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ABSTRACT

Human–object interaction (HOI) inference is a crucial component of end-to-end
HOI detection, responsible for predicting the interactions between humans and
objects in an image. While query-based detectors have achieved state-of-the-art
performance in HOI detection, their interaction inference modules are typically
tightly coupled with the detection pipeline, hindering independent evaluation and
optimization. Recent research suggests that decoupling this module can improve
overall detection, yet its standalone effectiveness remains underexplored. To this
end, we introduce a dedicated evaluation framework for isolated HOI inference
modules and identifies two key factors limiting current performance: architectural
order dependency and dataset impurities. To address these issues, we propose
a novel interaction inference model that removes self-attention from the decoder
and introduce dataset refinement strategies, including verb clustering and redun-
dant bounding-box unification. Extensive experiments on multiple benchmarks
demonstrate that our approach surpasses existing inference modules by an average
of 20%mAP, confirming its effectiveness and robustness, and the optimization of
the decoupled interaction inference model further improves the end-to-end model.
Code and data are publicly available at Decoupled-HOII-AAOD.

1 INTRODUCTION

Human–object interaction (HOI) detection is a fundamental problem in computer vision, requiring
both the spatial localization of human–object entities and the classification of their interactions. As
a cornerstone of visual scene understanding, HOI detection has attracted increasing attention due to
its relevance in applications such as assistive robotics, visual surveillance, and video analysis (Be-
melmans et al., 2012; Bolme et al., 2010; Dee & Velastin, 2008; Feichtenhofer et al., 2017).

The task typically involves three sequential components: object detection, human–object pair as-
sociation, and interaction inference (Figure 1). These sub-problems are rarely solved in isolation.
Early multi-stream approaches, such as HO-RCNN (Chao et al., 2018b), InteractNet (Gkioxari et al.,

Figure 1: The three-stage paradigm for the end-to-end HOI detection. The image is presented from
the HICO-DET dataset (Chao et al., 2018a). N/I stands for no interaction.
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2018), and PD-Net (Zhong et al., 2020), as well as graph-based models including GPNN (Qi et al.,
2018), RPNN (Zhou & Chi, 2019), and SCG (Frederic Z. Zhang & Gould, 2021), generally first
detect objects, followed by joint reasoning over pair associations and interactions.

More recently, inspired by the success of DETR (Carion et al., 2020) in object detection, query-based
HOI detectors (e.g., HOI-Trans (Zou et al., 2021), QPIC (Tamura et al., 2021), GEN-VLKT (Liao
et al., 2022), HOICLIP (Ning et al., 2023), RLIP (Yuan et al., 2022)) have emerged. These methods
unify object detection and pair association into a single query-based framework and employ various
architectural designs to address challenges in interaction inference, including zero-shot generaliza-
tion and long-tail distribution issues. However, by design, query-based models tightly couple the
final-stage interaction inference module with the preceding detection pipeline, preventing its inde-
pendent evaluation and optimization.

This paper focuses on the final stage of human–object interaction (HOI) detection—the interac-
tion inference task—with particular attention to its role within query-based models, which have
demonstrated superior end-to-end performance compared to other architectures. Despite their suc-
cess, interaction inference modules in these frameworks remain inherently coupled to the detection
pipeline, limiting their independent evaluation and optimization. RLIPv2 (Yuan et al., 2023) intro-
duced an interaction inference module, R-Tagger, structurally identical to the end-to-end detector,
and showed that the end-to-end model can benefit from pseudo-labels generated by such a module.

Building on these observations, this paper argues that decoupling interaction inference modules
offers several advantages that warrant independent analysis:

1. Upper-bound performance estimation: The performance of a standalone interaction infer-
ence model can approximate the upper bound of structurally identical end-to-end detectors,
providing valuable insights for guiding future improvements in integrated models.

2. Flexible integration with other components: Decoupled inference models can be cascaded
with object detection and image captioning modules to construct end-to-end HOI detec-
tion systems capable of generating pseudo-labels for unlabeled images, with label quality
further enhanced when partial annotations are available.

3. Improved model initialization: High-quality pre-trained weights obtained from standalone
inference models can be transferred to isomorphic end-to-end architectures, facilitating
faster convergence and improved training stability.

However, preliminary experiments show that R-Tagger falls short of expectations, exhibiting sub-
stantial misattribution in pseudo-label generation. To address these issues, this paper adopts a sys-
tematic methodology that defines objective evaluation metrics and introduces improvements from
both the model and data perspectives. The main contributions are summarized as follows:

1. Architectural analysis and refinement: We investigate the order dependencies within the
R-Tagger architecture, analyze their impact on performance stability, and propose targeted
architectural modifications to mitigate these limitations. The refinement in the decoupled
HOI inference model can also be incorporated into the end-to-end HOI detection model to
boost the performance.

2. Novel evaluation metrics: We introduce evaluation metrics specifically designed for HOI
inference models, which effectively assess model performance on both positive and nega-
tive samples.

3. Dataset cleansing and open-source resources: We develop dataset refinement techniques,
including redundant bounding-box unification and verb clustering, to resolve ambiguities
during training and evaluation. The processed dataset is open-sourced to promote repro-
ducible research and accelerate advancements in the HOI detection community.

2 RELATED WORK

2.1 QUERY-BASED MODEL

The query-based paradigm, first introduced by DETR (Carion et al., 2020), has significantly ad-
vanced object detection and its related fields, including HOI detection, by leveraging a set prediction
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framework. A comparison between the evolution of query-based models in HOI detection and the
development of DETR models reveals that the latter has consistently guided progress in the former.
Enhancements to DETR backbones, such as Deformable-DETR (Zhu et al., 2021), DAB-DETR (Liu
et al., 2022), and H-DETR (Jia et al., 2023), have similarly demonstrated performance gains when
applied to HOI detection tasks (Yuan et al., 2022; 2023; Zhang et al., 2023). Building on these
insights, this paper revisits the query-based paradigm and adapts it to the interaction inference task
by explicitly addressing the issue of architectural order dependency.

2.2 HUMAN-OBJECT INTERACTION INFERENCE

Research on the human–object interaction (HOI) inference task has received considerably less atten-
tion than work on end-to-end HOI detection. Due to the virtually limitless diversity of human–object
relationships, existing HOI datasets typically provide annotations only for a subset of relation cat-
egories, which limits model generalization. To address this challenge, recent studies (Ning et al.,
2023; Liao et al., 2022; Wu et al., 2023) have explored knowledge transfer from vision–language
models (VLMs) to improve the reasoning capability of HOI inference modules. However, unlike
conventional modules, VLM-based reasoning relies heavily on external priors, necessitating care-
ful assessment of their influence. For instance, Park et al. (2025) reports that CLIP fails to handle
negation, a critical limitation for HOI models that depend on CLIP priors, since “no interaction” is
among the most important relationship categories.

In this work, we argue that evaluating decoupled interaction inference models is essential for accu-
rately assessing their reasoning ability and for understanding the performance of end-to-end HOI
detectors. To this end, we construct a dedicated evaluation framework that enables a more precise
analysis of interaction inference in isolation. Furthermore, we leverage this framework to systemat-
ically improve the design of R-Tagger, achieving notable performance gains.

3 DATASET

The original R-Tagger was trained on the Visual Genome dataset (Krishna et al., 2017). This pa-
per argues that generalization performance cannot be adequately reflected through a single dataset
and thus introduces two widely used HOI datasets—HICO-DET (Chao et al., 2018a) and V-
COCO (Gupta & Malik, 2015). Labels in the HICO-DET and V-COCO datasets consist of three
components: object classes, object bounding boxes, and relationships between human-object (H–O)
pairs. While the labels in the VG dataset is more complex, this paper only focuses on the same three
components of the labels.

3.1 REDUNDANT BOUNDING BOXES UNIFICATION

Both the HICO-DET and VG datasets suffer from superfluous detection annotations on the same
objects, i.e. redundant bounding boxes. Since the training pipeline of R-Tagger takes unlabeld H–
O pairs as negative samples, redundant bounding boxes on the same object can lead to significant
ambiguity. Therefore, a unification algorithm is necessary to cleanse these boxes.

Figure 2 visualizes the proposed method. The proposed unification algorithm first clusters all the
boxes, with each cluster corresponding to a single identical object, and then unifies the labels in each

Figure 2: The proposed unification algorithm utilized on (a) HICO-DET and (b) VG dataset.
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cluster. The goal of clustering is to sort all the boxes according to their actual bounding objects. If a
cluster contains more than one object, it indicates the presence of redundant bounding boxes within
that cluster. Note that due to the subsequent processing approach, the cluster center in this context
is not important and can be chosen arbitrarily from the cluster.

The proposed algorithm iterates through all existing clusters for each bounding box, attempting to
determine which current cluster the box belongs to. A bounding box is considered redundant to a
cluster of objects if and only if: 1. The object category is the same with all the objects in the cluster;
2. The bounding box has Intersection over Union (IOU) values of at least tl with all the boxes in
the cluster; and 3. The IOU of the bounding box and at least one in the cluster exceeds th. The
bounding box is assigned to a new cluster if it cannot be added to any existing cluster. In practice,
this paper takes th = 0.5 and tl = 0.3.

After the cluster map is obtained, there are two methods to unify the labels within each cluster: 1.
Remove the other objects, leaving their relationship labels to the cluster center. 2. Boardcast all the
relationship labels from each object to the other objects in the cluster.

This paper uses the subscript r (remove) to denote the unification method 1 and subscript b (board-
cast) to denote the unification method 2. We carefully compare the two methods by conducting
an experiment, as detailed in Table 2 and section 5.1. The results indicate that the latter method
performs better.

3.2 VERB CLUSTERING

This section aims to further cleanse the relationship labels (i.e., verb labels) to eliminate ambiguity.

The motivation for verb clustering stems from the complex verb distribution in the VG dataset,
where numerous variants of the same verb prototype exist, including various inflected forms, phrasal
constructions, and misspelled versions. Preliminary experiments reveal that a considerable portion
of text encoders, including the RoBERTa-base model utilized by R-Tagger, struggle to encode these
variations sufficiently close to one another, as they are trained within sentence- or paragraph-level
contexts. While certain text encoders, such as the all-MiniLM-L6-v2 model1 (Wang et al., 2020)
mentioned below, are capable of handling such tasks, this study does not focus on the encoder
performance within specific verb collections, and opt to cluster verbs sharing identical prototypes
prior to training and to represent them uniformly using their base forms.

Before the verb clustering, we need to deal with some special cases. The first thing is about the
representation of the ”no interaction” label, which is explicitly present in the HICO-DET dataset
but absent in the other datasets. This paper uniformly represents the ”no interaction” label as an
all-zero label across the global relationship vocabulary, as the interaction between a human-object
pair labeled as ”no interaction” may be represented by a verb that is not included in the relation-
ship vocabulary. Another issue arises in the V-COCO dataset, which contains interactions without
objects. This paper excludes these relationships from both the training and evaluation processes,
deferring this type of interaction to downstream fine-tuning on the V-COCO dataset.

Given the high quality of verbs in both the HICO-DET and V-COCO datasets, the clustering al-
gorithm treats the words and phrases therein as cluster centers, totaling 128. Subsequently, the
all-MiniLM-L6-v2 text encoder is utilized to compute cosine similarity between each relationship
label in the VG dataset and these 128 cluster centers. The cluster center with the highest similarity
score is designated as the cluster proposal for each relationship label. Then, a threshold is chosen
through the precision-recall analysis experiment based on manually annotated samples, whereby
labels exceeding this threshold are assigned to their corresponding clusters.

Excluding images without human, the VG dataset has 8063 relationship labels, including 1362 kinds
of words, 3201 kinds of two-word phrases, and 3500 kinds of longer phrases. Distinct thresholds
are selected for each of these three categories. In practice, 396 words, 1758 two-word phrases,
and 973 longer phrases are recalled. Finally, the clustering results undergo manual verification,
supplementary clustering is applied to the verb ”play”, and prepositions including ”on”, ”at”, ”with”,
and ”under” are filtered out. In summary, 2848 kinds of relationship labels in the VG datasets are
clustered into 129 categories. For clarity, we denote the VG dataset after verb clustering as VG′

1All-MiniLM-L6-v2 is a fine-tuned MiniLM on sentence-transformers (Reimers & Gurevych, 2019).
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Figure 3: The overview of the proposed model. The asymmetric language-image fusion module is
identical to that in Yuan et al. (2023). In practice, this paper utilizes ResNet-50 (He et al., 2015) for
the image encoder and RoBERTa-base (Liu et al., 2019) for the text encoder.

throughout this paper. And due to the absence of the testset, we randomly splits the VG′ dataset into
training and validation sets with a 9:1 ratio.

3.3 METRIC

As the interaction inference model works on detection results, the minimum input unit of the system
consists of an image, a human-object pair with associated detection metadata, and a vocabulary of
relationships to be inferred. For each human-object pair, the interaction inference model outputs the
confidence for each verb. Note that the HICO-DET dataset restricts the object categories that can
interact with each verb, but this paper does not employ this constraint in the evaluation.

In this paper, inference models are evaluated using two metrics: mean average precision over labeled
pairs (mAPl) and mean average precision over all pairs (mAPa), both calculated by averaging the
AP values across all relation categories. The metric mAPl exclusively assesses the model’s reason-
ing ability on labeled human-object pairs, while mAPa further evaluates the model’s performance
on irrelevant H–O pairs by assigning unlabeled pairs as negative samples.

4 STUDY ON ARCHITECTURAL ORDER DEPENDENCY

We first begin by briefly outlining the architecture of R-Tagger (Yuan et al., 2023), then analyze the
order dependencies embedded within its design, evaluate their impact on performance, and finally
propose targeted solutions to address these issues.

R-Tagger adopts an encoder–decoder architecture. It takes as input an image, a vocabulary consist-
ing of object classes (nouns) and relationships (verbs), as well as a batch of Np H–O pairs with
their bounding boxes and class labels. The image encoder extracts visual features, while the text
encoder encodes the noun and verb embeddings. These features are fused through an Asymmet-
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Table 1: Performance of R-Tagger fine-tuned on the V-COCO, HICO-DETb, and VG′
b datasets under

various configurations, measured on the HICO-DETb testset.

Queries input Vocabulary input mAPl mAPa

Each H–O pair once, labeled pairs first Global verbs 51.7% 47.8%
Each H–O pair twice, labeled pairs first Global verbs 47.4% 43.3%
Each H–O pair once, shuffle queries Global verbs 42.6% 39.8%
Each H–O pair once, shuffle queries Sample to 100 verbs 42.7% 39.4%
Each H–O pair once, shuffle queries Sample to 90 verbs 42.7% 39.5%
Each H–O pair once, shuffle queries Sample to 80 verbs 42.3% 39.9%

ric Language–Image Fusion module, where the term asymmetric reflects the different depths of the
image and text encoding layers, and the fusion is performed using gated cross-attention.

Structurally identical to the end-to-end detector RLIPv2, R-Tagger employs a two-stage deformable
decoder (Zhu et al., 2021). In the end-to-end model, the first-stage decoder applies self-attention to
Np learnable query pairs (2Np queries in total) and performs deformable cross-attention with fused
image features to generate paired H–O hidden states. Object categories are predicted by computing
similarities with fused noun features, while bounding boxes are refined iteratively using the same
mechanism as Deformable DETR.

In the decoupled interaction inference setting, R-Tagger takes detection metadata of H–O pairs as
input queries, effectively modeling the entire first-stage decoder as a reconstruction module. The
second-stage decoder then processes Np learnable queries, producing Np verb hidden states. At
each decoder layer, the paired H–O hidden states are merged and added to the query inputs, and the
relationships for each H–O pair are inferred by computing similarities with the fused verb features.

Ideally, for a given image, the confidence score predicted by the interaction inference model for
a specific relation in a human–object pair should be order-invariant—that is, it should remain
unaffected by the composition or ordering of the input set. However, the architecture of R-Tagger
deviates from this ideal due to three structural factors:

Self-attention in the decoder: The self-attention layers make the outputs dependent on the set of
query inputs, as each query output is computed as

q′i = softmax
(
qiQ

T

d

)
Q,

where interactions among all queries influence the result. Consequently, the representation for an H–
O pair becomes context-dependent; it is inevitably modulated by all other pairs concurrently present
in the input set.

Learnable queries in the second-stage decoder: The use of distinct learnable queries, which are
directly added to the outputs of the first-stage decoder, introduces sensitivity to the order of input
queries, as permutations alter the corresponding query embeddings.

Bi-directional cross-attention in the language–image fusion module: This mechanism renders
the outputs sensitive to the noun and verb vocabulary, since changes in the vocabulary modify the
attention map and, consequently, the fused representations.

During training, labeled H–O pairs are consistently placed at the beginning of the input list; there-
fore, the model’s performance under this configuration is regarded as the ideal baseline. As shown
in Table 1, three sets of control groups are conducted to quantify the impact of the three factors:

Factor 1 (Self-attention sensitivity): To assess the effect of self-attention, we duplicated all H–
O pairs while retaining labeled pairs at the beginning. Ideally, the model should assign identical
confidence scores to the duplicated entries. However, experiments reveal a 4% drop in both metrics,
indicating that factor 1 introduces significant instability into the model’s predictions.

Factor 2 (Order sensitivity of learnable queries): To evaluate order sensitivity, we shuffled the
input list of H–O pairs. This setup reflects realistic conditions where the order of pairs is unknown.
The results show a 9.1% drop in mAPl and a 8.0% drop in mAPa compared to the baseline, con-
firming that factor 2 severely affects performance stability.
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Figure 4: Qualitative improvements from our method on (a) HICO-DET and (b) V-COCO datasets.

Factor 3 (Vocabulary sensitivity in fusion): To analyze vocabulary dependency, we introduced
three variants by expanding the verb set to 100, 90, and 80 verbs (sampled by frequency) in addition
to the labeled verbs. The results exhibit only minor fluctuations, suggesting that the negative impact
of factor 3 is limited. This finding aligns with the generally demonstrated robustness of vision–
language fusion modules in detection models (Liu et al., 2024; Cheng et al., 2024).

As shown in Figure 3, this paper proposes removing the self-attention layers in the decoder and
replacing the learnable queries of the second-stage decoder with a broadcast form derived from a
single learnable query, thereby addressing the architectural order dependency of the decoder.

5 EXPERIMENTS

The training pipeline of the proposed model is slightly modified but fundamentally aligned with that
of R-Tagger. In addition to human-object pairs with relationship labels, unlabeled pairs are also used
as negative samples during training. The vocabulary input comprises all relationship categories in
the training datasets, as well as the supersampled object classes. Specifically, in addition to the object
classes present in the current samples, additional object classes are sampled based on their frequency
in the training datasets. This paper also utilizes the identical denoising training, introducing noises
to the first-stage decoder to better converge the reconstruction module.

The overall loss L consists of the loss from the first-stage decoder (reconstruction loss Lrec) and the
loss from the second-stage (relationship) decoder Lrel:

L = Lrec + Lrel (1)

Lrec = λ1Ll1 + λ2LGIoU + λ3 (Lh + Lo) (2)

Lrel = λ4

∑
s

θsLr,s, s ∈ {labeled, unlabeled} (3)

where Ll1 and LGIoU denote the ℓ1 loss and the GIoU loss (Rezatofighi et al., 2019) for box regres-
sion, Lh and Lo denote the cross-entropy loss for human and object classes, Lr denotes the focal
loss (Lin et al., 2017) for relations, and the subscript s denotes the subset of labeled pairs or unla-
beled pairs. In practice, λ1, λ2, λ3, andλ4 are set to 2.5, 1, 1, and 1 respectively as fixed weight over
different tasks; θlabeled and θunlabeled are set to 1 and 24.

Given the additional datasets and based on preliminary experiments validating convergence ade-
quacy, this paper adopts a training configuration with longer epochs for all the fine-tuned models
unless otherwise specified: the AdamW optimizer (Loshchilov & Hutter, 2019) with an initial learn-
ing rate of 2e-4, learning rate decay by a factor of 10 every 15 epochs, and training for 33 epochs.
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Table 2: The performance of the proposed model fine-tuned on different unification methods and
evaluated on the testset of the HICO-DETb dataset.

Unification mehod mAPl

Not unify 32.1%
Remove 39.8%

Boardcast 52.4%

Following the R-Tagger configuration, the image and text encoders use learning rates that are one-
tenth of those applied to other model components. All experiments are conducted with a batch-size
of 2 across 8×RTX 3090 GPUs.

5.1 STUDY ON THE UNIFICATION METHODS

This section proposes to study on the better way to unify the clustered boxes. As mentioned above,
the redundant bounding boxes unification method is applied to the HICO-DET dataset and the VG
dataset. Since non-exhaustive annotations and annotation errors are much more prevalent in the VG
dataset, experiments are conducted on the HICO-DET dataset, and the results are used to guide our
approach to the VG dataset.

Models with pretrained weights from R-Tagger are fine-tuned on various unified datasets and evalu-
ated on the testset of the HICO-DETb dataset. As shown in Table 2, experiment results demonstrate
that the broadcast-based unification method performs better.

5.2 PERFORMANCE OF THE PROPOSED MODEL

In this section, we propose evaluations on the proposed method that addresses architectural order
dependency in the query-based model. The mAPa metric is excluded specifically in the VG dataset
due to the presence of non-exhaustive annotations and annotation errors.

As shown in Table 3, the experimental results demonstrate that the proposed model addressing ar-
chitectural order dependency achieves significant improvements over R-Tagger across all datasets
on both the mAP value and the drop in mAPa compared to mAPl. Specifically, the latter demon-
strates the proposed model’s improved performance in reasoning with negative samples. Figure 4
shows the improvements of the proposed model on both the labeled and unlabeled samples across
the HICO-DET and V-COCO datasets. Note that due to the severe annotation errors and missing
annotations in the VG dataset, even after the redundant bounding boxes unification, only a small
portion of these issues can be resolved, resulting in low model performance on the VG dataset.

Given its demonstrated effectiveness in RTagger, we extend the proposed method to the structurally
identical end-to-end model RLIPv2. Experiments demonstrate an 1% improvement in mAP per-
formance on the HICO-DET dataset and a 0.3% improvement on the V-COCO dataset. In further
comparison with state-of-the-art query-based end-to-end HOI detection models, our work offers
insights into the performance upper bounds achievable by this architecture on relevant datasets.

5.3 ABLATION STUDY

Although numerous ablation studies on R-Tagger have been conducted in Yuan et al. (2023), this
section further proposes ablation studies on two key yet potentially controversial components.

Firstly, concerning that the output of the first-stage decoder can be directly transformed into equiva-
lent input representations, it is reasonable to question whether this decoder could be bypassed, with
the second-stage decoder input constructed directly from the original input. To comprehensively
investigate this hypothesis, four control groups were established for comparative analysis:
Control group 1: Follow the proposed model, except without using Lrec in calculating the loss.
Control group 2: Remove the first-stage decoder and directly concatenating its input to the output.
Control group 3: Based on 2, double the number of layers in the second-stage decoder.
Control group 4: Based on 2, use learnable queries instead of indexed noun features.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Evaluation results of the proposed Addressing Architectural Order Dependency (AAOD)
method compared with R-Tagger and current remarkable query-based end-to-end HOI detection
models, all utilizing a ResNet-50 backbone. R-Tagger’ denotes R-Tagger fine-tuned on the HICO-
DETb, V-COCO, and VG′

b datasets.

Model HICO-DETb testset V-COCO testset VG′
b valset

mAPl mAPa mAPl mAPa mAPl

R-Tagger 9.0% 6.1% 34.9% 12.5% 5.8%
R-Tagger’ 42.6% 39.8% 55.3% 34.9% 6.0%
R-Tagger’ AAOD 52.4% 50.6% 80.6% 68.9% 30.6%
QPIC (Tamura et al., 2021) 29.9% 61.0%
GEN-VLKT (Liao et al., 2022) 33.8% 64.5%
HOICLIP (Ning et al., 2023) 34.7% 64.8%
PViC (Zhang et al., 2023) 34.7% 67.8%
Pose-Aware (Wu et al., 2024) 35.9% 66.6%
RLIPv2 (Yuan et al., 2023) 35.4% 68.0%
RLIPv2 AAOD 36.4% 68.3%

Table 4: Performance comparisons w/ and w/o the reconstruction module and deformable attention.

Model HICO-DETb testset V-COCO testset VG′
b valset

mAPl mAPa mAPl mAPa mAPl

Proposed 52.43% 50.55% 80.57% 68.94% 30.58%
Control group 1 51.75% 49.35% 80.81% 67.37% 27.49%
Control group 2 44.09% 33.62% 63.59% 14.82% 19.43%
Control group 3 39.14% 26.82% 60.81% 12.49% 18.12%
Control group 4 38.85% 24.19% 50.54% 6.34% 8.92%
Control group 5 50.27% 48.32% 79.52% 68.42% 27.04%

Another issue worth investigating occurs in the second-stage decoder. Since the deformable attention
layer relies on corresponding detection boxes to constrain reference points, and the second-stage
decoder lacks corresponding supervisory information, the linear layer that maps query outputs to the
bounding box refinement vector is essentially frozen. Therefore, it is reasonable to question whether
the second-stage decoder converges sufficiently. For comparison, control group 5 was established in
which deformable attention was substituted with classic attention. Since the deformable transformer
converges faster, the period before the learning rate decays was extended to 20 epochs, and the total
training duration was increased to 50 epochs to ensure sufficient convergence.

For the first hypothesis, as shown in Table 4, when the first-stage decoder is eliminated, the model
exhibits substantially inferior performance relative to the original architecture, regardless of whether
learnable queries are employed or parameters are compensated. The comparison between control
groups 2 and 4 demonstrates that object categories constitute a strong cue that promotes model
convergence. The performance of the control group 1 is slightly lower than origin but significantly
surpasses that of the control group 3. This suggests that the strategy of buffering first-stage decoder
outputs and integrating them into the query inputs across all layers of the second-stage decoder
provides considerable benefits for model convergence. For the second concern, control group 5
demonstrate that the classic attention failed to exhibit substantially significant performance gains.
Considering computational efficiency, it is reasonable to retain the deformable attention layers.

6 CONCLUSION

This paper constructs metrics for the task of human-object interaction inference, and evaluate
the proposed query-independent model with cleansed datasets. Results have shown a significant
progress compared with the former query-based interaction inference model R-Tagger. Future work
includes improving the performance of interaction inference models in zero-shot scenarios and ad-
dressing the long-tail distribution challenges prevalent in HOI datasets.
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