
Published as a conference paper at ICLR 2024

META-EVOLVE: CONTINUOUS ROBOT EVOLUTION FOR
ONE-TO-MANY POLICY TRANSFER

Xingyu Liu, Deepak Pathak, Ding Zhao
Carnegie Mellon University
{xingyul3,dpathak,dingzhao}@andrew.cmu.edu

Source Robot Target Robot 1

Target Robot 2

Target Robot 𝑁

Source Robot

Target Robot 1

Target Robot 2

Target Robot 𝑁

Meta Robot 1

Meta Robot 2

(a) (b)

Figure 1: (a) REvolveR and HERD (Liu et al., 2022a;b) are methods for transferring policy between a pair of
robots using continuous robot evolution. Therefore, to transfer a policy on the source robot to multiple target
robots, they must launch multiple independent runs for each target robot. (b) Our Meta-Evolve uses continuous
robot evolution to transfer an expert policy from the source robot to each target robot through an evolution tree
defined by the connections of multiple “meta robots”, i.e. tree-structured evolutionary robot sequences.

ABSTRACT

We investigate the problem of transferring an expert policy from a source robot
to multiple different robots. To solve this problem, we propose a method named
Meta-Evolve that uses continuous robot evolution to efficiently transfer the policy
to each target robot through a set of tree-structured evolutionary robot sequences.
The robot evolution tree allows the robot evolution paths to be shared, so our
approach can significantly outperform naive one-to-one policy transfer. We present
a heuristic approach to determine an optimized robot evolution tree. Experiments
have shown that our method is able to improve the efficiency of one-to-three transfer
of manipulation policy by up to 3.2× and one-to-six transfer of agile locomotion
policy by 2.4× in terms of simulation cost over the baseline of launching multiple
independent one-to-one policy transfers. Supplementary videos available at the
project website: https://sites.google.com/view/meta-evolve.

1 INTRODUCTION

The robotics industry has designed and developed a large number of commercial robots deployed in
various applications. How to efficiently learn robotic skills on diverse robots in a scalable fashion?
A popular solution is to train a policy for every new robot on every new task from scratch. This is
not only inefficient in terms of sample efficiency but also impractical for complex robots due to a
large exploration space. Inter-robot imitation by statistic matching methods that optimize to match
the distribution of actions (Ross et al., 2011), transitioned states (Liu et al., 2019; Radosavovic et al.,
2020), or reward (Ng et al., 2000; Ho & Ermon, 2016) could be possible solutions. However, they
can only be applied to robots with similar dynamics to yield optimal performance.

Recent advances in evolution-based imitation learning (Liu et al., 2022a;b) inspire us to view this
problem from the perspective of policy transferring from one robot to another. The core idea is
to interpolate two different robots by producing a large number of intermediate robots between
them which gradually evolve from the source robot toward the target robot. These continuously
and gradually evolving robots act as the bridge for transferring the policy from the source to the

1

https://sites.google.com/view/meta-evolve
https://sites.google.com/view/meta-evolve

Published as a conference paper at ICLR 2024

target robot. The source robot is usually selected as a robot such that it is easy to collect sufficient
demonstrations to train a high-performance expert policy, e.g. a Shadow Hand robot that can be
trained from large-scale human hand demonstration data (Grauman et al., 2022; Damen et al., 2018).
While continuous robot evolution has shown success in learning challenging robot manipulation tasks
(Liu et al., 2022a), the policy transfer is limited to being between a pair of robots. As illustrated in
Figure 1(a), for N different target robots where N > 1, it requires launching N independent runs
of robot-to-robot policy transfer and is not scalable. How can one efficiently transfer a well-trained
policy from one source robot to multiple different target robots?

The history of biodiversity provides inspirations for this problem. In the biological world, similar
creatures usually share the same ancestors in their evolution history before splitting their ways to
form diverse species (Darwin, 1859). The same holds true for the robotic world. When robots are
designed to complete certain tasks, they often share similar forms of morphology and dynamics to
interact with other objects in similar ways. Examples include robot grippers that are all designed to
close their fingers to grasp objects and multi-legged robots that are all designed to stretch their legs
for agile locomotion. Therefore, to transfer the policy to N different target robots, it may be possible
to find common robot “ancestors” and share some parts of the robot evolution paths among the target
robots before splitting their ways to each target robot. In this way, the cost of exploration and training
during policy transfer can be significantly reduced. The idea is illustrated in Figure 1(b).

We propose a method named Meta-Evolve to instantiate the above idea. Given the source and multiple
target robots, our method first matches their kinematic tree topology. This allows the source robot
and all target robots to be represented in the same high-dimensional continuous space of physical
parameters and also allows generating new intermediate robots. To share the evolution paths among
multiple target robots, it requires defining a set of robot evolution sequences that are organized in a
tree structure with the source robot being the root node. We propose a heuristic approach to determine
the robot evolution tree within the parameter space by minimizing the total cost of training and
exploration during policy transfer. We formulate the problem as finding a Steiner tree (Steiner, 1881;
Gilbert & Pollak, 1968) in the robot parameter space that interconnects the source and all target
robots. Our algorithm then decides evolution path splitting based on the evolution Steiner tree.

We showcase our Meta-Evolve on three Hand Manipulation Suite manipulation tasks (Rajeswaran
et al., 2018) where the source robot is a five-finger dexterous hand and the target robots are three robot
grippers with two, three, and four fingers respectively. Our Meta-Evolve reduces the total number
of simulation epochs by up to 3.2× compared to pairwise robot policy transfer baselines (Liu et al.,
2022a;b) to reach the same performance on the three target robots. When applied to one-to-six policy
transfer on four-legged agile locomotion robots, our Meta-Evolve can improve the total simulation
cost by 2.4×. This shows that our Meta-Evolve allows more scalable inter-robot imitation learning.

2 PRELIMINARY

Notation We use bold letters to denote vectors. Specially, 0 and 1 are the all-zero and all-one vectors
with proper dimensions respectively. We use ⊙ to denote the element-wise product between vectors.
We use θ with subscripts to denote robot physical parameters and α and β with subscripts to denote
evolution parameters. We use MAX(·) and MIN(·) to denote element-wise maximum and minimum
of a set of vectors respectively. || · ||p denotes the Lp vector norm. | · | denotes the set cardinality.

MDP Preliminary We consider a continuous control problem formulated as Markov Decision
Process (MDP). It is defined by a tuple (S,A, T ,R, γ), where S ⊆ RS is the state space, A ⊆ RA

is the action space, T : S × A → S is the transition function, R : S × A → R is the reward
function, and γ ∈ [0, 1] is the discount factor. A policy π : S → A maps a state to an action where
π(a|s) is the probability of choosing action a at state s. Suppose M is the set of all MDPs and
ρπ,M =

∑∞
t=0 γ

tR(st, at) is the episode discounted reward with policy π on MDP M ∈ M. The
optimal policy π∗

M on MDP M is the one that maximizes the expected value of ρπ,M .

REvolveR and HERD Preliminary Liu et al. (2022b) proposed a technique named REvolveR for
transferring policies from one robot to a different robot. Given a well-trained expert policy π∗

MS
on a

source robot MS ∈ M, its goal is to find the optimal policy π∗
MT

on another target robot MT ∈ M.
The core idea is to define a sequence of intermediate robots through linear interpolation of physical
parameters and sequentially fine-tune the policy on each intermediate robot in the sequence. Liu et al.

2

https://www.shadowrobot.com/dexterous-hand-series/

Published as a conference paper at ICLR 2024

(2022a) proposed HERD, which extends the idea to robots represented in high-dimensional parameter
space, and proposes to optimize the robot evolution path together with the policy. Concretely, given
source and target robots MS,MT ∈ M that are parameterized in D-dimensional space, HERD
defines a continuous function F : [0, 1]D → M where F (0) = MS,F (1) = MT. Given the physical
parameters of the source and target robots θS,θT ∈ RD respectively, for any evolution parameter α ∈
[0, 1]D, F (α) defines an intermediate robot whose physical parameters are θ = (1−α)⊙θS+α⊙θT.
Then an expert policy π∗

F (0) on the source robot F (0) is optimized by sequentially interacting with
each intermediate robot in the sequence F (α1),F (α2), . . . ,F (αK) where αK = 1, until the policy
is able to act (near) optimally on each intermediate robot. At robot F (αk), the optimization objective
for finding the next best intermediate robot F (αk+1) := F (αk + lk) is

max
||lk||2=ξ

max
π

E[ρπ,F (αk+lk)]− λ/2 · ||1− (αk + lk)||22 (1)

which optimizes both the expected reward E[ρπ,F (αk+lk)] and the L2 distance to the target robot
||1− (αk + lk)||2. For all k, the evolution step size ξ = ||lk||2 is small enough so that each policy
fine-tuning step is a much easier task. The idea is illustrated in Figure 1(a).

3 ONE-TO-MANY ROBOT-TO-ROBOT POLICY TRANSFER

3.1 PROBLEM STATEMENT

We investigate a new problem of transferring an expert policy from one source robot to multiple target
robots. Formally, we consider a source robot MS ∈ M and N target robots MT,1,MT,2, . . . ,MT,N ∈
M respectively. We assume the state space S, and action space A, reward function R and discount
factor γ of MS and all MT,i are shared and the difference is their transition dynamics T . Given a
well-trained expert policy π∗

MS
on a source robot MS, the goal is to find the optimal policies π∗

MT,i
on

each of the target robot MT,i. We would like to investigate using the information in π∗
MS

to improve
the learning of πMT,i and study how the learning of each individual πMT,i can help each other.

We approach this problem by defining multiple meta robots MMeta,l ∈ M that shares the same
state and action space as MS and all MT,i. The meta robots MMeta,l are designed such that MMeta,l
interconnects MS and all MT,i in an efficient way. Therefore, instead of repeating the process of
one-to-one policy transferring for N times, we can transfer source robot policy πS by going through
the interconnection formed by meta robots MMeta,l to reach each individual MT,i.

3.2 MULTI-ROBOT MORPHOLOGY MATCHING AND INTERMEDIATE ROBOT GENERATION

Our problem setting and our proposed solution are based on an assumption that even if the source
robot MS and target robots MT,i are different in action and state spaces, they can still be mapped
to the same state and action space based on which the intermediate robots can be defined. The
assumption is true for a pair of robots as shown in Liu et al. (2022a) and Liu et al. (2022b) where the
intermediate robots are produced by robot morphology matching and kinematic interpolation. In this
subsection, we show that this assumption can be extended to more than two robots.

Kinematic Tree Matching The topology of the kinematic tree of a robot describes the connection
of the bodies and joints and reflects the kinematic behavior of the robot. Given two different robots
with different kinematic tree, it has been shown in Liu et al. (2022b) that their kinematic trees can
be matched by adding extra nodes and edges. This step can be extended to N robots when N > 2.
As illustrated in Figure 2(a), by matching proper root and leaf nodes, the matched kinematic tree
is essentially a graph union of the kinematic trees of all N robots. This means each robot needs to
create additional bodies, joints and motors, though they may be all zero in numbers at the beginning.

The above kinematic tree matching process can be automated by an algorithm that achieves the best
matching of nodes and edges across N robots. However, in practice, we would like the matching
process to include reasonable human intervention with enough robotics knowledge, e.g. matching
human hand fingers to robot gripper fingers such that the knuckle joints are matched correctly.

Physical Parameter Interpolation After kinematic tree matching, the state and action space of the
robots are matched. The difference in the robot transition dynamics is now only due to the differences
in physical parameters, such as shapes and mass of robot bodies, gain and armature of joint motors,

3

Published as a conference paper at ICLR 2024

Robot 1 Robot 3

Morphology Matched Robot
Robot 2 Robot 𝑁

(a)

(b)
Figure 2: (a) Morphology matching of multiple robots. Colored circles denote corresponding robot bodies
and straight lines denote robot joints. (b) An example of robot evolution parameter space after morphology
matching of multiple robots. The four highlighted robots are the source and three target robots used in
experiments in Section 5.1 respectively. Other semi-transparent robots are the generated intermediate robots.

etc. Suppose the kinematic-matched robots have D physical parameters. Then each θ ∈ RD uniquely
defines a new robot. Suppose the physical parameters of the source robot and the N target robots are
θS ∈ RD and θT,1,θT,2, . . . ,θT,N ∈ RD respectively. On each dimension, we compute the upper
and lower bounds of the physical parameters

θU = MAX({θS,θT,1,θT,2, . . . ,θT,N})
θL = MIN({θS,θT,1,θT,2, . . . ,θT,N}) (2)

where θU and θL essentially defines the convex hull of the set of robot physical parameters in RD that
encompasses the source and all target robots. We can now use continuous function F : [0, 1]D → M
to define an intermediate robot by interpolation between all pairs of physical parameters

θ = (1−α)⊙ θL +α⊙ θU (3)

where α ∈ [0, 1]D is the evolution parameter that describes the normalized position of a robot in the
convex hull. Note that by limiting α to be between 0 and 1, we assume that the convex hull is the set
of all possible intermediate robots. This is a reasonable assumption since an out-of-range parameter
can be physically dangerous and is also unlikely to be useful in robot continuous interpolation. The
convex hull also serves as the metric space that measures the hardware difference between two robots.

In HERD (Liu et al., 2022a), the source robot and the target robot are always represented as 0 and 1
respectively because when there are only two robots, one of them must either be the lower bound
or the upper bound. Different from HERD, the source and target robots in our problem are not
necessarily 0 or 1. An example of the resulting robot evolution space and the positions of the source
and target robots in the evolution space are illustrated in Figure 2(b).

3.3 ONE-TO-MANY ROBOT EVOLUTION FOR POLICY TRANSFER

Suppose the source and the N target robots are represented by F (β0) := MS and F (β1) :=
MT,1, . . . ,F (βN) := MT,N respectively where βi ∈ [0, 1]D. Similar to HERD (Liu et al., 2022a),
we employ N robot evolution paths τi = (F (αi,1),F (αi,2), . . . ,F (αi,Ki

)), i = 1, 2, . . . ,N where
F (αi,1) = F (β0) is the source robot and F (αi,Ki

) = F (βi) is the i-th target robot. Following
HERD, we use Ki phases of policy optimizations. At phase k, the policy is trained on policy rollouts
on robots sampled from the line αi,kαi,k+1. The sampling window gradually converges to αi,k+1

during training until the policy is able to achieve sufficient performance on F (αi,k+1) before moving
on to phase k+ 1. For all k, we set the evolution step size ||αi,k −αi,k+1||p = ξ to be small enough
so that each training phase is an easy sub-task.

Naively following HERD would require training through all the N evolution paths τi. However, if
some target robots are mutually similar, at the beginning of the transfer, the robot evolution could be
in roughly similar directions. Therefore, the robot evolution paths could be close to each other near
the start of the paths and the policy optimization might be redundant, as illustrated in Figure 1(a).

4

Published as a conference paper at ICLR 2024

Algorithm 1 Meta-Evolve
Input: source robot β0 and the expert policy πF (β0) on it; target robot set B = {β1,β2, . . . ,βN};
Output: policies {πF (β1),πF (β2), . . . ,πF (βN)} on target robots;

{πF (β1),πF (β2), . . . ,πF (βN)} ← Meta_Evolve(β0,πF (β0),B)

1: α← β0, π ← πF (β0), Π← ∅; // initialization
2: βMeta,P ← Evolution_Tree(α,B); // temporary meta robot βMeta; target robot partition P ⊆ 2B ;
3: while ||α− βMeta||2 ≥ ξ do
4: π, l← argmaxπ,||l||2=ξ E[ρπ,F (α+l)]− 1

2
λ||βMeta − (α+ l)||2p; // optimize both path and reward

5: α← MIN({MAX({α+ l,0}),1}); // move towards meta robot, and make sure to stay within [0, 1]
6: βMeta,P ← Evolution_Tree(α,B); // update βMeta and P after robot evolution
7: if |B| = 1 then // if there is only one target robot, then the meta robot is simply the target robot
8: return {π}; // reaching the meta robot means policy transfer completes: return the policy
9: for p in P do

10: Π← Π ∪Meta_Evolve(α,π,p); // recursively transfer policy in each subtree from meta robot
11: return Π;

We propose a method named Meta-Evolve that designs the N evolution paths by forcing the first
mi,j ∈ Z+ intermediate robots to be shared between the paths towards target robots F (βi) and
F (βj) to address the redundancy issue at the start of the training. Formally, we enforce

∀k ≤ mi,j ,αi,k = αj,k (4)

This means that the two paths towards F (βi) and F (βj) will first reach a shared robot F (αi,mi,j) =
F (αj,mi,j) before splitting their ways. In this way, both exploration and training overhead during
policy transfer can be significantly saved due to path sharing. Theoretically, if all N target robots are
close enough to each other, we could expect our Meta-Evolve method to yield a speedup up to O(N)
compared to launching multiple one-to-one policy transfers such as HERD (Liu et al., 2022a).

As illustrated in Figure 1(b), for N target robots, sharing their evolution paths essentially forms an
“evolution tree” with its root node being the source robot and N leaf nodes being the N target robots.
The N − 1 internal tree nodes are the intermediate robots that are last shared by the paths before
the split. We name these internal tree nodes as “meta robots”. Given these N − 1 meta robots, our
Method-Evolve method first transfers the expert policy πF (β0) from the source robot β0 to the closest
meta robot βMeta to obtain a well-trained policy, and then recursively transfer the policy towards the
target robots in each sub-tree respectively. The overall idea is illustrated in Algorithm 1.

3.4 EVOLUTION TREE DETERMINATION

Given the source and target robots, the structure of the evolution tree and the choice of meta robots
significantly impacts the overall performance of the policy transfer. However, due to the huge
complexity of the robots’ physical parameter and its relation to the actual MDP transition dynamics
in the physical world, it is extremely difficult to develop a universal solution for the optimal evolution
tree. We hereby propose the following heuristics for determining the evolution tree and meta robots.

Evolution Tree as Steiner Tree We aim to minimize the total Lp travel distance in robot evolution
parameter space from the source robot to all target robots. Mathematically, an undirected graph that
interconnects a set of points and minimizes the total Lp travel distance is called the Lp Steiner tree or
p-Steiner tree (Steiner, 1881; Gilbert & Pollak, 1968) of the point set. Then the evolution tree can be
selected as the p-Steiner tree of the evolution parameter set of the source and all target robots:

(VST,EST) = argmin
(V ,E):κ((V ,E))=1,{β0,β1,...,βN}⊆V

∑
(v1,v2)∈E

||v1 − v2||p (5)

where VST and EST are the vertex and edge sets of the p-Steiner tree and κ(·) denotes the graph
connectivity. The neighbor(s) of the source robot acts as the initial goal(s) of the evolution. If the
source robot has more than one neighbor in the tree, i.e. deg(VST,EST)(β0) > 1, it means the evolution
paths should already be split at the source robot and the policy should be transferred in each subtree
respectively. The idea is illustrated in Figure 1(b) and Algorithm 2.

Note that by using p-Steiner tree, we assume that the training cost of transferring the policy from robot
F (αi,k) to robot F (αi,k+1) is proportional to ||αi,k − αi,k+1||p. We believe this is a reasonable

5

Published as a conference paper at ICLR 2024

Algorithm 2 Determination of Evolution Tree and Meta Robots
Input: target robot set B = {β1,β2, . . . ,βN}; current intermediate robot α;
Output: meta robot βMeta; target robot partition P ⊆ 2B where

⋃
p∈P p = B and ∀p1,p2 ∈ P ,p1∩p2 = ∅;

βMeta,P ← Evolution_Tree(α,B)

1: (VST,EST)← argmin(V ,E):κ((V ,E))=1,{α}∪B⊆V

∑
(v1,v2)∈E ||v1 − v2||p; // p-Steiner tree

2: if deg(VST,EST)
(α) = 1 then // the current intermediate robot has only one neighbor in the tree

3: βMeta ← argminv∈VST
||v −α||2; // meta robot should be the neighbor

4: P ← {B}; // there is no partition in the target robot set yet
5: else // the current intermediate robot has more than one neighbor, so should split paths toward each subtree
6: βMeta ← α; // meta robot is the current intermediate robot itself
7: P ← {p′ ⊆ B | p′ ⊆ V ′ ⊆ VST,E

′ ⊆ EST, κ((V ′,E′)) = 1, deg(V ′,E′)(βMeta) = 1}; // partition
8: return βMeta,P ;

assumption since the training cost should be locally proportional to the distribution difference of the
MDP transition dynamics of the two robots measured in e.g. KL divergence, and should be locally
proportional to the robot hardware difference ||αi,k −αi,k+1||p when ||αi,k −αi,k+1||p → 0, i.e.
DKL(F (αi,k),F (αi,k+1)) = o(||αi,k −αi,k+1||p).
Implementation Details At each training phase of the policy transfer, the algorithm should aim to
only reduce the expected future cost of training instead of including the past. So a more optimized
implementation of our method is that, at training phase k, the algorithm acts greedily to minimize
the total Lp travel distance from the current robot αi,k to the meta robots βMeta and then to all
target robots {βi} through the evolution tree. It can be implemented by replacing source robot β0 in
Equation (5) with the current intermediate robot α:

(VST,EST) = argmin
(V ,E):κ((V ,E))=1,{α}∪{β1,β2,...,βN}⊆V

∑
(v1,v2)∈E

||v1 − v2||p (6)

This means the evolution tree and the meta robots are temporary and are updated at the start of every
training phase when the robot evolution progresses, as illustrated in Algorithm 1. In practice, instead
of keeping track of the entire evolution tree, we only keep the partition of the target robot set P ⊆ 2B

when paths splits into subtrees and re-compute each evolution subtree after path splitting.

3.5 DISCUSSIONS

Can the Target Robots be Very Different? It is possible that target robots are in opposite directions.
One extreme example is that the source robot is a five-finger hand while the two target robots are
a ten-finger hand and a two-finger gripper. Our Meta-Evolve will still be able to handle such cases
correctly, but the meta robot may simply be the source robot itself. This means the evolution paths
are split at the start and our Meta-Evolve will be reduced to multiple runs of independent one-to-one
policy transfers and does not yield any speedup in performance, which is reasonable. Fortunately, in
practice, most commercial robots such as Sawyer, Panda and UR5e are indeed mutually similar in
morphology and kinematics. So our Meta-Evolve can still be useful in these cases.

Can the Meta Robots be Learned or Optimized? We envision the learning or optimization of the
evolution tree and the meta robots being very challenging. Policy transfer through robot evolution
relies on local optimization of the robot evolution. On the other hand, optimizing the evolution tree
requires optimizing the robot evolution paths globally and needs an accurate “guess” of the future cost
of policy transfer. In fact, our proposed heuristics can be viewed as using Lp distance of evolution
parameters to roughly guess the future policy transfer cost for constructing evolution tree. We leave
the problem of finding the optimal evolution tree and meta robots as future work.

4 RELATED WORK

Imitation Learning across Different Robots Traditional imitation learning is designed for learning
on the same robots (Ross et al., 2011; Ng et al., 2000; Ho & Ermon, 2016; Duan et al., 2017).
However, due to a huge mismatch in transition dynamics, these works often struggle in learning
across different robots. Compared to previous imitation learning methods that aim to learn across

6

https://www.rethinkrobotics.com/sawyer
https://www.franka.de/technology
https://www.universal-robots.com/products/ur5-robot/

Published as a conference paper at ICLR 2024

different robots directly (Radosavovic et al., 2020; Liu et al., 2019; Rusu et al., 2015; Trabucco et al.,
2022), we aim to employ robot evolution to gradually adapt the policy. Furthermore, our Meta-Evolve
focuses on one-to-many imitation where the transferred policies must work on multiple target robots.

Learning Controllers for Diverse Robot Morphology Recent work has studied the problem of
learning a policy/controller for diverse robots. For instance, Wang et al. (2018), Huang et al. (2020)
and Pathak et al. (2019) use graph neural networks to control and develop robots with different
morphology that can generalize to new scenarios. Hierarchical controllers (Hejna et al., 2020) and
transformers (Gupta et al., 2022; Hong et al., 2021) are also shown to be effective across diverse
robot morphology. In contrast to these works, we do not co-develop the controller with morphology
but transfer the policy from a source robot to multiple target robots.

Meta-Learning Our Meta-Evolve is closely related to the formulation of meta-learning (Finn et al.,
2017; 2018; Rajeswaran et al., 2019; Nagabandi et al., 2018; Sæmundsson et al., 2018; Schoettler
et al., 2020). Different from meta reinforcement learning where only the policy π is meta learned, our
formulation can be viewed as the continuous update of both the policy π and the transition dynamics
T instantiated by setting different robot hardware parameters θ. Moreover, while meta-learning aims
to learn a meta policy from scratch, in our problem, the source expert policy is given and used in
policy transfer. Closely related to our approach is task interpolation for meta-learning (Yao et al.,
2021). Different from task interpolation, our method does not require the policy to work on a range
of robots at the same time but only needs each transferred policy to work on each target robot.

Transfer Learning in RL Previous works on RL transfer learning have explored transferring policies
by matching certain quantities across multiple tasks. Examples include learning inter-task mappings
of states and actions (Gupta et al., 2017; Konidaris & Barto, 2006; Ammar et al., 2015) and cross-task
reward shaping (Ng et al., 1999; Wiewiora et al., 2003). Different from these works, we do not aim to
directly find the matching between different robots but gradually evolve one robot to multiple target
robots through an evolution tree and transfer the expert policy along the way.

5 EXPERIMENTS

The design of our Meta-Evolve method is motivated by the hypothesis that by sharing the evolution
paths among multiple robots through the design of the evolution tree, the overall cost of one-to-many
policy transfer can be reduced compared to multiple one-to-one transfers. To show this, we apply our
Meta-Evolve on the policy transfer on two types of robot learning tasks: one-to-three policy transfer
on the three manipulation tasks in Hand Manipulation Suite (HMS) (Rajeswaran et al., 2018), and
one-to-six policy transfer on an agile locomotion task in a maze.

5.1 ONE-TO-THREE MANIPULATION POLICY TRANSFER

Source and Target Robots We utilize the five-finger ADROIT dexterous hand (Kumar et al., 2013)
as the source robot and follow Rajeswaran et al. (2018) for the initial settings. The target robots are
three robot grippers with two, three, and four fingers respectively. The target robots can be produced
by gradually shrinking the fingers of the source robot, as illustrated in Figures 1 and 2(b).

Task and RL Algorithm We use the three tasks from the the task suite in Rajeswaran et al. (2018):
Door, Hammer and Relocate illustrated in Figure 3. In Door task, the goal is to turn the door
handle and fully open the door; n Hammer task, the goal is to pick up the hammer and smash the nail
into the board; in Relocate task, the goal is to pick up the ball and take it to the target position. We
use a challenging sparse reward function where only the task completion is rewarded. We use NPG
(Rajeswaran et al., 2017) as the RL algorithm in all compared methods. The source expert policy was
trained by learning from human demonstrations collected from VR-empowered sensor glove.

Baselines We compare our Meta-Evolve against three baselines: (1) DAPG: we launch multiple
independent direct one-to-one imitation learning using DAPG (Rajeswaran et al., 2018); (2) HERD:
we launch multiple independent one-to-one robot policy transfer with HERD; (3) Geom-Median: in
this baseline, we allow only one meta robot βMeta in the evolution tree. Mathematically, a point that
minimizes the sum of Lp distances to a set of points is called the Lp geometric median of the point set.
When there is only one meta robot in the Steiner tree, the meta robot βMeta is the Lp geometric median
of the source and target robot evolution parameter set, i.e. βMeta = argminβ∈[0,1]D

∑N
i=0 ||β−βi||p.

7

Published as a conference paper at ICLR 2024

(a) (b) (c)

3

1

2

(d)

4

7

5

6

(e)

8

9

10 11

12

(f)
Figure 3: Hand Manipulation Suite (HMS) tasks (Rajeswaran et al., 2018) used in our experiments: (a)
Hammer, (b) Door, and (c) Relocate. Robot Evolution paths of (d) using multiple independent HERD; (e)
using geometric median as the only meta robot; and (f) our Meta-Evolve.

Door
task

DAPG
2-finger target robot 3-finger target robot 4-finger target robot total speedup

of train >50K >50K >50K >150K -
of sim >200K >200K >200K >600K -

HERD
path 1 path 2 path 3 total speedup

of train 2015 ± 478 1016 ± 75 1325 ± 170 4357 ± 395 1×
of sim 21888 ± 2666 18612 ± 444 23796 ± 983 64296 ± 1289 1×

Ours
(1-Steiner
Tree)

path 8 path 9 path 10 path 11 path 12 total speedup
of train 1308 ± 245 98 ± 17 95 ± 25 527 ± 33 19 ± 20 2046 ± 200 2.35×
of sim 13964 ± 1427 964 ± 87 1784 ± 276 5628 ± 306 816 ± 67 23156 ± 1059 2.73×

Hammer
task

DAPG
2-finger target robot 3-finger target robot 4-finger target robot total speedup

of train >50K >50K >50K >150K -
of sim >200K >200K >200K >600K -

HERD
path 1 path 2 path 3 total speedup

of train 10323 ± 1612 6301 ± 1418 6513 ± 1725 23138 ± 4366 1×
of sim 57196 ± 7401 41896 ± 6629 44141 ± 6821 143233 ± 20362 1×

Ours
(L1 Geom
-Median)

path 4 path 5 path 6 path 7 total speedup
of train 6295 ± 1524 5221 ± 1972 105 ± 174 230 ± 112 11851 ± 3487 1.95×
of sim 32445 ± 5697 22125 ± 7064 378 ± 592 2748 ± 369 57696 ± 12549 2.48×

Ours
(2-Steiner
Tree)

path 8 path 9 path 10 path 11 path 12 total speedup
of train 3505 ± 451 1256 ± 150 1118 ± 270 3093 ± 944 214 ± 110 9186 ± 1127 2.52×
of sim 18775 ± 1479 5669 ± 394 5141 ± 940 13200 ± 3355 1646 ± 451 44431 ± 3908 3.22×

Ours
(1-Steiner
Tree)

path 8 path 9 path 10 path 11 path 12 total speedup
of train 3848 ± 239 419 ± 110 447 ± 191 3003 ± 1097 126 ± 132 7843 ± 1380 2.95×
of sim 22603 ± 727 3007 ± 370 3566 ± 644 13421 ± 4148 1735 ± 603 44333 ± 5459 3.23×

Relocate
task

DAPG
2-finger target robot 3-finger target robot 4-finger target robot total speedup

of train >50K >50K >50K >150K -
of sim >200K >200K >200K >600K -

HERD
path 1 path 2 path 3 total speedup

of train 7603 ± 1158 9657 ± 2229 9850 ± 932 27109 ± 4209 1×
of sim 53568 ± 6287 62900 ± 6649 64244 ± 1769 180712 ± 14465 1×

Ours
(L1 Geom
-Median)

path 4 path 5 path 6 path 7 total speedup
of train 9095 ± 1616 2796 ± 715 305 ± 147 549 ± 627 12745 ± 2454 2.13×
of sim 39886 ± 5641 12835 ± 2738 1058 ± 496 3972 ± 2472 57751 ± 9083 3.13×

Ours
(2-Steiner
Tree)

path 8 path 9 path 10 path 11 path 12 total speedup
of train 5717 ± 2097 4833 ± 244 1752 ± 285 2198 ± 18 1759 ± 111 16257 ± 2719 1.67×
of sim 27006 ± 7340 18690 ± 942 7980 ± 1544 10242 ± 195 7452 ± 1001 71370 ± 11022 2.53×

Ours
(1-Steiner
Tree)

path 8 path 9 path 10 path 11 path 12 total speedup
of train 9451 ± 780 467 ± 509 864 ± 438 967 ± 206 105 ± 13 11853 ± 766 2.29×
of sim 40063 ± 3530 2343 ± 1945 4869 ± 1555 7458 ± 2940 1512 ± 141 56969 ± 3750 3.17×

Table 1: One-to-three policy transfer experiment results on Hand Manipulation Suite tasks (Rajeswaran
et al., 2018). We use “mean ± standard deviation” from runs of five different random seeds. The details of the
methods are introduced in Section 5.1. The path IDs correspond to Figures 3(d)(e)(f).

Evaluation Metrics For each compared method, the goal is to reach 80% success rate on all three
target robots. Due to the nature of one-to-many policy transfer, the total number of RL iterations
or simulation epochs it takes to reach this goal cannot be set beforehand. So we instead report the
number of policy training iterations and simulation epochs needed to reach the desired success rate.

Results and Analysis The topology of the resulting evolution tree is illustrated in Figure 3(f). As
illustrated in Table 1, in terms of the total number of training iterations needed, our Meta-Evolve
method is able to achieve 2.35×, 2.95× and 2.29× improvement on the three tasks respectively
compared to one-to-one policy transfer using HERD. In terms of simulation epochs needed, the
improvement is 2.73×, 3.23× and 3.17× respectively on the three tasks. Direct policy transfer with
DAPG never successfully completes the task, therefore the policy was never able to be trained.

Breaking down each part of the evolution paths, we observed that in our method, the paths from
source robot to the meta robots are usually the most costly and constitutes the largest portion of
simulation epochs and training. The cost after splitting the path at the meta robots is smaller which is
the reason for smaller total cost. The baseline of using only one meta robot in the evolution tree can
also yield significant improvements, however, its performance is still inferior to using an evolution
tree with multiple meta robots, which shows the general tree-structured evolution paths is necessary.

8

Published as a conference paper at ICLR 2024

(a)

1 2

3

4

5
6

(b)

7

8

9

10

11 12

(c)
Figure 4: Agile locomotion task in a maze. (a) Environment and task setup; (b) Evolution paths when
launching independent HERD runs; (c) Evolution paths when using L1 Steiner tree as evolution tree.

HERD
path 1 path 2 path 3 path 4 path 5 path 6 total speedup

of train 1241 ± 94 2861 ± 250 1872 ± 101 2696 ± 175 2812 ± 208 3311 ± 246 14793 ± 163 1×
of sim 7562 ± 494 14830 ± 624 9617 ± 545 16970 ± 557 16658 ± 828 19294 ± 1449 84931 ± 758 1×

Ours
(L1 Steiner
Tree)

path 7 path 8 path 9 path 10 path 11 path 12 total speedup
of train 1241 ± 94 1666 ± 380 698 ± 156 2009 ± 352 697 ± 163 428 ± 83 6739 ± 721 2.20×
of sim 7562 ± 494 7308 ± 1448 3314 ± 497 10334 ± 1510 4051 ± 663 2354 ± 243 34925 ± 2893 2.43×

Table 2: One-to-six policy transfer experiment results on agile locomotion task in a maze. We use “mean
± standard deviation” from runs of five different random seeds. The path IDs correspond to Figure 4(b)(c).

A more interesting observation is that, for some target robots and tasks, e.g. two- and three-finger
target robots on Hammer task, the total cost of transferring the policy by going through multiple meta
robots in the evolution tree is even smaller than the cost of directly transferring the policy to the target
robot using HERD (Liu et al., 2022a). It shows that, transferring the policies to multiple related target
through an evolution tree determined by our heuristic approach can possibly help each robot improve
their own learning efficiency. We believe this phenomena deserve more future research attention.

Ablation Studies On Hammer and Relocate tasks, we provide ablation studies on the design
choice of the distance measure used to construct the evolution tree, i.e. L1 vs. L2 distance in evolution
parameter space. As illustrated in Table 1, L1 distance achieves better performance than L2 distance.
A possible reason is that the hardware parameters mostly mutually independent, so when empirically
estimating the robot transition dynamics difference, directly adding up element-wise difference may
be better than using Euclidean distance which intertwines the difference on each dimension.

5.2 ONE-TO-SIX AGILE LOCOMOTION POLICY TRANSFER

Experiment Settings To show that our Meta-Evolve can generalize to diverse tasks and robot
morphology, we conduct additional policy transfer experiments on an agile locomotion task illustrated
in Figure 4. The goal of the robot is to move out of the maze from the starting position. The source
robot is the Ant-v2 robot used in MuJoCo Gym (Brockman et al., 2016). The six target robots are
four-legged agile locomotion robots with different lengths of torsos, thickness of legs, and widths
of hips and shoulders. The reward function is also sparse task completion reward. We use NPG
(Rajeswaran et al., 2017) as the RL algorithm. We report the number of training iterations and
simulation epochs needed to reach 90% success rate on the task.

Results and Analysis The experiment results are illustrated in Table 2. Our Meta-Evolve method is
able to achieve 2.20× improvement in terms of the total training cost and 2.43× total simulation cost
compared to launching multiple HERD. The improvement is less compared to manipulation policy
transfer. A possible reason is that locomotion tasks are less sensitive to the morphological changes of
robots than manipulation tasks, therefore benefit less from our Meta-Evolve.

6 CONCLUSION

In this paper, we introduce a new research problem of transferring an expert policy from a source
robot to multiple target robots. To solve this new problem, we introduce a new method named
Meta-Evolve that utilizes continuous robot evolution to efficiently transfer the policy through an
robot evolution tree defined by the interconnection of multiple meta robots and then to each target
robot. We present a heuristic approach to determine the robot evolution tree. We conduct experiments
on Hand Manipulation Suite tasks and an agile locomotion task and show that our Meta-Evolve can
significantly outperform the one-to-one policy transfer baselines.

9

Published as a conference paper at ICLR 2024

Acknowledgment Deepak Pathak is supported in part by NSF IIS-2024594 and AFOSR FA9550-23-
1-0747.

REFERENCES

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew E Taylor. Unsupervised cross-domain
transfer in policy gradient reinforcement learning via manifold alignment. In Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov, Ankur Handa, Jonathan Tremblay, Yashraj S
Narang, Karl Van Wyk, Umar Iqbal, Stan Birchfield, et al. Dexycb: A benchmark for capturing
hand grasping of objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9044–9053, 2021.

David Cheriton and Robert Endre Tarjan. Finding minimum spanning trees. SIAM journal on
computing, 5(4):724–742, 1976.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning, 2016.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos
Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling egocentric
vision: The epic-kitchens dataset. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 720–736, 2018.

Charles Darwin. On the origin of species. Routledge, 1859.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. Advances in neural
information processing systems, 30, 2017.

Marcia Fampa, Jon Lee, and Nelson Maculan. An overview of exact algorithms for the euclidean
steiner tree problem in n-space. International Transactions in Operational Research, 23(5):
861–874, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. Advances
in neural information processing systems, 31, 2018.

Edgar N Gilbert and Henry O Pollak. Steiner minimal trees. SIAM Journal on Applied Mathematics,
16(1):1–29, 1968.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
3,000 hours of egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18995–19012, 2022.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant
feature spaces to transfer skills with reinforcement learning. arXiv preprint arXiv:1703.02949,
2017.

Agrim Gupta, Linxi Fan, Surya Ganguli, and Li Fei-Fei. Metamorph: Learning universal controllers
with transformers. arXiv preprint arXiv:2203.11931, 2022.

Donald Hejna, Lerrel Pinto, and Pieter Abbeel. Hierarchically decoupled imitation for morphological
transfer. In International Conference on Machine Learning, pp. 4159–4171. PMLR, 2020.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29:4565–4573, 2016.

10

Published as a conference paper at ICLR 2024

Sunghoon Hong, Deunsol Yoon, and Kee-Eung Kim. Structure-aware transformer policy for inhomo-
geneous multi-task reinforcement learning. In International Conference on Learning Representa-
tions, 2021.

Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control them all: Shared
modular policies for agent-agnostic control. In International Conference on Machine Learning, pp.
4455–4464. PMLR, 2020.

Oussama Khatib. A unified approach for motion and force control of robot manipulators: The
operational space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 1987.

Pradeep K Khosla and Takeo Kanade. Parameter identification of robot dynamics. In 1985 24th IEEE
conference on decision and control, pp. 1754–1760. IEEE, 1985.

George Konidaris and Andrew Barto. Autonomous shaping: Knowledge transfer in reinforcement
learning. In Proceedings of the 23rd international conference on Machine learning, pp. 489–496,
2006.

Vikash Kumar, Zhe Xu, and Emanuel Todorov. Fast, strong and compliant pneumatic actuation for
dexterous tendon-driven hands. In 2013 IEEE international conference on robotics and automation,
pp. 1512–1519. IEEE, 2013.

Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based imitation learning.
arXiv preprint arXiv:1911.10947, 2019.

Xingyu Liu, Deepak Pathak, and Kris M. Kitani. HERD: Continuous Human-to-Robot Evolution for
Learning from Human Demonstration. In The Conference on Robot Learning (CoRL), 2022a.

Xingyu Liu, Deepak Pathak, and Kris M. Kitani. REvolveR: Continuous Evolutionary Models for
Robot-to-robot Policy Transfer. In The International Conference on Machine Learning (ICML),
2022b.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
Ritvik Singh, Yunrong Guo, Hammad Mazhar, et al. Orbit: A unified simulation framework for
interactive robot learning environments. IEEE Robotics and Automation Letters, 2023.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. arXiv preprint arXiv:1803.11347, 2018.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, pp. 2, 2000.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Deepak Pathak, Chris Lu, Trevor Darrell, Phillip Isola, and Alexei A Efros. Learning to control
self-assembling morphologies: a study of generalization via modularity. NeurIPS, 2019.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE international conference on robotics
and automation (ICRA), pp. 3803–3810. IEEE, 2018.

Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra Malik. State-only imitation learning for
dexterous manipulation. arXiv preprint arXiv:2004.04650, 2020.

11

Published as a conference paper at ICLR 2024

Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham Kakade. Towards generalization
and simplicity in continuous control. arXiv preprint arXiv:1703.02660, 2017.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In Proceedings of Robotics: Science and Systems (RSS), Pittsburgh,
Pennsylvania, June 2018. doi: 10.15607/RSS.2018.XIV.049.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. Advances in neural information processing systems, 32, 2019.

Gabriel Robins and Alexander Zelikovsky. Improved steiner tree approximation in graphs. In SODA,
pp. 770–779, 2000.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint arXiv:1511.06295, 2015.

Steindór Sæmundsson, Katja Hofmann, and Marc Peter Deisenroth. Meta reinforcement learning
with latent variable gaussian processes. arXiv preprint arXiv:1803.07551, 2018.

Gerrit Schoettler, Ashvin Nair, Juan Aparicio Ojea, Sergey Levine, and Eugen Solowjow. Meta-
reinforcement learning for robotic industrial insertion tasks. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 9728–9735. IEEE, 2020.

Naveed A Sherwani. Algorithms for VLSI physical design automation. Springer Science & Business
Media, 2012.

Warren D Smith. How to find steiner minimal trees in euclidean d-space. Algorithmica, 7:137–177,
1992.

Jakob Steiner. Gesammelte Werke: herausgegeben auf Veranlassung der Königlich Preussischen
Akademie der Wissenschaften, volume 1. G. Reimer, 1881.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30. IEEE,
2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Brandon Trabucco, Mariano Phielipp, and Glen Berseth. Anymorph: Learning transferable polices by
inferring agent morphology. In International Conference on Machine Learning, pp. 21677–21691.
PMLR, 2022.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
graph neural networks. ICLR, 2018.

Eric Wiewiora, Garrison W Cottrell, and Charles Elkan. Principled methods for advising reinforce-
ment learning agents. In Proceedings of the 20th international conference on machine learning
(ICML-03), pp. 792–799, 2003.

Huaxiu Yao, Linjun Zhang, and Chelsea Finn. Meta-learning with fewer tasks through task interpola-
tion. In International Conference on Learning Representations, 2021.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi, Soroush Nasiriany,
and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for robot learning.
arXiv preprint arXiv:2009.12293, 2020.

12

Published as a conference paper at ICLR 2024

(a)

(b) (c)

(d)

Figure 5: The evolution tree from the source robot, i.e. (a) ADROIT five-finger hand, to three target real
commercial robots: (b) Jaco robot with three-finger Jaco gripper, (c) Kinova3 robot with two-finger Robotiq-85
gripper, and (d) IIWA robot with two-finger Robotiq-140 gripper.

4

5

6

8

7

1

3

2

(a)

(b) (c) (d)

(e) (f) (g) (h)

Figure 6: (a) Robot Evolution paths of using multiple independent HERD (paths 1, 2 and 3) and our Meta-
Evolve (paths 4, 5, 6, 7 and 8); (b)-(g) Visualization of the trained policy rollouts on the object manipulation
task. The green semi-transparent object denotes the goal position; (h) Real-world deployment of the target
robot policy on a real Kinova3 machine.

HERD
path 1 path 2 path 3 total speedup

of train 11313 ± 864 13405 ± 985 13719 ± 1077 38437 ± 2883 1×
of sim 52358 ± 6367 65340 ± 6693 68127 ± 6796 185825 ± 16731 1×

Ours
(1-Steiner
Tree)

path 4 path 5 path 6 path 7 path 8 total speedup
of train 10810 ± 1366 4364 ± 1609 3291 ± 1443 761 ± 220 855 ± 396 20081 ± 4509 1.91×
of sim 48398 ± 3811 20352 ± 2104 17861 ± 1724 1569 ± 283 1744 ± 569 89924 ± 7962 2.07×

Table 3: One-to-three policy transfer experiment results on DexYCB manipulation task. We use “mean ±
standard deviation” from runs of five different random seeds. The path IDs correspond to Figure 6(a).

A ADDITIONAL EXPERIMENTS ON REAL COMMERCIAL ROBOTS

To show that our Meta-Evolve can be applied to real robots and real-world tasks, we conduct an
additional set of experiments of transferring an object manipulation policy to multiple real commercial
robots.

Source and Target Robots The source robot is the same ADROIT hand robot (Kumar et al., 2013)
used in Section 5.1. The three target robots are as follows and are illustrated in Figure 5(b)(c)(d):

• Jaco: Jaco is a 7-DoF robot produced by Kinova Robotics. It is equipped with the Jaco
Three-Finger Gripper, a three-finger gripper with multi-jointed fingers.

• Kinova3: Kinova3 is a 7-DoF robot produced by Kinova Robotics. It is equipped with the
Robotiq-85 Gripper, the 85mm variation of Robotiq’s multi-purpose two-finger gripper

13

https://www.kinovarobotics.com/en/products/assistive-technologies/kinova-jaco-assistive-robotic-arm
https://www.kinovarobotics.com/en/products/assistive-technologies/kinova-jaco-assistive-robotic-arm
https://www.kinovarobotics.com/en/products/assistive-technologies/kinova-jaco-assistive-robotic-arm
https://www.kinovarobotics.com/en/products/gen3-robot
https://robotiq.com/products/2f85-140-adaptive-robot-gripper

Published as a conference paper at ICLR 2024

• IIWA: IIWA is an industrial-grade 7-DoF robot produced by KUKA. It is equipped with the
Robotiq-140 Gripper, the 140mm variation of Robotiq’s multi-purpose two-finger gripper.

We follow the high-fidelity robot arm models introduced in Zhu et al. (2020) for the detailed physical
specifications of the target robots to minimize the sim-to-real gap. Note that in the simulation
model of the source ADROIT hand, the robot is rootless, i.e. connected to a virtual mount base via
translation and rotation joints. We adopt the same procedure introduced in Liu et al. (2022a) to attach
the ADROIT virtual mount base to the end-effector of the 7-DoF robot arm. The end-effector of
the robot arm is controlled by an Operational Space Controller (OSC) (Khatib, 1987) that moves
the end-effector to its desired 6D pose with PD control schema. We follow Zhu et al. (2020) for
the implementation of OSC. Apart from the states of the ADROIT hand, the 6D pose of the robot
end-effector is additionally included in the state of the robot. During robot evolution, the original
ADROIT arm shrinks and the five-finger ADROIT hand gradually changes to be the target gripper.
Please refer to Liu et al. (2022a) for more details on the idea behind this implementation. The
resultant L1 evolution tree is illustrated in Figure 5 and is used in our experiments.

Task and RL Algorithms The task setup is illustrated in Figure 6. The goal of the robot is to pick
up the object and take it to the desired goal position. The task is considered success if the distance
from the object to the goal is sufficiently small. The reward function is sparse task completion reward.
We use NPG (Rajeswaran et al., 2017) as the RL algorithm. The source expert policy is trained by
learning from the human hand demonstrations in DexYCB dataset (Chao et al., 2021). We report the
number of training iterations and simulation epochs needed to reach 80% success rate on the task.

Results and Analysis The experiment results are illustrated in Table 3. Our Meta-Evolve method
is able to achieve 1.91× improvement in terms of the total training cost and 2.07× total simulation
cost compared to launching multiple HERD. This shows that our Meta-Evolve can be applied to
real commercial robots. Moreover, to show that the transferred policy can be used on real target
robots, we conduct real-world experiment and deploy the target robot policies on Kinova3 on the
corresponding real machine as illustrated in Figure 6(h) . Please refer to the our project website for
more details.

B ADDITIONAL DISCUSSIONS

Can the physical parameters of all robots be known? It is easy to obtain all necessary physical
parameters of a robot. The ultimate goal of our method is to train a policy that can be deployed on
real robots. In order to do such real-world experiments, we need to obtain the robot physically. At
that time, we will have access to every specification of the robot:

• If we purchase, borrow or rent a commercial robot: When selling their robots, licensed
robot manufacturing companies would release detailed parameters of their robots. Besides, the
controller software such as Operational Space Controller (OSC) (Khatib, 1987) is usually also
released for the robot by the manufacturers. These controller software can only work correctly
when all the necessary physical parameters of the robots are matched with the actual hardware,
including the inertia and mass of every robot body, and damping and gain of every motor etc.
Users with sufficient robotics expertise can easily infer the accurate physical parameters from
the released control software or the manual of the robot provided to the users.

• If we create our own robot: Nowadays, the mechanical components of new robots are
manufactured by printing 3D CAD models. Therefore, all physical parameters of the mechanical
parts of the robot can be easily calculated using the 3D CAD design software. This is also how
the robot manufacturing companies obtain the parameters for their own commercial robots.

• If the robot we obtained has missing or unknown parameters: It is not recommended to use
a robot with missing or unknown parameters because it might be dangerous to do so. In the
rare and extreme case where we are forced to use a robot with missing or unknown parameters,
the methods for accurately measuring the parameters of unknown real robots were already
developed in the 1980s (Khosla & Kanade, 1985) and have been maturally used in the robotics
industry for decades since then.

• If we attach external components to the robot: External components may introduce additional
physical parameters such as friction coefficient of the auxiliary gripper finger parts etc. These
external parameters can be easily and accurately measured in lab experiments. On the other hand,
it is not recommended to use an external components without knowing its detailed parameters

14

https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://sites.google.com/view/meta-evolve

Published as a conference paper at ICLR 2024

because it might be dangerous to do so. Please refer to related literature on mechanical or
materials engineering for more details on how to measure these parameters in the lab.

Real-robot vs. Simulation Experiments? If we want to take advantage of the power of deep
reinforcement learning in solving robotics tasks, it is imperative to collect sufficient amount of data,
and performing large-scale simulation is the most convenient way to do so. On the other hand,
modern simulation engines such as MuJoCo (Todorov et al., 2012), Pybullet (Coumans & Bai, 2016)
and Isaac (Makoviychuk et al., 2021) allows highly accurate physics simulation to be performed.
Futhermore, simulation frameworks built upon these engines such as robosuite (Zhu et al., 2020) and
Orbit (Mittal et al., 2023) can simulate robot actions and robot-object interactions with very high
fidelity. It is true that as long as simulation is used, there is always Sim-to-real gap. Fortunately, there
has been numerous works on reducing the Sim-to-real gap in robotic control (Peng et al., 2018; Tobin
et al., 2017). Sim-to-real transfer is not the focus of our work, therefore is not discussed in depth in
our paper.

Scaling/transformations on the evolution parameters α and its effect on Meta-Evolve? There
could be many ways to transform the physical parameter θS and θT,i to be evolution parameters
βi by β0 = f(θS) and βi = f(θT,i). In the main paper, we present a simple and intuitive way
by normalizing each element of θ to [0, 1] through a linear transformation. If L2 distance is used
to construct the evolution Steiner tree, the meta robots depend on the choice of the transformation
function f . However, if L1 distance is used instead, the meta robots will not depend on the choice
of f , as long as f is monotonic on every input dimension. As introduced in Equation (8), the L1

distance of two vectors is the sum of element-wise absolute difference of the two vectors. Given the
current intermediate robot α ∈ RD and target robots β1,β2, . . . ,βN ∈ RD, the first meta robot in
the Steiner tree to reach from α is given by an element-wise clamp operation on α to the convex hull
boundaries of the target robots:

βMeta = MAX(βL,MIN(α,βU)) (7)

where βU = MAX({β1,β2, . . . ,βN}) and βL = MIN({β1,β2, . . . ,βN}) are the element-wise
upper and lower bounds of the target robot evolution parameter convex hull. This is because the
convex hull defines the spanning range of the target robot parameters and should be used as the
indicator of where to split the evolution path. As long as f is monotonic on every dimension of the
parameter, the meta robot given by Equation (7) is invariant to f .

Can Meta-Evolve generalize to any known robot configurations? Our Meta-Evolve can gener-
alize to any known robot configurations. For any source robot and N target robots, we can always
use the method described in Section 3.2 to match the robot kinematic trees and state/action spaces.
Whether the policy transfer can work on that set of source and target robots depends on the task as
well as the policy. For example, we do not expect a manipulation policy on a five-finger gripper can be
transferred to some four-legged agile locomotion robots, though we can still define the intermediate
robots between them. As long as the task and robot settings are reasonable, e.g. transferring a
manipulation policy from one robot gripper to some other robot grippers, our Meta-Evolve should be
able to deal with these cases, as shown by the experiments in our paper.

Can Meta-Evolve generalize to unknown robot configurations? Our Meta-Evolve does require
knowing the configurations of the source and target robots. This is a reasonable assumption because
we only deal with predetermined source and target robots. When we deploy the trained policies on
the robots in the real world, we would need to first obtain these robots physically. Then at that time
we will have access to everything about the robots. Please refer to the discussions on how to obtain
the physical parameters of a robot, i.e. the first paragraph of Section B, for more details.

C INTRODUCTION TO STEINER TREE

In RD, the Steiner tree problem is to find a network of minimum length interconnecting a set B of N
given points. Such networks can be represented by a tree. The set of the tree nodes can consist of
the points in B, known as terminals, and possibly of additional points, known as Steiner points. The
length of the network is defined as the sum of the lengths of all the edges in the tree. Without allowing
Steiner points, the problem is reduced to the well-known minimum spanning tree problem (Cheriton
& Tarjan, 1976). Allowing additional Steiner points can possibly reduce the length of the network,
but can also make the problem harder.

15

Published as a conference paper at ICLR 2024

𝐴
𝐵

𝐶 𝑆2

𝑆1

(a)

𝐴
𝐵

𝐶

𝑆3

𝑆1

(b)

𝐴
𝐵

𝐶
𝑆1

(c)

𝐴

𝐷

𝐶

(d)

Figure 7: (a) An L1 Steiner tree of three points A, B and C consists of additional two Steiner points S1 and
S2; (b) Another solution to L1 Steiner tree of the same three points A, B and C consists of two different
Steiner points S1 and S3; (c) The L2 Steiner tree of three points A, B and C consists of one Steiner point
S1 when all angles of△ABC are all smaller than 120◦; (d) The L2 Steiner tree of three points A, B and D
consists of no Steiner point and is reduced to an L2 minimum-spanning tree when one of angles of△ABD is
larger than 120◦.

The Steiner trees can be classified based on the metric used to measure the edge lengths. When the
edge length is measured with Lp norm, the Steiner tree is known as p-Steiner tree. In the main paper,
we did ablation studies on both L1 and L2 norms for constructing the Steiner tree. In this section, we
provide more detailed background on 1-Steiner tree and 2-Steiner tree.

C.1 1-STEINER TREE

The L1 distance of two points α = [α1,α2, . . . ,αD] ∈ RD and β = [β1,β2, . . . ,βD] ∈ RD, also
known as Manhattan distance, is the sum of element-wise absolute difference and is defined as

||α− β||1 =

D∑
i=1

|αi − βi| (8)

By using L1 distance of evolution parameters of two robots to measure their MDP difference as the
guideline for constructing Steiner tree, we not only assume the changes of each robot hardware pa-
rameter contribute equally to the change of MDP, but also assume their effect on MDP is independent
and can be summed up directly. Without additional information on the actual robot hardware and
task, we believe this is a reasonable assumption.

A 1-Steiner tree of a point set B, also known as Rectilinear Steiner tree, is the undirected graph that
interconnects B and minimizes the total L1 lengths of its edges. Finding the L1 Steiner tree is one of
the core problems in the physical design of electronic design automation (EDA). In VLSI circuits,
wire routing is only carried out by metal wires running in either vertical or horizontal directions
(Sherwani, 2012).

L1 Steiner tree problem is known to be an NP-hard problem. However, multiple approximate and
heuristic algorithms have been introduced and used in VLSI design. Using algorithms introduced by
Robins & Zelikovsky (2000), for N terminal points, a good approximate solution to L1 Steiner tree
can be found in O(N logN) time. The solution to L1 Steiner tree of a specific set of points may not
be unique. Examples of L1 Steiner tree are illustrated in Figure 7(a)(b).

C.2 2-STEINER TREE

The L2 distance of two points α = [α1,α2, . . . ,αD] ∈ RD and β = [β1,β2, . . . ,βD] ∈ RD, also
known as Euclidean distance, is the square root of element-wise summation of the difference squares
and is defined as

||α− β||2 =

√√√√ D∑
i=1

(αi − βi)2 (9)

A 2-Steiner tree of a point set B, also known as Euclidean Steiner tree, is the undirected graph that
interconnects B and minimizes the total L2 lengths of its edges. L2 distance of evolution parameters
of two robots intertwines the effect of the difference on each dimension. We believe this is one of the
reasons that L2 Steiner tree as the evolution tree shows worse performance in one-to-many policy
transfer than L1 Steiner tree.

16

Published as a conference paper at ICLR 2024

In an L2 Steiner tree, a terminal has degree between 1 and 3 and a Steiner point has degree of 3. An
L2 Steiner tree of N terminals have at most N − 2 Steiner points and all Steiner points must lie in
the convex hull of the terminals. The Steiner point and its three neighbors in the tree must lie in a
plane, and the angles between the edges connecting the Steiner point to its neighbors are all 120◦.

L2 Steiner tree problem is also known to be an NP-hard problem. Similar to L1 Steiner tree, multiple
approximate and heuristic algorithms have been introduced for L2 Steiner tree (Fampa et al., 2016)
where a good solution can be found in O(N logN) time. The Euclidean Steiner tree of three vertices
of a triangle is also known as the Fermat point of the triangle, illustrated in Figure 7(c)(d). The
solution to L2 Steiner tree of a specific set of points may not be unique.

C.3 OUR IMPLEMENTATION

Though both L1 and L2 Steiner tree problems are NP-hard, fortunately, there exist multiple heuristic
algorithms for approximate solutions in O(N logN) time for N target robots. We used Robins &
Zelikovsky (2000) for computing L1 Steiner tree and Smith (1992) for computing L2 Steiner tree in
our implementation of finding evolution trees. In practice, we do not expect to deal with an extremely
huge number of target robots. We expect the number of robots being dealt with to be under 20, which
means the CPU time spent to compute both L1 and L2 Steiner trees is negligible.

D ROBOT EVOLUTION SPECIFICS

For robots with different state and action spaces, Meta-Evolve converts different state and action
spaces into the same state and action space with different transition dynamics. Specifically, the
kinematic trees of all robots are unified by adding additional bodies and joints, though the new bodies
and joints may be zero in their physical parameters, e.g. zero mass, zero sizes, zero motors etc, so
that the original expert policy remains intact. The zeros are inserted to the correct positions of the
state vectors of different robots to map them to the same state space. In this section, we provide more
details on the evolution of the robots used in our experiments.

Manipulation Policy Transfer Experiments We illustrate the kinematic tree of the source ADROIT
robot Kumar et al. (2013) used in our manipulation policy transfer experiments in Figure 8. During
evolution, all revolute joints gradually freeze to have a motion range of 0. On the other hand, the
prismatic joints are initially frozen with a motion range of 0, and some of their ranges gradually
increase until the same full range.

During robot evolution, the body of the ring finger gradually shrinks to be zero-size and disappears
for all target robots. Besides, other fingers may also gradually shrink and disappear for certain
target robots, e.g. the middle finger and the little finger will shrink and disappear for the two-finger
target robot. Our evolution solution includes the changing of D = 65 independent robot parameters
resulting in an evolution parameter space of [0, 1]65.

Agile Locomotion Policy Transfer Experiments During robot evolution of the agile locomotion
policy transfer experiments, the lengths of the body, thickness of the legs, and the widths of the
shoulder and hip change. This is implemented by changing the sizes of the torso frame, the size of
legs as well as leg mounting positions. The solution includes the changing of D = 5 independent
robot parameters resulting in an evolution parameter space of [0, 1]5.

E TRAINING DETAILS

Hyperparameter Selection. We present the hyperparameters of our robot evolution and policy
optimization in Table 4. To fairly compare against HERD (Liu et al., 2022a), the two methods
should be compared under their respective optimal performance. Fortunately, our Meta-Evolve and
HERD share the same set of hyperparameters while achieving their own optimal performance. This
is discovered by searching the optimal combinations of hyperparameters both methods. Another
baseline method DAPG (Rajeswaran et al., 2018) uses the same RL hyperparameters illustrated in
Table 4.

Performance Threshold for Moving to the Next Intermediate Robot. We used success rate as
the indicator for deciding whether to move on to the next intermediate robot during policy transfer.

17

Published as a conference paper at ICLR 2024

P

R

F

R
R

R

R
P

R

R

R

R
P
R

R

R

R

R

R

R

R
R

R

R

R

R

R

F

R
R

Free Joint

Prismatic Joint

Revolute Joint

Joints Frozen in Source
Robot, Evolve to be Active in
Target Robot

Joints Active in Source Robot
Hand, Evolve to be Frozen in
Target Robot

Body

P
P

Figure 8: Kinematic tree of dexterous hand robot. All revolute and free joints will gradually freeze during
evolution. The two prismatic joints are initially frozen and evolve to be active.

Hyperparameter Value
RL Discount Factor γ 0.995
GAE 0.97
NPG Step Size 0.0001
Policy Network Hidden Layer Sizes (32,32)
Value Network Hidden Layer Sizes (32,32)
Simulation Epoch Length 200
RL Traning Batch Size 12
Evolution Progression Step Size ξ 0.03
Number of Sampled Evolution Parameter Vectors for Jacobian Estimation in HERD Runs 72
Evolution Direction Weighting Factor λ 1.0
Sample Range Shrink Ratio 0.995
Success Rate Threshold for Moving to the Next Training Phase 66.7%

Table 4: The value of hyperparameters used in our experiments.

Specifically, the policy transfer moves on to the next intermediate robot if and only if the success
rate on the current intermediate robot exceeded a certain threshold. As illustrated in Table 4, 66.7%
is roughly the best option for both HERD and Meta-Evolve. Using a higher success rate threshold
may waste training overhead on intermediate robots and slow down policy transfer, while using a
lower success rate threshold may sacrifice sample efficiency in later stages of policy transfer due to
sparse-reward settings.

Evaluation Metrics. We followed HERD (Liu et al., 2022a) and adopted the training overhead
needed to reach 80% success rate as our evaluation metric. The core idea of using this evaluation
metric is to compare the efficiency of the policy transfer when the difficulty of transferring each
policy is unknown beforehand. Using an alternative success rate higher than 80% as the evaluation
metric could also be feasible. However, since the success rate threshold for moving on to the next
intermediate robot is 66.7%, the success rate increase from 80% to a higher one can only happen
after the policy transfer is completed. Therefore, the remaining part of training for reaching a higher
success rate is simply vanilla reinforcement learning on the target robots and is irrelevant to our
problem of inter-robot policy transfer, so should not be included in the evaluation.

Training Platforms. We use PyTorch (Paszke et al., 2019) as our deep learning framework and NPG
(Rajeswaran et al., 2017) as the RL algorithm in all manipulation policy transfer and agile locomotion
transfer experiments. We used MuJoCo (Todorov et al., 2012) as the physics simulation engine.

F VISUALIZATIONS

On the three Hand Manipulation Suite (Rajeswaran et al., 2018) tasks, we provide visualizations for
the expert policy on the source robot and the transferred policies on three target robots in Figure
9. As shown in the visualizations, during policy transfers, the original behaviors can be generally

18

Published as a conference paper at ICLR 2024

(a) (b) (c) (d)

Figure 9: Visualization of the trained policy rollouts on Hand Manipulation tasks Suite (Rajeswaran et al.,
2018). From the first to the third row: Hammer task, Door task and Relocate task. From left to right: (a)
source robot; (b) 2-finger target robot; (c) 3-finger target robot; (d) 4-finger target robot.

maintained in the original expert policy and also transfer it to each target robot. Please refer to the
attached supplementary video or our project website for more details on the visualizations.

19

https://sites.google.com/view/meta-evolve

	Introduction
	Preliminary
	One-to-Many Robot-to-Robot Policy Transfer
	Problem Statement
	Multi-robot Morphology Matching and Intermediate Robot Generation
	One-to-many Robot Evolution for Policy Transfer
	Evolution Tree Determination
	Discussions

	Related Work
	Experiments
	One-to-three Manipulation Policy Transfer
	One-to-six Agile Locomotion Policy Transfer

	Conclusion
	Additional Experiments on Real Commercial Robots
	Additional Discussions
	Introduction to Steiner Tree
	1-Steiner Tree
	2-Steiner Tree
	Our Implementation

	Robot Evolution Specifics
	Training Details
	Visualizations

