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Abstract001

Information extraction (IE) from Visually Rich002
Documents (VRDs) containing layout features003
along with text is a critical and well-studied004
task. Specialized non-LLM NLP-based solu-005
tions typically involve training models using006
both textual and geometric information to la-007
bel sequences/tokens as named entities or an-008
swers to specific questions. However, these009
approaches lack reasoning, are not able to infer010
values not explicitly present in documents, and011
do not generalize well to new formats. Genera-012
tive LLMs-based approaches proposed recently013
are capable of reasoning, but struggle to com-014
prehend clues from document layout especially015
in previously unseen document formats, and016
do not show competitive performance in het-017
erogeneous VRD benchmark datasets. In this018
paper, we propose BLOCKIE, a novel LLM-019
based approach that organizes VRDs into local-020
ized, reusable semantic textual segments called021
semantic blocks, which are processed indepen-022
dently. Through focused and more generaliz-023
able reasoning,our approach outperforms the024
state-of-the-art on public VRD benchmarks by025
1-3% in F1 scores, is resilient to document for-026
mats previously not encountered and shows027
abilities to correctly extract information not028
explicitly present in documents.029

1 Introduction030

Visually Rich Document Understanding (VRDU)031

is a well researched topic due to its wide industry032

applicability. Structured or semi-structured docu-033

ments such as invoices, forms, contracts, receipts034

etc are handled by most organizations, and for large035

organizations the volume of such documents can be036

massive. Processing these documents, especially037

those of a financial or legal nature, is vital. Figure038

1 shows a typical application of VRDU. As can be039

seen, an ideal information extraction or processing040

solution, should have the following desiderata -041

• High-quality extraction - High precision and042

recall of desired entities (such as company 043

name or address) to be extracted. 044

• Handling heterogeneity of formats and lan- 045

guages - Handling documents from various 046

sources with different templates (legal fax 047

from US and supplies store invoice from In- 048

donesia in Figure 1). Public datasets such 049

as Lewis et al., 2006 illustrate the degree of 050

heterogeneity found in real life applications. 051

• Handling new document formats - Solution 052

should be able to handle documents with for- 053

mats not seen during its training to avoid fail- 054

ure in production environment. 055

• Ability to perform value-absent inference - 056

Entities to be extracted (such as number of line 057

items in Figure 1) may not always be present 058

explicitly, and may need to be inferred. 059

A typical approach to document information ex- 060

traction begins with Optical Character Recognition 061

(OCR) using tools like Amazon Textract or Tesser- 062

act (Hegghammer, 2022). However, OCR alone 063

fails to address several key challenges. Documents 064

exhibit diverse formats and structures, requiring 065

spatial reasoning to correctly associate text with 066

their semantic roles. Systems must understand con- 067

textual relationships - for instance, recognizing that 068

’CGST’, ’VAT’, and ’SR’ all represent tax types, 069

or identifying a vendor name without explicit la- 070

bels. Additionally, solutions must generalize across 071

heterogeneous document layouts and languages. 072

Recent approaches have attempted to address 073

these challenges through layout-aware NLP mod- 074

els Xu et al., 2020; Huang et al., 2022; Peng et al., 075

2022; Luo et al., 2023 enhance text processing 076

with spatial information through mechanisms using 077

cross-attention between text and bounding box em- 078

beddings. While effective for template-matching, 079

we show that these models struggle with generaliz- 080

ing to new document formats, making inferences 081
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Figure 1: The Information Extraction Task, illustrated using sample images from (Jaume et al., 2019) and (Huang
et al., 2019)

about implicit or absent values, and understanding082

semantic relationships beyond training examples.083

Large Language Models have demonstrated084

strong reasoning capabilities through chain-of-085

thought demonstrations (Wei et al., 2023) and few-086

shot examples attached to the prompt (Brown et al.,087

2020). However, LLMs face their own limitations:088

they struggle with processing documents dissimilar089

to few-shot examples, handling complex layouts090

efficiently, and scaling prompts for multiple entity091

extraction. Even approaches using dynamic exam-092

ple selection based on document similarity (Perot093

et al., 2024) require at least one document with094

matching format in the labeled sample.095

In this work, we propose BLOCKIE, a novel096

information extraction algorithm that leverages se-097

mantic block-level parsing. Our approach first iden-098

tifies self-contained groups of text tokens (semantic099

blocks) and processes them using LLM-driven rea-100

soning informed by similar blocks from labeled101

samples (see Figure 8 for an example on how doc-102

uments with different templates can have similar103

blocks). Since semi-structured documents naturally104

organize information in human-readable blocks105

(Figure 6), this localized reasoning generalizes106

well across different document formats. BLOCKIE107

mimics human document processing by first under-108

standing local regions (Block Level Organization)109

and then leveraging Contextual Knowledge from110

other blocks to stitch information together for IE.111

We show that our approach outperforms the state-112

of-the-art on public benchmark datasets and satis-113

fies all the desiderata for an IE solution. To sum-114

marize, we make the following contributions:115

• We introduce BLOCKIE: Block-Level Orga-116

nization and Contextual Knowledge-based In-117

formation Extraction, a novel algorithm for118

VRDU that organizes documents into self-119

contained segments of text tokens called se- 120

mantic blocks, which are processed using rea- 121

soning that generalizes across document for- 122

mats. 123

• We apply BLOCKIE to public benchmark 124

datasets CORD, FUNSD and SROIE, and 125

show that our method concurrently outper- 126

forms the current state-of-the-art on all these 127

three datasets by 1-3% in F1 score. 128

• We show that block-level reasoning makes 129

BLOCKIE robust to heterogeneous document 130

databases and new document formats, pre- 131

vents degradation of performance with smaller 132

LLMs, and allows LLMs to perform value- 133

absent inference. 134

2 Related Work 135

Prior work in VRD understanding can be broadly 136

categorized into three approaches: traditional meth- 137

ods, layout-aware models, and large language mod- 138

els. We discuss each in turn, highlighting their 139

capabilities and limitations. 140

Traditional Methods initially relied on 141

rule-based systems and handcrafted features 142

(O’Gorman, 1993; Ha et al., 1995; Simon et al., 143

1997; Marinai et al., 2005; Mausam et al., 2012; 144

Chiticariu et al., 2013). While these approaches 145

worked for known templates, they failed to 146

generalize to new document formats. Later deep 147

learning approaches leveraged RNNs (Aggarwal 148

et al., 2020; Palm et al., 2017), CNNs (Hao et al., 149

2016; Denk and Reisswig, 2019; Katti et al., 2018), 150

and transformers (Wang et al., 2023c; Majumder 151

et al., 2020) to extract structural information from 152

documents. However, these methods required 153

extensive component-level labeling, limiting their 154

practical applicability. 155
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Layout-aware NLP Models enhanced tradi-156

tional approaches by incorporating document lay-157

out information. Several architectural innovations158

were proposed: transformers (Appalaraju et al.,159

2021; Hwang et al., 2021; Bai et al., 2022; Dhouib160

et al., 2023) for spatial understanding, layout-161

aware language models combining BERT-style ar-162

chitectures (Devlin et al., 2019; Liu et al., 2019;163

Bao et al., 2020) with spatial information through164

learnable modules, 2D position embeddings (Xu165

et al., 2020), and attention mechanisms (Xu et al.,166

2022; Huang et al., 2022; Peng et al., 2022). Fur-167

ther advances introduced geometric pre-training168

(Luo et al., 2023), graph contrastive learning (Lee169

et al., 2023), and unified frameworks for simulta-170

neous text detection and classification (Yang et al.,171

2023). Recent work has improved these mod-172

els through reading-order prediction (Zhang et al.,173

2024). While these approaches achieve strong per-174

formance when fine-tuned on benchmark datasets175

like DocVQA (Mathew et al., 2021) and FUNSD176

(Jaume et al., 2019) after pre-training on large doc-177

ument corpora like IIT-CDIP (Lewis et al., 2006),178

they remain limited by their token-classification179

approach, requiring explicit answer presence and180

struggling with new document formats.181

Large Language Models represent the newest182

approach to VRD understanding. Commercial183

models like Claude (Anthropic, 2024c) and Chat-184

GPT (OpenAI, 2023) demonstrate zero-shot rea-185

soning capabilities, with Claude 3 achieving state-186

of-the-art performance on DocVQA (Anthropic,187

2024b). Open-source models like LLaVa (Liu et al.,188

2023) and CogVLM (Wang et al., 2024) show189

promise on visual question answering tasks but190

struggle with zero-shot and multi-entity extraction191

(Bhattacharyya and Tripathi, 2024).192

Recent work has explored specialized LLM ap-193

plications for information extraction, particularly in194

Named Entity Recognition (Keraghel et al., 2024;195

Laskar et al., 2023; Ashok and Lipton, 2023; Wang196

et al., 2023b). For VRD-specific challenges, re-197

searchers have developed layout-aware pre-training198

(Luo et al., 2024), disentangled spatial attention199

(Wang et al., 2023a), and normalized line-level200

bounding box representations (Perot et al., 2024).201

However, these approaches have yet to surpass202

layout-aware NLP methods, and attempts to con-203

vert generative models to token-labeling systems204

often sacrifice their inference capabilities.205

3 Semantic Blocks in VRDs 206

Figure 2: Sample image with document schema and
value

In this section, we define the concept of semantic 207

blocks, and show how these are created practically. 208

Let us consider a set of documents D with a 209

common set of hierarchical entities of interest E, 210

which we refer to as the document schema. Let 211

V denote the set of all possible instantiations of 212

E. Given a document D ∈ D, let VE(D) ∈ V 213

denote the actual values of the entities E for D (for 214

reference, consider sample document, schema and 215

value in Figure 2). 216

For a document D ∈ D, let BD denote the set of 217

all possible segments (i.e. localized visual regions) 218

of D. For any segment B ∈ BD, let VE(B) repre- 219

sent the document values with only entities present 220

in B populated, other entities being blank. Note 221

that D ∈ BD is a special segment comprising of 222

the entire document. 223

The annotation operation can be thought of as 224

an attempt to map a segment of a document to the 225

document schema. As input, it takes in the target 226

document segment, and parses it in the context of 227

a larger segment with respect to the schema. The 228

context segment could be any superset of the target, 229

including (typically) the target segment itself or the 230

entire document. Figure 3 illustrates the annotation 231

operation with a target and context segment. 232

Formally, for a given document schema E, the 233

annotation operation can be defined as a mapping 234

v : BD × BD 7→ V . If the annotation is correct, we 235

have, 236

v(B,D) = VE(B), ∀B ∈ BD,∀D ∈ D (1) 237

Now, consider any segment B ∈ BD for a D ∈ 238

D. We define B as a semantic block if and only if: 239

v(B,B) = v(B,D) = VE(B) (2) 240
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Figure 3: Sample image with document schema and
value

In other words, a semantic block must be inter-241

pretable independently without any additional con-242

text - the values extracted from B in isolation must243

match those extracted with full document context.244

To illustrate, consider Figure 2. In this example,245

B1: (SUB TOTAL 28.000) is a semantic block246

with:247

v(B1, D) = subtotal : {subtotal_price : [28.000]}248

and B2: (TOTAL SALE 28.0000) is a semantic249

block with:250

v(B2, D) = total : {total_price : [28.000]}251

On the other hand, (COCONUT JELLY ( L ),252

4.000) cannot be a semantic block, as without the253

context of (1 JASMINE MT (L) 24.000), it is not254

possible to determine whether it is a sub-item and,255

if so, which line item it is a sub-item of.256

Now, to create semantic blocks in practice, we in-257

troduce the concept of semantic atoms - the funda-258

mental units for information extraction from VRDs.259

A semantic atom is an indivisible visual region con-260

taining text that forms a complete semantic unit261

while maintaining spatial coherence through prox-262

imity as well as horizontal or vertical alignment.263

The key characteristic of a semantic atom is that264

it cannot be decomposed further without losing265

its intended meaning. For example, in Figure 2,266

“TOTAL ITEMS” forms a semantic atom because267

splitting it into “TOTAL” and “ITEMS” individu-268

ally would lose the specific meaning of ‘number269

of items’ - “TOTAL” alone could refer to price or270

quantity, while “ITEMS” alone loses specificity.271

Moreover, these words maintain spatial coherence272

through horizontal proximity in the document. Con-273

versely, “TOTAL ITEMS 1”, although coherent se-274

mantically and linked as an attribute value pair, is275

not spatially proximate, and hence is not an atom, 276

but makes up two linked semantic atoms. 277

Note that there could be two different types of 278

linkages between semantic atoms in a VRD - link- 279

ages of the form attribute:value, or linkages of hi- 280

erarchy. By hierarchically linked semantic atoms 281

we refer to semantic atoms that belong to hierarchi- 282

cal entities in the document schema. In practice, 283

semantic blocks are collections of semantic atoms, 284

such that all linkages for each atom in the collec- 285

tion is present inside the collection itself. This is 286

a sufficient condition for equation 2, as given a 287

schema, all context needed to parse any group of 288

atoms is present in a collection of atoms linked to it 289

as hierarchically or as attribute-value. To continue 290

the example, (TOTAL SALE 28.0000) and (SUB 291

TOTAL 28.000) are linked semantic atoms, and (1 292

JASMINE MT (L) 24.000 COCONUT JELLY ( L 293

), 4.000) are linked semantic atoms. 294

This theoretical foundation guides our develop- 295

ment of practical algorithms for document process- 296

ing, as we will demonstrate in subsequent sections. 297

By decomposing documents into smaller, more gen- 298

eralizable semantic blocks, we can better handle 299

the complexities of varying layouts while maintain- 300

ing the semantic relationships crucial for accurate 301

information extraction. 302

4 Proposed Methodology 303

Figure 4: Illustrative flow with a simulated receipt and
schema resembling CORD output requirement. The
schema is passed along with the output of the block
creator along with parses of similar blocks to block
parser. Parsed blocks with target schema are then passed
to get final output. Reasons are output at each stage.

Given a group of documents and a required set of 304

entities that need to be extracted in the form of doc- 305

ument schema, we first divide the document into a 306

collection of semantic blocks of related text. These 307
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blocks are then processed, which allows LLMs to308

develop generalizable abstract rules for IE. These309

partial block parses are then combined to return310

the set of entities required. However, prior to these311

steps, it is necessary to convert the train dataset312

labels to appropriate format, i.e. to independent313

blocks and their annotations. Further details on314

each of these steps are provided below.315

Train Dataset Labelling The train dataset is316

used as a labelled sample. VRD benchmarks such317

as Park et al., 2019 generally contain ground truth318

labels in a key-value format, with appropriate hier-319

archy and linkages. These are passed to an LLM320

along with document schema to return three things321

- (1) step-by-step reasoning for choosing a segment322

as a block (i.e. self-contained segments of linked323

atoms, as defined in section 3), (2) the words in the324

block, and (3) the partial annotation of the block,325

using the ground truth labels. All of these three326

outputs are used downstream.327

4.1 Block Creation328

Figure 5: Motivating example for the conceptualization
of VRD IE as the parsing of related semantic entities
organized in blocks. The entities within a block are
related which allows a human to understand that the
address in the company details block belongs to the
invoicing company instead of say the customer.

Given a document from the test dataset, we329

prompt the LLM to create blocks using the doc-330

ument schema, OCR text and bounding boxes, and331

dynamic few-shot examples from the labelled train332

dataset using cosine similarity of OCR text1.The333

LLM leverages the step by step reasoning from334

1Perot et al., 2024 show that using similar documents in
in-context learning examples improves performance in VRDs.

the train dataset blocks on the few-shot samples 335

to understand when a text segment can be con- 336

sidered a block. Note that while we used OCR 337

text and bounding boxes, for multimodal LLMs 338

one can pass the image directly. The creation of 339

self-contained blocks is crucial; in section 5, we 340

evaluate the impact of block creation on overall 341

accuracy. 342

4.2 Block Parsing 343

Once blocks have been created, these are anno- 344

tated by block parsers. As shown in figure 6, simi- 345

lar semantically meaningful blocks are found even 346

in documents with different formats. Since these 347

blocks are self-contained, they can be parsed inde- 348

pendently.

Figure 6: Two documents with different formats (a fax
from a legal firm and a supplies store invoice) sharing a
similar semantic block corresponding to contact infor-
mation

349
The document schema is passed to the LLM with 350

few-shot examples of the most similar blocks. The 351

step-by-step reasoning of train dataset block parser 352

triggers similar reasoning in the block parser, and 353

the document schema guides it to return structured 354

output in required format. 355

Figure 7 shows how the same example with sim- 356

ilar blocks would be annotated by the block parser. 357

4.3 Combining Blocks 358

Finally, the document schema, blocks and their 359

parses are provided to LLMs to return the entire 360

filled out schema. The LLM acts as a judge as- 361

sessing the block-parsing reason from the previ- 362

ous steps to stitch together the filled out document 363

schema. Each semantic block benefits from being 364

compared with similar blocks in other documents 365
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Figure 7: Block Parser on Figure 6, where the legal firm
fax is used as a labelled train dataset example, and the
supplies store invoice is treated as a test sample

(which may be heterogenous), and the document366

schema guides the llm to return structured output.367

Figure 4 illustrates these three steps using a sam-368

ple document and schema. Detailed prompts are369

provided in the appendix.370

5 Experimental Setup and Results371

We designed our experimental evaluation to rigor-372

ously assess BLOCKIE’s effectiveness in address-373

ing these challenges. Our analysis examines the374

method stands up against the desiderata for an ideal375

information extraction solution for a large heteroge-376

nous document database.377

5.1 Experimental Setup378

We evaluate BLOCKIE on three established in-379

formation extraction benchmarks: CORD (Park380

et al., 2019), which focuses on restaurant receipts381

with hierarchical field structures; FUNSD (Jaume382

et al., 2019), a subset of Harley et al.; and SROIE383

(Huang et al., 2019), a receipt information extrac-384

tion dataset. For FUNSD, we focus on entity link-385

ing as the original semantic entity classifications386

(question, answer, header, others) are not meaning-387

ful and do not align with real-world information388

extraction requirements.389

To assess the generality of our approach, we con-390

duct experiments for BLOCKIE with multiple lan-391

guage models of varying parameter counts: Claude392

3.5 Sonnet (Anthropic, 2024a) and four variants of393

Qwen 2.5 (Qwen et al., 2025) with 7B, 14B, 32B,394

and 72B parameters respectively. We used 5 few395

shot-examples in the prompts for both block creator396

and parser. Following standard practice in docu-397

ment information extraction, we use the F1 score 398

as our primary evaluation metric. For performance 399

comparison, we consider state-of-the-art methods 400

discussed in section 2, and we also conduct ad- 401

ditional experiments with LayoutLMV3 (Huang 402

et al., 2022) to show the limitations of layout-aware 403

NLP methods. Additional details about the datasets 404

and implementations are present in Appendix B. 405

5.2 Results 406

5.2.1 Performance Analysis 407

Table 1 presents BLOCKIE’s performance com- 408

pared to existing approaches across all three 409

datasets. Using Sonnet as the base LLM, 410

BLOCKIE achieves state-of-the-art performance, 411

surpassing both traditional layout-aware ap- 412

proaches and recent LLM-based methods. Notably, 413

BLOCKIE achieves 98.83% F1-score on CORD, 414

92.15% on FUNSD, and 98.52% on SROIE, estab- 415

lishing new benchmarks across all datasets. To ver- 416

ify that these improvements stem from our block- 417

based methodology rather than just LLM capabil- 418

ities, we compare against zero-shot and few-shot 419

variants of Sonnet. The performance gap between 420

BLOCKIE and these baseline approaches (shown 421

in Table 1) demonstrates that the improvements 422

arise from our semantic block methodology rather 423

than raw LLM capabilities. 424

5.2.2 BLOCKIE helps smaller LLMs 425

outperform large LLMs 426

We examine BLOCKIE’s robustness to LLMs by 427

evaluating performance across LLMs of varying 428

sizes. As shown in Table 2, BLOCKIE main- 429

tains strong performance even with smaller mod- 430

els - BLOCKIE with Qwen 2.5 32B (96.14% F1) 431

outperforms LMDX-Gemini Pro ( 200B parame- 432

ters, 95.57% F1) and Sonnet Zero-Shot as well as 433

Few-shot (91.37% and 95.72% respectively), while 434

BLOCKIE with Qwen 2.5 7B (87.72% F1) signif- 435

icantly surpasses other approaches using similar- 436

sized models like DocLLM (67.4% F1) and Layout- 437

LLM (63.1% F1). Note that the finetuned version 438

of the Qwen 32B model falls short of Sonnet Few 439

shot significantly (91.08% vs 95.72%), showing 440

that the improvement in performance is caused by 441

BLOCKIE and not purely the abilities of the LLM. 442

5.2.3 BLOCKIE is resistant to heterogeneity 443

and to unseen document formats. 444

To assess format resilience, we conduct two experi- 445

ments. In the first experiment, we evaluate perfor- 446
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Approach Method FUNSD CORD SROIE

EL SER SER

DocTr(Feng et al., 2022)153M 73.9 98.2 -
LayoutLMv3(Huang et al., 2022)368M 79.37 96.98 96.12
DocFormer(Appalaraju et al., 2021) 502M - 96.99 -

Layout-Aware NLP FormNetLee et al. (2023) large - 97.28 -
ERNIE-Layout(Peng et al., 2022)large - 97.21 97.55
GeoLayoutLM(Luo et al., 2023)399M 88.06 98.11 96.62
ESP(Yang et al., 2023)50M 88.88 95.65 -
RORE-GeoLayoutLM (Zhang et al., 2024) 399M+24 88.46 98.52 96.97

DocLLM(Wang et al., 2023a) - 67.4 91.9
LMDX-Gemini Pro(Perot et al., 2024) - 95.57

LLM LayoutLLM(Luo et al., 2024) - 63.1 72.72
Sonnet - Zero shot - 88.92 91.37
Sonnet - Few shot - 95.72 96.72

Ours BLOCKIE - Sonnet 92.15 98.83 98.52

Table 1: Performance Comparison. BLOCKIE-Sonnet outperforms the state-of-the-art across all three datasets

CORD - SER
APPROACH

DOCLLM - 7B 67.4
LAYOUTLLM - 7B 63.1
LMDX - GEMINI PRO 95.57

QWEN 2.5 7B FINETUNED 84.03
QWEN 2.5 14B FINETUNED 89.36
QWEN 2.5 32B FINETUNED 91.08
SONNET - ZERO SHOT 91.37
SONNET - FEW SHOT 95.72
BLOCKIE - QWEN 2.5 7B 87.72
BLOCKIE - QWEN 2.5 14B 89.98
BLOCKIE - QWEN 2.5 32B 96.14
BLOCKIE - QWEN 2.5 72B 96.01
BLOCKIE - SONNET 3.5 98.83

Table 2: BLOCKIE with smaller LLMs outperforms
massive state-of-the-art models Sonnet and Gemini Pro

mance when training on only 100 samples selected447

for maximum format diversity (based on maximis-448

ing text embedding distances with the test sample).449

Table 3 shows that while LayoutLMV3’s perfor-450

mance drops significantly from 96.98% to 78.79%451

with diverse samples, BLOCKIE maintains robust452

performance (94.47% F1), demonstrating better453

generalization to format variations. This is even454

better that 91.48% achieved by Perot et al., 2024455

by training on 100 random samples.456

In our second experiment, we evaluate cross-457

dataset generalization by testing a CORD-trained458

model on SROIE documents (using the enity total459

amount, which is common in both datasets). As460

shown in Table 3, BLOCKIE maintains strong per-461

formance (97.06% F1) while LayoutLMV3’s per-462

formance deteriorates substantially (33.43% F1),463

further validating our approach’s resilience to for- 464

mat changes. 465

5.2.4 Block creation is crucial for BLOCKIE 466

performance 467

The effectiveness of BLOCKIE relies critically on 468

accurate semantic block creation. Our analysis re- 469

veals that block creation quality strongly correlates 470

with final extraction performance (Table 4). The 471

performance gap between different model sizes 472

can be largely attributed to their block creation 473

capabilities - Qwen 32B and 72B achieve state-of- 474

the-art performance due to superior block creation 475

(85.03% and 81.69% block-level F12 respectively), 476

while smaller models show lower block creation 477

accuracy. 478

To isolate the impact of block creation, we eval- 479

uate smaller models (7B, 14B) using ground truth 480

blocks and blocks created by the 32B model. As 481

shown in Table 5, with perfect blocks, even 7B 482

and 14B models achieve performance comparable 483

to larger models (94.38% and 94.98% F1 respec- 484

tively), indicating that block creation quality is the 485

primary performance bottleneck. 486

5.2.5 BLOCKIE is able to perform 487

value-absent inference 488

Finally, we demonstrate BLOCKIE’s reasoning ca- 489

pabilities through value-absent inference. We eval- 490

uate on CORD receipts where line item counts 491

are not explicitly stated but can be inferred through 492

counting. On a sample of 20 such cases, BLOCKIE 493

successfully infers the correct count in 18 instances 494

2Block level F1 is derived by comparison with ground
truth blocks created using labelled data
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TEST ON CORD - SER SROIE -TOTAL AMOUNT

TRAINED ON [100 TRAIN SAMPLES [TRAIN SAMPLES FROM CORD]
LEAST SIMILAR TO TEST]

LAYOUTLMV3 78.79 33.43
SONNET 3.5 FEW SHOT 92.11 95.39
BLOCKIE - QWEN 2.5 32B 86.51 91.01
BLOCKIE - SONNET 3.5 94.47 97.06

Table 3: Resilience to heterogeneity and new formats. Sonnet is more resilient than LayoutLMV3, and BLOCKIE
further enhances this resilience, outperforming layout-aware NLP methods designed to recognize templates.

CORD - SER
APPROACH BLOCK F1 ENTITY F1

BLOCKIE - QWEN 2.5 7B 74.91 87.72
BLOCKIE - QWEN 2.5 14B 73.25 89.98
BLOCKIE - QWEN 2.5 32B 85.03 96.14
BLOCKIE - QWEN 2.5 72B 81.69 96.01
BLOCKIE - SONNET 3.5 86.73 98.83

Table 4: Correlation between block creation accuracy
and performance.

BLOCKIE END QWEN 32B GROUND TRUTH
QWEN SIZE TO END BLOCKS BLOCKS

7B 87.72 90.91 94.38
14B 89.98 92.23 94.98

Table 5: Semantic Block F1-scores. After correcting
semantic blocks of test samples, smaller models are able
to recover 70% of the 10 percent performance gap with
larger models

(90% accuracy), handling complex scenarios in-495

cluding implicit quantities and hierarchical items.496

Figure 5.2.5 illustrates several challenging cases497

where BLOCKIE successfully performs multi-step498

reasoning to arrive at correct inferences. This ca-499

pability distinguishes BLOCKIE from existing ap-500

proaches that are limited to extracting explicitly501

present information.502

6 Conclusion503

In this work, we introduced the concept of seman-504

tic blocks and proposed a novel LLM-based ap-505

proach for information extraction from documents506

leveraging them. The segmentation of documents507

into generalizable, smaller, self-contained semantic508

blocks allowed LLMs to generate focused step-by-509

step reasoning guiding their annotation, and we510

demonstrated that this was effective by showing511

state-of-the-art performance across diverse public512

Figure 8: Some challenging inferences made by
BLOCKIE. In test_30, the single line item does not
have a quantity mentioned. In test_29, the LLM has to
reason to leave out sub-items from the count. In test_20,
it has to perform a multi-step addition.

datasets. 513

The framework is designed to be generalizable 514

across various large language models (LLMs) and 515

resilient to unseen document layouts and formats, 516

and we demonstrated robust performance across 517

multiple LLMs, heterogeneity and new, unseen doc- 518

ument formats. Additionally, we also showcased 519

the ability of BLOCKIE to perform value-absent 520

inference. 521

The combination of semantic reasoning, robust 522

generalization, and resilience to variation positions 523

this methodology as a promising direction for fu- 524

ture research in document information extraction. 525

Future work could focus on incorporating image- 526

based features such as font size, qualities such as 527

bold/italics, etc, into semantic block creation even 528

in text-only LLMs. 529

Limitations 530

We acknowledge the limitations of BLOCKIE with 531

a view to motivating further research in this field. 532

The computational architecture currently requires 533

sequential LLM calls for block creation, processing 534

8



and combining which increases latency. While our535

block creation methodology showed robust perfor-536

mance across all three datasets and experiments,537

it could be refined further. Specifically, the cur-538

rent block creation methodology does not leverage539

image-based contextual clues such as font, ital-540

ics/bold, visual markers for linkages such as arrows,541

etc. Additionally, while robust performance was542

observed across 5 different LLMs of varying sizes,543

BLOCKIE’s performance is inherently tied to the544

reasoning capability of the LLM being used. As545

was shown in section 5.2.4, it is vital to ensure that546

the LLM is able to reason and create proper blocks547

with linked semantic atoms, as missed linkages can548

be hard to recover. Future research should focus on549

robust block creation using the definition of seman-550

tic blocks and linked semantic atoms. Finally, using551

proprietary LLMs like Sonnet can make BLOCKIE552

less transparent even with step-by-step reasoning553

output, and caution needs to be exercised to ensure554

outputs are as expected.555
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A BLOCKIE prompt templates 825

Table 6: Train Dataset Labeling Prompt Template

PROMPT INSTRUCTIONS
TAKE THE FOLLOWING TEXT - <text>
THIS GETS PARSED INTO <annotation>
BREAK THE PROVIDED TEXT INTO SEMANTIC BLOCKS
LIKE block1, block2 ... WITH RELATED TEXT
IN SAME BLOCK. HERE ARE SOME RULES:
1/ THE OUTPUT SHOULD BE A DICTIONARY WITH
KEYS - block_1, block_2 ETC.
2/ EACH BLOCK SHOULD BE A DICTIONARY ITSELF,
WITH THE KEYS - REASON, TEXT AND PARSED:

• IN REASON, THINK STEP-BY-STEP WHY
THE TEXT UNDER CONSIDERATION IS A
SINGLE BLOCK

• THE TEXT KEY SHOULD CONTAIN THE
TEXT PRESENT IN THE BLOCK

• THE PARSED SECTION SHOULD CONTAIN
THE PART OF THE PARSED OUTPUT
THE TEXT MAPS TO

3/ RELATED TEXT REFERS TO TEXT BELONGING TO
THE SAME <LINKED OR HIERARCHICAL ENTITY FROM
SCHEMA, OR OTHERS>
4/ DO NOT LEAVE OUT ANY TEXT
5/ DO NOT WRITE A SINGLE EXTRA WORD
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Table 7: Block Creator Prompt Template

PARSER INSTRUCTIONS
YOU ARE A SEASONED TEXT PARSER. GIVEN AN
OCR TEXT, YOU ARE ABLE TO PARSE IT INTO
BLOCKS OF RELATED TEXT ALONG WITH
STEP-BY-STEP REASONS.

<Linked and Hierarchical entity
identification rules>:
<Few Shot Examples> -
HERE ARE SOME RULES:
1/ THE OUTPUT SHOULD BE A DICTIONARY WITH
KEYS - BLOCK_1, BLOCK_2 ETC.
2/ EACH BLOCK SHOULD BE A DICTIONARY ITSELF,
WITH THE KEYS - REASON, AND TEXT.

A. IN REASON, THINK STEP-BY-STEP WHY
THE TEXT UNDER CONSIDERATION IS A
SINGLE BLOCK. SHOW STEP BY STEP
REASONING USING RULES AND EXAMPLES
LAID OUT.

B. THE TEXT KEY SHOULD CONTAIN THE
TEXT PRESENT IN THE BLOCK.

3/ RELATED TEXT REFERS TO TEXT BELONGING
TO THE SAME <LINKED OR HIERARCHICAL ENTITY
FROM SCHEMA, OR OTHERS>
4/ DO NOT LEAVE OUT ANY TEXT.
5/ DO NOT WRITE A SINGLE EXTRA WORD.

<Verification Process>
COMPLETE THE ANSWER FOR THE FOLLOWING TEXT.
DO NOT WRITE ANYTHING EXTRA.
<OCR words> <bounding boxes>
ANSWER:

Table 8: Block Parser Prompt Template

SYSTEM INSTRUCTIONS
YOU ARE AN EXPERT SYSTEM FOR PARSING RECEIPT
TEXT BLOCKS INTO STRUCTURED DATA. YOUR ROLE
IS TO ANALYZE RECEIPT TEXT AND CONVERT IT
INTO A STRUCTURED DICTIONARY FORMAT.

<SCHEMA AND FIELD DESCRIPTIONS>
<Formatting rules>

SIMILAR EXAMPLES FOR REFERENCE:
<few shot examples>
NOTE: THESE EXAMPLES ARE FOR REFERENCE BUT
MAY CONTAIN SOME INCONSISTENCIES. FOLLOW
THE RULES ABOVE STRICTLY.

CURRENT TASK:
THIS IS A BLOCK CREATED PREVIOUSLY WHERE
THE BLOCK-CREATOR HAD THIS REASON
"{query_reason}"

YOUR TASK IS TO CREATE A COMPLETE, VALID
JSON DICTIONARY FOLLOWING THE PROVIDED
SCHEMA THAT REPRESENTS ALL THE INFORMATION
IN THIS RECEIPT DOCUMENT.

<OUTPUT SPECIFICATION>
<Verification Process>

PARSE THIS RECEIPT BLOCK INTO THE SCHEMA
FORMAT:
<query_block>
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Table 9: Block Combiner Prompt Template

SYSTEM INSTRUCTIONS
YOU ARE AN EXPERT SYSTEM FOR PARSING RECEIPT
DOCUMENTS INTO STRUCTURED DATA. YOUR TASK IS
TO ANALYZE A COMPLETE RECEIPT DOCUMENT AND
CREATE A COMPREHENSIVE DICTIONARY USING
PARTIAL INFORMATION FROM INDIVIDUAL BLOCKS.

CONTEXT:
YOU WILL BE PROVIDED WITH:
1. ALL THE WORDS IN THE DOCUMENT
2. BOUNDING BOXES
3. INDIVIDUAL BLOCKS OF TEXT AND THEIR

PARTIAL PARSES
4. THE REQUIRED DICTIONARY SCHEMA

<SCHEMA AND FIELD DESCRIPTIONS>
<Linked and Hierarchical entity
identification rules>

ALL WORDS IN THE DOCUMENT:
{text}

ALL BOUNDING BOXES IN THE DOCUMENT:
{bboxes}

PARSED BLOCKS:
BELOW ARE THE INDIVIDUAL BLOCKS AND THEIR
PARTIAL PARSES ALONG WITH REASON. USE THESE
TO HELP CONSTRUCT THE COMPLETE DICTIONARY:
{blocks_and_parses}

INSTRUCTIONS:
1. USE THE COMPLETE DOCUMENT TEXT TO

UNDERSTAND THE FULL CONTEXT
2. UTILIZE THE PARTIAL PARSES FROM BLOCKS

TO HELP CONSTRUCT THE FINAL DICTIONARY
- REMEMBER - THE PARTIAL PARSES MAY
NOT HAVE FULL CONTEXT

3. ENSURE ALL INFORMATION IS CORRECTLY
CATEGORIZED ACCORDING TO THE SCHEMA

4. MAINTAIN CONSISTENCY WITH NUMERICAL
FORMATS FROM THE ORIGINAL TEXT

<Verification Process>

YOUR FINAL DICTIONARY SHOULD CONTAIN TWO
KEYS:
1. REASON - JUSTIFY STEP BY STEP WHY YOU

CHOSE PARTICULAR VALUES. USE THE
REASON FROM PARTIAL PARSES, CHECK IF
IT MENTIONS EXACT MATCH.

2. INVOICE - SHARE THE INVOICE DICTIONARY

RETURN ONLY THE FINAL JSON DICTIONARY
WITHOUT ANY ADDITIONAL EXPLANATION WITH
PROPER FORMAT.
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B Datasets and Benchmarks826

B.1 Datasets827

CORD Dataset CORD (Park et al., 2019) con-828

tains 1000 Indonesian receipts, divided into train,829

validation and test samples of size 800,100 and830

100. Along with the images, CORD also contains831

crowdsourced labels, and OCR output with bound-832

ing boxes. 30 hierarchical entities are annotated833

manually under top-level entities menu, subtotal834

and total. The associated task is to assign the words835

in the OCR output to these entities. Performance is836

assessed using micro-F1 on entity prediction.837

SROIE Dataset SROIE (Huang et al., 2019)838

dataset consists of scanned receipts from a variety839

of domains, such as retail, food, and services, split840

into 626 train and 347 test receipts. The dataset841

contains images, OCR output and annotations with842

labeled entities for Company Name, Date, Total843

Amount, and Address. We evaluate our approach844

on the information extraction task proposed in the845

paper. Performance is assessed using micro-F1 on846

entity prediction.847

FUNSD Dataset The FUNSD Datatet (Jaume848

et al., 2019) contains 199 fully annotated images849

of forms sampled from the form type document of850

the RVL-CDIP dataset (Harley et al.). The dataset851

is split into 149 images in the training set and 50 in852

the testing set. The annotations consist of text with853

four keys - question, answer, header, and others,854

which is simplistic and do not represent meaningful855

entities. However, the annotations also contain link-856

ages, forming meaningful question-answer pairs857

and groupings of these pairs under headers. We fo-858

cus on the entity-linking task to evaluate the ability859

of our approach to extract meaningful relations.860

B.2 LLMs and Benchmark approaches861

We tested out BLOCKIE across 5 different LLMs862

from two different families. The LLMs chosen863

are widely used and vary in sizes from massive864

proprietary models to open-source models with 7B865

parameters.866

Claude 3.5 Sonnet Claude 3.5 Sonnet is the first867

model released by Anthropic from the Claude 3.5868

family (Anthropic, 2024a). In the benchmark eval-869

uations released by Anthropic, it showed at-par or870

superior performance compared to Claude 3 Opus,871

the previous best-performing Anthropic model,872

while being 2x faster. It established new state-of-873

the-art on reasoning and question-answering tasks874

at the time of its release.875

For few-shot Sonnet results, we conducted ex- 876

periments using the CORD validation dataset and 877

found best results when 5 examples were used that 878

were the closest (with respect to text embedding 879

similarity) to the target sample. 880

Qwen 2.5 Qwen 2.5 is a family of open-source 881

LLMs released by Alibaba Cloud (Qwen et al., 882

2025). The family contains both base language 883

models, instruction-tuned models as well as spe- 884

cialized models for coding, math, etc. The family 885

consists of models in sizes varying from 0.5B pa- 886

rameters to 32B parameters. We used the 72B, 32B, 887

14B and 7B versions for our experimentation. 888

For finetuning, we used LORA (Hu et al., 2021) 889

with rank 64 for 6 epochs with learning rate 890

0.00002. These numbers were based on results 891

obtained on the validation dataset of CORD. 892

LayoutLMV3 LayoutLMV3 (Huang et al., 893

2022) is a state-of-the-art information extraction 894

benchmark. It incorporates layout information us- 895

ing cross-attention between bounding boxes and 896

text, and through masked image modeling. It shows 897

competitive performance on all three benchmark 898

datasets. Note that while (Luo et al., 2023) outper- 899

forms LayoutLMV3, the authors have not officially 900

released their pre-processing code or fine-tuned 901

weights for CORD. We use layoutlmv3 in our ex- 902

periments to demonstrate the limitations of SER- 903

based approaches. 904

When we finetuned LayoutLMV3 for our experi- 905

ments on heterogeneity and value-absent inference, 906

we used the parameters listed in the official paper 907

for CORD. 908

We reviewed the licenses for all these datasets 909

and models, and ensured that we stick to the in- 910

tended usage of these for research purposes. 911
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