer,
typically with [ € [1,3]. In Algorithm 6, the parameter k) at level j € [I] is defined as the multiple
of k=1 from the previous level j — 1, specifically k) = ¢; - kU1, Forl = 1,k = 2, LA has
connections to EG [Chavdarova et al., 2023], however for higher values of k£ and [ the resulting
operator exhibits stronger contraction [Chavdarova et al., 2021, Ha and Kim, 2022], which effectively
addresses rotational learning dynamics.

4 VI Perspective & Optimization

In this section, we introduce the operators for multi-agent general policy-based learning, actor-critic
methods, and the specific operator corresponding to MADDPG. Following this, we present a broader
class of algorithms that incorporate a designated MARL operator and integrate it with LA and/or EG.

4.1 MARL Operators

General MARL. Policy-based learning directly solves the (MA-Return) problem, where agents
optimize their policy parameters directly to maximize their return. The operator Fyar, where MAR
stands for multi-agent-return, with Z = A, corresponds to:

: : 0 .
FMAR( ™ )é Va0, " = | Vi, (E[ 3 Viri(se, ar, Si41)|s0~p, atN"f(St)D . (FmaAR)
. X t=0

Actor-critic MARL. We denote by x the full state information from which the agents ob-
servations o; are derived. As above, consider a centralized critic network, denoted as the
Q-network: Q¥ (x;, a;; w;) and an associated policy network p;(0;;8;) for each agent i €
[n]. Given a batch of experiences B = {(x?,a?, 7,z )}ljlill, drawn from a replay buffer
D, the objective is to find an equilibrium by solving the (VI) with the operator defined as:

=

Ve, (31 2 67 (wi,8:)
FMAAC( P )E <‘B‘ 7;‘1 B ) (Fmaac)
Vo, (i X 01w, 6)

<.
I

where the parameter space is Z = R%, withd = > | (dZQ + d!"); and MAAC stands for multi-agent-
actor-critic. Even in the single-agent case (n = 1), an inherent game-like interaction exists between
the actor and the critic: the update of w; depends on 6;, and vice versa. This interplay is fundamental
to the optimization dynamics in multi-agent actor-critic frameworks.

MADDPG. As an illustrative example, we fully present the terms in (Fyaac) for MADDPG,
deferring the other algorithms to Appendix C. The critic and actor loss functions are defined as:

o 5 v o
(5w, 0;) = (v — Q¥ (2, a?;wy)) ",y =] +9QY (27, a’;w))

a'=f(o") * (EﬁADDPG)



. . - . 9
0 (5w, 0:)=pi(0];0:)Va, Q¥ (2’ al, ... as,...,al;w)) wimp(ol) (UMaDDPG)

This formulation captures the interplay between the actor and critic networks in MADDPG, where
the critic updates its parameters to minimize the Bellman error, while the actor updates its policy by
maximizing the ()-value.

4.2 Proposed Methods

Algorithm 1 LA-MARL Pseudocode.

1: Input: Environment &, operator F', number of agents n, number of episodes ¢, action spaces
{A;}_,, number of random steps tang, learning interval tje,m, actor networks {g;}? ; with
6 = {6,}"_,, critic networks {Q;}"_, with w = {w;}?_,, target actor networks {f; }_, with
6 = {0,}"_,, target critic networks {Q;}?; with w = {w;}?;, learning rates 7g, 1y,, base
optimizer B, discount factor -, lookahead hyper-parameters £ = (I, {kU )}5»:1, g, Qlay ), SOt
update parameter 7.

2: Initialize:

3 Replay buffer D < &

4:  Initialize LA parameters: ¢ < {0}y, {w}«;

5: for all episode e = 1 to ¢ do

6

7

8

Sample initial state « from £ (with o = f(x))

step 1
repeat
9: if step < t;ana then
10: Randomly select actions for each agent ¢
11: else
12: Select actions using policy for each agent 7
13: end if
14: Execute a, observe rewards and state (r, ')
15: Store (z, a,r, z’) in replay buffer D
16: T+ x
17: if step%tiearn == 0 then
18: Sample a batch B from D
19: Use B and update to solve VI(F, R?) using B
20: 0710+ (1—1)0 Update target actor
21: w<+ Tw+ (1 —7)w Update target critic
22: end if
23: step <— step + 1

24:  until environment terminates

25:  NESTEDLOOKAHEAD(n, e, @, L)
26: end for

27: Output: ¢—1 (-1

To solve the VI problem with an operator corresponding to the MARL algorithm—for instance (Fyar)
or (Fyaac)—we propose the LA-MARL, and EG-MARL methods, described in detail in this section.

LA-MARL, Algorithm 1. LA-MARL periodically saves snapshots of all agents’ networks (both
actor and critic) and averages them with the current networks during training. It operates with a
base optimizer (e.g., Adam [Kingma and Ba, 2015], and applies a lookahead averaging step every k
intervals. Specifically, the current network parameters (6, w) are updated using their saved snapshots
(09, w7 through a-averaging (Algorithm 6). The algorithm allows for multiple nested lookahead
levels, where higher levels update their corresponding parameters less frequently. All agents apply
lookahead updates simultaneously at each step, ensuring consistency across both actor and critic
parameters. Extended versions of LA-MARL tailored for MADDPG and MATD3, with more detailed
notations, can be found in the appendix (Algorithms 7 and 8).

Generalization and Adaptability. While Algorithm 1 focuses on off-policy actor-critic methods, it
serves as a general framework and can be adapted to other MARL learning paradigms: (i) Policy
Gradient Methods: It can be instantiated with a specific operator—of the form Eq. (Fjyar)—Dby
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Figure 1: Comparison between GD-(MADDPG/MATD3) and LA-(MADDPG/MATD3), on Rock—paper—

scissors and Matching pennies. x-axis: training episodes. y-axis: total distance of agents’ policies to the
equilibrium policy; averaged over 10 seeds.

setting one set of parameters (w or @) to ; or (ii) On-Policy Learning: modifications include removing
the use of target networks.

However, the lookahead method (Eq. LA) must be applied in the joint strategy space of all players.
This is crucial because, in multi-agent reinforcement learning (MARL), the adversarial nature of
agents’ objectives introduces a rotational component in the associated vector field. The averaging
steps help mitigate this effect. Particularly, to ensure correct updates, no agent should use parameters
that have already been averaged within the same iteration.

(LA-)EG-MARL. For EG-MARL, the (EG) update rule is used for both the actor and critic
networks and for all agents; refer to Algorithm 2 for a full description. Moreover, Algorithm 1 can
also use EG as the base optimizer—represented by B—herein denoted as LA-EG-MARL.

Convergence. Under the standard assumption that the operator is monotone (see Appendix B.1.1
for the definition), the standard gradient descent method diverges, as shown in prior work [see for
instance, Korpelevich, 1976]. This class of operators is broader than—but includes—the case where
each agents’ and critics’ objective functions are convex with respect to their own parameters. In
contrast, the LA-EG-MARL methods provably converge for this class of problems [Korpelevich,
1976, Chavdarova et al., 2021, Gorbunov et al., 2022, Pethick et al., 2023]. The key mechanism is
that LA increases the contractiveness of the baseline algorithm’s fixed-point operator. When applied
recursively (nested LA), it further enhances contractiveness, preventing divergence in rotational
(competitive) learning dynamics. For more details, see Appendix C.

5 Experiments

5.1 Setup

We use the open-source PyTorch implementation of MADDPG [Lowe et al., 2017] and extend it to
MATD3 using the same hyperparameters specified in the original papers; detailed in Appendix D. Our
experiments cover two zero-sum games—Rock—paper—scissors and Matching Pennies—along with
two Multi-Agent Particle Environments (MPE) [Lowe et al., 2017]. We use game implementations
from PettingZoo [Terry et al., 2021].

Rock—paper-scissors (RPS) and Matching pennies (MP). Widely studied games in multi-agent
settings due to their analytically computable mixed Nash equilibria (MNE), which allows for a precise
performance measure, and insights into their inherent cyclical behavior [Zhou, 2015, Wang et al.,
2014, Srinivasan et al., 2018]. In RPS, two players (n = 2) choose among three actions (m = 3)
per step, with a MNE of ﬂﬁps(%, %7 %) Players observe their opponent’s previous action before
selecting their own, earning +1 for a win, 0 for a tie, and —1 for a loss, over ¢ = 25 steps per episode.
Similarly, MP is a two-player, two-action (m = 2) game where one player (Even) wins if both actions
match, while the other (Odd) wins if they differ. The game has a MNE, of 7{, = (%, %), and runs
also for ¢t = 25 steps. We compute the squared norm of the learned policy probabilities relative to the
equilibrium for both games.

MPE: Predator-Prey and Physical Deception. We evaluate two environments from the Multi-Agent
Particle Environments (MPE) benchmark [Lowe et al., 2017]. Predator-Prey, has p good agents, m

Available at https://github.com/Git-123-Hub/maddpg-pettingzoo-pytorch/tree/master.
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Table 1: Competition between agents trained with different algorithms. Adversary rewards (mean =+ std) in
Predator-Prey shows that LA exploits GD in direct competition.

#Players GD vs. GD GD vs. LA LA vs. LA LA vs. GD

n=3 299+1.73 214+ 91 544+127 741+£1.757
n=2=5 15.69£7.18 155+5.32] 14.58+£5.45 22.58£8977

Table 2: Equilibrium reached? Average adversary win rate for MPE: Physical deception on 100 test environ-
ments. Closer to 0.5 is better.

Method Adversary Win Rate
Baseline 0.45+£ .16
LA-MADDPG 0.53 £ .11
EG-MADDPG 0.56 + .27
LA-EG-MADDPG 0.51+.14

adversaries, and [ landmarks, where good agents are faster but penalized for being caught or going
out of bounds, while adversaries collaborate to capture them. We use n = (p+m) € [3,5], and ] = 2.
In Physical deception, we have p good agents, one adversary, and p landmarks, with one landmark
designated as the farget. Good agents aim to get close to the target landmark while misleading the
adversary, which must infer the target’s location. Unlike Predator-Prey, this environment does not
involve direct competition for the adversary—its reward depends solely on its own policy. In our
experirnents, we set p = 2.

Methods. We evaluate our methods against the baseline, which is the MARL algorithms (MADDPG
or MATD3) with Adam [Kingma and Ba, 2015] as the optimizer B. Throughout the rest of this
section, we will refer to baseline as GD-MARL (GD). When referring to LA-based methods, we
will indicate the k£ values for each lookahead level in brackets. For instance, LA (10, 1000) denotes
a two-level lookahead where k(1) = 10 and k() = 1000. We denote with EG the EG method, and
refer to it analogously. Further details on hyperparameters are provided in Appendix D.

5.2 Results

2-player games: RPS & MP. Figures 1(a) and 1(b) illustrate the average distance between learned and
equilibrium policies. GD-MARL eventually diverge, whereas LA-MARL consistently converges to a
near-optimal policy, outperforming the baseline. Both MARL algorithms perform similarly, though
MATD3 exhibits lower variance across seeds than MADDPG. For LA-based methods, experiments
with different k£ values indicate that smaller k-values for the innermost LA-averaging yield better
performance (see Appendix D.1). The results consistently show performance improvements.

MPE: Predator-prey. Table 1 presents the average rewards of adversaries competing against the good
agents. We train agents using GD-MATD3 (baseline) and LA-MATD3 with 5 different seeds each,
then evaluate them against one another in 100 test environments. The results show that LA-trained
agents not only perform well when matched against other LA-trained agents, but also consistently
outperform GD-trained agents in direct competition.

MPE: Physical deception. Table 2 presents the mean and standard deviation of the adversary’s win
rate, measuring how often it successfully reaches the target. In this setting, equilibrium is achieved
when both teams win with equal probability across multiple instances. Given the cooperative nature
of the game, the baseline performs relatively well, with EG-MADDPG achieving similar performance.
However, both LA-MADDPG and LA-EG-MADDPG outperform their respective base optimizers
(MADDPG and EG-MADDPG), demonstrating improved stability and effectiveness.
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LA (20,400,4000)
sl EG

—— LA-EG
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; v paper-scissors game. z-axis: training episodes.
/\/\N y-axis: squared norm of the learned policy proba-
bilities relative to the equilibrium. EG uses solely
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close to GD; refer to Section 5.2 for a discussion.
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Figure 3: Rewards (left) vs. sampled actions from learned policies (right), of (LA-)MADDPG in the
Rock-paper-scissors game. The baseline has saturating rewards (in the last part), however, that is not indicative
of the agents’ performances. Refer to Section 5.2 for a discussion, and Figure 10 for more detailed plots and
larger action samples.

Summary. Overall, our results indicate the following: (i) VI-based methods consistently outperform
their respective baselines, by effectively handling the rotational dynamics. (ii) LA-VI outperforms
the other methods.

Comparison among VI methods & insights from GANs. The widely used (EG) for solving Vs is
known to converge for monotone VIs. However, in our experiments, EG performs only slightly better
than the baseline because it introduces only a minor local adjustment compared to gradient descent
(GD). This aligns with expectations: while EG occasionally outperforms GD, its improvements are
often marginal. In contrast, Lookahead, introduces a significantly stronger contraction, improving
both stability and convergence. As the number of nested levels increases, performance gains become
more pronounced—particularly in preventing the last iterate from diverging. However, too many
nested levels can lead to overly conservative or slow updates. Based on our experiments, three
levels of nested LA yielded the best balance between stability and convergence speed (see Fig. 2
for a comparison of VI methods). Our findings are consistent with those observed in GAN training
[Chavdarova et al., 2021], where EG also provides only slight improvements over the baseline, while
more contractive methods consistently yield better performance.

These results further confirm that MARL vector fields in these environments exhibit strong rotational
dynamics. For scenarios with highly competitive reward structures, we recommend using VI methods
with greater contractiveness, such as employing multiple levels of LA.

Limitations of Rewards as a Metric in MARL. While saturating rewards are commonly used in
MARL, few works challenge their reliability [e.g., Bowling, 2004]. Our results suggest that reward
“convergence” does not necessarily indicate optimal policies. In multi-agent settings, rewards can
stabilize at a target value even with suboptimal strategies, leading to misleading evaluations. For
example, in Figure 3, baseline agents repeatedly select a subset of actions, resulting in ties that yield
a saturating reward but fail to reach equilibrium, making them vulnerable to a more skilled opponent.
Conversely, LA-MADDPG agents did not exhibit reward saturation, yet they learned near-optimal
policies by randomizing their actions, which aligns with the expected equilibrium. This highlights
the need for stronger evaluation metrics in MARL, especially when the true equilibrium is unknown.
For further discussion, see Appendix E.5.

6 Discussion

MARL’s inherent competitive nature creates complex learning dynamics that standard gradient-based
optimization methods—designed for minimization problems—fail to handle effectively. Rather than
proposing new learning objectives, this work focuses on a fundamental but often neglected aspect:
the optimization process itself.

We address this by adopting a variational inequality (VI) perspective, which provides a unifying
framework for MARL learning dynamics. We introduce a general algorithmic framework (Algorithm
1), a computationally efficient VI-based method designed for practical MARL scalability. Our results
demonstrate consistent and clear findings that simply replacing the optimizer—while holding all
other factors fixed—yields significant improvements. These results demonstrate that optimization
methods are a critical yet understudied factor in MARL performance, motivating further research in
this direction.
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A Extended Related Works Discussion

Our work is primarily grounded in two key areas: Multi-Agent Reinforcement Learning (MARL)
and Variational Inequalities (VIs), which we discuss next. Additionally, we extend our discussion on
related works on Linear-Quadratic (LQ) games and discuss relevant literature on independent MARL.

Multi-Agent Reinforcement Learning (MARL). Various MARL algorithms have been devel-
oped [Lowe et al., 2017, Igbal and Sha, 2018, Ackermann et al., 2019, Yu et al., 2021], with some
extending existing single-agent reinforcement learning (RL) methods [Rashid et al., 2018, Son et al.,
2019, Yu et al., 2022, Kuba et al., 2022]. Lowe et al. [2017] extend an actor-critic algorithm to the
MARL setting using the centralized training decentralized execution framework. In the proposed
algorithm, named multi-agent deep deterministic policy gradient (MADDPG), each agent in the game
consists of two components: an actor and a critic. The actor is a policy network that has access
only to the local observations of the corresponding agent and is trained to output appropriate actions.
The critic is a value network that receives additional information about the policies of other agents
and learns to output the Q-value; see Section 3. After a phase of experience collection, a batch is
sampled from a replay buffer and used for training the agents. To our knowledge, all deep MARL
implementations rely on either stochastic gradient descent or Adam optimizer [Kingma and Ba, 2015]
to train all networks. Game theory and MARL share many foundational concepts, and several studies
explore the relationships between the two fields [ Yang and Wang, 2021, Fan, 2024], with some using
game-theoretic approaches to model MARL problems [Zheng et al., 2021]. This work proposes
incorporating game-theoretic techniques into the optimization process of existing MARL methods to
determine if these techniques can enhance MARL optimization.

Li et al. [2019] introduced an algorithm called M3DDPG, aimed at enhancing the robustness of
learned policies. Specifically, it focuses on making policies resilient to worst-case adversarial
perturbations, as well as uncertainties in the environment or the behaviors of other agents.

Variational Inequalities (VIs). VIs were first formulated to understand the equilibrium of a dy-
namical system [Stampacchia, 1964]. Since then, they have been studied extensively in mathematics,
including operational research and network games [see Facchinei and Pang, 2003, and references
therein]. More recently, after the shown training difficulties of GANs [Goodfellow et al., 2014]—
which are an instance of VIs—an extensive line of works in machine learning studies the convergence
of iterative gradient-based methods to solve VIs numerically. Since the last and average iterates
can be far apart when solving VIs [see e.g., Chavdarova et al., 2019], these works primarily aimed
at obtaining last-iterate convergence for special cases of VIs that are important in applications,
including bilinear or strongly monotone games [e.g., Tseng, 1995, Malitsky, 2015, Facchinei and
Pang, 2003, Daskalakis et al., 2018, Liang and Stokes, 2019, Gidel et al., 2019, Azizian et al., 2020,
Thekumparampil et al., 2022], VIs with cocoercive operators [Diakonikolas, 2020], or monotone
operators [Chavdarova et al., 2023, Gorbunov et al., 2022]. Several works (i) exploit continuous-time
analyses [Ryu et al., 2019, Bot et al., 2020, Rosca et al., 2021, Chavdarova et al., 2023, Bot et al.,
2022], (ii) establish lower bounds for some VI classes [e.g., Golowich et al., 2020b,a], and (iii)
study the constrained setting [Daskalakis and Panageas, 2019, Cai et al., 2022, Yang et al., 2023,
Chavdarova et al., 2024], among other. Due to the computational complexities involved in training
neural networks, iterative methods that rely solely on first-order derivative computation are the most
commonly used approaches for solving variational inequalities (VIs). However, standard gradient
descent and its momentum-based variants often fail to converge even on simple instances of VIs.
As a result, several alternative methods have been developed to address this issue. Some of the
most popular first-order methods for solving VIs include the extragradient method [Korpelevich,
19761, optimistic gradient method [Popov, 1980], Halpern method [Diakonikolas, 2020], and (nested)
Lookahead-VI method [Chavdarova et al., 2021]; these are discussed in detail in Section 3 and
Appendix B.1.1. In this work, we primarily focus on the nested Lookahead-VI (LA) method, which
has achieved state-of-the-art results on the CIFAR-10 [Krizhevsky, 2009] benchmark for generative
adversarial networks [Goodfellow et al., 2014].

General-sum linear quadratic (LQ) games. In LQ games, each agent’s action linearly impacts
the state process, and their goal is to minimize a quadratic cost function dependent on the state and
control actions of both themselves and their opponents. LQ games are widely studied as they admit
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global Nash equilibria (NE), which can be analytically computed using coupled algebraic Riccati
equations [Lancaster and Rodman, 1995].

Several works establish global convergence for policy gradient methods in zero-sum settings. Zhang
et al. [2019a] propose an alternating policy update with projection for deterministic infinite-horizon
settings, proving sublinear convergence. Bu et al. [2019] study leader-follower policy gradient in
a deterministic setup, and showing sublinear convergence. Zhang et al. [2021] study the sample
complexity of policy gradient with alternating policy updates.

For the deterministic n-agent setting, Mazumdar et al. [2020] showed that policy gradient methods
fail to guarantee even local convergence. Roudneshin et al. [2020] prove global convergence for
policy gradient in a mean-field LQ game with infinite horizon and stochastic dynamics. Hambly et al.
[2023] show that the natural policy gradient method achieves global convergence in finite-horizon
general-sum LQ games, provided that a certain condition on an added noise to the system is satisfied.
Recently, Guan et al. [2024] proposed a policy iteration method for the infinite horizon setting.

Independent MARL. Inindependent MARL, each agent learns its policy independently, without
direct access to the observations, actions, or rewards of other agents [Matignon et al., 2012, Foerster
et al., 2017]. Each agent treats the environment as stationary and ignores the presence of other agents,
effectively treating them as part of the environment.

[Daskalakis et al., 2020a] study two-agent zero-sum MARL setting of independent learning algorithms.
The authors show that if both players run policy gradient methods jointly, their policies will converge
to a min-max equilibrium of the game, as long as their learning rates follow a two-timescale rule.
[Arslan and Yiiksel, 2015] propose a decentralized @)-learning algorithm for MARL setting where
agents have limited information and access solely of their local observations and rewards. Jiang
and Lu [2022] proposes a decentralized algorithm. Sayin et al. [2021] explore a decentralized -
learning algorithm for zero-sum Markov games, where two competing agents learn optimal policies
without direct coordination or knowledge of each other’s strategies. Each agent relies solely on local
observations and rewards, updating their ()-values independently while interacting in a stochastic
environment. [Lu et al., 2021] study decentralized cooperative multi-agent setting with coupled safety
constraints.

Wei et al. [2017] rely on the framework of average-reward stochastic games to model single player
with a perfect adversary, yielding a two-player zero-sum game, in a Markov environment, and study
the regret bound.

B Additional Background

In this section, we further discuss VIs, and provide additional background and relevant algorithms.

B.1 VI Discussion

Variational Inequality. We first recall the definition of VIs. A VI(F, Z) is defined as:

findz* € Z st (z—2",F(z¥)) >0, VzeZ, (VD)
where F': Z — R, referred to as the operator, is continuous, and Z is a subset of the Euclidean
d-dimensional space R,

When F' = V f and f is a real-valued function f: Z — R, the problem VI is equivalent to standard
minimization. However, by allowing F' to be a more general vector field, VIs also model problems
such as finding equilibria in zero-sum and general-sum games [Cottle and Dantzig, 1968, Rockafellar,
1970]. We refer the reader to [Facchinei and Pang, 2003] for an introduction and examples.

To illustrate the relevance of VIs to multi-agent problems, consider the following example. Suppose
we have n agents, each with a strategy z; € R%, and let us denote the joint strategy with

zZ1 n
z= | e RY, with d:Zdi.
i=1

Zn
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Each agent i € [n] aims to optimize its objective f;: RY — R, which, in the general case, depends on
all players’ strategies. Then, finding an equilibrium in this game is equivalent to solving a VI where
the operator I corresponds to:

vzl fl (z)
Fn—agents(z) = : (Fn—agents)

Ve, ful(2)

An instructive way to understand the difference between non-rotational and rotational learning
dynamics is to consider the second-derivative matrix .J: R¢ — R%*? referred herein as the Jacobian.
For the above (F,.agents) problem the Jacobian is as follows:

VL) ViLh(2) . Vi fi(2)
Jn—agents(z) = - . (Jn—agents)
2 2 2
vz”zlfn(z) Vznzzfn(z) e vzifn(z>
Notably, unlike in minimization, where the second-derivative matrix—the so-called Hessian—is
always symmetric, the Jacobian is not necessarily symmetric. Hence, its eigenvalues may belong to
the complex plane. In some cases, the Jacobian of the associated vector field can be decomposed

into a symmetric and antisymmetric component [Balduzzi et al., 2018], where each behaves as a
potential [Monderer and Shapley, 1996] and a Hamiltonian (purely rotational) game, resp.

In Section C we will also rely on a more general problem, referred to as the Quasi Variational
Inequality.

Quasi Variational Inequality. Given a map F': X — R"—herein referred as an operator—the
goal is to:

find x* s.t. (x —x* F(x*)) >0, VeeKz"), (QVD
where IC(x) C R? is a point-to-set mapping from R? into subsets of R? such that for every = € X,
K(x) € R¢ which can be possibly empty.

In other words, the constraint set for QVIs depends on the variable x. This contrasts with a standard
variational inequality (VI), where the constraint set K is fixed and does not depend on . QVIs were
introduced in a series of works by Bensoussan and Lions [1973a,b, 1974].

B.1.1 VI classes and additional methods

The following VI class is often referred to as the generalized class for VIs to that of convexity in
minimization.

Definition B.1 (monotonicity). An operator F' : RY — R is monotone if (z — 2', F(z) — F(2')) >
0, Vz,2’ € R%. F is p-strongly monotone if: (z — 2/, F(z) — F(2')) > ||z — 2'||? for all
z,z € R%

The following provides an alternative but equivalent formulation of LA. LA was originally proposed
for minimization problems [Zhang et al., 2019b].

LA equivalent formulation. We can equivalently write (LA) as follows. At a step ¢: (i) a copy of
the current iterate 2, is made: 2z; <— 2, (ii) Z; is updated k£ > 1 times using B, yielding Z;, and
finally (iii) the actual update z, 1 is obtained as a point that lies on a line between the current z;
iterate and the predicted one Z; :

Zi41 < 2z + Oé(it+k — Zt), o€ [O, 1] . (LA)

In addition to those presented in the main part, we describe the following popular VI method.

Optimistic Gradient Descent (OGD). The update rule of Optimistic Gradient Descent OGD [(OGD)
Popov, 1980] is:

Zt+1 = 2t — 21’}F(Zf) + 7’]F(Zt_1) 3 (OGD)
where 7 € (0, 1) is the learning rate.
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B.1.2 Pseudocode for Extragradient

In Algorithm 2 outlines the Extragradient optimizer [Korpelevich, 1976], which we employ in
EG-MARL. This method uses a gradient-based optimizer to compute the extrapolation iterate, then
applies the gradient at the extrapolated point to perform an actual update step. The extragradient
optimizer is used to update all agents’ actor and critic networks. In our experiments, we use Adam
for both the extrapolation and update steps, maintaining the same learning intervals and parameters
as in the baseline algorithm.

Algorithm 2 Extragradient optimizer; Can be used as B in algorithm 1.

1: Input: learning rate 7,, initial weights 1, loss £¥, extrapolation steps ¢

2: PP — ) (Save current parameters)
3: foriel,...,tdo

4 =1 —npVyl¥ () (Compute the extrapolated 1))
5: end for

6: 1 = P — 0y Vi l¥ (1) (update 1)
7. Output: ¢

B.1.3 Pseudocode for Nested Lookahead for a Two-Player Game

For completeness, in Algorithm 3 we give the details of adapted version of the nested Lookahead-
Minmax algorithm proposed in [Algorithm 6, Chavdarova et al., 2021] with two-levels.

In the given algorithm, the actor and critic parameters are first updated using a gradient-based
optimizer. At interval (1), backtracking is done between the current parameters and first-level copies
(slow weights) and they get updated. At interval k(2) = c;j k() backtracking is performed again with
second-level copies (slower weights), updating both first- and second-level copies with the averaged
version.

Algorithm 3 Pseudocode of Two-Level Nested Lookahead—Minmax. [Chavdarova et al., 2021]

1: Input: number of episodes ¢, learning rates 7g, 7, initial weights {9,9(1),0(2)} and
{(w, w™,w®)}, LA hyperparameters: levels I = 2, (1), k(?)) and (ag, o), losses £9,
%, real-data distribution p,, noise—data distribution p,.

2. forrel,...,tdo
33 T ~Pg, 2~ P,
4 w4 W — Ny Vel?(w,z, 2) (update w)
5. 0+« 0—19Vel®0,x,2) (update 0 )
6:  if r%k) == 0 then
7: w <+ wh) + Qlapy (W — 'w(l)) (backtracking on interpolated line w™), w)
8: 0+ 0 1+ (6 —0M) (backtracking on interpolated line 1), 0)
9: (0D, wM)) — (6, w) (update slow checkpoints)
10:  endif
11:if r%k® == 0 then
12: w — w? + ay(w — w?) (backtracking on interpolated line w®, w)
13: 0+ 02 1 0p(6 —0?) (backtracking on interpolated line 02, 0)
14: (02, w?) « (6, w) (update super-slow checkpoints)
15: (9(1), ’w(l)) +— (6, w) (update slow checkpoints)
16:  end if
17: end for

18: Output: 02, w®?

B.2 MARL algorithms
B.2.1 Details on the MADDPG Algorithm

The MADDPG algorithm [Lowe et al., 2017] is outlined in Algorithm 4. An empty replay buffer D
is initialized to store experiences. In each episode, the environment is reset and agents choose actions
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to perform accordingly. After, experiences in the form of (state, action, reward, next state) are saved
to D.

After a predetermined number of random iterations, learning begins by sampling batches from D. The
critic of agent 7 receives the sampled joint actions a of all agents and the state information of agent ¢
to output the predicted -value of agent 7. Deep Q-learning [Mnih et al., 2015] is then used to update
the critic network; lines 20-21. Then, the agents’ policy network is optimized using policy gradient;
refer to 23. Finally, following each learning iteration, the target networks are updated towards current
actor and critic networks using a fraction 7. Then the process repeats until the end of training.

All networks are optimized using the Adam optimizer [Kingma and Ba, 2015]. Once training is
complete, each agent’s actor operates independently during execution. This approach is applicable
across cooperative, competitive, and mixed environments.

Algorithm 4 Pseudocode for MADDPG [Lowe et al., 2017].

1: Input: Environment £, number of agents n, number of episodes ¢, action spaces {A;}7 ,,
number of random steps t,nq before learning, learning interval ¢ie,m, actor networks {p; }7_;,
with initial weights @ = {6,}?_,, critic networks {Q;}}_; with initial weights w = {w,} ;.
learning rates 7g, 1., Optimizer B (e.g., Adam), discount factor -, soft update parameter 7.

2: Initialize:
3:  Replay buffer D < @
4: for all episode e € 1,...,t do
5: @« Sample(E) (sample from environment £)
6: step+1
7:  repeat
8: if ¢ < tyana then
9: for each agent i, a; ~ A; (sample actions randomly)
10: else
11: for each agent i, select action a; = p;(0;) + N} using current policy and exploration
noise
12: end if
13: Execute actions a = (a1, . . ., a,), observe rewards r and new state &’ (apply actions and
record results)
14: replay buffer D < (x,a,r, a’)
15: T+ x
16: (apply learning step if applicable)
17: if step%ticarn = 0 then
18: for all agent: € 1,...,ndo
19: sample batch B : {(z?,a’, 17, :c’j)}lji‘l from D
20: Y 1! +9QF(z",a),. .., al), where a), = (0} )
21: Update critic by minimizing the loss (using optimizer B ):
) 2
U(w;) = ﬁ >, (yj — Q¥ (x?,a] ...,a%))
22: Update actor policy using policy gradient formula and optimizer B
23: Ve, J ~ ﬁ > Ve.ui(0])Va, Qf (27,0, ..., ai,... ,a},), where a; = p;(0})
24: end for
25: for all agent i € [n] do_
26: 0, 710;+(1—1)6; (update target networks)
27: w; — TW; + (1 — T)’lIJi
28: end for
29: end if
30: step < step + 1
31:  until environment terminates
32: end for

33: Output: 0, w
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B.2.2 MATD3 Algorithm

We provide a psuedo code for MATD3 algorithm from [Ackermann et al., 2019] in algorithm 5. As
discussed in the main section, MATD3 was introduced as an improvement to MADDPG and follows
a similar structure, except for the learning steps. After sampling a batch from the replay buffer D,
both critics of each agent are updated using Deep Q-learning, with the target computed using the
minimum of the two critic values (notice the difference in lines 20 and 20of the two algorithms). The
actor networks are then updated via policy gradient, using only the Q-value from the first critic; see
line 24.

Algorithm 5 Pseudocode for MATD3 [Ackermann et al., 2019].

1: Input: Environment £, number of agents n, number of episodes ¢, action spaces {Ai}?:p
number of random steps ¢,,nq before learning, learning interval jeam, actor networks {p; }7 4,
with initial weights 8 = {6;}!_,, both critic networks, {Q; 1, Q; 2}, with initial weights
w = {w; 1, w; 2}7 4, learning rates ng, Ny, optimizer B (e.g., Adam), discount factor , soft
update parameter 7, policy update frequency p.

2: Initialize:
3:  Replay buffer D < @
4: for all episode e € 1,...,t do
5: @« Sample(E) (sample from environment £ )
6: step<+1
7:  repeat
8: if ¢ < tiana then
9: for each agent i, a; ~ A; (sample actions randomly)
10: else
11: for each agent 4, select action a; = p;(0;) + € using current policy with some exploration
noise
12: end if
13: Execute actions a = (a1, . . ., a,), observe rewards r and new state &’ (apply actions and
record results)
14: replay buffer D < (x,a,r,a’)
15: T+ x
16: (apply learning step if applicable)
17: if step%ticarn = O then
18: for all agent i € [n] do
19: sample batch {(z’,a’, 17, m/j)}lji‘l from D
20: Y 1]+ yming,-1 2 QF, (x4}, ..., a},), where aj, = fir (o)) + €
21: Update both critics, m = 1, 2 by minimizing the loss (using optimizer B ):
, 2
Uwim) = 157 25 (yj - QY (x7a, .. -7%))
22: if step%p = 0 then
23: Update actor policy using policy gradient formula and optimizer B
24: Vo, J ~ \%I > Ve,ui(0])Va, Qly (27, a1, ..., ai,...,a},), where a; = p;(0})
25: 0, — 70, + (1- T)G_Z- (update target networks)
26: Wi m & TWim + (1 — T)’li)i,m
27: end if
28: end for
29: end if
30: step < step + 1
31:  until environment terminates
32: end for

33: Output: 6, w

B.2.3 Counterfactual multi-agent policy gradients (COMA, [Foerster et al., 2018])

COMA is an actor-critic multi-agent algorithm based on the CTDE paradigm, with one centralized
critic and n decentralized actors. Additionally, COMA directly addresses the credit assignment
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problem in multi-agent settings by: (i) computing a counterfactual baseline for each agent b; (s, a_;),
(ii) using this baseline to estimate the advantage A; of the chosen action over all others in 4;, and
(iii) leveraging this advantage to update individual policies. This ensures that policy updates reflect
each agent’s true contribution to the overall reward.

B.2.4 Multi-agent Trust Region Policy Optimization (MATRPO, [Li and He, 2023])

Trust Region Policy Optimization [TRPO, Schulman et al., 2015] is a policy optimization method
that ensures stable updates by constraining policy changes within a trust region. This constraint is
enforced using the KL-divergence, and the update step is computed using natural gradient descent.

Extending TRPO to the cooperative multi-agent setting introduces challenges due to non-stationarity.
To address this, MATRPO employs a centralized critic, represented by a central value function V' (s),
which leverages shared information among agents to estimate the Generalized Advantage Estimator
(GAE) A;. The advantage function is then used in the policy gradient update, while ensuring that the
KL-divergence constraint is respected, maintaining stable and coordinated learning across agents.

B.2.5 Multi-agent Proximal policy Optimization [MAPPO, Yu et al., 2021]

One of the widely used algorithms in practice is MAPPO, an extension of Proximal Policy Opti-
mization [PPO, Schulman et al., 2017] to the multi-agent setting. Similar to TRPO, PPO ensures
that policy updates remain within a small, stable region, but instead of enforcing a KL-divergence
constraint, it uses clipping. This clipping mechanism simplifies the optimization process, allowing
updates to be performed efficiently using standard gradient ascent methods.

MAPPO is an on-policy algorithm that employs a centralized critic while maintaining decentralized
actor networks for each agent. Its critic update follows the same rule as MATRPO, but for the policy
update, it optimizes a clipped surrogate objective, which restricts the policy update step size, ensuring
stable and efficient learning.

C VI MARL Convergence, Perspectives & Details on the Proposed
Algorithms

In this section we extend our discussion on the convergence on VI-MARL operator, then we present
the VI operators of additional MARL algorithms within the centralized critic CTDE paradigm. After,
we provide detailed versions of Algorithm 1 for MADDPG and MATD3, outlining the full training
process when incorporating LA or LA-EG.

C.1 VIMARL Convergence

We first recall the abstract multi-player operator definition from Appendix B.1. Each agent i € [n]
aims to optimize its objective f;: RY — R, which, in the general case, depends on all players’
strategies. Then, we have the following operator F':

vzl fl (Z)
Fn-agems(z) = ) (Fn—agents)
Vzn fn (z)
with the game Jacobian as follows:
Vi.filz)  Vi.fi(z) ... Vi, fi(z)
Jn—agents(z) = . . (Jn—agents)
Viafn(2) Vi fuz) oo Viifu(z)
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More precisely, for multi-agent actor-critic RL we have the following operator:

FMAAC( lgz )E f;‘ , (Fmaac)

where the parameter space is Z = R?, with d = Zf:l(d? + d!); and MAAC stands for
multi-agent-actor-critic.

Then, we can notice by computing the Jacobian of the above operator that the eigenvalues are in the
complex plane. Applying lookahead results in interpolating the largest eigenvalue (in magnitude) with
the point (1,0) in the complex plane, thus reducing the spectral radius of the Jacobian. Furthermore,
applying this recursively (nested Lookahead) leads to larger contraction.

To make this more precise, consider the gradient descent operator as a base optimizer
Tep=1—aF,
where « is the step size vector.

Let )\ denote the eigenvalue of J*3%¢ £ VT p(-) with largest modulus, i.e. p(J*%*¢(-) = |\
be its associated eigenvector: J**¢u = \u.
The Jacobian of Lookahead is then:

JLA — VFLA() — (1 _ O[)I + a(Jbase)k .

,letu

The power k rotates the eigenvector in the complex plane; see [Chavdarova et al., 2021]. By noticing
that:

JEAw =((1 = )T + a(JP***)*)u
=((1 =) + aX\")u,

we deduce u is an eigenvector of .J©4 with eigenvalue 1 — a + a\*. Thus, this is strictly closer to
the unit ball in the complex plane, increasing the contractiveness.

C.2 VI MARL Perspectives

In the main text, we introduced the general VI operator for multi-agent actor-critic algorithms
(Fmaac) and provided the specific equations for MADDPG in (/% pops & 9 apppc)> With the
operator corresponding to:

=

i i 2
1 J 7 1 . w . i
v'wi (? (7‘1' + fYQi (m’J’ a,/’ w;) a/—p(0i) Qi ($J’ aJ7 wl)) )

1

<.
Il

FMADDPG( Ig: )E

=

. , . .
Ve, (W ‘ wi(0!;0,)Va, Q (2, ai, ... a;,...,adl;w;)
j

ai:m(O{))

Il
-

(FMADDPG)
where the parameter space is Z = R%, with d = Z?zl(di@ +d).

We now show how update equations for several well-known MARL algorithms—that follow the
CTDE paradigm with a centralized critic—can be written as a VI. Our VI-based methods can also be
applied to these algorithms using the operators below.

For a more general notation, for each agent ¢ € [n] we assume:

(i) central critic network (one or multiple) that estimates either action value ()—Network(s, a):
Qi (x, ar; w;), or state value V-network(s): V;(x;; w;), and
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(ii) a decentralized policy network that can be deterministic p;(0;; 8;) or stochastic 7;(0;; 8;),
depending on the algorithm.

Given a batch of experiences B: (z7,a’,r’, x'7), sampled from a replay buffer (D), we provide the
necessary equations and the final operator () for each of the following popular MARL algorithms.

C.2.1 MATD3

The VI formulation for MATD3 is very similar to MADDPG, except here, for each agent, we have
two critic networks; we write: w; = {w; 1, w; 2}. Accordingly, target computation for the critic
(Qi,m) is calculated by taking the minimum of both critic networks, but only the value of critic 1 is
used for the actor (policy network) update. We have:

W; 1
Fyvatp3 ( w; 2 ) =

i

<

|B|
1 J / / I
‘wzl(Fg T’+Fymg?1n2}Q ( J alv"'van)

a’'=f(o'7) _QZ1 (wj7 a’; w; 1) )

target y;

|B|
) |
Voo (B Z ity min QF, (@4, 0)

i —Q%(mj,aj;ww) )

a'=p(o'7)

target y;
18|

(141 X Vo.ui(0l:6)Va, Q¥ (@0l ai, .. a))
j=1

(F M/;TDS)
C.2.2 COMA

In COMA, critic is trained using a 7D (\) target () computed from a target network parameterized
by w that get updated to main network weights every couple iterations. Given the following
Advantage A; calculations:

Aij(xz,a) =Q(x,a) — b-(a: a_;)

213 a_z Zﬂ'; a;|oz (a'Za ))7

the operator for COMA corresponds to:

:A N '_ a2
F w; vle (yz Q’L (CE , @, wz)) . F
con( 6] )= 5o % Ay(w, ) log o, <ai|ol>] (Feows)

C.2.3 MAPPO

As previously noted, MAPPO can be seen as a simplified version of MATRPO. It shares a similar
critic loss with MATRPO but simplifies the actor loss by using a clipped objective instead of a KL
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constraint, making the optimization problem more tractable. This allows it to be formulated as a VI,
as shown below:

T n—1
=) Z At (Z Vorerr + ’YHV(O/i))> ;
n=1 k=0

Voo, E {(V(zc: w;) — 1/})2]

(a;]o;) 9"1‘1 7o, (ai|0;) 9””
VG E |:mln{ ild(az‘oz A Chp < old(az‘oz) 71 & 1 + €> A }:|

FMAPPO( lgz )

(FMappo)

C.3 Detailed Algorithms

Herein we provide procedure NestedLookahead called from algorithm 1 to compute the extrapolations
and after present two pseudocodes considered as extended versions of the main algorithm in algorithm
1; in which we detail how the lookahead approach can be integrated in the training process of
MADDPG and MATD3.

C.3.1 Nested Lookahead algorithm

In algorithm 6 below we share a detailed version of Nested lookahead procedure called from
algorithms 1, 7 and 8.

Algorithm 6 Pseudocode for LA-VI, called from Algorithm 1. Updates the parameters in-place.

1: procedure NESTEDLOOKAHEAD:
2: Input: #agents n, episode counter e, actor and critic weights and snapshots:

{(6;, 9(1), 0(”) * , and {(w;, w(l), . ,wfl)) "_,, LA hyperparameters: levels [, (k(1),

K3

., k®) and (ag,aw).

3: forallj € [l]do

4 if ¢%k") == 0 then

5: for all agent i € [n] do

6 w; — w? + o (w; — w?) LA §™ level
7 0, 00) + ag(e 6)

8: (051) 0(7) ) . ,ng)) — ({0}, {witx;j) Update copies up to j"
9: end for

10: end if

11:  end for

12: end procedure

C.3.2 Extended version of LA-MADDPG pseudocode

We include an extended version for the LA-MADDPG algorithm without VI notations in algorithm 7.

C.3.3 Extended version of LA-MATD3 pseudocode

We include an extended version for the LA-MATD3 algorithm without VI notations in algorithm 8.
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Algorithm 7 Pseudocode for LA-MADDPG: MADDPG with (Nested) Lookahead.

1:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:
22:

23:

24
25:

26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

2
3
4.
5:
6
7
8

Input: Environment £, number of agents n, number of episodes ¢, action spaces {.A; }?:1 , number
of random steps tryna before learning, learning interval ieam, actor networks { g, }7_;, with initial
weights 8 = {0,}7_,, critic networks {Q;}?_, with initial weights w = {w;}!" ,, learning
rates 1g, N, base optimizer B (e.g., Adam), discount factor ~y, lookahead hyperparameters
L={(, {k(j)}ézl, (g, iy ), sOft update parameter 7.

: Initialize:

Replay buffer D + &
LA parameters: ¢ < {H}Xl, {w}xl (store snapshots for LA)
for all episode e € 1,...,¢ do
x < Sample(E) (sample from environment &)
step < 1
repeat
if ¢ < tpang then
for each agent i, a; ~ A; (sample actions randomly)
else
for each agent ¢, select action a; using current policy and exploration
end if

(apply actions and record results)

Execute actions @ = (aq, ..., a, ), observe rewards r and new state ’
replay buffer D < (x,a,r, ')
T+ x

(apply learning step if applicable)
if step%ticam = O then

for all agents ¢ € 1,...,ndo
sample batch {(7, a7, 17, ar:’j)}ljli‘1 from D A
Y 1! +yQF (2", a),. .. al,), where a}, = fui,(0])

. o N2
Update critic by minimizing the loss ¢(w;) = ﬁ > (yJ - Q¥ (x?,a],... 7aﬁl))
using B
Update actor policy using policy gradient formula B _
Ve, J ~ H?‘ > Ve, 1i(0])Ve, Qf (27, a1, ai,...,a},), where a; = p;(0])

end for
for all agents i € [n] do
0, 710;+(1—1)6; (update target networks)
w; <—T’wi+(1—’7')’lf7i
end for
end if

step < step + 1
until environment terminates
NESTEDLOOKAHEAD(n, e, ¢, L)
end for
Output: 0, w
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Algorithm 8 Pseudocode for LA-MATD3: MATD3 with (Nested) Lookahead.

1: Input: Environment £, number of agents n, number of episodes ¢, action spaces {Ai}?:p
number of random steps ¢,nq before learning, learning interval jeam, actor networks {g; }7 4,
with initial weights 8 = {6;}?_,, both critic networks, {Q; 1, Q; 2}, with initial weights
w= {wm, ww}?:l, learning rates 71g, 1., base optimizer B (e.g., Adam), discount factor -,

lookahead hyperparameters £ = (I, {k(7) ézl, (g, (L ), SOft update parameter 7, policy update

frequency p.

2: Initialize:

3:  Replay buffer D <+ @

4: LA parameters: ¢ < {0}y, {w}x (store snapshots for LA)

5: for all episode e € 1,...,t do

6: < Sample(E) (sample from environment £)

7. step<+1

8:  repeat

9: if e < tng then
10: for each agent i, a; ~ A; (sample actions randomly)
11: else
12: for each agent 7, select action a; using current policy and exploration

13: end if

14: (apply actions and record results)
15: Execute actions @ = (ay, . .., a,), observe rewards r and new state '

16: replay buffer D < (x,a,r,a’)

17: T+ x

18: (apply learning step if applicable)
19: if step%ticarn = O then
20: for all agent i € [n] do
21: sample batch {(x7, a7, 17, m’j)}lj@l from D
22: Yl 1! + yming,—; o Qﬁfl(w’j, al,...,al), where aj, = ﬁk(og) +e
23: Update both critics, m = 1, 2 by minimizing the loss (using optimizer B ):

; 2
Uwim) = 3, (7 = QF(@dal, o)

24: if step%p = 0 then
25: Update actor policy using policy gradient formula and optimizer B
26: Vo, J = ‘—él >0 Ve,ui(0])Va, Qly (27, a1, ... a;,...,a},), where a; = p;(0})
27: G_i —70; +(1— T)G_Z- (update target networks)
28: mi,m — TWim + (1 - T)wi,m
29: end if
30: end for
31: end if
32: step < step + 1

33:  until environment terminates

34:  NESTEDLOOKAHEAD(n,e€, @, L)
35: end for

36: Output: 0, w
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Table 3: Hyperparameters used for LA-MADDPG experiments.

Name Description
Adam [r 0.01
Adam [ 0.9
Adam S 0.999
Batch-size 1024
Update ratio 7 0.01
Discount factor ~y 0.95
Replay Buffer 1.5 x 108
learning step tieam 100

trand 1024
Policy update ratio MATD3) p 2

Noise std (MATD3) 0.2

Noise clip (MATD3) 0.5
Lookahead « 0.5

D Details On The Implementation

We used the configurations and hyperparameters from the original MADDPG paper for our imple-
mentation. For completeness, these are listed in Table 3. We ran ¢ = 60000 training episodes for all
environments, with a maximum of 25 environment steps (step) per episode.

In all experiments, we used a 2-layer MLP with 64 units per layer. ReLLU activation was applied
between layers for both the policy and value networks of all agents.

D.1 Hyperparameter Selection for Lookahead

In this section, we discuss and share guidelines for hyperparameter selection based on our experiments.

Summary.

* We observed two- or three-level of Lookahead outperform single-level Lookahead.

* Each level j € [I] has different k, denoted here with k(). These should be selected as
multiple of the selected k for the level before, that is, k(7)) = = kU1 where ¢; is positive
integer.

* We observed that for the innermost lookahead, small values for kM) such as smaller than
50, perform better than using large values. For the outer k() j > 1 large values work well,
such as in the range between 5 — 10 for the c;,.

* We typically used o = 0.5, and we observed lower values, such as a = 0.3, give better
performances then o > 0.5.

Discussion.

« To give an intuition regarding the above-listed conclusions, small values for k(") help
because the MARL setting is very noisy and the vector field is rotational. If large values are
used for kg, then the algorithm will diverge away. It is known that the combination of noise
and rotational vector field can cause methods to diverge away [Chavdarova et al., 2019].

* Relative to the analogous conclusions for GANs [Chavdarova et al., 2021], the differences
is that:

— The better-performing values for k(1) are of a similar range as for Lookahead with GD
for GANs; however they are smaller than those used for Lookahead with EG for GANS.
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D.2 Compute resources

We ran experiments on Google Colab enterprise using an e2-standard-8 type machine with 100 GB
Standard disk (pd-standard).

E Additional Empirical Results

E.1 Rock-paper-scissors: Buffer Structure

For the Rock—paper—scissors (RPS) game, using a buffer size of 1M wasn’t sufficient to store all
experiences from the 60K training episodes. We observed a change in algorithm behavior around
40K episodes. To explore the impact of buffer configurations, we experimented with different sizes
and structures, as experience storage plays a critical role in multi-agent reinforcement learning.

Full buffer. The buffer is configured to store all experiences from the beginning to the end of training
without any loss.

Buffer clearing. In this setup, a smaller buffer is used, and once full, the buffer is cleared completely,
and new experiences are stored from the start.

Buffer shifting. Similar to the small buffer setup, but once full, old experiences are replaced by new
ones in a first-in-first-out (FIFO) manner.

Results. Figure 4 depicts the results when using different buffer options for the RPS game.
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Figure 4: Comparison of different buffer configurations (see Appendix E.1) and methods on Rock—paper—
scissors game. x-axis: training episodes. y-axis: 5-seed average norm between the two players’ policies and

equilibrium policy (%, %, %)2 The dotted line indicates the point at which the buffer begins to change, either

through shifting or clearing.

E.2 Rock-paper-scissors: Scheduled learning rate

We experimented with gradually decreasing the learning rate (LR) during training to see if it would
aid convergence to the optimal policy in RPS. While this approach reduced noise in the results, it
also led to increased variance across all methods except for LA-MADDPG.

Figure 5 depicts the average distance to the equilibrium policy over 5 different seeds for each methods,
using periodically decreased step sizes.
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Figure 5: Compares MADDPG with different LA-MADDPG configurations to the baseline MADDPG with

(Adam) in Rock—paper-scissors with a scheduled learning rate. z-axis: training episodes. y-axis: 5-seed
average norm between the two players’ policies and equilibrium policy (%, %, 1)2. The dotted lines depict the
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times when the learning rate was decreased by a factor of 10.

E.3 MPE: Predator-prey Full results

We also evaluated the trained models of all methods on an instance of the environment that runs for
50 steps to compare learned policies. We present snapshots from it in Figure 7. Here, you can clearly
anticipate the difference between the policies from baseline and our optimization methods. As in the
baseline, only one agent will chase at the beginning of episode. Moreover, for the baseline (topmost
row), the agents move further away from the landmarks and the good agent, which is suboptimal.
This can be noticed from the decreasing agents’ size in the figures. While in ours, both adversary
agents engage in chasing the good agent until the end.
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Figure 6: Comparison on the MPE-Predator-prey game between the GD-MADDPG, LA-MADDPG, EG-
MADDPG and LA-EG-MADDPG optimization methods, denoted as Baseline, LA, EG, LA-EG, resp. x-axis:
evaluation episodes. y-axis: mean adversaries win rate, averaged over 5 runs with different seeds.
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Figure 7: Agents’ trajectories of fully trained models with all considered optimization methods on the
same environment seed of MPE: Predator-prey. Snapshots show the progress of agents as time progresses in
a 50 steps long environment. Each row contains snapshots of one method, from top to bottom: GD-MADDPG,
LA-MADDPG, EG-MADDPG and LA-EG-MADDPG. Big dark circles represent landmarks, small red circles are
adversary agents and green one is the good agent.

E.4 MPE: Predator-Prey and Physical deception training figures

In figures 8(a) and 8(b) we include the rewards achieved during the training of GD-MADDPG and
LA-MADDPG resp. for MPE: Predator-prey. The figures show individual rewards for the agent
(prey) and one adversary (predator). Blue and green show the individual rewards received at each
episode while the orange and red lines are the respective running averages with window size of 100
of those rewards.

Figures 9(a) and 9(b) demonstrate same results but for MPE: Physical deception. In this game, We
have two good agents, ’Agent 0 and 1’ but since they are both receive same rewards, we only show
agent 0.

E.5 On the Rewards as Convergence Metric

Based on our experiments and findings from the multi-agent literature [Bowling, 2004], we observe
that average rewards offer a weaker measure of convergence compared to policy convergence in
multi-agent games. This implies that rewards can reach a target value even when the underlying
policy is suboptimal. For example, in the Rock—paper—scissors game, the Nash equilibrium policy
leads to nearly equal wins for both players, resulting in a total reward of zero. However, this same
reward can also be achieved if one player always wins while the other consistently loses, or if both
players repeatedly select the same action, leading to a tie. As such, relying solely on rewards during
training can be misleading.

Figure 10 (top row) depicts a case with the baseline where, despite rewards converging during training,
the agents ultimately learned to play the same action repeatedly, resulting in ties. Although this
matched the expected reward, it falls far short of equilibrium and leaves the agents vulnerable to
exploitation by more skilled opponents. In contrast, the same figure shows results from LA-MADDPG
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Figure 8: The figure shows the learning curves during training of GD-MADDPG and LA-MADDPG for
MPE: Predator-Prey. x-axis: training episodes. y-axis: agents rewards and their moving average with a
window size of 100, calculated over 5-seeds over 5 seeds.
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Figure 9: The figure shows the learning curves during training of GD-MADDPG and LA-MADDPG for
MPE: Physical deception. x-axis: training episodes. y-axis: agents rewards and their moving average with a
window size of 100, calculated over 5-seeds over 5 seeds.

under the same experimental conditions. Notably, while the rewards did not fully converge, the agents
learned a near-optimal policy during evaluation, alternating between all three actions as expected.
These results also align with the findings shown in Figure 1(a).

We explored the use of gradient norms as a potential metric in these scenarios but found them to
be of limited utility, as they provided no clear indication of convergence for either method. We
include those results in Figure 11, where we compare the gradient norms of Adam and LA across the
networks of different players.

This work highlights the need for more robust evaluation metrics in multi-agent reinforcement
learning, a point also emphasized in [Lanctot et al., 2023], as reward-based metrics alone may be
inadequate, particularly in situations where the true equilibrium is unknown.
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Figure 10: A more detailed version of Figure 3. Saturating rewards (left) versus actions of the learned policies
at the end (right) in the Rock—paper—scissors game. Top row: GD-MADDPG; bottom row: LA-MADDPG. In
the left column, blue and orange show the running average of rewards through a window of 100 episodes. In
the right column, we depict actions from the respective learned policies evaluation after training is completed,
where each row represents what actions players have chosen in one step of the episode. Saturating rewards do
not imply good performance, as evidenced by the top row; refer to Section 5.2 for discussion.
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Figure 11: Gradient norms across training in the Rock—paper—scissors game.
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