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Abstract

The ability to compositionally map language to referents, relations, and actions
is an essential component of language understanding. The recent gSCAN dataset
(Ruis et al. 2020, NeurIPS) is an inspiring attempt to assess the capacity of models
to learn this kind of grounding in scenarios involving navigational instructions.
However, we show that gSCAN’s highly constrained design means that it does
not require compositional interpretation and that many details of its instructions
and scenarios are not required for task success. To address these limitations,
we propose ReaSCAN, a benchmark dataset that builds off gSCAN but requires
compositional language interpretation and reasoning about entities and relations.
We assess two models on ReaSCAN: a multi-modal baseline and a state-of-the-art
graph convolutional neural model. These experiments show that ReaSCAN is
substantially harder than gSCAN for both neural architectures. This suggests that
ReaSCAN can serve as a valuable benchmark for advancing our understanding of
models’ compositional generalization and reasoning capabilitiesl]

1 Introduction

Natural languages are compositional |1} |2} 3] and grounded |4.|5,16]; the meanings of complex
phrases are derived from their parts, and meaning itself is defined by a mapping from language to
referents, relations, and actions. It is therefore vital that we push NLP systems to be grounded and
compositional as well. However, the major benchmarks in the field right now mostly do not support
rich grounding, and it is often unclear whether they support learning compositional structures, as
evidenced by their common failures at simple adversarial tests involving compositionality [7/8!9].

There are several benchmarks for testing compositional generalization [10}[111[12][13|[14]. SCAN [12]
focuses on compositionality in the area of interpreting navigational instructions. Building off SCAN,
Ruis et al. [14] propose a grounded version of SCAN called gSCAN, in which agents have to
ground navigation commands in a grid world in order to identify the correct referent. gSCAN
supports learning in idealized scenarios involving navigational instructions, and it seeks to probe for
compositionality. The design is simple and flexible, making it a potentially valuable benchmark and a
source for insights into how to design robust tests of language understanding.

However, we find that gSCAN has three major limitations: (1) its set of instructions is so constrained
that preserving the linguistic structure of the command is not required; (2) the distractor objects in its

*Equal contribution.
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Figure 1: Four command—world pairs for different command patterns. ReaSCAN’s simple command is
equivalent to gSCAN commands [14] but the structure of the sampled grid world differs. RD indicates that
distractors are randomly sampled. A sample of potential referent targets is highlighted with green dashes. The
actual target for the given the command is shaded in red and its direct distractors are shaded in blue.

grounded scenarios are mostly not relevant for accurate understanding; and (3) in many examples,
not all modifiers in the command are required for successful navigation, which further erodes the
need for compositional interpretation and inflates model performance scores.

In this paper, we propose ReaSCAN, a benchmark dataset that builds off gSCAN and addresses
its limitations. Figure provides examples and a comparison with gSCAN. We establish that
ReaSCAN requires both compositional language interpretation and complex reasoning about entities
and relations. Like gSCAN, ReaSCAN is algorithmically generated, which allows us to vary the
difficulty of the learning problems we pose and thus diagnose model limitations with precision. In
addition, we introduce a range of complex distractor sampling strategies which, in case of incorrect
target identification, can help pinpoint which failure in command understanding led to the error. This
allows us to show that challenging distractors can severely impact performance in this task.

We assess two models on ReaSCAN: a multi-modal baseline and a state-of-the-art graph convolutional
neural model. These experiments show that ReaSCAN is substantially harder than gSCAN for both
neural architectures, and they verify that we can modify the difficulty of learning tasks in the desired
ways to achieve fine-grained insights into model performance and model limitations. This suggests
that ReaSCAN can serve as a valuable benchmark for advancing our understanding of models’
compositional generalization and reasoning capabilities in linguistic tasks. We hope also that the
general techniques used to move from gSCAN to ReaSCAN can be applied more generally in the
design of future benchmarks for assessing grounded, compositional language use.

2 Related Work

There are a variety of efforts underway to more deeply understand how neural models ground linguistic
cues with visual inputs, including visual question answering [[10!/15/16}|17}/18]], image captioning [19}
20.|21]), referring expression resolution [12}|14], navigation [22/|23}/24] and program induction and
synthesis [25}126, |27]. Similar to previous synthetic benchmarks, our work aims to provide a
controlled environment that can be used to evaluate a neural model’s generalization capabilities
according to a variety of specific generalization tasks. We focus on evaluating compositional
generalization with grounded referring expression resolution.

A number of recent approaches involve generating synthetic datasets to evaluate compositional gener-
alization of neural models [10!/11}|13!|128}129/|30!|31!/32]. For instance, [31] proposed CLOSURE,
a set of unseen testing splits for the CLEVR dataset [10] which contains synthetically generated
natural-looking questions about 3D geometric objects. Our work investigates a similar generalization
over grounded linguistic inputs in a visual scene but focuses specifically on a model’s capability to
resolve linguistic compositionality. We evaluate the generalization capabilities of neural models by
testing them against unseen compositions of the language input which require grounding in simulated
shape worlds.



Models performing well on gSCAN are a promising first test case for ReaSCAN. Numerous ap-
proaches have been proposed to handle at least some of the challenges posed by SCAN and gSCAN
datasets including novel data augmentation methods and neural architectures [33!|34)135/36.|371|38
39.140]. Successful neural models on gSCAN involve compositional neural networks which increase
generalizability [38]] and language conditioned graph neural networks for encoding objects [39].
While these techniques solve some of the simpler splits in gSCAN involving generalization of novel
object attributes [39]], we show that they are still ineffective for similar splits of ReaSCAN in Sec-
tion ReaSCAN, therefore, provides a more challenging benchmark, revealing clear shortcomings
of current models’ generalization capabilities.

3 Background: The Grounded SCAN Benchmark (gSCAN)

The gSCAN benchmark is an extension of the SCAN dataset [12] with a focus on grounding actions
in a changeable environment. In gSCAN, a grid world containing an agent and several shapes is
paired with a command, such as “walk to the red square cautiously”. The goal is to generate an action
sequence like (left,right,right,left) that lets the agent execute the command in that particular
world to reach the referent target. Adverbs like “cautiously” assign specific modes of movement
to the overall sequence. gSCAN enables tests for compositional generalization by presenting the
model with unseen verb—adverb combinations (“walk cautiously” vs. “push cautiously’), unseen
adjective—noun compositions, unseen color—shape feature co-occurrences on objects, and unseen
locations for the target referent.

The guiding ideas behind gSCAN seem powerful and relevant, but we identify four ways in which
specific design choices reduce the potential of the dataset to achieve its central goals:

1. Irrelevance of Word Order Since gSCAN is meant to be a simple synthetic dataset, all com-
mands consist of a verb, a noun phrase consisting of a noun with a potential color and/or size modifier,
and an optional adverb. Given this template, the word order of the input command is irrelevant
for determining the correct action sequence. The words “walk to the red square cautiously” can
be scrambled and still yield a unique order with only a single potential referent. Consequently,
Bag-of-Words accounts are in principle sufficient for encoding the gSCAN commands. As a point of
contrast, the commands in the earlier SCAN dataset, such as “walk twice and jump thrice”, cannot
be scrambled in this way without a task-relevant loss of information, and are therefore much more
challenging to solve on the command level.

2. A Limited Test for Linguistic Compositionality gSCAN includes a test set in which all com-
mands involve a previously unseen referring expression combination (the novel NP “yellow square”),
with the goal of seeing whether models can predict the meaning of the whole from its parts “yel-
low” and “square”, which are seen in training. This is a clear test for compositionality. However,
unfortunately, the split creation process didn’t inherently require an understanding of “yellow” and
“square”_to be necessary for a unique identification in a specific world. In the split provided by the
authorsmboth the color and shape feature are only required in 62.7% of all test examples. (Color is
sufficient in 25.2% of all test examples, shape in 10.6%, and either of the two in 1.4% of all cases.)
gSCAN also includes a test split designed to require feature attribute composition: in training, the
referent target is never an object with the color feature red and shape feature square. At test time,
only red squares are targets and are referred to with all valid referring expressions (i.e., “(smalllbig)?
red? square”). As in the previous split, color and shape feature in the command are necessary in just
62.5% of all test examples, making it equally unsuitable for investigating linguistic compositionality.

3. Biased Distractor Sampling Distractor sampling in gSCAN relies on random selection of all
objects that are not mentioned in the command. In general, if the utterance mentions a blue circle,
the algorithm creates all possible objects that aren’t blue circles. Then, it selects half of them as
distractors. There is one exception: if the utterance contains a size modifier (as in “small blue circle”),
there will be a big blue circle as a distractor. Due to the distractor sampling design, simple utterances
such as “the circle” will only have one distractor, while more complex utterances will have many
more. This makes by-chance accuracy dependent on the informativity and complexity of the linguistic
expression.

"https://github.com/LauraRuis/groundedSCAN



4. Too Few Effective Distractors As shown in the first example for gSCAN of Figure the output
action sequence stays the same even if we randomly reorder all objects except the referent target. In
fact, as long as they don’t introduce reference ambiguity, the size, color, and shape of other objects
can be modified without any effect on the output action sequence. As a result, grounding is based on
essentially two objects, the two red circles. (See Sectionfor details about how distractors affect
performance.)

In sum, gSCAN provides novel systematic ways of investigating grounded language understanding
but it lacks a way to keep investigating the syntactic compositional questions in the command which
motivated SCAN. ReaSCAN introduces a more complex command structure that enforces models to
retain some linguistic structure to solve it, and contains compositional splits that ensure the necessity
of compositional generalization capabilities for the input command. Due to the more complex
command structure, this requires elaborate distractor sampling strategies with the goal to make
distractors maximally competitive to promote grounding to multiple objects in the world.

4 The Reasoning-based SCAN Benchmark (ReaSCAN)

We now introduce ReaSCAN, which seeks to address the above limitations of gSCAN. Like gSCAN,
ReaSCAN is a command-based navigation task that is grounded in a grid world containing an agent,
a referent target, and a set of distractors, as shown in Figure

Given a command C; paired with a corresponding grid world W; ;, the goal is to generate an action
sequence a; ; which contains the actions that the agent needs to take in order to reach the target
referent and operate on it. An oracle model learns a mapping G that formulates a; ; = G(W; ;, C;)
for ¢ € [1, N], where N is the number of commands, and j € [1, M|, where M is the number of
worlds generated for each command.

Crucially, ReaSCAN extends gSCAN while ensuring two main desiderata: (1) word-order permu-
tations in the command will lead to ambiguities about the intended referent, requiring a model to
resolve linguistic structure, and (2) the identity of the referent depends on reasoning about multiple
distractor objects in the world. Consider the 2-relative-clauses example (third from left) in
Figure If we scramble the word order of the command by swapping attributes between the second
and the third objects, and change them to “small blue circle” and “red cylinder”, the referent target
changes (e.g., object D1 in the world); additionally, if the model only understands the first relational
clause “the same column as a blue cylinder”, it may discover multiple referent targets (e.g., object
D2-1 in the world). These modifications ensure that understanding ReaSCAN commands requires
resolving the syntactic structure of the command, while largely maintaining the simplicity of SCAN
and gSCAN.

In the following sections, we discuss the key components of ReaSCAN. We first introduce the process
of generating ReaSCAN commands. Next, we describe how commands are grounded with shape
worlds, and specifically the distractor sampling strategies. Finally, we propose test splits which
provide systematic tests of a model’s generalization abilities We discuss potential ReaSCAN
artifacts in Appendix|[B]

4.1 ReaSCAN Command Generation

ReaSCAN commands are constructed with the following regular expression pattern:
Pattern := $VV $0BJ (that is $REL_CLAUSE (and $REL_CLAUSE)%)* $ADV?

where the recursive structure allows commands to contain multiple relative clauses and conjunctive
clauses. If there is no relative clause, the resulting commands are comparable to gSCAN commands
(e.g., “walk to the red square cautiously’). From the regular expression, commands are created by
sampling terms from each class, where classes are indicated by “$” in the pattern as defined in TableE]
For example, we substitute $REL $0BJ for $REL_CLAUSE, and we can further recursively sample
terms from expression classes.

During this process, we also introduce restrictions to avoid ungrammatical and unnatural commands,
enforced by rule-based conditional sampling. This way, commands such as “walk to the square that

>We release the version of ReaSCAN used in this paper, and our code to generate ReaSCAN at https:
//github.com/frankaging/Reason-SCAN,



same row as same column as

V4

Syntax Descriptions Expressions

7 |
$Vv  verb {walk to, push, pull} | . hd
$ADV  adverb {while zigzagging, while spinning,
cautiously, hesitantly }
$SIZE attribute {small, big}* same color as same shape as
$COLOR attribute {red, green, blue, yellow}
$SHAPE attribute {circle, square, cylinder, box, object} ] .
$0BJ  objects (al the) $SIZE? $COLOR? $SHAPE 7
$REL relations {in the same row as, in the same column as,

same size as inside of

in the same color as, in the same shape as,
in the same size as, inside of }
$REL_CLAUSE clause $REL $0BJ

Table 1: Definitions of syntax used in ReaSCAN command generation.*the .
actual size of any shape is chosen from {1,2,3,4} as in gSCAN [14].

Figure 2: Relations.

is in the same color as the red circle” would be excluded, as “walk to the red square” is a shorter and
more direct formulation with the same meaning. See Appendixfor details about our rule-based
conditional sampling over commands.

In this data creation procedure, both the relative clauses and conjunctive clauses have the flexibility
to expand in depth and in width. In this paper, we focus on commands with a maximum of a single
conjunction of two relative clauses. In total, we generate the following commands:

e Simple:= $VV $0BJ $ADV? (equivalent to gSCAN commands)
e l-relative-clause:= $VV $0BJ that is $SREL_CLAUSE $ADV?
e 2-relative-clauses:= $VV $0BJ that is $REL_CLAUSE and $REL_CLAUSE $ADV?

We use our framework to generate three separate subsets for each command pattern. We then define
random train/dev/test splits for each of the subsets to benchmark difficulty (see Section|6.1|for details),
where Simple commands are equivalent to gSCAN commands. As shown in Figure[4] the action
sequence length has the same distribution as gSCAN and across all patterns.

4.2 ReaSCAN World Generation with Active Distractor Sampling

Similar to gSCAN, we use the open-sourced MiniGym from Open-A to generate multiple shape
worlds for each command. Objects are freely placed in an n x n grid-world, where we fix n = 6.
Given a command C;, objects and their locations are determined as follows: (1) We select objects
mentioned in C;, initialize them with their specified features, and randomly fill underspecified
features. For instance, in Figure the command requires the second object to be green and a circle,
but its size is not specified and so size is randomly assigned (e.g., here as big). (2) The objects are
randomly placed on the grid while ensuring the relations expressed in C; are true. (3) We sample
distractors in a way that ensures that failure to fully understand C; has a high likelihood of leading to
an incorrect prediction about the target.

As discussed in Section careful distractor sampling is essential for ensuring that our dataset can be
used to assess systems for compositionality. Distractors must reliably introduce uncertainty about the
identity of the target.

For example, if the target is a small red circle, a large red circle competes with the target in the size
dimension, and confusing the distractor with the target would indicate a lack of understanding of the
size domain or its composition. Distractors that have little in common with the target are therefore
weak distractors. We employ four distractor-sampling methods that ensure a challenging task that can
be used to reliably diagnose specific model shortcomings. We exemplify their purpose by referring
back to the 2-relative-clauses example (i.e., the third example) in Figure

*https://github.com/maximechb/gym-minigrid
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mand.

Attribute-based distractors compete with the target if a model struggles with size, color, and shape
features. They are created by simulating a change of one of these features in the command and adding
objects to the world which make a distractor the plausible target. For instance, if we substitute the
shape attribute of the “blue cylinder” to “circle” in the command, the referent target changes (e.g.,
it could be object D3 in the world). Correctly interpreting the shape attribute becomes crucial for
correct target identification.

Isomorphism-based distractors become potential targets after word-order permutations of the
command. For instance, if we scramble the word order of the command by swapping attributes
between the second and the third objects, and change them to “small blue circle” and “red cylinder”,
the referent target changes (e.g., object D1 in the world). These distractors are crucial to ensure the
necessity of linguistic compositionality to solve the task while Bag-of-Words models can maximally
achieve chance accuracy.

Relation-based distractors ensure that the relative clauses in the command are required to identify
the intended target referent. For instance, if the model only understands the first relational clause “the
same column as a blue cylinder”, other distractors may become the referent target (e.g., object D2-1
in the world); similarly, if the model only understands the second relational clause “the same row as a
small red circle”, object D2-2 in the world may become the referent target.

For each world, we sample relation-based distractors exhaustively, and we sample at least one attribute-
based distractor by randomly selecting one object and perturbing its attribute. For isomorphism-
based distractors, we randomly select any pair of objects and swap attributes if applicable. If a
distractor-sampling method cannot work for a specific command-world pair, we incorporate random
distractors by randomly sampling a size, color, and shape for each random distractor. This results in
a maximum of 16 objects in each generated world. (For gSCAN, the maximum is 12.)

For size, which is described by relative scalar adjectives [41], we added an additional constraint.
If the command contains a size modifier, a world always contains a distractor of a different size
(similarly to gSCAN). To avoid vagueness about the intended referents, we ensure that there are only
two sizes in that particular world.

As the complexity of distractors increases, there is an increased probability that there could be more
than one object in the world that could be the target referent. To ensure a unique solution for all
examples, we develop graph-based representations (see Figure for an example) of our shape worlds
and use sub-graph matching algorithms to validate examples (see Appendix@for details).

4.3 Compositional Splits

ReaSCAN allows us to define a variety of different train/dev/test splits that vary in complexity.
Table provides an overview of the splits that we have explored to date. Test splits from category A
investigate novel attribute compositions at the command and object level (see Section , which are
adapted from gSCAN. Test splits in category B investigate how a model generalizes to previously
unseen co-occurrences of concepts, including both objects and relations (see Section , unique to



P P 0
Command-World Pairs Exact Match% (Std.)

Random M-LSTM GCN-LSTM
Train Dev Test Dev Test Dev Test Dev Test
gSCAN 367,933 19,282 3,716 - - - 97.69 (0.22) - 98.60 (0.95)
Simple 113967 6,318 1215 0.17 (0.06)  0.11(0.13) 93.39(1.97) 93.64 (2.52) 98.06 (0.98)  97.86 (1.27)
1-relative-clause 340,985 18,903 3,635 0.14 (0.04)  0.12(0.02) 60.68 (3.04) 61.28 (1.81) 97.25(0.68)  97.19 (0.79)
2-relative-clauses 549,634 30,470 5,859 0.12(0.01)  0.13(0.03) 53.08 (13.9) 52.77 (14.6) 96.80 (0.82)  96.85 (0.75)
2-relative-clauses (RD) 569,835 31,590 6,075 0.16 (0.02)  0.12(0.05) 89.56 (0.66)  89.81 (0.60) 98.14 (0.45)  97.97 (0.48)
A1l 539,722 29,920 5,753 0.13(0.02)  0.14 (0.03) 78.48 (1.38) 79.04 (1.24) 98.78 (0.55)  98.96 (0.59)

Table 2: ReaSCAN statistics with random splits and performance results of baseline models trained separately
for each command pattern. A1l excludes compositional splits. Results are aggregated from 3 independent
runs with different random seeds. Performance for gSCAN is from the original papers for M-LSTM [14] and
GCN-LSTM [39].

ReaSCAN. Finally, category C investigates if a model can extrapolate from simple to more complex
embedded phrase structures (see Section

5 Models

We report ReaSCAN experiments with three models. We give high-level descriptions here, and
Appendixprovides additional details.

Random Baseline A sequence-generation model that randomly samples actions from our vocabu-
lary and generates action sequences with the same lengths as the actual action sequences. This serves
as the lower bound of model performance.

M-LSTM A multimodal LSTM model, which we adapted from a model proposed for gSCAN [14].
This is a sequence-to-sequence (seq2seq) model [42] that takes an encoding of the visual input as a
separate modality. The encoder consists of two parts: a bidirectional LSTM (BiLSTM,; [43}44]) as
the language encoder for the commands, and a convolutional network (CNN) [45] as the shape-world
encoder. Given a world-command pair (W, ;, C;) as the input, the goal is to generate an action
sequence a; ;. The output sequence is generated by an attention-based bidirectional LSTM.

GCN-LSTM A graph convolutional neural (GCN) network with a multimodal LSTM which is, to
the best of our knowledge, the currently best-performing model on gSCAN [39]. The model encodes
commands using a BILSTM with multi-step textual attention [46]. The shape world is encoded using
a GCN layer. The command embedding is fed into the GCN, which makes it language-conditioned.
The nodes in the GCN are initialized with representations of the objects in the shape world, where
these representations are binary encodings of the objects’ attributes. Then, it performs multi-rounds
message passing to contextualize object embeddings based on relations. Then, the object embeddings
are fed through another CNN layer before feeding into an attention-based BiLSTM together with the
command embedding to generate the output sequence, as in Ruis et al. [14].

6 Experiments

6.1 Random Split

We generate large random splits for all patterns to validate that models can learn to follow ReaSCAN
commands when there are no systematic differences between training and testing. We do this while
systematically varying the complexity of the inputs, from Simple (no relative clauses, as in gSCAN)
to 2-relative-clauses, and we evaluate when merging all three together (A11). Appendix
provides additional details concerning how these splits are created.

The results in Table show that the GCN-LSTM is uniformly superior to the M-LSTM. In addition, for
both models, performance drops as the number of relative clauses grows. The M-LSTM performs far

*We don’t report on some splits from gSCAN, such as novel relative agent positions, novel action length, and
novel adverbs, since ReaSCAN introduces only minimal changes for these conditions. However, our ReaSCAN
pipeline generates these splits as well.



Exact Match% (Std.)

Compositional Splits Command-World Pairs Random M-LSTM GCN-LSTM
Simple (Test) 921 0.07 (0.06) 96.27 (0.54) 99.71 (0.22)
l1-relative-clause (Test) 2,120 0.08 (0.07)  79.09 (2.63) 99.14 (0.23)
2-relative-clauses (Test) 2,712 0.10(0.02) 73.16 (1.85) 98.58 (0.54)
A1l (Test) 5,753 0.14 (0.03) 79.04 (1.24) 98.96 (0.59)
Al:novel color modifier 22,057 0.12 (0.05) 50.36 (4.03) 92.25(0.77)
A2:novel color attribute 81,349 0.14 (0.01) 14.65 (0.55) 42.05 (4.55)
A3:novel size modifier 35,675 0.14 (0.03) 5098 (3.69) 87.46(2.22)
Bl:novel co-occurrence of objects 10,002 0.12(0.03) 52.17 (1.63) 69.74 (0.30)
B2:novel co-occurrence of relations 6,660 0.16 (0.05) 39.41 (1.53) 52.80(2.75)
Cl:novel conjunctive clause length 8,375 0.10 (0.01) 49.68 (2.73) 57.01 (7.99)
C2:novel relative clauses 8,003 0.09 (0.02) 25.74 (1.36) 22.07 (2.66)

Table 3: ReaSCAN statistics with compositional splits and performance results of baseline models trained with
all command patterns. Results are aggregated from 3 independent runs with different random seeds.

worse with longer clauses (43.65% drop from Simple to 2-relative-clauses). The GCN-LSTM
experiences smaller drops (1.03% from Simple to 2-relative-clauses). These results suggest
that graph-based neural networks may be better at capturing relations between objects and reasoning
over relations than the plain CNNs used by the M-LSTM. Additionally, the GCN-LSTM shows smaller
standard deviations from random initializations, suggesting it is more robust on the ReaSCAN task as
well.

When we resample shape worlds with only random distractors, the performance of both models
increases. In fact, with random distractors, test performance of 2-relative-clauses drops less
than 4% compared to the Simple conditions, for both models. This finding reinforces the importance
of sampling challenging distractors.

6.2 A: Novel Object Attributes

Evaluating neural models on unseen combinations of object attributes remains an ongoing chal-
lenge [10,/111|47]]. Here, we extend gSCAN’s efforts in this area by testing models on unseen
composites of size, color, and shape.

A1: Novel Color Modifier In this split, we hold out all examples where the commands contain
“yellow square” for any size (e.g., “small yellow square” or “big yellow square”), meaning that
models cannot ground any targets to the expression containing “yellow square”. However, the train
set includes examples with phrases such as “yellow cylinder” (52,820 unique examples) and “blue
square” (90,693 unique examples). At test time, models need to zero-shot generalize in order to
interpret “yellow square” correctly. Our distractor sampling strategy ensures that the scenario contains
relevant non-yellow squares and non-square yellow things, so that both shape and color information
needs to be integrated for correct target identification. Table [3[shows that both models perform worse
on these splits than with random splits, with the M-LSTM showing the largest drop in performance.
While the GCN-LSTM is clearly getting traction on this task, the results show that compositional
generalization remains a serious challenge.

A2: Novel Color Attribute In this split, we test model performance on a novel combination of
the target referent’s visual features. To test that, we ensure that red squares are never targets during
training. Commands also never contain “red square” even in the position of the relations (i.e., inside
the relative clauses). However, differently sized red squares are seen during training since they often
appear as non-target background objects (266,164 unique examples). We make sure the color attribute
is necessary for identifying the target referent, and restrictions apply to objects at all positions in
the command. Our results in Table show that this split is slightly harder for both models (with a
81.47% drop for M-LSTM and a 57.51% drop for GCN-LSTM) than A1 as models need to learn visual
composites of “red square” from potential reasoning over background objects. Once again, our results
suggest that GCN-LSTM is better at generalizing to unseen compositions.



A3: Novel Size Modifier Size is a relative concept in our commands; the same object could be a
small square in one context and not in another, depending on the sizes of the other squares present.
Similar to A1, we evaluate whether models can zero-shot generalize to new size/shape combinations.
Specifically, we hold out all commands containing “small cylinder”, meaning that models have not
seen expressions such as “small cylinder” or “small yellow cylinder” during training. At test time,
models need to generalize when a small cylinder in any color is referred to with expressions such as
“small cylinder”. During training, the models still learn the relative meaning of “small” by seeing
examples containing expressions such as “small square” (22,866 unique examples) or “small red
circle” (23,838 unique examples). In addition to generalizing over new composites, models also
cannot simply memorize “small” as a specific size (e.g., object of size 2), since the meaning is
contextually determined. Similar to A1, we ensure that the size attribute is necessary for identifying
the referent target, and restrictions apply to objects at all positions. Table|3|shows that both models
achieve comparable performance to A1, which suggests that the generalization capabilities across
unseen color and size composites for both models are similar. GCN-LSTM continues to perform better
than M-LSTM, suggesting that it is more successful in generalizing to relative modifiers as well.

6.3 B: Novel Co-occurrence of Concepts

In this experimental condition, we assess the ability of models to generalize to novel combinations of
concepts, including objects and relations at the clause level.

B1: Novel Co-occurrence of Objects To construct this split, we first collect all objects (e.g.,
“small red circle” and “big blue square”) mentioned in the training set. Then, we construct commands
with seen objects that never co-occur during training. Additionally, we control commands to only
contain co-occurrences of relations that are seen during training. In this condition, the GCN-LSTM
continues to outperform the M-LSTM in generalizing to unseen co-occurrences of relations. Compared
to novel attribute modifiers (i.e., Al and A3), GCN-LSTM performance decreases.

B2: Novel Co-occurrence of Relations In this split, we hold out examples containing commands
mentioning both “same size as” and “inside of” relations, meaning the models never see examples
such as “walk to the object that is the same shape as the red object and that is inside of the red box”.
However, in training, models see cases where the relation “inside of” co-occurs with other relations,
such as “same row as” (58,863 unique examples). Table shows that both models perform worse
compared to B1. This suggests that generalizing over co-occurrence of relations, which requires
novel reasoning about objects, is harder for both model architectures.

6.4 C: Novel Phrase Structures

As shown in Section the number of phrase structures in ReaSCAN can be manipulated. In
the following experiments, we test whether a model trained with at most two relative clauses (see
Sectionfor all patterns) can generalize well to commands with novel phrase structures.

C1: Novel Conjunctive Clause Length In the first experiment, we generate examples with
commands that have one additional conjunction clause (i.e., “and $REL_CLAUSE” is added to the
2-relative-clauses commands). Our results in Table suggest that both models struggle to
generalize over longer relative clauses (with a 37.15% drop for M-LSTM and a 42.39% drop for
GCN-LSTM). Since both models are LSTM-based, it may suggest that LSTM-based models don’t
generalize well to longer sequences at test time, which has been found in more recent studies [12],
though some of this may trace to how stop tokens are used [48].

C2: Novel Relative Clauses In this experiment, we generate examples with commands that have
two recursive relative clauses (i.e., “and” is swapped with “that is” in the 2-relative-clauses
commands For this condition, both models result in catastrophic failures (with a 67.43% drop for
M-LSTM and a 77.70% drop for GCN-LSTM). Our results suggest that GCN is incapable of generalizing
over novel recursive relations. The performance degradation of GCN-LSTM may suggest that the fault
lies with the way the GCN component embeds relational information in its object representations.
This is a strength for known combinations but a potential hindrance for novel ones.

>We only allow relations to be “same row as” and “same column as” to avoid invalid commands.



7 Conclusion

We introduced the ReaSCAN benchmark, which seeks to build on the insights behind the gSCAN
dataset of Ruis et al. [14] while addressing its shortcomings. ReaSCAN is designed to support
controlled assessments of whether models have truly learned grounded, compositional semantics. We
find that a state-of-the-art GCN-LSTM model achieves strong results for most of the compositional
splits from gSCAN. Results on ReaSCAN, however, suggest that those capabilities are overestimates.
Furthermore, ReaSCAN allows for more intricate investigations of the resolution of linguistic
structure. The GCN-LSTM model is successful at tasks involving novel linguistic modifiers and
novel entity attribute combinations, but it fails to generalize in settings involving novel relation
combinations and longer commands. These results indicate that, while we are making progress in
achieving grounded, compositional models, many substantial challenges remain. While ReaSCAN
introduces complexity to the problem, via sophisticated distractor sampling strategies and more
elaborate input commands, the controlled nature of its input commands means that it is far from
tackling the full complexity of natural language. Extending ReaSCAN with interpreted naturalistic
English commands would begin to address this limitation.

Broader Impact

The ReaSCAN benchmark is designed to facilitate the development of models that can use language
in a grounded, compositional fashion. Such research has implications for technology development as
well as fundamental research in cognitive science and linguistics. We do not foresee any negative
impact on society or on the scientific community stemming directly from this research.
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