@ Orochi: Versatile Biomedical Image Processor

Gaole Dail"* Chenghao Zhou"*" Yu Zhou>"*
Rongyu Zhang! Yuan Zhang! Chengkai Hou' Tiejun Huang!
Jianxu Chen®* Shanghang Zhang'*
jianxu.chen @isas.de shanghang @pku.edu.cn

I State Key Laboratory of Multimedia Information Processing,
School of Computer Science, Peking University
2 Academy for Advanced Interdisciplinary Studies, Peking University
3 Leibniz-Institut fiir Analytische Wissenschaften — ISAS —e.V.

Abstract

Deep learning has emerged as a pivotal tool for accelerating research in the life sci-
ences, with the low-level processing of biomedical images (e.g., registration, fusion,
restoration, super-resolution) being one of its most critical applications. Platforms
such as ImagelJ (Fiji) and napari have enabled the development of customized plug-
ins for various models. However, these plugins are typically based on models that
are limited to specific tasks and datasets, making them less practical for biologists.
To address this challenge, we introduce Orochi, the first application-oriented, effi-
cient, and versatile image processor designed to overcome these limitations. Orochi
is pre-trained on patches/volumes extracted from the raw data of over 100 publicly
available studies using our Random Multi-scale Sampling strategy. We further pro-
pose Task-related Joint-embedding Pre-Training (TJP), which employs biomedical
task-related degradation for self-supervision rather than relying on Masked Image
Modelling (MIM), which performs poorly in downstream tasks such as registration.
To ensure computational efficiency, we leverage Mamba’s linear computational
complexity and construct Multi-head Hierarchy Mamba. Additionally, we provide
a three-tier fine-tuning framework (Full, Normal, and Light) and demonstrate that
Orochi achieves comparable or superior performance to current state-of-the-art
specialist models, even with lightweight parameter-efficient options. We hope
that our study contributes to the development of an all-in-one workflow, thereby
relieving biologists from the overwhelming task of selecting among numerous
models. Our pre-trained weights and code will be released.

1 Introduction
With the rapid advancement of deep learning, modern neural networks have demonstrated remarkable

scalability and spawned a wide array of downstream applications in Al for Life Science [} 12} [3]].
Among these, biomedical image processing is a pivotal topic. Its significance arises from the inherent
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Figure 1: Trend of Versatile Biomedical Image Precessor. We listed the recent advancements in
biomedical image processing, where matched row-to-column colour coding highlights the main task
of each model. Stickers display the reported scores from the respective papers. Orochi extends the
versatile bandwidth and exhibits exceptional performance across tasks and tuning modes.

constraints in acquiring biomedical images compared to natural images, which often compromise
source image quality. Specifically, the most common limitations stem from imaging device operational
trade-offs. For instance, in optical microscopy, excessive laser intensity can damage target tissues,
while insufficient laser power introduces low signal-to-noise ratios [4]. Similarly, in computed
tomography (CT), thinner slice scans subject patients to prolonged high radiation exposure, posing
health risks, whereas sparse slicing results in low-resolution data [S)]. These challenges drive the
demand for biomedical image restoration [0, 4} [7, 8, [9] and super-resolution [10, [11} 12} 13} 5]
tasks. Another class of limitations originates from the intrinsic shortcomings of imaging modalities.
For example, CT imaging is efficient and provides clear hierarchical information but suffers from poor
soft-tissue contrast, in contrast, magnetic resonance imaging (MRI) excels in soft-tissue resolution
but requires longer acquisition times and is susceptible to motion artifacts. Such modality-specific
weaknesses necessitate biomedical image fusion tasks [[14} 15} [16} [17, [18} [19} 120, 21}, 22} 23| 24}
25]]. Furthermore, acquiring synchronous multi-modal data imposes demands on equipment and
environments, making asynchronous data more prevalent. However, misalignment exists between
tissues or cells due to temporal/specimen variability, motivating image registration [26| 27, 28 [29,
30, 3141321 133]] tasks to align asynchronous or even heterogeneous datasets of the same specimen.

With the emergence of long-range dependency models [34}35/136] and self-supervised pre-training
methods [37, 138 |39} 140], models designed for the aforementioned issues have advanced rapidly,
giving rise to powerful specialist models (see Figure [T). However, we argue that in practical
applications, these specialist models neglect three critical factors: (1) Task Perspective: Real-world
biomedical imaging tasks often require multiple sequential steps (e.g., registration followed by fusion,
as discussed earlier). (2) Degradation Perspective: Since the underlying causes of degradation share
similarities, these degradations are interrelated—for example, both low signal-to-noise ratio and low
resolution result in information loss. (3) Data Perspective: Due to their characteristics of being
multi-channel, large-scale, and high-throughput, biomedical images are considerably larger than
natural images, making the training and inference of multiple specialist models highly inefficient.
From both efficiency and effectiveness standpoints, these issues collectively motivate the development
of a universal foundational model. We aim for such a generalist model to optimize the aforementioned
challenges by: (1) handling diverse low-level tasks within a unified framework, thereby avoiding the
difficulties of selecting and integrating several specialist models; (2) capturing more generalized and
robust features via cross-task learning during the pre-training phase; and (3) addresses real-world
biomedical data processing costs to reduce redundant training and inference.

Therefore, we introduce Orochi (named after the legendary multi-headed serpent). To fulfill the
envisioned goals, our design emphasizes four aspects (see Figure |Z|): (1) Dataset Level: We
extensively employ unlabeled raw data from over 100 publicly available studies (see Appendix [A.2)
and perform our Random Multi-scale Sampling, which considers the different scales of Region-
of-Interest (ROI). (2) Pre-training Level: Inspired by Joint-embedding Prediction Architecture
(JEPA) [40], where different degradations serve as context for each others. Our Task-related Joint-
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Figure 2: Overview of the Construction of Orochi. The upper panel illustrates the data conversion
pipeline, taking into account patches/volumes at multiple scales. The lower panel presents the self-
supervised strategies utilized during pre-training. Additionally, we provide supplementary images
(e.g., Visible A+B, Error Map) to facilitate the comparison between inputs and outputs.

embedding Pre-training (TJP) applies various forms of task-specific degradation, and the model
learns from reconstructing them jointly. (3) Model Level: On one hand, we employ Mamba
as the building blocks to leverages its linear complexity [42, 41}, [43] [44]]. On the other hand, the
overall structure draws inspiration from the hierarchical design of the Swin-Transformer [36] by
incorporating patch merging to enhance model efficiency further. (4) Post-training Level: We
propose a three-tier fine-tuning framework to reduce the tuning cost. Ranging from full fine-tuning
(Full), to fine-tuning only the replaced dense convolution head (Normal), and finally to the most
lightweight variant using depth-wise separable convolution [45]] (Light), thereby achieving Parameter-
Efficient Fine-Tuning (PEFT) [46]]. To this end, we hope that Orochi will distinguish itself as an
exceptional tool among the extensive array of plugins available on platforms such as ImageJ (Fiji) [47]
and napari [48]], further advancing towards a user-friendly workflow with unified functionalities.

In summary, our main contributions are as follows:

1. We systematically review the significance of low-level biomedical image processing and
highlight that even in this era of powerful foundational models, the paradigm centred on spe-
cialist models still exhibits inherent deficiencies. Limiting both effectiveness and efficiency
from the perspectives of task, degradation, and data. To the best of our knowledge, Orochi
is the first versatile foundational model addressing these issues.

2. We curated raw-level datasets from over 100 studies [49] [50, 51]], covering a wide range of
imaging modalities from 2-5D — with a total data size over 100 terabytes. During training,
we introduce Random Multi-scale Sampling to achieve a unitedly raw data conversion into
training patches/volumes. These converted data are used for both local and stream training,
alleviating the challenges with the transmission and storage of extremely large datasets.

3. We propose Task-related Joint-embedding Pre-training (TJP), which directly learns the inter-
relations among various task-specific degradations rather than relying on common Masked
Image Modelling (MIM). For the model architecture, we leverage the linear complexity of
Mamba and design a multi-head hierarchical structure to minimize the costs of training and
inference. Finally, for post-training, we introduce a three-tier fine-tuning framework and
demonstrate that even the most lightweight depth-separable convolution tuning can achieve
performance comparable to existing state-of-the-art specialist models.



2 Related Works

Self-supervised Learning Self-supervised Learning (SSL) extracts inherent data properties.
Masked Image Modelling (MIM) predicts masked image regions from original pixel values us-
ing an encoder-decoder architecture, with loss in image space [37, 38]. Contrastive Learning (CL)
aligns representations of augmented views of the same image in an embedding space via specialized
objectives [52, [39]. Combining these, the Joint-Embedding Predictive Architecture (JEPA) [40]]
predicts full latent representations from context to learn robust image representations.

Restoration To address low image quality in fluorescence microscopy, Content-aware image
restoration (CARE) [4]] uses CNNs. Li ef al. 8] improved axial resolution using a CARE-based model
with physically acquired ground truth. Subsequent works integrated Swin-Transformers [36] for
efficiency (SwinlIR [9]) or Mamba blocks [42] for long-range dependency modeling (MambalR [7]).
UniFMIR [6] demonstrated that pre-trained foundation models generalize well for this task.

Super-resolution Super-resolution aims to overcome optical limits. DeepLP [53] employs point-
scanning for reconstruction. Diffusion-based models, including volumetric conditioning modules [S]]
and latent diffusion in InverseSR [[L 1], show promise for 3D brain MRI. Other approaches include local
implicit image functions for flexible resolution enhancement [13]], joint super-resolution and synthesis
frameworks for isotropic volumes [[12]], and methods for multimodal image super-resolution [10].

Registration Image registration aligns images by optimizing a deformation field. VoxelMorph [54]
provides a learning-based 3D framework. Dual-encoder U-Nets [26], Swin-Transformers for long-
distance correspondences (TransMorph [32]), and Mamba blocks [42] for efficient long-range model-
ing (MambaMorph [33]]). Fast 3D registration methods have been proposed by Siebert et al. [27129],
while Mok et al. [30, 28] address large deformations with Laplacian Pyramid Networks.

Fusion Multi-modality image fusion integrates complementary information. Techniques include
bidirectional stepwise feature alignment for unaligned images (BSAFusion [25]]), mutual enhance-
ment for PAT/MRI fusion [24]], and diffusion-based methods incorporating fusion priors (Diff-
IF [55]]) or denoising diffusion models [[16]. Semantic-aware strategies with registration are found
in SuperFusion [21] and MURF [22]. Other notable methods encompass one-stage progressive
dense registration [23]], U2Fusion [14], and Equivariant fusion [[15]. Diverse strategies also include
lightweight and semantic-guided approaches (ALMFNET [17], MSGFUSION [18])), dictionary-based
and GAN-driven frameworks [[19}56], and unsupervised methods [20].

3 Methods

Due to page limitations, this section primarily emphasizes our comprehensive degradation designs
used for self-supervision. The Appendix provided detailed architecture of the Multi-head Hierarchy
Mamba model along with the three-tier fine-tuning framework [B]

3.1 Preliminary: Self-supervised Degradation

Self-supervised image learning can be generally formulated as learning a reconstruction function fy
that recovers the original image x from its degraded D(x). Formally, this objective is defined as:

min B, [¢(z, fs(D@)))] . (1)

where z is the sampled data, pgy,, D(-) denotes a degradation function applied to z, fp is the
parameterized model, and / is a loss function (e.g., the L2 loss or perceptual loss).

Masked Image For masked image degradation, the degradation function is defined as: Dy, (z) =
x ® M, where M € {0,1}*W is a binary mask with height H and width W that selectively
occludes regions of x. This degradation helps the model learn to infer missing information.

Deformed Image For deformed image degradation, the degradation function takes the form:
Dyer(z) = T(x), where T(-) represents a spatial transformation (such as rotation, scaling, or
warping). This degradation introduces geometric distortions that mimic real-world variations.



Nosiy Image For noisy image degradation, the degradation function is defined as: Dyoise () =
x + 1 where 7 denotes additive noise (typically Gaussian noise), simulating sensor imperfections or
environmental interference.

Low-resolution Image For low-resolution image degradation, the degradation function is given by:
Dir(z) =5 (z), where |4 is a down-sampling operator with scale factor s, reducing the resolution
of x to simulate the effects of low-resolution imaging.

3.2 Orochi: Random Multi-scale Sampling

Random Multi-scale Sampling aims to extract patches/volumes with diverse scales from raw images.
Given a raw image I, the procedure consists of two main steps: (1) Multi-scale Resizing: We first
generate scaled versions of the raw image I to capture features at different resolutions. In particular,
we resize I to scales 1/2 and 1/4 of its original size. Formally, let:

I, =, (I), s e {17 %7% y 2

where | (-) denotes down-sampling with factor s. (2) Random Window Sampling: For each scaled
image I, we define a fixed-size window K (compatible with the pre-training requirements in either
2D or 3D) and perform random sampling to extract sub-patches. Let the window K have dimensions
W x H (or W x H x D for 3D data). A randomly sampled 2D patch z at scale s is given by:

vo=IL(i:i+W-—1,j:j+H-1), 3)
where (i, j) is a randomly chosen starting coordinate in 1.

Collectively, the set of patches extracted across scales is represented as:
$:{$S,n|8€{1,%,i},7’L:1,...7Ns}7 (4)

where N, denotes the number of patches sampled from the image at scale s. These multi-scale patches
are then passed to subsequent degradation processes (e.g., masking, deformation, noise addition, and
low-resolution conversion). By performing random sampling across multiple scales, our method
extended the data diversity and enabled more robust feature learning across various datasets.

3.3 Orochi: Task-related Joint-embedding Pre-training

Dual-Masking Reconstructive Fusion To better address the biomedical image fusion task, where
the combination of existing contexts is crucial, we modified the conventional Masked Image Mod-
elling approaches [37,|38]], which typically employ a single masking strategy. Specifically, we applied
two distinct masking operations to the training data x, thereby generating two independent masks:

rAa=20 My, wxp=x0 Mp, 5)

where M4, Mp € {0,1}>W are binary masks with only partial overlap and ensure invisible
information retention even after fusion. The masking probabilities are generated by:

Myli,j] = 1[¢f; < 7], k€ A,B, ©)

where ff ; ~ U(o, 1) represents a random value extracted from a uniform distribution for grid
coordinates ¢, j, and 7 is the masking threshold. The key innovation is that our model is exposed to
process both masked inputs (x 4, z5) simultaneously to recover the original image: & = fo(z4,25),.
This guides the model to develop robust feature extraction capabilities that can identify complementary
information across different masked views, and then fuse these partial observations coherently to
reconstruct missing regions in both inputs.

Spatially-varying Gaussian down-sample For down-sampling, we adapt similar principles from
DeepLP [53], which tested noisy down-sampling beyond uniform down-sampling in self-supervised
microscopy restoration. We enhance this noisy down-sampling with spatially varying characteristics:

Dir(z) = Govar(Ts (Is (z +1n))), 0



where | s represents down-sampling with a random scale factor s, 11 denotes upsampling back

to the original resolution,  ~ N(0,03 ) is normal distributed noise added during the down-
sampling process with ogown ~ U(0.01,0.1), U represent uniform distribution, and Govar denotes
spatially-varying Gaussian filtering. It can be defined as:

Govar(x Zgg(m) u,v) - i —u, j —vl, 8)

where g, represents a Gaussian kernel (2/3D) with standard deviation o (4, j) ~ U(0min, Omax) that
varies across grid coordinates ¢, j. This mimics the heterogeneous blurring found in optical systems.

Multi-scale Smoothed Perlin Noise Deformation For the self-supervised registration task, con-
structing a realistic deformation field is important. We conducted multi-scale Perlin noise fields that
simulate the hierarchy variations in natural anatomical structures. Given an image x, we generate a
deformation field ® and its corresponding deformed image Dger(z) as follows:

Dyer(z) = T(z,®), & = G,(Per(f,p)), 9)

T(-,) is a spatial transformation operator, G (-) denotes spatially-varying Gaussian smoothing with
parameter o, and Per(f, p) represents multi-octave Perlin noise with frequency f and persistence p.

The multi-octave Perlin noise is specifically defined as:

Per(f, p) Zp S(E" " - (4,4)), (10)

where S(-) is the simplex noise function, N is the number of octaves and coords represents the grid
coordinates. This multi-scale approach generates deformation fields with varying levels of detail.

To enhance the anatomical plausibility of the deformations, we apply normalization and bound it
using a tanh function: ®gn, = « - tanh(®P), where « controls the maximum displacement magnitude.

Multi-stage Noise Simulation To simulate realistic noise, we adopted a multi-stage process:

Dioise () = Bip(Poi(max(0, z + 1)), (11
where 7 ~ N(0,02....) with opeise ~ U(0.075,0.15) represents Gaussian noise, Poi()\) denotes

» Y noise

Poisson noise with intensity parameter A (modeling photon-counting statistics), and Bi, represents
binary (salt-and-pepper) noise that affects a proportion of pixels with probability p.

These sophisticated degradation designs enable our framework to simulate a wide spectrum of real-
world imaging artifacts, encouraging the model to handle diverse image quality issues encountered.

4 Experiments

We conducted comprehensive comparisons strictly following the setups in published specialist
models (UniFMIR [6]], VCM [3]], Transmorph [32]], and BSAFusion [25], see Appendixfor
details). Resulting in more than 30 state-of-the-art baselines across multiple benchmarks for various
biomedical image-processing tasks to demonstrate the effectiveness and versatility of Orochi. We
color-coded the performance in Table[T] 2] B} and ] with Red (1st), Blue (2nd), and the row color
reflects the training type with , and [Efficent
Fine-Tuning]. See the Appendix for more detalls of the experiment setups and extra validation [C]

Generalization Capability on In-Domain Data Given that our model, Orochi, is extensively pre-
trained, we expect it to exhibit strong generalization capabilities on in-domain data. Accordingly, in
Figure [3| we demonstrate Orochi’s zero-shot performance on various stained microscopy images [S1]]
(results on clinical images [50] are detailed in the Appendix [C.T). Panels (A)—(D) illustrate Orochi’s
robust processing capabilities. In Panel (E), we further examine whether these outcomes align with
our algorithmic expectations. For example, our Dual-Masking Reconstructive Fusion anticipates
that the model learns an effective fusion strategy and leverages the existing information from both



(A) : Fusion (B) : Restoration (E) Case Study

Figure 3: In-Domain Generalization Performance of Orochi on Unseen Test Images. (A)-(D)
illustrate Orochi’s robust performance across various low-level processing tasks when applied to
unseen testing images after pre-training. Supplementary images include the dual-masking images
and naive merge results for the fusion task. Error maps for the registration task. (E) provides in-depth
case studies: for the fusion task, the centromere count is emphasized in both the reconstructed image
and the original image (highlighted with circles); for the registration task, subtle deformations of the
cell membrane are accentuated; and for the restoration and super-resolution tasks, the fine details of
bright-field images and the internal structures of DNA-stained cell nuclei are emphasized

Table 1: Isotropic 3D volume Restoration Task. Table 2: MRI Axial Super-resolution Task.
Low-high laser data pairs along the XY axis are Two intensities of low-resolution data are trained
collected and serve as the training set. However, and tested in this task, with 4mm (i.e x4 down-
the evaluation is on both XY slices and XZ slices. sampled) and 8mm (i.e x8 down-sampled)

Method PSNR (XY) 1 SSIM (XY)? PSNR (XZ)1 SSIM (XZ) 1 Method PSNR (4mm) ? SSIM (4mm) 1 PSNR (8mm) 1 SSIM (8mm) 1
Dataset: CARE [ Dataset: HBA [57)
Lieral. [§ 23.71 0.58 2451 0.58 Cubic 23.84 0.76 21.80 0.63
CARE [ 25.60 0.60 2576 0.64 UniRes [10] 21.49 0.69 20.91 0.63
SwinIR [9] 25.98 0.62 26.41 0.64 SynthSR [12] 19.22 0.66 19.02 0.62
MambalR 7] 25.89 0.64 27.17 0.65 LIF [13) 3241 0.95 25.12 0.81
UniFMIR 6 27.12 0.66 27.67 0.66 InverseSR-LDM {[1 28.59 0.80 27.92 075
prune-UniFMIR (FP16) [0 25.00 0.59 26.48 0.64 InverseSR [11] 2751 0.88 23.66 0.79
prune-UniFMIR (F'P32) [@ 26.18 0.63 26.24 0.64 VeM 5] 27.54 0.87 27.52 0.86
Orochi (Full) 2831 0.70 2852 0.71 Orochi (Full) 35.33 0.95 31.93 0.89
Orochi (Normal) 29.15 0.71 29.43 0.71 Orochi (Normal) 34.60 0.96 2951 089
Orochi (Light) 20.77 0.71 29.98 0.72 Ol D) 23 3028 090

sources before reconstruction, rather than reconstructing masked regions separately. This expectation
is validated in the Centromere count case study, where masked A and B each exhibit a partial
absence of centromeres, and the model successfully performs complementary fusion and the final
reconstruction does not arbitrarily generate Centromeres across extensive background regions.
This precise control over fine structural details is also evident in other cases.

Image Restoration Task In Table[T] we present the performance of Orochi on the isotropic 3D
volume restoration task. In microscopy imaging, the image quality along the XY plane is typically
much higher than that along the XZ plane due to the inherent limitations of sequential (layer-by-layer)
imaging, such as in light-sheet microscopy, which leads to the formation of isotropic data. To address
this, CARE [4]] leverages the high-resolution XY data for training and subsequently restores the
lower-resolution XZ data. On this task, Orochi not only significantly outperforms train-from-scratch
models like SwinIR [36] (+2.11 PSNR) and MambalR [7] (+1.35 PSNR), but it also comprehensively
surpasses pre-trained foundation model UniFMIR [6] across both fully fine-tuned (+0.85 PSNR)
and efficiently fine-tuned (+3.19 PSNR) configurations. An intriguing finding is that our results
indicate Orochi with PEFT leads the list. This outcome is plausible given that the dataset, derived from



Table 3: Inter-patient Brain Registration Task. Table 4: CT-MRI Fusion Task. Volumetric MRI
During training, the model goal is to input paired and CT data are sent jointly to the model, recon-
MRI data from distinct patients and output predic- structing a single fused result. This fused result
tion of the registration flow. This flow is applied would be compared with both MRI and CT input
to the corresponding segmentation data to calcu- for similarity calculation (e.g. SSIM).

late the dice loss. Thereby, regional deformation
can be learned with supervision.

Method Qabf 1 Qov | SSIM 1

Dataset: VIFB |57]

Method Dice HDY5 | SDlog]J |
U2Fusion [14] 0.32 6,580.80 0.41
Dataset: OASIS (5] EMMA (T3] 0.29 6,695.80 118
Initial 56.10 3.86 — ALMFnet [17] 0.29 7,200.50 1.27
Lv et al. [26] 80.00 1.77 0.08 MsgFusion [18] 0.19 7,090.40 0.29
Siebert et al. [27] 81.00 1.63 0.07 MDHU (9] 0.22 7,417.60 1.23
Mok et al. [28] 82.00 1.67 0.07 UMF-CMGR [20] 0.25 4,638.70 1.35
PIMed [31] 78.76 1.86 0.06 SuperFusion [21] 0.28 4,828.90 0.97
LapIRN [30] 82.18 1.67 0.08 MURF [22] 0.33 5,554.60 127
ConvexAdam [29] 81.20 1.71 0.07 IMF [23] 0.27 4,439.60 134
Transmorph-B [32] 81.62 1.69 0.12 PAMRFuse [24] 0.09 5,408.00 0.18
Transmorph-L [32] 82.22 1.66 0.12 BSAFusion [25] 0.39 4,155.10 1.38
Mambamorph [33] 81.81 1.66 0.09 DDFM [16] 0.26 5,981.40 1.31
Orochi (Full) 83.62 1.60 0.11 Orochi (Full) 0.41 2,351.57 1.39
Orochi (Normal) 82.52 1.65 0.12 Orochi (Normal) 0.37 2,519.36 1.45
Orochi (Light) 79.61 1.73 0.06 Orochi (Light) 0.34 2,461.41 1.43

isotropic data pairs, comprises fewer than 100 total training patches. Consequently, Full Fine-Tuning
or training from scratch is prone to over-fitting. (see Appendix [C.3|for extra comparisons)

Image Super-resolution Task We next evaluated the image super-resolution capabilities of Orochi
(see Table[2). Early super-resolution models typically rely on CNN-based architectures such as
UniRes [10] and SynthSR [12]], which are efficient yet often lack sufficient expressiveness and gener-
alization ability. LIIF [13]] leverages the power of Implicit Neural Representations (INR) to perform
implicit interpolation; however, the high training cost associated with INR limits its adaptability to
real-world scenarios. More recent approaches, including InverseSR [[11] and VCM [3]], based on
powerful pre-trained Brain-Latent Diffusion Models (LDM) [59] to overcome these shortcomings.
In this setting, Orochi significantly outperforms all the aforementioned architectures. At an 8mm
slice thickness, Orochi achieves a PSNR that is 4.01 points higher than InverseSR and 2.76 points
higher than VCM. These gains demonstrate that among pre-trained models, Orochi’s pre-training
is markedly superior to that of Brain-LDM, both in terms of the pre-training data and purpose.

Image Registration Task We further evaluated the registration task using the dataset from
Learn2Reg [60] (see Table [3). In this task, brain MRI images from different patients (i.e., inter-
patients) are registered (see Appendix [C.2]for patient-to-atlas brain registration test), and the model’s
ability to handle subtle deformations is assessed by measuring the similarity of the segmented
brain regions after registration (e.g. Dice). Biomedical image registration has evolved from CNN-
based [29} 30} 27] to Transformer-based architectures [32,154], with even linear-complexity models
such as Mamba [33]] emerging in recent work. In comparison to these methods, our approach
achieves Dice scores that are 2.42 points higher than ConvexAdam, 2.0 points higher than
Transmorph, and 1.81 points higher than Mambamorph.

Image Fusion Task Finally, as illustrated in Table[d] we evaluated Orochi’s performance on the
image fusion task. Recent trends in this domain have integrated image registration as an auxiliary
task to facilitate fusion, as demonstrated by methods such as BSAFusion [25]], UMF-CMGR [20],
MUREF [22]], and SuperFusion [21]. Although these models typically exhibit limited registration
capabilities (see Appendix [C.2), this aligns with our pursuit of developing a versatile, comprehensive
model. Compared with the recent advanced model BSAFusion, Orochi outperforms on all evaluated
metrics, achieving improvements of +0.02 in Qgps, -1803.53 in Qy, and +0.07 in SSIM. Combined
with our state-of-the-art performance on the registration task, these results establish Orochi as the
first model in this domain to achieve such performance.
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Figure 4: Visualization Comparison to Recent Advances. Concise visualization for each task is
provided. To enhance comprehension, arrows have been incorporated to facilitate evaluation.
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Figure 5: Fine-Tuning Efficiency V.S Performance. We present the training parameter efficiency of
various models alongside their corresponding results. The three-tier fine-tuning results for Orochi
(Full, Normal, Light) are illustrated using a gradient of green colours, from deep to light, and are
connected by green dashed lines to indicate the trend. Other baselines are shown in the legend.

Visualizations In Figure 4] we provide qualitative results of Orochi. Specifically, Orochi demon-
strates a superior capability in handling subtle degradations. (see Appendix [C.I]|C.2] for more)

Table 5: Pre-train Strategies V.S Performance. Datasets and setups remain the same as those
experiments in the previous sections.

Strategy Registration (Dice 1)  Fusion (Q,,; 1)  Restoration (PSNR 1)  Super-Resolution (PSNR 1)
MAE [37] (Single Mask) 71.22 0.36 26.67 29.17
I-JEPA [40] (Dual Mask) 69.97 0.39 25.02 28.81
Orochi (TJP) 83.62 0.41 29.88 33.63

Ablation Study - Comparison to Other Pre-train Strategies In Table[5] we demonstrate the
limitations of relying solely on Masked-image-Modelling (MIM), particularly in registration tasks.
Additionally, we observe that the dual-masking approach employed in I-JEPA [40] underperforms
compared to Orochi. We hypothesize that this is because chunk masking is more advantageous for
high-level tasks rather than the low-level focus of our study.

Ablation Study - Larger # Better, Fine-Tuning Efficiency V.S Performance As shown in Fig-
ure[5] the number of trainable parameters is not the decisive factor for downstream tasks—particularly
in data-limited scenarios such as biomedical imaging. In many cases, opting for Parameter-Efficient
Fine-Tuning (using only 1-2% of the total parameter count) prevents overfitting and achieves
both efficient and effective results.

5 Conclusion

We introduce Orochi, the first versatile biomedical image processor designed for low-level tasks.
To enhance effectiveness, we propose Random Multi-scale Sampling, which is a scalable way to



leverage raw data from a wide range of studies. The extracted data is then processed through our
Task-related Joint-embedding Pre-training (TJP), where a unified and robust embedding is learned
from various task-related degradations. For efficiency, we developed Multi-head Hierarchy Mamba
and provide a three-tier fine-tuning framework (Full, Normal, and Light). These design choices ensure
high efficiency during pre-training, post-tuning, and test inference. Our experiments demonstrate
that Orochi exhibits in-domain generalization capability across multiple tasks and achieves state-
of-the-art performance compared to specialist models with efficient fine-tuning (less than 5% of
total parameters). This suggests that constructing a generalist image processor may lie more in the
diversity of the dataset and the pre-training strategy than in increasing the model size naively.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions are well justified with comprehensive theoretical and experi-
mental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the full set of assumptions and a complete (and correct) proof

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a condensed implementation in the experiment section and a
detailed description in the Appendix, with code submitted in the supplemental materials.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: A Readme.md file is attached along with the code submitted in supplemental
material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All the implementation details are included in the Appendix section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Our experiments are conducted with a set random seed 42.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide sufficient information on the computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We make sure to preserve anonymity.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All the assets are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper currently does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experiment Setups

A.1 Baselines
Registration

* Lv et al. [26]: Uses a dual-encoder U-Net for coarse-to-fine registration.
* Siebert et al. [27]]: Proposes a fast 3D registration approach.

* Mok et al. [28]: Employs conditional deformable convolutions.

* PIMed [31]: From the Learn2Reg challenge.

e LapIRN [30]: Uses a Laplacian pyramid network for large deformations.
* ConvexAdam [29]: Adopts a dual-optimization strategy.

e TransMorph [32]: Based on a Transformer architecture for capturing long-range correspon-
dences.

* MambaMorph [33]: Utilizes mamba blocks for efficient long-range dependency modeling.

Fuison

» U2Fusion [14]: Provides a unified unsupervised fusion approach.

* EMMA [15]: Employs equivariant learning for fusion.

* ALMFNet [17]]: Searches for a lightweight generalized fusion network.

* MsgFusion [18]: Uses a semantic-guided two-branch network.

* MDHU [19]: Uses multi-dictionary learning with truncated Huber filtering.
* UMF-CMGR [20]: Adopts cross-modality generation and registration.

* SuperFusion [21]: Combines registration and fusion with semantic awareness.
* MUREF [22]: Reinforces multi-modal registration and fusion mutually.

o IMF [23]]: Improves fusion with a progressive dense registration strategy.

* PAMRFuse [24]: Focuses on feature alignment.

* BSAFusion [25]: Adopts bidirectional stepwise feature alignment.

* DDFM [16]: Utilizes a denoising diffusion model for fusion.

Super-Resolution

 Cubic: Bicubic interpolation as a traditional baseline.

UniRes [10]: Designed for super-resolving multimodal clinical MRI.

SynthSR [[12]: Performs joint super-resolution and synthesis.

LIIF [13]: Learns continuous image representations for implicit interpolation.

* InverseSR [11]: Uses a latent diffusion model for 3D brain MRI super-resolution.

VCM [5]]: Applies a volumetric conditioning module.

Restoration

* Lietal. [8]]: Improves axial resolution.

* CARE [4]: Uses a content-aware network for fluorescence microscopy image restoration.

SwinlIR [9]: Employs a Swin-Transformer for efficient image restoration.

MambalR [7]: Utilizes mamba blocks for modeling long-range dependencies.

UniFMIR [6]: Fine-tunes a pre-trained foundation model for generalizable fluorescence
microscopy-based restoration (with pruned FP16/FP32 variants).
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Figure 6: Preview of the Metadata List of Studies

A.2 Datasets
Pre-train

* A combined multi-modal biomedical image dataset aggregated from over 100 public studies,
encompassing various imaging modalities and degradation types [511 50, [49]. In Figure|[6}
we provide a preview of the metadata of the studies we covered (Excel Form would be
included in the Zip file). Since our RMS method is highly scalable, we plan to further update
this list in the future and explore the borderline.

Registration

* The OASIS brain MRI dataset from the Learn2Reg 2021 challenge, used to evaluate the
overlap of segmented regions and the smoothness of the deformation fields [60, 58]

Fuison

* A CT-MRI paired fusion dataset (VIFB), which assesses the integration of complementary
information across modalities [57]].

Super-Resolution

* The Harvard Whole Brain Atlas (HBA), providing high-quality MRI images for evaluating
low-resolution image reconstruction [57].

Restoration

» The CARE microscopy image dataset, used to evaluate the enhancement of low signal-to-
noise ratio fluorescence microscopy images [4].

A.3 Maetrics

Registration
* Dice similarity coefficient: Computed as
2|AN B

Dice = ———
|A| + |B|
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which measures the overlap between the segmented regions.

* 95™ percentile Hausdorff Distance (HD95): Defined as the 95% percentile of the distances
between boundary points of the segmented regions.

 Standard deviation of the log-Jacobian determinant (SDlogJ): Calculated as the standard
deviation of log(det(J)), where J is the Jacobian matrix of the deformation field. This
metric reflects the smoothness of the deformation field [60]].

Fuison

* Qapr (Qapr): Measures the quality of the fusion by evaluating the consistency between the
fused image and the input modalities.
* Qcv (Qey): Assesses the contrast consistency across the fused image.

* Structural Similarity Index (SSIM): Computed based on comparisons of luminance,
contrast, and structure between 2 source images [25].

Super-Resolution
* Peak Signal-to-Noise Ratio (PSNR): Calculated as

MAX? )

PSNR = 1010g10 <W

where MAX is the maximum possible pixel value and MSE is the mean squared error
between the reconstructed and reference images.

» SSIM: Evaluates perceptual similarity between the super-resolved and reference images [9].

Restoration

* PSNR: As above, it measures the pixel-level fidelity between the restored image and the
high-quality reference.

* SSIM: Measures the structural similarity between the restored and reference images [4].
A4 Code-base
Pre-train

* Adapted from public GitHub implementations of the Swin-Transformer and Transmorph.
Swin-Transformer: https://github.com/microsoft/Swin-Transformer| [36];
Transmorph: https://github.com/junyuchen245/TransMorph_Transformer_
for_Medical_Image_Registration [32].

Registration
* Implemented based on the Transmorph GitHub code. Link: https://github.com/

junyuchen245/TransMorph_Transformer_for_Medical_Image_Registration
[32].

Fuison

* Built with reference to the BSAFusion GitHub code. Link: https://github.com/
s1r1123/BSAFusion|[25].

Super-Resolution
e Implemented based on GitHub codes of InverseSR and VCM. InverseSR: https:

//github.com/BioMedAI-UCSC/InverseSR [11]; VCM: https://github.com/
Ahn-Ssu/VCM [3].
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Restoration

* Based on the UniFMIR GitHub implementation. Link: https://github.com/cxm12/
UNiFMIR) [6].

25


https://github.com/cxm12/UNiFMIR
https://github.com/cxm12/UNiFMIR

|

Figure 7: Model architecture of Multi-head Hierarchy Mamba (MHM). The model contains a
unified hierarchical Mamba encoder with a replaceable decoder (e.g. regular convolution head or
depth-wise separable convolution head) for tuning

B Experiment Configurations

Multi-head Hierarchy Mamba & Three-Tier Fine-Tuning Framework Figure[/| presents a
comprehensive diagram of Orochi’s backbone architecture. Post-tuning, the interchangeable decoder
can be replaced as required. We evaluated Orochi’s performance using our Three-Tier Fine-Tuning
Framework, which includes full fine-tuning (Full, 100% parameters), regular convolution head with
the encoder frozen (Normal, 10-30% parameters), and depth-wise separable convolution head [435]]
with the encoder frozen (Light, less than 5% parameters). The optimal results were achieved across
all three tiers, underscoring the significance of selecting an appropriate tuning method based on
specific requirements.

Pre-train We pre-trained Orochi-B (3D version) with the configuration listed in Table[6] The 2D
version has a similar configuration, with slight differences on some setups (e.g. batch size). We have
2 two sets of pre-training devices. The A800 80Gx8 device is used for local pre-train and the H100
40Gx8 device is for streaming pre-train.

Fine-tuning We followed the same setups as our code base for each task (see Section ??), including
the tuning resolution, epoch number, optimizer configurations and loss designs. The device we use
for fine-tuning is NVIDIA 4090 24Gx4
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Table 6: Pretraining Configuration Parameters for Orochi-B

Category Parameter Value / Range and
Description
img_size (32,224, 224)
patch_size 4
pat_merg_rf 2
in_chans 2
embed_dim 128
Model / Encoder depths (4.4, 4, 4)
drop_path_rate 0.2
if_convskip True
out_indices ©,1,2,3)
ssm_cfg None
norm_epsilon 1x107°
initializer_cfg None
M fused_add_norm True
amba
rms_norm True
residual_in_£fp32 True
patch_norm True
use_checkpoint False
decoder_bn False
decoder_depthseparable False
Decoder decoder_heid_chgn 64
batch_size 12
1r 0.0005
weight_decay 0.01
warmup_ratio 0.1
Training warmup_start_factor 0.01
max_epoch 50
Optimizer / Scheduler AdamW; WarmupCo-
sine with cycles=0.5
Registration Flow Scaling tanh(-)x0.6 (applied
to the deformation
field)
Registration Gaussian Sigma Range [L.5,3.5]
Perlin Noise Octaves 4
. . Perlin Noise Persistence 0.5
Deformation & Augmentation Mask Ratio 05
Downsampling Scale Factor Range [0.25, 0.75]
Downsampling Noise Level Range [0.01, 0.1]
Downsampling Gaussian Sigma Range  [0.25, 1.0]
Gaussian Noise Level Range [0.075, 0.15]
Salt vs. Pepper Ratio 0.5
Salt & Pepper Noise Amount Range [0.01, 0.05]
Grid Image Parameters Grid spacing = 4,

Line width =1
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C Extra Results

C.1 Zero-shot Processing on Biomedical Images

(A) : Fusion (B) : Restoration

Masked A Masked B Visible A&B Fused

Noisy Restored

)
=

(C) : Registration (D) : Super-Resolution

Deformed Error Map Error Map Registrated Low-Res Upsampled

g )

p B
)

B

Misalign

Figure 8: Visualization of Orochi Zero-shot Processing to Different Degradation. (A)-(D) panel
shows the ability on four tasks respectively, with the dotted line separating medical images (top) and
microscopy images (bottom).

In Figure[8] we present additional results demonstrating Orochi’s zero-shot performance on both
microscopy and medical images. Notably, Orochi yields satisfactory outcomes even when faced with
extremely severe degradation, as exemplified in panel (B), row 2, and panel (C), rows 2 and 3.

C.2 Registration & Fuison

Fusion Model on Registration Task In Figure[0] we demonstrate that, despite the recent trend of
pre-registration before fusion, these methods remain predominantly fusion-oriented and are not well-
suited for addressing real-world registration tasks within the medical image registration community.
However, Orochi represents a significant advancement in versatility, as it is designed not only for this
specific scenario but also to achieve superior performance across all registration tasks.
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Dataset: OASIS

Orochi (Ours) - Dice: 0.81

Figure 9: Performance of Fusion-oriented methods on specialized registration benchmark. We
provide the inputs (Move, Fix), output (flow), and evaluation data (Move/Fix seg and Deformation
Grid) for each visualization.
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Figure 10: Fusion Comparison with Brain SPECT&MRI / PET&MRI Data.

Orochi (Normal)

Patient to Atlas Brain Image Registration The regional deformation is learned unsupervised in
Table[7} Only the raw image of the atlas and the patient’s brain would be used for loss calculation
while training. Then we evaluate the dice score between the segmentation maps of these two brains.
Since Orochi is pre-trained in this unsupervised fashion, it shows excellent adaptation to this task,
similar to the case with supervision.

SPECT-MRI & PET-MRI Image Fusion In Figure[I0} we performed comparative evaluations
using state-of-the-art fusion techniques on two additional Harvard Whole Brain datasets obtained
from https://www.med.harvard.edu/aanlib/. These datasets specifically focus on the fusion
of SPECT and PET imaging with MRI. The results demonstrate that Orochi outperforms recent
advancements such as BSAFusion and maintains superior efficiency.
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Table 7: Patient to Atlas Brain Registration Task. During the training phase, the model aims to
input paired MRI data from both the standard brain atlas and patient scans, to output a predicted
registration flow. This flow is subsequently applied to the atlas data to compute the similarity between
the registered atlas and the patient’s scan. During the testing phase, the predicted flow is applied to
the atlas brain segmentation map, and the Dice coefficient is evaluated against the patient’s brain
segmentation map.

Method Dice T % of |Jp| < 0

Dataset: IXT [32]

Affine 0.386 +£0.195 —

SyN [61] 0.645 +0.152 < 0.0001
NiftyReg [62] 0.645 +0.167 0.020 + 0.046
LDDMM [63] 0.680 +0.135 < 0.0001
deedsBCV [64] 0.733 £0.126 0.147 £ 0.050
VoxelMorph-1 [54] 0.729 £ 0.129 1.590 + 0.339
VoxelMorph-2 [54] 0.732 £0.123 1.522 £ 0.336
VoxelMorph-diff [54] 0.580 £ 0.165 < 0.0001
CycleMorph [65] 0.737 £0.123 1.719 £ 0.382
MIDIR [66] 0.742 £0.128 < 0.0001
ViT-V-Net [67] 0.734 £0.124 1.609 £ 0.319
PVT [68] 0.727 £0.128 1.858 £0.314
CoTr [69] 0.735£0.135 1.292 £ 0.342
nnFormer [70] 0.747 £ 0.135 1.595 + 0.358
TransMorph-Bayes [32] 0.753 £0.123 1.560 + 0.333
TransMorph-diff [32] 0.594 £ 0.163 < 0.0001
TransMorph-bspl [32] 0.761 £0.122 < 0.0001
TransMorph [32] 0.754 £ 0.124 1.579 £ 0.328
Orochi (Full) 0.770 £ 0.120 1.592 +0.334
Orochi (Normal) 0.765 £ 0.121 1.571 £0.323
Orochi (Light) 0.752 £0.126 1.499 + 0.301
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Figure 11: Stress Test on BioSR Benchmark. We trained Orochi on four subsets concurrently,
thereby reducing the cost associated with hyperparameter searching. The results were compared
against baselines that involved separate hyperparameter searches for each subset. The bar chart
illustrates the average PSNR values, while the lines, colour-coded according to the legends, indicate
the performance metrics for each respective subset.

C.3 Super-Resolution & Restoration

Stress test on joint multi-modal data image repairing In this additional validation, we aim to
evaluate Orochi’s performance under stress using an extended benchmark. The BioSR [[71] benchmark
comprises four distinct categories of microscopy image pairs (x2 low/high imaging quality), captured
by a multimodal structured illumination microscopy (SIM) system, encompassing Clathrin-Coated
Pits (CCPs), Endoplasmic Reticula (ERs), Microtubules (MTs), and F-actin Filaments. Specifically,
Orochi was trained on all four datasets concurrently, whereas the baseline [[72} [73} [74} [6]] models
were trained separately on each dataset. This deliberate approach highlights Orochi’s capability in
resource-constrained environments, where conducting hyperparameter searches for each subset is not
feasible. As illustrated in Figure [T} despite the training constraints imposed on Orochi, an absolute
improvement is still observed, further demonstrating its capability and efficiency.

D Limitations

Two limitations in our paper remain unaddressed at present. First, due to constraints on computational
resources and group size, we were unable to further investigate the scaling law of our method during
pre-training. This limitation also indicates that our focus was restricted to low-level tasks as presented
in the paper. However, we firmly believe that a unified model for life sciences, capable of excelling in
both high-level understanding tasks and low-level generation tasks, will emerge in the future. This is
also an emerging trend that has already demonstrated progress in general applications.
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