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ABSTRACT

Diagrams represent a form of visual language that encodes abstract concepts and
relationships through structured symbols and their spatial arrangements. Unlike
natural images, they are inherently symbolic, and entirely artificial. They thus
pose unique challenges for Multimodal Large Language Models (MLLMs) dis-
tinct from natural image processing. Recent studies have shown that MLLMs of-
ten exhibit flawed reasoning and hallucinations when handling diagram inputs. We
investigate here whether these limitations stem from shortcomings in the models’
ability to interpret diagrams themselves. To this end, we develop a diagnostic test
suite that isolates perception from reasoning. Our systematic evaluation reveals
that MLLMs perform poorly on basic perceptual tasks, e.g., shape classification,
object counting, relationship identification, and object grounding, with near-zero
accuracy on fine-grained grounding. Further analysis shows that weak diagram
perception leads to “blind faith in text”, where models rely on textual shortcuts
rather than visual understanding (that is, they are Math Blind). We hypothesize
that enabling models to capture the inherent structural properties of diagrams,
represented as graphs of primitives and their interrelationships, is essential for im-
proving diagram understanding. Experiments with 7B and 32B MLLMs validate
this assumption, with models trained on such representations achieving a +79%
gain on the grounding task. Crucially, these gains transfer to reasoning, achieving
3-4% cross-suite improvements on three public benchmarks even without addi-
tional chain-of-thought reasoning data. Our findings demonstrate that low-level
perception supports faithful high-level reasoning in mathematical MLLMs. We
provide both methodological frameworks and empirical evidence to guide future
research in this direction. All implementations will be released upon acceptance.

1 INTRODUCTION

Computer vision has traditionally focused on image-based perception tasks such as object detec-
tion Meng et al.| (2021); [Zhu et al.|(2020), segmentation |Li et al|(2021); Mishra et al.| (2019)), and
spatial reasoning |(Cheng et al.| (2025); Driess et al.| (2023); |Lin et al.|(2014)). These capabilities form
the foundation for higher-level visual reasoning in recent advances of Multimodal Large Language
Models (MLLMs) |Achiam et al.| (2023a); [Liu et al| (2023b); |Sun et al.| (2024). Despite remark-
able successes in general vision tasks, current MLLMs face considerable challenges in interpreting
mathematical diagrams.

Although both natural images and symbolic diagrams can be represented as grids of pixels, they
constitute very different forms of information. Images represent samples of the intensity of the real
world. Diagrams, despite taking many forms, are uniformly generated by humans as abstract visual
representations of concepts characterized by precise geometric structures and symbolic notations|Lu
et al.; [Zhang et al.| (2024a). Images are natural collections of signals, where diagrams are artificial
collections of symbols. Diagrams are critical to human visual communication across educational
contexts, scientific discourse, and STEM problem-solving, but the problem of analyzing symbolic
visual information is far broader.

Recent benchmarks such as MathVista Lu et al.| and MathVerse Zhang et al.|(2024a) evaluate math-
ematical visual reasoning in MLLMs. These works conflate perception with reasoning, however,
because they assess performance on complex tasks that combine diagram interpretation and math-
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ematical reasoning. It thus remains unclear whether the performance truly reflects the models’
ability to comprehensively understand the symbolic information in diagrams. Perceptual misinter-
pretations propagate downstream, leading to faulty reasoning and frequent hallucinations, although
the final answer may occasionally still be correct Bai et al|(2024); Jiang et al.|(2024); [Wang et al.
(20244). Developing models capable of understanding symbolic information in diagrams is a critical
milestone in advancing machine intelligence Cromley et al.[(2010); |de Rijke| (1999).

Motivated by the above, we have
designed a diagnostic benchmark
to isolate and rigorously evalu-
ate mathematical perception in
MLLMs. MATHEMETRIC fea-
tures problems that humans can
solve “at a glance” without exten-
sive reasoning.  The benchmark
contains 1,198 images and 1,609
carefully  designed  perception-
oriented questions across four
distinct task categories:  shape
classification, object counting, re-
lationship identification, and object

grounding. These tasks span three Figure 1: Performance on MATHEMETRIC reveals that
core mathemau.c al domains—plane diagram interpretation is challenging for MLLMs, partic-
geometry, solid geometry, ?lnd ularly in fine-grained grounding tasks that require precise
graphical | feP re}slentatlons (h.n & spatial localization. SVE-Math-DeepSeekt-7B, trained on
bar, and pie graphs)—and question GEOMETRIC, significantly outperforms comparators, vali-

formats (multiple-choice, true/false, dating the structure-aware geometric data design.
and free-form).
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We systematically evaluate current MLLMs on MATHEMETRIC to investigate key questions:

1. Do current MLLMs genuinely perceive mathematical diagrams? Fig. |l| presents the perfor-
mance of eight current MLLMs—six generic models and two math-specific models—across four
perception-focused tasks in MATHEMETRIC (see Tab. [1| for more MLLM results). Among the
generic MLLMs, Qwen2.5-VL-7B [Bai et al.|(2025) achieves the highest average accuracy, followed
by GPT-40. But both suffer from severe hallucinations—responding to simple questions with un-
necessarily long chains-of-thought and generating irrelevant visual content (see Fig.[6). The math-
specific SVE-Math-DeepSeek Zhang et al.| (2025), with a geometric primitive visual encoder, per-
forms on par with Qwen2.5-VL-7B in shape classification and relationship identification. However,
all models, including Qwen2.5-VL-7B and DeepSeek-VL2-Small, which are trained on nearly 2T
natural images, consistently underperform on fine-grained bounding box grounding, with accuracy
below 20%.

We then quantitatively analyze factors influencing MLLMs’ perceptual capabilities in provid-
ing more convincing evidence to answer this question. Key findings are as follows: (1) models are
vulnerable to subtle visual noise and irrelevant distractors, failing to attend to salient objects; (2)
when diagram—text conflicts arise, models over-rely on textual information, particularly those with
weaker perceptual ability; and (3) models often resort to pattern memorization instead of perceptual
understanding, as evidenced by their insensitivity to vertex ordering in shape classification, even
though vertex order defines shape identity under formal geometric rules.

2. Does stronger perceptual ability lead to better reasoning performance? To understand the
potential reasons for weak diagram perception in MLLMs, we examine the limitations of exist-
ing diagram—caption training datasets, such as MAVIS [Zhang et al.| (2024b) and AutoGeo Huang
et al|(2024), two of the largest in mathematical vision. They often contain ambiguous expressions
and obscure structural properties of diagrams (Fig. [2a). As a means of investigation, we construct
GEOMETRIC, a high-quality {geometry-image, text} pairs that encode shapes, attributes, and in-
terrelationships as graphs with fine-grained bounding box locations. Training on GEOMETRIC
yields strong improvements in perception tasks, achieving +79% on the grounding task (Fig. [I)).
Additional results for Qwen2.5-VL-7B/32B trained on GEOMETRIC are presented in
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Figure 2: Illustration of diagram-caption alignment training datasets, w.r.f., AutoGeo, MAVIS, and
our GEOMETRIC (Fig. [2a) with shapes in green, relationships in yellow, box locations in blue,
and ambiguity in red. Fig. [2b] demonstrates a positive correlation between low-level perception
and high-level reasoning tasks, evaluated on MATHEMETRIC and MathVerse. Clear diagram
perception leads to substantial improvements in mathematical reasoning performance.

Moreover, in the close-up comparison with math-specific MLLMs (Fig. 2bl colored dot points),
training with our proposed dataset substantially improves perceptual performance over AutoGeo
and MAVIS, by 23.0% and 35.6%, respectively. In contrast, two alternative variants underperform
the baseline (SVE-Math-DeepSeek-7B), with MAVIS diagram—caption pairs (despite being 5 X
larger in scale than ours) yielding poorer results due to high uncertainty and the out-of-distribution
nature of real-world geometric diagrams.

To further examine the impact on reasoning, we fine-tune those three models on the same reasoning
dataset (MathV360K |Shi et al.| (2024))) for a fair comparison. Two key observations emerge: (1)
our model achieves 28.1% accuracy on MathVerse, a +~4% gain over others. This is notable be-
cause the improvement arises purely from enhanced perception, without additional reasoning data,
whereas Multi-Math-7B Peng et al.| (2024)), trained with large-scale reasoning samples and rein-
forcement learning, achieves only 26.9%; (2) without clear visual guidance, models privilege verbal
reasoning, termed blind reasoning. For example, with AutoGeo or MAVIS, models perform compa-
rably to the base model on MathVerse under the same reasoning data, showing that structure-aware
geometric samples provide essential visual understanding for accurate reasoning. Our model accu-
rately identifies relevant visual elements, enabling it to generate more valid and faithful reasoning
steps (see model responses in Figs. [7{16{18)).

2  EVALUATION AND TRAINING SUITE DESIGN

2.1 MATHEMETRIC

Existing mathematical visual reasoning benchmarks often conflate perception with higher-level tasks
such as numerical calculation and proof generation. As evaluation is based solely on final an-
swers, intermediate perception errors remain hidden. Thus, it remains unclear whether MLLMs
genuinely perceive diagrams or merely rely on the prior knowledge of powerful LLMs. We intro-
duce MATHEMETRIC, the novel benchmark to evaluate MLLMs’ perception-demanding abilities
through both quantitative and qualitative analysis across coarse-to-fine granularity levels.

Data Composition. To comprehensively assess the perceptual abilities of MLLMs in mathematical
contexts, our evaluation images cover plane geometry (66%), solid geometry (20%), and graphs
(14%), including lines, bars, and pie charts. To facilitate MLLM evaluation, we formulate all
tasks—except for bounding box grounding (free-form)—as multiple-choice or true/false question-
answering problems. In total, we contribute 1,609 questions and 1,198 unique images, ensuring an
even distribution across the different perception tasks. Detailed statistics for data composition are
presented in Tab. [9]of the Appendix.

Categorization. The benchmark encompasses shape classification, object counting, relationship
identification, and object grounding. Fig.[3|shows example illustrations of plane geometry (see §D]
for additional examples). Key features are as follows:
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Q: What is the shape of
object BMF in the image?
8

(a) right triangle

(b) equilateral triangle
(c) ellipse

(d) isosceles triangle
A: (a)

Q: Are there 2 circles in
the picture?

(a) Yes
(b) No

A: (b)

Q: What is the relationship|
between line NF and line|

[ ML in the image?

(a) perpendicular
(b) tangent

(c) incircle

(d) parallel

A: (a)

Q: Please provide the
bounding box coordinate
of the region this sentence
describes: scalene triangle
HIV.

A: [159, 148, 317, 399]

Figure 3: Sampled MATHEMETRIC examples from plane geometry w.rt. each question-answer
(Q&A) type, covering shape classification, object counting, relationship identification, and object
grounding (from left to right). The green dotted bounding box is shown for illustration purposes
only and are not provided as input to the models.

* Shape classification is a classic vision task where the model identifies object classes based
on attributes, i.e., vertices, material, color, and size. Our dataset includes a diverse
set of geometric categories, comprising 16 basic shapes for plane geometry, 3 CLEVR-
defined Johnson et al.| (2017) objects for solid geometry, and 5 graphical elements as de-
fined in FigureQA Kahou et al. (2017)).

* Object counting requires models to determine either the total number of objects in an image
or a specific shape count, i.e., the number of circles or triangles present.

* Relationship identification evaluates models’ understanding of 4 spatial and over 10 math-
ematical relationships between pairs of geometric primitives.

* Object grounding evaluates fine-grained localization by requiring MLLMs to accurately
predict the top-left and bottom-right coordinates in the format (x1, y1, x2, y2) for an object
within the image. This ensures that models can precisely identify and localize geometric
structures based on textual descriptions.

Question&Answer Construction. Herein, we briefly introduce the construction of ques-
tion—answer (Q&A) pairs for model evaluation. The detailed construction pipeline is presented
in §F of the Appendix, which documents our synthetic data engine for generating plane geome-
try diagrams as well as the reformatted versions of the public CLEVR [Johnson et al.| (2017) and
FigureQA |Kahou et al| (2017) datasets for solid geometry and graph representations. This data
engine enables controlled shape generation, relationship modeling, and visual attribute assignment,
ensuring diverse and well-balanced datasets across perception tasks.

Fig. 4| describes the entire generation process: 1) Structured annotations for geometric primitives.
Inspired by AlphaGeometry [Trinh et al.| (2024), we use geometric clauses as fundamental units,
combining basic shapes with mathematically valid interrelationships. Our synthetic data engine
samples from a pool of 16 shapes (e.g., isosceles triangle, square, rectangle, parallelogram, isosce-
les trapezoid, pentagon, circle . .. ellipse) and 10 relations (e.g., parallel, perpendicular . . . tangent)
and verifies logical consistency. The outputs are stored as structured JSON annotations specify-
ing attributes, bounding boxes, and relationships, which are then used both for image rendering
with Matplotlib [Hunter| (2007)) and for generating question—answer (Q&A) pairs via template-based
pipelines. 2) O&A generation. From structured JSON annotations, we employ a template-based
pipeline to generate multiple-choice, true—false, and free-form questions for basic perception tasks.
Correct answers are derived directly from annotations, while plausible distractors are generated to
challenge geometric perception and combined with the correct answer into multiple-choice sets. For
paired query diagrams, geometric clauses are translated into visual representations using Python
code. To increase task difficulty, we apply image augmentations such as Gaussian noise, irregular
scribbles, and wedge-shaped symbols for congruent angles or auxiliary lines (see Figs.[10[and|12]in
the Appendix). 3) Reformatted public datasets. To cover solid geometry and graphs, we reformat
CLEVR Johnson et al.|(2017) and FigureQA |Kahou et al.| (2017) into the same structured format,
enabling consistent Q&A generation across domains.

After generating our synthetic data and collecting public datasets, we conduct a comprehensive
review to verify answer accuracy, ensure consistency between questions and diagrams, and confirm
relevance to the four perception tasks, ensuring high-quality and precise dataset annotations.

2.2 PERCEPTION-ORIENTED TRAINING DATASET (GEOMETRIC)

Evaluation results on MATHEMETRIC reveal that both open-source and closed-source MLLMs
struggle to identify relevant visual regions in symbolic and abstract mathematical diagrams, despite
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Figure 4: We synthesize geometric figures by randomly sampling elements from the geometric shape
pool and relationship pool, ensuring consistency through a verifier that enforces logical constraints
based on manually designed rules, fundamental mathematical principles, and prerequisite points. All
visual elements are structured and saved in JSON format. Images are rendered using the Matplotlib
package, and corresponding Q&A pairs are generated using a template-based pipeline.

their strong performance in theoretical reasoning and numerical computation. This contrasts with
human cognitive abilities, where low-level perceptual tasks are typically solved rapidly compared to
high-level reasoning tasks. This raises an important question: why do generic MLLMs—despite
being trained on large-scale visual datasets—struggle to perceive mathematical diagrams? The
key reason lies in the domain gap between natural images and mathematical diagrams [Lu et al.;
Zhang et al.| (2025). Unlike semantically rich natural images (bitmaps), diagrams are defined by
precise geometric structures and symbolic notations (vectors). Without superficial patterns or se-
mantic priors to exploit, MLLMs fail to generalize \Geirhos et al.|(2022). This underscores the need
for datasets that reflect the uniquely structured, graph-like nature of diagrams. Moreover, learning
from explicit structures within the data context would reduce learning complexity and enhance the
problem-solving abilities of models |Han et al.| (2025).

We thus develop a structured visual dataset—where the training corpus is built from object attributes
and extends to other objects based on their relationships—to improve visual attention and mitigate
MLLMs’ reliance on textual shortcuts. In specifc, GEOMETRIC follows a structured format:

First, I count {N} prominent object(s) in the image. Next, for shape information, object {attrbu.*}

is a {shape'}, and - - - . Furthermore, I also know the fine-grained bounding box coordinates: the

{shape'} {attrbu.'} is located at {box_cor.'}, and - - - . Finally, let me explain the relationships: the

{shape'} {attrbu.} {rela."’} to the {shape’} {attrbu.’}, and - - -.
To further enhance the model’s ability to follow instructions, we construct a task-specific instruction
dataset in a multi-turn conversation format. Each question is tailored to a specific perception task,
with answers presented either in free-form or as a selected option. For example: Q: What is the
shape of object {attrbu.'}? A: {shape'}. See §G|in the Appendix for additional demonstrations.

Overall, GEOMETRIC contributes to MLLM training by: (1) providing clear object attributes and
their relationships, akin to graph nodes and edges, in training QA pairs; (2) offering fine-grained
bounding box coordinates of elements, enabling models to systematically learn spatial awareness;
and (3) integrating with reasoning-based CoT mathematical visual datasets during self-fine-tuning
stage, allowing models to both perceive and reason accurately.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Generic and Mathematical MLLMs. We evaluate 20 MLLMs on MATHEMETRIC across plane
geometry, solid geometry, and graphs, including closed-source generic models such as GPT-40 and
GPT-01, as well as open-source models like LLaVA-v1.5[Liu et al.| (2023b), mPLUG-Ow13 |Ye et al.
(2024), InternLM-XComposer2 Dong et al.[(2024), Qwen2VL |Wang et al.|(2024c)), Qwen2.5VL Bai
et al.[(2025)), DeepSeek-VL2 Wu et al.| (2024)), InternVL2 |Chen et al.| (2024b)), InternVL2.5 |Chen
et al.| (2024a), Vision-R1 Huang et al.| (2025)) and MINT-CoT |Chen et al.| (2025). Additionally, we
assess math-specific MLLMs, including SVE-Math-DeepSeek |[Zhang et al.| (2025), Math-LLaVA
Shi et al.| (2024), G-LLaVA |Gao et al.| (2023)), URSA |Luo et al.| (2025) and MultiMath [Peng et al.
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Table 1: Performance comparison of different MLLMs on MATHEMETRIC across plane geome-
try, solid geometry, and graphs. cls, cnt, grd, and rlat represent different question categories: shape
classification, object counting, object grounding, and relationship identification, respectively. all
indicates the overall accuracy, calculated as the ratio of correctly answered questions to the total
number of questions in the benchmark, while Avg. denotes the average all score across all subjects.

Model Size | Av. ‘ Plane Geometry ‘ Solid Geometry ‘ Graphs

‘ all  cls cnt  grd  rlat ‘ all cls cnt  grd  rlat ‘ all cls cnt  grd  rlat
Human
Authors (ours) ‘ - ‘ 99.2 ‘ 985 98.7 99.3 959 100.0 ‘ 99.3 100.0 100.0 98.7 983 ‘ 99.8 100.0 100.0 99.3 100.0
Open-Source Generic MLLMs
LLaVA-v1.5|Liu et al. [(2023b] 7B | 333|292 290 396 142 375 [316 430 423 00 313|390 768 352 0.0 394
LLaVA-v1.5|Liu et al. (2023b] 13B | 354 | 328 293 404 235 420 |359 605 381 0.0 350|376 638 426 00 455
mPLUG-OwI3|Ye et al. (2024} 7B | 50.0 | 36.4 46.7 41.6 39 585 653 954 835 00 625|482 594 778 0.0 66.7
InternLM-XComposer2 Dong et al. |(2024] 7B | 556|358 494 488 00 47.0 [ 629 907 866 00 538|546 609 944 00 788
Qwen2-VL|Wang et al. |(2024c| 7B | 514|379 476 412 128 53.0 641 930 784 143 550|523 841 889 32 182
Qwen2-VL|Wang et al. |(2024c| 72B | 59.9 | 424 512 508 174 520 | 712 977 845 64 775|661 768 982 161 849
Qwen2.5-VL Bai et al.|(2025] 7B | 592|440 562 513 185 52.0 [ 680 988 887 00 650|657 899 1000 32 788
Qwen2.5-VL |Bai et al. (2025] 32B | 622 | 433 569 548 00 67.0 [725 988 897 1.6 875|688 913 1000 1.6 970
DeepSeek-VL2-Tiny [Wu et al. (2024} 3B | 326|295 452 344 46 320 (390 767 320 00 375|294 391 574 0.0 182
DeepSeek-VL2-Small|Wu et al. (2024) 16B | 51.5 | 37.6 47.6 436 125 485 |638 988 70.1 11.1 600|532 768 537 113 818
InternVL2|Chen et al.|(2024b) 8B | 484 | 319 443 38.0 00 485 |629 988 629 48 700|505 681 759 00 66.7
InternVL2.5/Chen et al. |(2024a] 8B | 50.7 | 350 488 36.0 00 600 |656 988 722 48 700|514 681 778 00 69.7
InternVL2.5/Chen et al. (2024a] 38B | 63.1 | 440 599 520 25 66.0 | 788 988 928 381 725|665 986 963 32 69.7
Vision-R1|Huang et al.|(2025] 7B | 582 |39.6 539 456 00 64.0 | 666 954 897 0.0 600|684 97.1 100.0 0.0 849
MINT-CoT|Chen et al. |(2025] 7B | 547 | 39.1 527 464 29 580 617 965 670 64 613|633 826 926 00 939
Qwen2.5-VL™ (ours) 7B | 729 | 785 70.7 792 82.6 850 [719 979 862 129 70.0|682 942 963 49 894
Qwen2.5-VL* (ours) 32B | 742|779 707 79.6 84.0 795 | 738 988 864 150 850|711 986 982 27 99.0
Closed-Source Generic MLLMs
GPT-40 - | 533|428 584 532 1.1 625 [ 607 721 845 1.6 663|564 928 722 1.6 576
GPT-ol - | 365|158 332 116 00 140 (414 756 526 00 238|523 826 815 00 394
GPT-04-mini-high - | 480 19.1 293 244 04 215 [ 647 942 794 00 663|601 957 778 0.0 69.7
Open-Source Mathematical MLLMs
Math-LLaVA|Shi et al. (2024) 13B | 40.0 | 27.9 344 324 0.0 505 |448 814 557 00 275|473 783 593 00 515
G-LLaVA|Gao et al. |(2023] 7B | 303|256 278 412 04 38.0 [323 454 381 48 325|339 580 370 0.0 424
Math-PUMA-DeepSeck-Math-VL|Zhuang et al. (2025} | 7B | 44.7 [ 293 458 268 0.0 460 |469 767 629 00 325|578 928 759 00 63.6
URSA [Luo et al. (2025} 8B | 422|318 392 392 0.0 550|402 79.1 412 0.0 288|546 826 685 00 758
MultiMath|Peng et al. [(2024] 7B | 42.1 | 312 440 304 1.1 53.0 467 814 536 47 338|486 797 574 32 338
SVE-Math-DeepSeek|Zhang et al. (2025] 7B | 46.6 | 354 524 360 3.6 51.0 494 779 629 15 413|551 812 759 1.6 69.7
SVE-Math-DeepSeek ™ (ours) 7B | 684 | 84.6 758 884 829 965 |541 853 658 203 450|607 851 784 1.6 757

(2024). This comprehensive evaluation provides insights into the diagram perception capabilities of
state-of-the-art multimodal models.

Implementation Details. For open- and closed-source generic MLLMs, we follow official inference
settings, including temperature, number of beams, and maximum token length. For open-source
mathematical LLMs, we adopt the standard configurations from SVE-Math-DeepSeek, setting the
temperature to 0, the number of beams to 1, and the maximum token length to 1024. Choices are ex-
tracted using predefined rules tailored to each MLLM’s output format. We apply GEOMETRIC for
full-parameter SFT on SVE-Math-DeepSeek and parameter-efficient LoRA training on Qwen?2.5-
VL-7B/32B. See §C|for training implementation details.

3.2 MAIN RESULTS

Tab. [T| summarizes the performance of current MLLMs on plane geometry, solid geometry Johnson
et al.[ (2017), and graphs [Kahou et al.| (2017). Below, we provide an analysis of their performance
on MATHEMETRIC.

Generic MLLMs. General-purpose models trained on diverse datasets, including tables, charts, and
documents [Chen et al.| (2019); |Kahou et al.| (2017); Yuan et al.| (2022), as well as visual grounding
datasets [Shao et al.| (2019); |You et al.| (2024), still perform poorly on mathematical diagram per-
ception. In particular, their performance in plane geometry remains low, with most models scoring
below 45% on average. For solid geometry and graphs, general-purpose models significantly out-
perform mathematical MLLMs, due to their exposure to large-scale FigureQA |Kahou et al.|(2017)),
CLEVR Johnson et al.|(2017), and various chart understanding datasets [Yuan et al.| (2022). How-
ever, they still fail in fine-grained box-level tasks, with most models achieving 0 accuracy at an IoU
threshold of 0.65, and lag significantly behind human-level perception. The symbolic and structured
diagrams require genuine visual understanding rather than superficial pattern recognition. Without
this, models fail to identify where to look, leading to poor perception performance. Notably, scaling
up model size is neither an optimal nor an effective solution, as it provides only marginal gains in
perception compared to reasoning benchmarks. For instance, increasing Qwen2VL from 7B to 72B
improves top-1 accuracy by 22.3% on MathVista but only 8.3% on MATHEMETRIC.
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Mathematical MLLMs. Models such as MultiMath, Math-LLaVA, and SVE-Math-DeepSeek,
fine-tuned from generic MLLMs (i.e., LLaVA and DeepSeek) using mathematical visual data,
achieve strong reasoning performance on MathVerse Zhang et al.| (2024a)), MathVista |[Lu et al.,
GeoQA |Gao et al.|(2023) and MATH-V [Wang et al.|(2024b), but struggle with geometric perception
across all three subjects.

Among them, SVE-Math-DeepSeek
outperforms  other  mathemati-
cal MLLMs by incorporating a

Table 2: Performance comparison on math perception and
reasoning benchmarks.

primitive visual encoder trained  Moda P | Matherse | Mathista | GeoQA | MATH-Y
with detection and boundary seg-  Qwen2s-VLi7B[Baietal|2025] 40 0 6.7 | 492 682 | 764 | 251
p - Vision-R1-7B|Huang et al.(2025] 396 666 684 | 524 735 | 789 -
mentation losses. As shown in  {urcorrmserichen o aios) 39.01 617 633 - 678 | 621 -
Tab. SVE-Math-DeepSeek* is Qwen2.5-VL-32B Bai et al. (2025 433 725 688 54.8 747 829 319
. . Math-LLaVA-13B[Shi ct al.|2024] 279 448 473 | 201 466 | 607 | 157
an enhanced version trained on G-LLaVA-7B[Gao et al J2023] 256 313 339 | 178 256 | 642 | 121
GEOMETRIC, and it achieves  MuliMan-7B[Peng etal.2024] 312 457 486 | 259 93 | 741 -
.. o SVE-Math-DecpSeck-7B|Zhang ct al |[2025] | 35.4 494 55.1 | 243 487 | 128 | 144
SIgnlﬁcant gains in plane geometry  SvE-Math-DecpSeek-7B"(ours) 846 541 607 | 281 513 762 | 166
: ; Qwen2.5-VL-7B* (ours) 785 719 682 | 528 703 | 796 | 273
perception. Notably, even without Qwen2.5-VL-32B* (ours) 779 742 711 | 513 769 | 853 | 333

direct training on solid geometry
and graphs, it outperforms others due to its improved ability to discriminate relationships and
understand spatial configurations. To further validate the positive correlation between perception
and reasoning, we fine-tune strong generic Qwen2.5-VL-7B/32B on GEOMETRIC. Tab. [2| shows
that our dataset yields ~ +4% improvements over SVE-Math-DeepSeek and ~ +3% gains over
Qwen2.5-VL-7B/32B across three mathematical reasoning benchmarks. Although we do not
employ explicit visual-text integration mechanisms, as done in MINT-CoT |Chen et al.|(2025), our
model still exhibits automatic adaptation and task transfer from low-level perception to high-level
reasoning, demonstrating that these two abilities are complementary. As shown in the qualitative
comparisons between the base model and the GEOMETRIC-fine-tuned model (Figs. [/{16H18),
many previously incorrect cases are resolved simply by correcting a key perceptual error, and the
resulting improved perception stabilizes multi-step reasoning chains. Another related line of work is
reinforcement-learning—based reasoning enhancement, as in Vision-R1 |Huang et al.| (2025)), which
incentivizes reasoning ability built on large-scale and corss-domain perception—reasoning datasets,
requiring much heavier computational resources. Exploring how to explicitly model visual-text
interactions remains a promising direction for understanding how enhanced perception can further
support and strengthen reasoning. We provide an in-depth analysis in § [C]
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Figure 5: We evaluate five key factors influencing
MLLM perception: object count (# obejct), visual
quality, visual distractors, textual distractors, and
Chain-of-Thought (CoT) reasoning, with close-up
results shown in Tabs [3}f4]and Fig. [6}
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Figure 6: Perceptual errors under Chain-of-
Thought (CoT) vs. direct reasoning. Chain-of-
thought (CoT) errors occur when a model pro-
vides step-by-step explanations yet yields an in-
correct answer.

Since mathematical models are trained exclusively on math-domain datasets, they offer a more con-
trolled setting for analyzing perception capabilities compared to general-purpose MLLMs. There-
fore, we choose SVE-Math-DeepSeek as the base model for the below ablation study.
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3.3.1 KEY FACTORS INFLUENCING DIAGRAM PERCEPTION

We examine five key factors: the number of objects, object quality, visual distractors, text distractors,
and Chain-of-Thought (CoT) responses. While those factors are by no means exhaustive, they aim
to illuminate some of the fundamental perceptual limitations of current MLLMs, providing insights
for practical applications and future improvements. The overall accuracy (all) on plane geometry
from MATHEMETRIC across nine MLLMs is presented in Fig.

The Number of Objects. Visual perception complexity increases with the number of objects. We
observe that as the number of geometric shapes grows, models struggle with accurate object lo-
calization, shape classification, and counting. When scaling the number of objects from 1 to N
(N < 5), Qwen-series model’s performance drops by approximately 12%, the DeepSeek-series by
18%, and GPT-40 by 15%. Our method and its baseline show declines of 6% and 13%.

Table 3: Accuracy (%) on plane geometry per- Table 4: Performance of relationship identifica-
ception w.rt. object quality (w/ or w/o Gaussian tion (rlat) on MATHEMETRIC under different
noise) and visual distractor injection. textual distractor settings.

MATHEMETRIC Noise ~ N (0,0.3) | Distractors MATHEMETRIC (rlat) Unrela. infor. Conflicts

w/o w/at w/o  wW/ap w/o wiar w/o w/at

Qwen2VL-7B 298 339141 [29.8 262 Qwen2VL-7B 530 485 530 245
Qwen2.5VL-7B 339 321 339 31.0 Qwen2.5VL-7B 520 56.0:40 | 520 300
DeepSeek-VL2-Tiny 279 238 279 22.6 DeepSeck-VL2-Tiny 320 34555 | 320 35
DeepSeek-VL2-Small 279 375106 |279 259 DeepSeek-VL2-Small 485 425 485 205
LLaVA-v1.5-13B 26.8  31.6148 268 29.1423 LLaVA-v1.5-13B 420 375 420 16.0
InternVL2.5-8B 256 20.8 25.6 19.6 InternVL2.5-8B 60.0 49.0 60.0 18.0
GPT-4o 327 309 327 28.6 GPT-40 625 635110 | 62.5 38.0
SVE-Math-DeepSeek-7B  |32.8  28.0 32.8 29.2 SVE-Math-DeepSeek-7B 510 49.0 510 150
SVE-Math-DeepSeek ©-7B|80.7 783 [80.7 80.3 SVE-Math-DeepSeek +-7B | 96.5 95.0,, 5 | 96.5 825

Table 5: Additional results for “blind faith in text” Table 6: Accuracy (%) on plane geometry
phenomenon. Accuracy (%) on plane-geometry (rlat) for shape classification (cls) w.r.t. vertex or-

under explicit modality-priority prompts. dering (clockwise vs. random).
MATHEMETRIC (lat) Conflicts| Neutral | Visual-priority | Text-priority MATHEMETRIC (cls) Random Clockwise
w/o | wiag W/ W/t Qwen2VL-7B 474 47.6
Qwen2VL-7B 530 |24.5 255 255 Quwen2.5VL-7B 567 s62
gwe“sz‘sgbz;_ ;;g 3;’;0 ‘f‘f; 298'53 DeepSeek-VL2-Tiny 450 452
cepoeeic ¥ Lo Iy . 2 : : DeepSeek-VL2-Small 47.1 4756
DeepSeek-VL2-Small 48.5 {20.5 22.0 19.5 LLaVA-v1.5-7B 208 200
LLaVA-v1.5-13B 420 [16.0 15.0 14.5 AVAVEL : :
InternVL2.5-8B 60.0 |18.0 17.0 15.5 InternVL2.5-8B 48.3 4838
GPT-40 62.5 [38.0 39.0 34.0 GPT-40 57.8 58.4
SVE-Math-DeepSeek-7B 51.0 [15.0 15.0 12.5 SVE-Math-DeepSeek-7B 51.2 524
SVE-Math-DeepSeekt-7B| 965 |82.5 875 84.0 SVE-Math-DeepSeek ™ -7B 74.9 75.8

Visual Distractors. We draw visual distractors—irregular scribbles, wedge-shaped angle mark-
ers, and auxiliary lines—to evaluate MLLMs’ ability to focus on relevant geometric elements (see
Fig.[10). Despite explicitly prompting models to ignore distractors (e.g., the input diagram contains
visual distractors on the target foreground objects; please ignore them when performing the percep-
tion tasks), most are still negatively affected. Close-up results are shown in Tab.[3] All evaluated
MLLM:s show a performance drop of 2—6% under visual distractors, except LLaVA-1.5-13B, which
improves by 2.3%. Our model remains robust, showing minimal sensitivity to distractors and better
visual focus on geometric primitives.

Object Quality. For visual fidelity analysis, we apply Gaussian noise to degrade object quality. As
shown in Tab. E], with a variance of 0.3, most models degrade, while Qwen2VL, DeepSeek-VL2-
Small, and LLaVA-1.5-13B unexpectedly improve. This may result from exposure to degraded vi-
suals during training, making noisy images better aligned with their learned distribution—especially
given the lack of clean geometric diagrams in the training data. To enable a more comprehensive
evaluation and mitigate data bias, we introduce stronger noise (variance 0.5/0.8). As distortion in-
creases, all models show sharp drops in geometric recognition. Accuracy under noise is shown in
Fig.[T1] with example distortions in Fig.[I2]

Text Distractors. To examine the influence of textual modality in vision-centered tasks, we evaluate
two settings within the relationship identification task. The first introduces irrelevant information
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Figure 7: Response comparisons between SVE-Math-DeepSeek™-7B, SVE-Math-DeepSeek-7B,
and InterVL2.5-8B in MathVerse. More demos are shown in Figs. [T6|{T8]of the Appendix.

unrelated to the target, such as foreground/background colors or object vertices. The second presents
contradictory cues: a diagram with clear visual cues (e.g., two visibly parallel lines) and no ambigu-
ous text; and the same diagram but with contradictory textual distractors added during inference
(e.g., the two lines are perpendicular). In both cases, correctness is determined by whether the
model’s answer matches the ground truth defined by the visual cues in the diagram, irrespective of
the textual guidance. The results in Tab. f] show that providing conflicting knowledge significantly
impairs the perceptual ability of all evaluated MLLMs. The impact is especially pronounced in
models with weaker perception capabilities such as InternVL2.5-8B (48.4% in Avg.), while stronger
perceptual models such as Qwen2.5-VL-7B (59.2% in Avg.) are less affected. Our method, which
achieves the best perceptual performance, demonstrates greater robustness—but still suffers a 14%
drop. This highlights that MLLMs tend to over-rely on textual input when inconsistencies arise,
exhibiting a “blind faith in text”.

These conflict experiments were conducted under neutral settings, where no modality was favored
during inference. To further examine whether explicit prompting can mitigate this behavior, we
conducted additional controlled experiments using system prompts that explicitly modulate modal-
ity priority: visual-priority prompt: “Carefully examine the diagram and prioritize visual informa-
tion. Only use text labels to confirm what you observe visually”; fext-priority prompt: “Focus on
the textual labels and annotations in the diagram. Use the visual structure to support the textual
information”. The results in Tab. [5] show that even when explicitly instructed to prioritize visual
information, the model still exhibits “blind faith in text”, although performance is marginally higher
than under the text-priority prompt. Addressing this limitation should therefore be an important
focus for future research.

Chain-of-Thought (CoT) Response. CoT reasoning is designed to enhance step-by-step logical
inference, yet its effectiveness in visual perception tasks remains uncertain. Our analysis shows that
while CoT improves textual reasoning, it does not directly enhance spatial or geometric understand-
ing. Models incorporating CoT reasoning often struggle with fundamental perception tasks, leading
to significant CoT errors. Models often generate excessive yet irrelevant rationale misaligned with
the diagram, ultimately resulting in incorrect responses, particularly in Qwen-series models and
GPT-40 (over 30% in Fig.[f). See §|for CoT response examples in the Appendix.

3.3.2 DIAGRAM UNDERSTANDING REMAINS CHALLENGING

To further examine the diagram understanding of MLLMs, we design a vertex-ordering ablation.
Vertex order is a strict mathematical constraint: in a consistent clockwise order, vertices must form
a closed shape. This ablation tests whether MLLMs rely on genuine geometric understanding or
merely statistical pattern matching. We therefore randomize vertex order for each object, and results
in Tab. 6] show that models are insensitive to this change. This insensitivity suggests that MLLMs do
not internalize the geometric rules governing shape formation, but instead depend on surface-level
patterns. Enabling models to grasp such geometric constraints remains a challenging yet promising
direction for advancing true diagram understanding.

3.3.3 COUNTING OVERLAPPING OBJECTS IS OVERLY DEMANDING

In our synthetic plane-geometry diagrams, we preserve object separations to reduce ambigu-
ity in counting, but overlaps remain unavoidable as object density increases. By default,
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MATHEMETRIC directs models to count only prominent objects, ignoring complex overlaps. We
ablate this design choice by requiring models to count all potential overlaps. Results show that over-
lapping cases are far more difficult than non-overlapping ones (54.8 v.s. 32.8 for Qwen2.5-VL-7B;
88.2 v.s5. 67.3 for SVE-Math-DeepSeek T-7B). See Tab. and for detailed analysis and settings.

Table 7: Performance comparison w.r.t. Table 8: Performance comparison on math perception
variants trained on (GEOMETRIC and and reasoning benchmarks. The symbols e and o de-
other mathematical alignment datasets. v note models trained without GEOMETRIC and with
is the pretrained model continuously self- a frozen visual encoder during the SFT.

fine-tuned (SFT) using MathV360K and

instruction-formatted GEOMETRIC. Model MATHEMETRIC|\ ) verce MathVista  GeoQA
Plane Soild Graphs

Model MATHEMETRIC[, o [ iathvista S VE-Math-DeepSeek-7B 354 494 55.1 243 487 | 728

Plane Soild Graphs SVE-Math-DeepSeck™-7B | 84.6 54.1 60.7 28.1 51.3 76.2

SVE-Math-DeepSeck | 354 49.4 55.1 243 48.7 SVE-Math-DeepSeek*-7B (¢)[35.4 48.0 543 25.0 49.1 725

g +f1\l/lll:\(/}le;((<>A)) 16333 32“57 460-94 167; ‘3‘22 SVE-Math-DeepSeek*-7B (0) 82.9 53.6 61.2 262 50.1 74.6

<|.GEOMETRIC @ 416 402 492 19.7 462 Qwen2.5-VL-7B 440 69.0 657 49.2 68.2 76.4

Aok 796 445 551 355 153 Qwen2.5-VL*-7B 785 719 682 52.8 703 | 79.6

E Ok 78.1 423 54.1 233 47.1 Qwen2.5-VL*-7B (e) 40.3 62.7 61.8 453 65.0 752

Dex 84.6 541 607 | 281 513 Qwen2.5-VL*-7B (o) 713 725 689 52.0 700 | 782

3.3.4 EFrrFecT oF GEOMETRIC

Building on SVE-Math-DeepSeek, we first train a projector while freezing LLM and visual encoder
in the visual-language alignment stage using either AutoGeo, MAVIS, or GEOMETRIC image-
caption alignment datasets. Training with GEOMETRIC yields +6.2% on perception tasks but suf-
fer a substantial drop when training on other datasets (~-27% in Tab.. We then self-fine-tune the
three pretrained models using MathV360K and instruction-formatted GEOMETRIC. Training with
GEOMETRIC yields a notable +~4% on MathVerse and MathVista over SVE-Math-DeepSeek,
whereas other variants underperform on MathVista.

To better assess the contribution of our perception-oriented GEOMETRIC, we conduct ablation
studies by removing GEOMETRIC and using only mathematical visual reasoning datasets, such as
MathV360K and MultiMath in the SFT stage. Additionally, we evaluate configurations where the
visual encoder is frozen during the SFT stage, and only the projector and language model are up-
dated. Tab. [8|shows that without GEOMETRIC, SFT on reasoning data alone yields only marginal
improvements—or even performance degradation—compared to the base models. For example,
Qwen2.5-VLT-7B (e) performs 3.9% worse than Qwen2.5-VL-7B on MathVerse. This degradation
may stem from overfitting to the reasoning dataset, resulting in excessive reliance on textual modal-
ity. In contrast, integrating GEOMETRIC into the training process enables the model to learn where
to attend visually during reasoning, leading to improved overall performance. Moreover, compar-
isons between SVE-Math-DeepSeek™ and SVE-Math-DeepSeek™ (o), as well as Qwen2.5-VL'-7B
and Qwen2.5-VL*-7B (o), further underscore the importance of optimizing the visual encoder to
enhance visual perception.

4 CONCLUSION

Unlike semantically rich natural images, mathematical diagrams are structured and abstract, defined
by symbolic elements and precise relationships. Current mathematical benchmarks often conflate
reasoning and perception, making it difficult to assess true diagram understanding in MLLMs. To
address this, we introduce MATHEMETRIC—a benchmark specifically designed for evaluating
diagram perceptual capabilities. While these tasks appear trivial for humans to solve ‘at a glance’,
they present significant challenges for current models. Through systematic evaluation across 20
MLLMs and detailed ablations, we identify several critical factors that degrade diagram perception,
including text over-reliance, sensitivity to symbolic perturbations, and limited fine-grained spatial
grounding. Our analyses further highlight the necessity of high-quality, structure-aware training
data. Models trained with our GEOMETRIC dataset exhibit substantial improvements in perceptual
accuracy and demonstrate measurable benefits on downstream reasoning benchmarks, bridging the
gap between visual understanding and logical inference.

10
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5 ETHICS STATEMENT

This work focuses on advancing diagram understanding and exploring cross-suite transfer to mathe-
matical reasoning in multimodal large language models (MLLMs). Our datasets are either syntheti-
cally generated or derived from publicly available resources. For reused datasets, we adopt CLEVR
(CC BY 4.0) and FigureQA (CCO 1.0); all reformatted files (e.g., JSON conversions and lookup
tables) are redistributed under the same licenses as their original sources. For GEOMETRIC, we
will release the full package, including all generated data and the code used to produce it, under
CC BY 4.0 upon acceptance, ensuring maximal reusability while preserving attribution to (a) the
CLEVR and FigureQA authors and (b) our clause engine. This approach follows open-science best
practices while safeguarding attribution and respecting licensing terms. Our work does not involve
human subjects or sensitive information, and both models and datasets are intended solely to advance
education and scientific discovery.

6 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. Details of model architec-
tures and evaluation protocols are provided in §2| and with additional implementation details,
training configurations, and hyperparameters included in Appendix §C| Our datasets are either pub-
licly available (CLEVR, FigureQA) or synthetically generated; the data generation process and full
reformatting details are described in Appendix §F Upon acceptance, we will release all code, data,
evaluation benchmarks, and model checkpoints under a CC BY 4.0 license to maximize transparency
and reusability.
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Math Blind: Failures in Diagram Understanding Undermine
Reasoning in MLLMs

Appendix

A RELATED WORK

A.1 MATHEMATICAL REASONING BENCHMARK

To evaluate MLLMs performance across different domains, various benchmarks|L1 et al.[(2024); Yu
et al.[(2024); L1 et al.[(2023)); Goyal et al.|(2019); Liu et al.|(2024)) have been proposed, primarily fo-
cusing on natural scene understanding. However, benchmarks specifically designed for multimodal
mathematical reasoning remain scarce.

Early benchmarks such as MathQA |Aminti et al.| (2019), UniGeo |Chen et al.[(2022)Geometry3k Lu
et al.| (2021), GEOS [Seo et al.| (2015), and GeoQA++ |Anand et al.| (2024) introduced multi-
modal mathematical tasks but were limited in scope, often focusing on specific subdomains like
plane geometry. More recent efforts have sought to provide broader and more diverse evalua-
tions. MMMU |Yue et al.| (2024)) assesses multimodal mathematical understanding with an emphasis
on symbolic reasoning and word problem-solving. MathVista [Lu et al.| targets geometry-related
tasks by integrating both real-world and synthetic diagrams to evaluate visual reasoning. Math-
Verse|Zhang et al.[(2024a) expands this by incorporating a wider range of multimodal challenges in-
volving charts, graphs, and structured visual content. MATH-V [Wang et al.[(2025) further addresses
the limitations of existing benchmarks by curating 3,040 high-quality math problems sourced from
real-world competitions. While these benchmarks introduce visual elements, their core focus re-
mains on assessing mathematical reasoning. It remains unclear whether the performance on these
tasks truly reflects the models’ ability to comprehensively understand the symbolic information in
diagrams. The ability to accurately interpret mathematical symbols, diagrams, and spatial structures
is a fundamental component of solving multimodal math problems, yet current benchmarks place
limited emphasis on this aspect.

A.2 MATHEMATICAL MLLMs

Recent multimodal large language models (MLLMs) |Alayrac et al.| (2022); [Liu et al.[(2023b); |Sun
et al.| (2024) have made significant strides in vision-language understanding. However, foundation
models such as GPT-4V |Achiam et al.| (2023b), Qwen2-VL Wang et al.| (2024c), and Deepseek-
VL2 [Wu et al| (2024), while strong on general multimodal tasks, exhibit notable limitations in
mathematical symbol recognition, spatial reasoning, and logical deduction—rendering them insuf-
ficient for vision-based mathematical problem solving.

Recent efforts have introduced math-specific MLLMs for improving mathematical reasoning. Al-
phaGeometry [Trinh et al.|(2024) achieves state-of-the-art results in geometry by leveraging theorem-
proving and reinforcement learning. However, it relies solely on text-based diagram descriptions,
lacking direct image processing. G-LLaVA |Gao et al.|(2023) extends LLaVA with geometric rea-
soning capabilities but struggles with complex visual structures and generalization beyond plane
geometry. UniMath |[Liang et al.| (2023) integrates structured math representations for solving vi-
sual word problems but remains focused on symbolic reasoning, limiting its handling of free-form
mathematical diagrams. MatCha|Liu et al.| (2023a)) specializes in chart-based reasoning, extracting
quantitative relationships from structured visual data. However, its reliance on predefined formats
limits adaptability to unstructured mathematical visuals.

Beyond architecture improvements, MAVIS Zhang et al.| (2024b) introduces an automated data en-
gine to generate large-scale mathematical visual datasets, reducing annotation costs while ensuring
high-quality diagram-caption pairs and problem-solving rationales. However, its diagrams are con-
structed by simply combining basic geometric shapes, lacking mathematical relationship constraints
such as perpendicularity and parallelism. AutoGeo|Huang et al.| (2024) considers special properties
of lines, such as midlines and radii, as foundational to many geometric theorems, incorporating these
properties into geometric figures. Reverse Chain-of-Thought (R-CoT) Deng et al.| (2024)) introduces
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Table 9: Key statistics of MATHEMETRIC are summarized in Tab. @ and the subject-task distri-

bution is illustrated in Fig.[9b]
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the Geometry Generation Chain to generate the geometry image and corresponding description.
However, current data engines still fail to explore the underlying structures in mathematical dia-
grams, leading to ambiguous captions and redundant information that negatively impact MLLMs’
perception abilities. Consequently, models trained on such datasets perform poorly on perception-
demanding tasks, even falling below random guessing on multiple-choice questions. Visual Graph
Arena|Babaiee et al.|(2025) corroborates this finding in the context of graph diagrams, where models
fail to recognize that differently laid-out graphs represent the same underlying concept. These find-

ings underscore the urgency of constructing structured symbolic visual datasets that enable models
to both perceive and reason effectively.

B DETAILED DATA STATISTICS OF MATHEMETRIC

To comprehensively evaluate the perceptual abilities of MLLMs in mathematical contexts,
MATHEMETRIC includes 1,609 questions grounded in 1,198 unique images. These span three key
domains: plane geometry (66%), solid geometry (20%), and graphical representations (14%), such
as line, bar, and pie charts (see Tab.[9). The benchmark comprises four core perception tasks: shape
classification (489 questions, 30.4%), object counting (401, 24.9%), relationship identification (313,
19.5%), and fine-grained object grounding (406, 25.2%). Except for the grounding task, which uses
free-form answers (e.g., bounding box coordinates), all other tasks are framed as multiple-choice
(55.5%) or true/false (19.3%) formats to support scalable and consistent evaluation. By default,
ground truth answer is randomly assigned with equal probability, 25% for each choice letter and 50%
for true/false. In our benchmark: the proportion of answer A/B/C/D is 26.7%/21.8%/28.3%/23.2%;
and 48.3%/51.7% for true/false. As summarized in Tab. [9] the dataset includes 1,514 unique ques-
tions and 380 unique answers, with an average question length of 118.0 tokens and answer length of

1.8 tokens. This design supports fine-grained analysis of model performance across diverse percep-
tual challenges and subject domains.

C TRAINING IMPLEMENTATION DETAILS

We conduct experiments on both the math-specific SVE-Math-DeepSeek, and generic Qwen2.5-VL
models (7B and 32B). Both follow a two-stage training pipeline: i) alignment training with image-
caption pairs and ii) instruction tuning for reasoning and perception.

For SVE-Math-DeepSeek, we first train the vision-language projector using image-caption pairs
(GEOMETRIC) while keeping the visual encoder and language model frozen. In the second stage,
we perform full-parameter self-fine-tuning (SFT) using a combination of instructive GEOMETRIC
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samples and MathV360K, updating the visual encoder, projector, and LLM jointly. For the generic
Qwen2.5-VL-7B/32B models, we follow the same first-stage alignment process. To preserve prior
reasoning capabilities and mitigate catastrophic forgetting, we adopt parameter-efficient LoRA tun-
ing and incorporate an additional 300K MultiMath [Peng et al.| (2024)) visual reasoning samples in
the second SFT stage.

Training Settings. During alignment training, we use a global batch size of 256, a learning rate
of le—4, and train for one epoch with a maximum sequence length of 2048. In the SFT phase,
we reduce the learning rate to le—5 (with a vision-specific learning rate of 2e—6) and maintain
the same batch size and sequence length. We use the Adam optimizer without weight decay and
apply a cosine learning rate schedule. To improve memory efficiency, we employ Fully Sharded
Data Parallel (FSDP), gradient checkpointing, and enable BF16 precision. We avoid CPU/GPU
offloading to maximize throughput.

Hardware and Runtime. All 7B model training was performed on 8 x A100 GPUs (80GB each).
Alignment training took approximately 5 hours, followed by 12 hours for full fine-tuning (SVE-
Math-DeepSeek) and 16 hours for LoRA fine-tuning (Qwen2.5-VL-7B). For the 32B Qwen2.5-VL
model, we used 16 x H100 GPUs (96GB each), with alignment training taking 9 hours and LoRA-
based SFT 15 hours.

More Ablations. 1) Herein, we assess whether it is necessary to count complex overlap-
ping objects. Even humans interpret overlapping objects differently. To ensure more accu-
rate conclusions for overlapping object counting, we asked three authors to manually and in-
dependently label the same 200 images sampled from our benchmark. The ground truth for
these cases is represented as a list of one to three possible answers (if three annotators pro-
vided the same answer, we merged them). We added a system prompt to our counting templates:
you are required to count potential overlapping objects. For evaluation, we adopt free-form answer
matching—if the model’s response matches any entry in the annotated answer list, it is considered
correct. Top-1 accuracy is then computed based on this criterion, as shown in Tab [I0}

Table 10: Accuracy (%) on non-overlapping vs. overlapping counting. Overlapping objects remain
consistently harder for MLLM:s.

LLaVA-v1.5-7B|LLaVA-v1.5-13B|G-LLaVA-7B|MultiMath-7B|Qwen2.5VL-7B |InternVL2.5-8B |InternVL2.5-38B | GPT-40 | SVE-Math-DeepSeek-7B | SVE-Math-DeepSeek *-7B

Non-overlapping 43.8 44.5 45.8 359 54.8 40.0 56.2 57.1 40.1 88.2

Overlapping 28.7 29.1 293 18.4 32.8 217 31.9 38.9 237 613

2) Instead of using numeric-coordinate grounding, we adopt vertex lists as an alternative abstrac-
tion for grounding planar geometric objects. Vertex-list grounding is conceptually simpler than
coordinate-based approaches: rather than predicting multiple continuous numerical values, the
model only needs to identify discrete symbolic labels already annotated in the diagram. For ex-
ample, Q: Please provide the list of vertex labels described by the sentence: Square. A: ABCD. A
comparison between vertex-list grounding and numeric-coordinate grounding is shown in Tab. [TT]

Table 11: Comparison of vertex-list grounding vs. numeric-coordinate grounding for planar dia-
grams.

Qwen2-VL-7B |Qwen2.5-VL-7B | LLaVA-v1.5-7B | InternVL2.5-32B | GPT-40 | G-LLaVA-7B | MultiMath-7B | SVE-Math-DeepSeek-7B | SVE-Math-DeepSeek ™-7B

Vertex 45.6 49.1 1.8 42.7 44.8 39 33.1 417 89.3
Numerics 12.8 18.5 142 2.5 1.1 0.4 1.1 3.6 829

3) To prevent models from exploiting vertex-count shortcuts in the shape-classification task, we de-
sign hard distractors for 75% of the questions. For each ground-truth polygon, at least one distractor
is drawn from the same polygon family, ensuring that models cannot rely solely on the number of
vertices. For instance, when the correct answer is a scalene triangle, distractors are sampled from
other triangle types (isosceles, right, equilateral). Likewise, for quadrilaterals, distractors include
shapes such as rectangles, squares, or trapezoids (e.g., a rectangle paired with a right trapezoid; see
Fig. [0 first row). To further validate that vertex-count shortcuts are not driving model performance,
we construct an additional controlled dataset of 200 planar diagrams in which vertex labels are re-
placed with purely visual numeric markers (e.g., 1, 2, 3 - - - ). These markers do not encode polygon
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Q: In the diagram, each object is
explicitly numbered using white
digits inside blue boxes. What is
the shape of object 2 in the image?

(a) equilateral quadrilateral
(b) parallelogram

(c) rectangle

(d) equilateral triangle
A:(c)

Q: In the diagram, each object is

explicitly numbered using white

digits inside blue boxes. Can you

identify the type of object 1 in the
F picture?

(a) scalene triangle

(b) equilateral triangle

(c) quadrangle

(d) circle

A: (a)

Q: In the diagram, each object is|
explicitly numbered using white|
digits inside blue boxes. What is|
the shape of object 2 in the image?

(a) right triangle
(b) scalene triangle
(c) pentagon

(d) rectangle
A:(d)

Figure 8: Visualization of samples where objects are annotated using numerical visual markers
instead of vertex labels. Zoom in for the best view.

type and therefore eliminate vertex-count cues. Example cases are provided in Fig. [§] and the cor-
responding ablation results are summarized in Tab[I2] These results show diverse behavior across
models when switching from vertex labels to visual markers. If vertex-count shortcuts dominated
model performance, all models would exhibit similar, substantial drops under the marker condi-
tion—but this is not observed. Several models (e.g., Qwen2.5-VL-7B, LLaVA-v1.5-7B, SVE-Math-
DeepSeek-7B, and our model) maintain stable performance under both conditions. The observed
irregularities instead reflect differences in models’ ability to interpret visual markers: for example,
GPT-40 handles marker-based diagrams well, whereas InternVL2.5-38B performs better with vertex
labels. These findings confirm that our distractor design is robust and that model performance is not
driven by vertex-count shortcuts.

Table 12: Accuracy (%) on vertex-list vs. visual-marker classification for planar diagrams.

Qwen2-VL-7B |Qwen2.5-VL-7B | LLaVA-v1.5-7B | InternVL2.5-38B | GPT-40 | G-LLaVA-7B | MultiMath-7B | SVE-Math-DeepSeek-7B | SVE-Math-DeepSeek *-7B

Vertex 50.7 48.6 34.6 553 53.1 31.6 44.1 439 72.6

Markers 433 47.9 353 433 54.8 28.8 332 41.1 71.7

Discussion of MINT-CoT and Vision-R1 vs. Ours. MINT-CoT and Vision-R1 align with our
findings that perception is critical for reasoning, yet operate at different scopes:

1) Relation to MINT-CoT: MINT-CoT explicitly injects interleaved visual tokens into the chain-
of-thought, enabling the model to reference visual evidence during reasoning. This represents an
important direction for coupling perception and reasoning step-wisely. In contrast, our work fo-
cuses on improving diagram perception itself, without introducing any specialized mechanism for
mixing visual and textual tokens in the reasoning process. As a result, the two lines of work are
compatible: MINT-CoT studies how visual information is integrated into CoT reasoning; our work
studies whether the model can accurately perceive symbolic diagrams in the first place, and how
enhanced perception naturally transfers to reasoning.

2) Relation to Vision-R1: Vision-R1 aims to incentivize reasoning ability on top of a strong base
model using reinforcement learning. A key factor in Vision-R1’s success is the quality and diversity
of its cold-start data: over 43 curated datasets spanning mathematical diagrams, science and medical
figures, general QA images, and figure-understanding datasets. Importantly, during data construc-
tion, Vision-R1 generates pseudo-CoT using image captions, giving the model holistic visual context
that supports the development of high-quality reasoning traces. While both works support the idea
that perception is a prerequisite for effective multimodal reasoning, Vision-R1 focuses primarily on
improving reasoning ability, whereas our work focuses on explicitly enhancing symbolic diagram
perception. This distinction is crucial: reasoning improvements in Vision-R1 rely heavily on
RL strategies and large-scale, high-quality CoT training samples, not on explicit perceptual
enhancement.

Overall, we summarize the key points below:
* Our work: focuses on improving diagram perception and demonstrates measurable transfer
from enhanced perception to downstream reasoning.

e MINT-CoT: interleaves visual tokens within chain-of-thought reasoning to produce more
visually aligned inference.

* Vision-R1: incentivizes reasoning ability through reinforcement learning, built on high-
quality, large-scale perception—reasoning training data.
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Figure 9: Visualization of sample cases from MATHEMETRIC. (a), (b), and (c) correspond to
problems related to Plane Geometry, Solid Geometry, and Graphs, respectively.

D VISUALIZATION OF MATHEMETRIC

MATHEMETRIC is specifically designed to evaluate perception-demanding tasks in Multimodal
Large Language Models (MLLMs), focusing on four core visual understanding capabilities: shape
classification, object counting, object grounding, and relationship identification. These tasks, com-
monly studied in classical computer vision, are typically solvable by humans with minimal cognitive
effort. Our benchmark spans three key domains—plane geometry, solid geometry, and mathematical
graphs—to ensure broad coverage of visual representations encountered in educational and scientific
contexts. Fig. |§|provides illustrative examples from MATHEMETRIC, demonstrating the diagram-
matic input and corresponding question—answer (Q&A) pairs used for evaluation.
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E PROBLEM TEMPLATES

This section introduces the problem templates employed in MATHEMETRIC, with illustrative ex-
amples provided in Tab. We adopt a template-based generation engine to systematically construct
diverse perception-oriented Q&A pairs. Each question is generated by parsing the structured JSON
annotations of a given image, which include information on shapes, object attributes, spatial posi-
tions, and inter-object relationships. These elements are then filled into carefully designed templates
(Tab. [T3) to produce grammatically correct and semantically meaningful Q&A pairs.

Our template designs are tailored to accommodate diverse subject domains—including plane ge-
ometry, solid geometry, and graph-based diagrams—and span a spectrum of perceptual complexity,
from coarse-level to fine-grained tasks. For example, a coarse-level shape classification template
may pose a question such as, “What is the shape of the object with {vertices}?”, where the correct
answer is directly retrieved from the structured annotations. For fine-grained object localization, we
adopt a grounding template similar to that used in/Wu et al.[(2024), prompting models with: “Please
provide the bounding box coordinates of the region this sentence describes: {shape} {vertices}”.
This allows us to evaluate the model’s ability to extract precise spatial information and align lan-
guage with visual primitives at a granular level.

We design three types of questions: multiple-choice, true/false, and open-ended. Specifclly, for
multiple-choice questions, we incorporate plausible distractors to challenge the model’s geometric
perception. These distractors are selected from geometric candidate pools, varying from visually
similar to clearly distinguishable options, ensuring a balanced evaluation of fine-grained visual dis-
crimination. By leveraging this template engine, MATHEMETRIC ensures consistent question
formulation, controlled variation in difficulty, and robust coverage of geometric primitives and their
relationships, forming a reliable testbed for evaluating diagram perception in MLLM:s.

F DATASET CONSTRUCTION FOR PLANE/SOLID GEOMETRY & GRAPHS

F.0.1 SYNTHETIC DATA ENGINE FOR PLANE GEOMETRY

Fig. [ (main paper) describes the entire generation process. Inspired by AlphaGeometry [Trinh et al.
(2024), we use geometric clauses as fundamental units to construct complex plan geometric fig-
ures. A geometric clause is a formalized description of basic geometric objects and mathematical
relationships, along with their properties or attibutes, a.k.a. prerequisite points. We first construct
two geometry substrate pools, one containing 16 different geometric shapes (i.e., isosceles trian-
gle, square, rectangle, parallelogram, isosceles trapezoid, pentagon, circle . .. ellipse and segment),
and the other defining 10 mathematical relationships (i.e., on, intersection, parallel, perpendicular,
tangent, ... and reflection). We then randomly sample one or more substrates from these pools
and pass them through a verifier, which ensures that logically paired shapes and relationships are
preserved in the construction of valid geometric images. The verifier makes decisions based on
either manually designed rules, fundamental mathematical knowledge, or prerequisite points. For
example, parallel lines cannot intersect, and without enough prerequisite points, an angle trisec-
tion clause is invalid. In general, the chosen relationships are enforced by introducing additional
shapes into the figure, ensuring that the specified relationships are accurately maintained and geo-
metrically consistent throughout the construction process. We finally save the outputs as structured
JSON annotations for image rendering using the Matplotlib package [Hunter| (2007) and generating
question-answer pairs via template-based pipelines.

Image Generation. The JSON annotations define foreground and background styles, i.e., colors
sampled from a monochromatic palette, line width, and font size, as well as object shape informa-
tion (class names), attributes (vertices labeled with random letters), bounding box locations, and
mathematical relationships. Notably, spatial relationships are generated based on the bounding box
locations of two objects (e.g., top-left, top-right, bottom-left, bottom-right). Similar to the image
rendering process in [Trinh et al.| (2024)), we translate geometric clauses into visual representations
using Python code. This process first determines coordinates of points defined in each clause for
basic shape visualization, then generates new primitives based on specified relationships. To in-
crease task difficulty, we apply image augmentations, e.g., Gaussian noise, irregular scribbles, and
wedge-shaped symbols for congruent angles or auxiliary lines (see Figs.[I0]and[12).
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1131 Question-Answer Generation. Based on structured annotations, we employ a template-based
1132 pipeline to generate multiple-choice and true-false questions across four perception tasks. For ex-
1133 ample, in constructing Q&A pairs for shape classification, we first randomly select an object and

its associated attributes from the given figure. We then formulate a question by filling placeholders
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Figure 12: Visualization of distorted images under varying levels of Gaussian noise.

in our carefully designed templates. For true-false questions, the ground truth answer is directly
derived from the JSON annotations. For multiple-choice questions, we generate plausible distrac-
tors to challenge the model’s geometric perception, combining them with the correct answer into a
set of four choices. Distractors are selected from geometric candidate pools, ranging from visually
similar (e.g., equilateral vs. isosceles triangles) to visually dissimilar pairs (e.g., equilateral triangle
vs. circle). Further details on the Q&A generation templates are provided in Tab. [I3]

Copyright and Consent: For GEOMETRIC, we will release the entire package including all data
and code used to generate samples under CC BY 4.0 on acceptance.

F.0.2 REFORMAT DATASET FOR SOLID GEOMETRY & GRAPHS

Copyright and Consent: CLEVR [Johnson et al.[(2017)) is under CC BY 4.0 and FigureQA [Kahou
et al.|(2017) is under CCO 1.0. All files that we re-publish (JSON reformats and look-up tables) will
carry the same licenses as their sources.

Solid Geometry. CLEVR [Johnson et al.[(2017) is a synthetic Visual Question Answering (VQA)
dataset containing 3D-rendered objects. Each object in the scene is defined by its 3D position and a
set of attributes, including size (small or large), shape (cube, cylinder, sphere), material (rubber or
metal), and color (gray, blue, brown, yellow, red, green, purple, cyan). However, CLEVR’s anno-
tation format is incompatible with our template-based pipeline for generating perception evaluation
QA pairs. To resolve this, we reformat the original annotations into structured JSON, following the
same format as the synthetic data process. Specifically, we extract object information from CLEVR’s
scene annotations and organize them into shape information and object attributes. We then leverage
an object’s 3D location and its direction for calculating its 2D top-left and bottom-right coordinates,
from which relative spatial relationships are derived.

Once the reformatted JSON annotations are generated, we apply the same template-based QA gen-
eration process as designed for plane geometry, with an additional uniqueness check for shape clas-
sification. To ensure clear and consistent labeling, we filter out ambiguous cases where identical
attribute combinations correspond to different shapes within the same image. For example, if an im-
age contains multiple distinct shapes with the same attributes (e.g., a large rubber blue square and a
large rubber blue cylinder), we exclude classification questions that rely on the attribute combination
‘large rubber blue’ to prevent ambiguity.

Graphs. FigureQA [Kahou et al.| (2017) is a visual reasoning dataset containing over one million
question-answer pairs, grounded in synthetic, scientific-style figures, including line plots, dot-line
plots, vertical and horizontal bar graphs, and pie charts. The official annotations capture various rela-
tionships between plot elements and evaluate characteristics such as maximum, minimum, smooth-
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ness, and intersection, all framed as binary yes/no questions. Additionally, FigureQA provides
numerical data annotations used to generate each figure, along with bounding-box annotations for
all plot elements. Similar to CLEVR, we reformat FigureQA annotations compatible with template-
based pipelines.

Specifically, the shapes include five graph types as defined in the official specification, with each
element’s attribute represented by its unique color. Additionally, we store the bounding box coordi-
nates of each foreground element (such as lines, bars, and pie slices), along with legends and titles,
as ground truth for the grounding task. For relationships, we follow the binary true/false question-
answering problems to evaluate the model’s understanding of geometric and graphical relationships.

G EXAMPLE ILLUSTRATION OF GEOMETRIC

Figs. demonstrate how GEOMETRIC delivers explicit geometric information—covering ob-
ject count, shape classification, fine-grained bounding box coordinates, and inter-object relation-
ships—presented in both caption-style and instruction-following conversational formats.

H VISUAL DISTRACTORS

To evaluate the robustness of MLLMSs’ perceptual capabilities, we introduce a set of visual perturba-
tions through data augmentation. These include Gaussian noise, irregular scribbles, wedge-shaped
symbols, and auxiliary lines, as shown in Fig. The aim is to simulate real-world visual am-
biguities and assess whether MLLMs can retain accurate geometric understanding under degraded
conditions. These controlled distortions provide a rigorous benchmark for evaluating the models’
ability to extract and interpret mathematical structures from visually complex inputs.

By gradually increasing the Gaussian noise level, we can systematically evaluate its impact on the
ability of MLLM to recognize mathematical structures. As shown in Fig. the image transitions
from a noise level of 0.1 to 0.8, progressively blurring the geometric features. We observe that
as the noise intensity increases, the difficulty of recognizing mathematical structures also rises,
posing greater challenges to accurate recognition and reasoning. When the noise level reaches ~
N (0, 0.8), the mathematical structures become nearly indistinguishable to the human eye, resulting
in a significant performance drop on MATHEMETRIC, as illustrated in Fig.

I CASE STUDY

Model Responses. In Figs.[I6}{I8] we present a comparative analysis of model responses across sev-
eral Multimodal Large Language Models (MLLMs), including SVE-Math-DeepSeek |[Zhang et al.
(2025)), InternVL2.5 [Chen et al.[ (2024a), Qwen2.5-VL |Bai et al.| (2025), and GPT-40, alongside
our enhanced variants: SVE-Math-DeepSeek™ and Qwen2.5-VL ™. Our evaluation shows that fine-
tuning base models (SVE-Math-DeepSeek and Qwen2.5-VL) on GEOMETRIC significantly im-
proves response accuracy over their respective baselines. This improvement suggests that our care-
fully curated training data effectively enhances the model’s mathematical perception, enabling it to
better comprehend problem structures, reason through mathematical concepts, and generate more
precise answers. For example, in Fig[I6](a), the base model fails to recognize the hypotenuse, while
the GEOMETRIC model correctly identifies it and naturally applies the Pythagorean theorem to
reach the correct answer. Similarly, in Fig[T6| (b), the GEOMETRIC model correctly perceives the
diameter, infers the presence of a right triangle, and again applies the appropriate theorem. In Fig[I8]
(a), both the base model and ours know the relevant theorem—the Inscribed Angle Theorem. How-
ever, the base model misperceives key visual cues (e.g., tangent lines), leading to hallucinated angle
relations and an incorrect final answer. The GEOMETRIC model correctly perceives the tangency
and the right-angle structure, enabling it to execute the theorem correctly and arrive at the correct
answer. Furthermore, we observe that even GPT-40, a strong competitor in the field, produces in-
correct responses in certain cases. Upon closer examination, these errors often stem from inaccurate
mathematical perception rather than purely computational mistakes. This observation reinforces the
notion that an MLLM’s ability to accurately perceive and interpret mathematical content is a critical
factor in achieving high performance. Overall, our findings highlight the fundamental role of precise
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perception in mathematical reasoning, akin to its importance in vision and language understanding.
perception can lead to substantial gains in accuracy and reliability.

Error Examples. In this section, we provide more detailed error examples of GPT-40, Qwen2.5-
VL-7B, and our 7B model. We categorize the errors into two types: Chain-of-Thought (CoT) Errors
and Recognition Errors. CoT errors occur when the model engages in step-by-step reasoning for
perception questions but ultimately provides incorrect answers. Recognition errors, on the other
hand, arise when the model attempts direct answering without reasoning yet fails to produce the
correct result. Representative examples for each error type are illustrated in Figs.

J LIMITATIONS AND BROADER IMPACTS

Limitations. The proposed MATHEMETRIC focuses on evaluating MLLMs’ perceptual capabil-
ities in structured, symbolic mathematical diagrams spanning plane geometry, solid geometry, and
graphical representations. It enables fine-grained assessment through carefully designed perception
tasks. Our findings clearly show that current models exhibit limited perceptual ability in diagram
understanding across all three subjects, but our proposed training dataset, GEOMETRIC, remains
limited to synthetic and geometry-based content. As such, it may not fully capture the diversity and
ambiguity of real-world educational materials (e.g., textbook figures, handwritten notes, or scanned
diagrams). In future work, we aim to extend our graph-based data construction to solid and graph-
ical domains, which requires further investigation into their distinct structural representations. For
instance, in graphical images such as line and bar charts, the underlying structure differs signifi-
cantly from geometric diagrams. Nodes may correspond to data points, axis labels, or bars, while
edges may capture trends, groupings, or relational mappings across axes. Developing meaningful
node—edge representations in these contexts will be essential for enabling accurate visual grounding
and interpretation. Moreover, we believe additional tasks, such as visual marker detection, are also
critical for comprehensively evaluating MLLMs. For instance, recognizing special diagrammatic
markers that represent relationships like parallelism or perpendicularity (e.g., double lines or small
squares) is essential for deeper geometric understanding. Similarly, OCR capabilities are important,
such as detecting angle measures or textual annotations embedded within diagrams. Expanding
the benchmark to cover these aspects would further advance the assessment of MLLMs’ diagram
perception abilities.

Furthermore, although we analyze how perception affects reasoning, our current setup does not ex-
plicitly model the interleaved interaction between visual grounding and logical reasoning—a critical
direction for advancing multimodal mathematical reasoning.

Broader Impacts. This paper sheds light on a critical yet underexplored capability of
MLLMs—mathematical diagram perception—and aims to push the field toward more interpretable
and reliable multimodal reasoning. By isolating perception from reasoning, we reveal fundamental
limitations in current models and provide a diagnostic tool for future model development. These
insights could benefit applications in math education, Al-assisted learning, and cognitive science
research. Caution is warranted, however, as over-reliance on synthetic datasets may lead to overfit-
ting, and enhanced perceptual accuracy does not inherently ensure reliable reasoning. Furthermore,
improved performance on benchmark tasks may not directly translate to robust generalization in
real-world scenarios. We advocate for future research that bridges synthetic benchmarks with natu-
ralistic data and advances human-aligned evaluation frameworks for visual reasoning systems.

K USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs solely as an auxiliary tool for grammar correction and minor language polishing.
They did not contribute to research ideation, experimental design, data analysis, or writing of tech-
nical content.

10
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Structured Descriptions

Image:

Question: Please provide structured geometric
information for the image.

Answer: First, I count 3 prominent objects in the
image, including 1 rectangle, 1 isosceles triangle,
1 square. Next, for the shape information, object
DPIK is a rectangle, object EHV is an isosceles
triangle, object JOYN is a square. Furthermore, 1
also know the fine-grained bounding box
coordinates: the rectangle DPIK is located at [113,
205, 251, 328], the isosceles triangle EHV is
located at [236, 215, 399, 317], the square JOYN
is located at [154, 179, 230, 256]. Finally, let me
explain the relationships: rectangle DPIK is in the
bottom left relative to isosceles triangle EHV;
rectangle DPIK is in the bottom left relative to
square JOYN.

Multi-turn Conversation

Image:

Question: Provide the shape type of object DKLT
in this image.
Answer: rectangle

Question: Count the number of rectangles in the
image.
Answer: 2

Question: Please provide the bounding box
coordinate of the region this sentence describes:
rectangle EXHI.

Answer: [261, 143,364, 251]

Question: Describe the relationship of rectangle
EIHX relative to trapezoid FRQO in the image.
Answer: bottom right

Figure 13: Sampels of caption-style and instruction-following GEOMETRIC.

Structured Descriptions

Image:

Question: Please provide structured geometric
information for the image.

Answer: First, I count 2 prominent objects in the
image, including 1 right triangle, 1 circle. Next,
for the shape information, object EVP is a right
triangle, object E is a circle. Furthermore, I also
know the fine-grained bounding box coordinates:
the right triangle EVP is located at [256, 256, 348,
374], the circle E is located at [113, 113, 399,
399]. Finally, let me explain the relationships:
right triangle EVP is in the bottom right relative
to circle E; line AB is parallel to line EV.

Multi-turn Conversation

Image: H

M
G

Question: Can you identify the type of object
CHPG in the picture? A:equilateral quadrilateral
B:trapezoid C:right trapezoid D:right triangle
Answer: B

Question: How many trapezoids are there in the
image? A:3B:4C:1D: 2

Answer: C

Question: Please provide the bounding box

coordinate of the region this sentence describes:
trapezoid CHPG.

Answer: [113, 133, 399, 380]

Question: Does the image show the relationship
among angle CHG, angle CHD, angle DHM and
angle MHG as "angle trisection"? A:Yes B:No.

Answer: A

Figure 14: Sampels of caption-style and instruction-following GEOMETRIC.
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Structured Descriptions

Image: N

R
H

Question: Please provide structured geometric
information for the image.

Answer: First, | count 2 prominent objects in the
image, including 1 isosceles triangle, 1 circle.
Next, for the shape information, object JNR is an
isosceles triangle, object HRJN is a circle.
Furthermore, I also know the fine-grained
bounding box coordinates: the isosceles triangle
JNR is located at [179, 143, 318, 343], the circle
HRIN is located at [169, 143, 399, 369]. Finally,
let me explain the relationships: isosceles triangle
INR is in the top left relative to circle HRIN;
point F is the reflection of point H with respect to
point R.

Multi-turn Conversation

Image:

Question: Describe the geometric shape of object
HKUOQ in the picture.
Answer: pentagon

Question: Identify the total number of pentagons
present in this image.

Answer: 1

Question: Please provide the bounding box
coordinate of the region this sentence describes:
pentagon HKUOQ.

Answer: [112, 128,399, 384]

Question: Describe the geometric relationship
between line HE and line KO in the image.
Answer: perpendicular

Figure 15: Sampels of caption-style and instruction-following GEOMETRIC.
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Figure 16: Response comparisons between SVE-Math-DeepSeek ™ (7B), SVE-Math-DeepSeek

(7B), and InterVL2.5 (8B) in MathVerse.
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Table 13: Examples of problem templates used by MATHEMETRIC on different source data acorss
different tasks.

Source Task | Three randomly chosen from hundreds.

What is the shape of object {vertices} in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

Can you identify the type of object {vertices} in the picture? Choices: A:{a} B:{b} C:{c} D:{d}.

Can you identify the type of object in the picture? Choices: A:{a} B:{b} C:{c} D:{d}.

What is the shape of the object in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

There {be} only {num} {shape} in the picture, right? Choices: A:Yes B:No.

{be} there only {num} {shape} in the picture? Choices: A:Yes B:No.

You can only see {num} objects in the picture, can’t you? Choices: A:Yes B:No.

There should be only {num} shapes in the picture, correct? Choices: A:Yes B:No.

How many {shape}s can you find in the picture? Choices: A:{a} B:{b} C:{c} D:{d}.

Please count all the {shape}s in the image. Choices: A:{a} B:{b} C:{c} D:{d}.

What is the total number of shapes in the picture? Choices: A:{a} B:{b} C:{c} D:{d}.

How many objects can you identify in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

Please identify and select all the {shape}s in the picture. Choices: A:{a} B:{b} C:{c} D:{d}.

Find and select all the {shape}s in the picture. Choices: A:{a} B:{b} C:{c} D:{d}.

grd | Please provide the bounding box coordinate of the region this sentence describes: {shape} {vertices}.

Can the relationship {preposition} {shape} in the image be described as "{relation}”? Choices: A:Yes B:No.

Does the image show the relationship {preposition} {shape} as “{relation}”? Choices: A:Yes B:No.

Is {shapel} described as being in the ’{relation}’ relative to {shape2} in the image? Choices: A:Yes B:No.

Is {shapel} said to be in the ’{relation}’ relative to {shape2} in the image? Choices: A:Yes B:No.

What is the relationship {preposition} {shape} in the picture? Choices: A:{a} B:{b} C:{c} D:{d}.

Can you identify the relationship {preposition} {shape} in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

What is the relative position of {shapel} to {shape2} in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

What is the spatial relationship of shapel to shape2 in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

What is the shape of the {size} {color} object made of {material} in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

Can you identify the type of {size} {color} object with {material} material in the picture? Choices: A:{a} B:{b} C:{c} D:{d}.

There {be} only {num} {shape} in the picture, right? Choices: A:Yes B:No.

{be} there only {num} {shape} in the picture? Choices: A:Yes B:No.

There are only {num} objects in the picture, right? Choices: A:Yes B:No.

Are there only {num} shapes in the picture? Choices: A:Yes B:No.

How many {shape}s can you find in the picture? Choices: A:{a} B:{b} C:{c} D:{d}.

Please count all the {shape}s in the image. Choices: A:{a} B:{b} C:{c} D:{d}.

Count the shapes in the image. Choices: A:{a} B:{b} C:{c} D:{d}.

How many shapes can you visually identify in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

How many {size} {color} {material} objects are there in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

How many {size} {color} {material} objects are present in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

grd | Please provide the bounding box coordinate of the region this sentence describes: {size} {color} {material} {shape}.

Is it correct that {shapel} is described as being in the ’{relation}’ relative to {shape2} in the image? Choices: A:Yes B:No.

Is {shapel} described as being in the *{relation}’ relative to {shape2} in the image? Choices: A:Yes B:No.

Is {shapel} said to be in the *{relation}’ relative to {shape2} in the image? Choices: A:Yes B:No.

Can you confirm that {shapel} is in the *{relation}’ relative to {shape2} in the image? Choices: A:Yes B:No.

In the image, where is {shapel} in relation to {shape2}? Choices: A:{a} B:{b} C:{c} D:{d}.

What is the relative position of {shapel} to {shape2} in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

What is the spatial relationship of {shapel} to {shape2} in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

Describe how {shapel} is situated relative to {shape2} in the image. Choices: A:{a} B:{b} C:{c} D:{d}.

What type of chart is shown in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

Identify the type of chart in the image. Choices: A:{a} B:{b} C:{c} D:{d}.

Which of the following best describes the chart graph in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

Which kind of chart does the image represent? Choices: A:{a} B:{b} C:{c} D:{d}.

What kind of data visualization is shown in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

Can you identify the type of chart in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

{be} there only {num} {shape} in the picture? Choices: A:Yes B:No.

The picture contains only {num} {shape}, each represented by a different color, doesn’t it? Choices: A:Yes B:No.
You can only see {num} {shape} with different colors in the picture, can’t you? Choices: A:Yes B:No.

Graphs ) How many {shape}s are there in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

Can you count the total number of {shape}s in the image? Choices: A:{a} B:{b} C:{c} D:{d}.

What is the total number of {shape}s in the picture? Choices: A:{a} B:{b} C:{c} D:{d}.

grd | Please provide the bounding box coordinate of the region this sentence describes: {color} {shape}.

rlat | {question} Choices: A:Yes B:No.

cls

Plane Geometry

rlat

cls

Soild Geometry

rlat

cls
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A SVE-Math-DeepSeek* SVE-Math-DeepSeek InternVL2.5
P Since PA and PB are to Because PA and PB are tangents Tangents drawn from an external
cd the circle O, we have I of circle O, I ) point to a circle are equal in
\ ( ( Therefore, | length. Therefore, | . And
(] ( £PAB= £PBA.
Also. I ( . .
? : _ X Since O is
uestion: X Since , we have ZBOP = ) !
Q Therefore, <1 N ) 180° - 65° = 115°. Therefore, 2 the center of the circle, ZCOB is

As shown in the figure, PA
and PB are tangent to circle
O at A and B respectively.
Then the degree of 2P is ()?

. Thus, the answer is

AOB = 360° - 90° - 90° -
65°. Thus, 18(
Therefore, the answer is

X

the central angle subtended by the
arc

The inscribed

. Therefore,
Choices:
A: 65° B: 135° X In triangle PAB, the sum of angles
C: 5§ D: 100° is 180°. So,
So, the answer is not in list.
(a)
SVE-Math-DeepSeek* SVE-Math-DeepSeek InternVL2.5
Since | F Connect OA and OB. Since " To find the size of angle ACB,
P ), we have LOAP = I ), we can use the property of the
2OBP =90°. we have ZOAP = £OBP = 90°. inscribed angle in a circle. The
=% . R . inscribed angle theorem states
Also, £P = 50°. Therefore, ZAOB Also, £P = 50°. Therefore, that an inscribed angle is
Question: =360°-90° - 90° - 50° = 130°. ) ) ( that

As shown in the figure, given
that angle P = 50.0, then the
size of angle ACB is?

Since OB (the
inscribed angle is half of the
central angle formed by the same
arc), we have E

Thus, (
Therefore, the answer is

subtends the same arc

X In the given figure, 2P is an

exterior angle to triangle ABC,
and it is given as 50°. According

Choices: Therefore, the correct answer is to the exterior angle theorem, the
B: 60° exterior angle is equal to the sum
C:55° D: 50° of the two opposite interior angles.

(b)

X Thus,

Therefore,

= %x 8P =
25°. The answer is

Figure 17: Response comparisons between
(7B), and InterVL2.5 (8B) in MathVerse.

SVE-Math-DeepSeek * (7B), SVE-Math-DeepSeek
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C

50°

Question:
The degree of angle A is?

Answer:
20°

Question:

As shown in the figure,
angle CAO = 22.5, OC =
6.0, then the length of CD
is ()?

Answer:
6V2

A

P
= A\
B

Question:
Find angle P
Answer:
50°

Figure 18: Response comparisons between Qwen2.5-VL-7B+ (Qwen2.5-VL-7B fine-tuned with

Qwen2.5-VL-7B+

/" Step 1 (Property of Tangent Line):
Since €D gent t¢ le O at
C, 2£0CD =90°.

" Step 2 (Given Angle): Given that
/D =50

/" Step 3 (Sum of Angles in Triangle):

In triangle OCD, £O0CD + 2COD
+ 24D =180°.

" Step 4 (Substitute Known Values):
90° + 2COD + 50° = 180°.

v’ Step 5 (Calculate £COD): ~COD

" Step 6 (Inscribed Angle Theorem):
According to the Inscribed Angle
Theorem, ~ £COD

" Step 7 (Calculate ZA): £A = 40°

2=20°

Qwen2.5-VL-7B+

" Step 1 (Inscribed Angle Theorem):
Since

/" Step 2 (Angle Calculation):

/" Step 3 (Perpendicular Diameter
Theorem): Since , 2CEO
=90°.

" Step 4 (Isosceles Right Triangle
Property): In ACEO, 2COE = 45°,
S0 O is an isoscele i
t I e.

/ Step 5 (Calculate CE):
6xZ=3v2

/" Step 6 (Calculate CD): €D — 2«
=2x3V2=

Qwen2.5-VL-7B+

" Step 1 (Inscribed Angle Theorem):
According to the Inscribed Angle
Theorem, OB =2£ACB.

v’ Step 2 (Substitute the known
value): ZAOB =2 x 65°.

/ Step 3 (Calculation): ~AOB ~ 130
7 Step 4 (Property of Tangents):
S1In¢ \ ( 3 tangents tc
rele O, ZOAP = £OBP = 90°.

" Step 5 (Sum of Angles in
Quadrilateral): In quadrilateral
AOBP, the sur ! erio

ingles is 360

Step 6 (Calculate £P): 2P = 360° -

2OAP - £OBP - ZAOB.

Step 7 (Substitute the known

values): 2P = 360° - 90° - 90° -

130°.

Step 8 (Calculation): 2P = 5

<

N\

N\

ChatGPT-40

X Notice that is an
exterior angle to triangle AABC

v Points A, B, C lie on the circle,
so ZABC is angle.

X Since is the exterior
angle to triangle ABC, it cqual
1 sum 1 ) opposite
interior € £ 3D
B+ 2ACB

X But more importantly, in this
specific circle configuration, if
and you are given that

, and if AB is a chord and CD
is a tangent to the circle at point B,
then:

(@)
ChatGPT-40

" In triangle COE, 2CAO = 22.5°
is an etween | segment
CA and diameter AB. Triangle
COA is within a circle with
diameter AB, so A he radiu:

X Use
COA, 3
So, OE = OC X sin(«CAO) = 6
X §in(22.5°) = 6 X 03827 =
2.296

X the
vertical leg from E to D is the same
as OE. So, ~2.296

trigonometry in triangle

(b)
ChatGPT-40

/" We are given a circle with center
O, and triangle ABC inscribed in
it. AP ¢ BP are tended

1a it interse it point P

X In circle geometry, the angle
formed by intersecting
outside the circle (like 2APB)
equals the difference between the
arcs they intercept divided by 2:

X But in this case, since APB
subtends the arc AB, and triangle
ABC s inscribed in the circle:

©

X

X

Q

X

X

X

4

X

Qwen2.5-VL-7B

Identify the given information:
, O is the center of the circle. AB
is a diameter of the circle, so ~

Use the Inscribed Angle Theorem: An
inscribed angle is half the measure of
the central angle that subtends the
same arc.

The
corresponding central angle

<ABC is an inscribed angle
subtending arc AD. The corresponding
central angle ZAOD will be twice the
measure of £ABC:
. From the previous calculation,
. Therefore,

Qwen2.5-VL-7B

Identify Key Properties: Since AB
is a diameter of the circle,
\(CB3=90° (by the Inscribed
Angle Theorem). OC is a radius of
the circle, so OC=0A=0B=R,
where R is the radius. Given
0C=6.0, the radius R=6.0.
Place the center O at the origin
(0,0) of a coordinate system. Let
A=(-6,0) and since
OA=0C=6. Since £CA0=22.5°,

Since CD is the vertical distance
from C to the x-axis, which is
simply the y-coordinate of C:

Qwen2.5-VL-7B

Given: CB=( Since O is
the center of the circle, OA, OB
d O it of the circle,
making  triangle
(since all
sides are equal).
The central angle subtended by
arc AB at the center O is twice the
inscribed angle subtended by the
same arc at any point on the
circumference. Therefore: 2 A0

Now consider triangle OAP. Since
, they form two equal sides

of this triangle. Thus, triangle
OAP is isosceles with

LOAP+£OPA+2AOP=180°, then

Therefore, ZAPB =2 /(

GEOMETRIC using LoRA), GPT-40, and Qwen-2.5-VL-7B in MathVerse.
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Chain-of-Thought (CoT) Errors

Question: Can you explain how line GI and line OS in the
image are related to each other? :

w

A. parallel

B. perpendicular
C.on

D. incircle

Ground Truth: A

GPT-40 Answer Q

Stepl: The lines GI and OS are both chords of the circle.
Step2: They are not parallel or perpendicular to each other,
nor are they tangent or secant lines.

Step3: Therefore, the correct choice is C: on

Chain-of-Thought (CoT) Errors

Question: Please ignore any shapes formed by red auxiliary
lines. Can you identify the type of object CJLNR in the picture?
C

A. isosceles trapezoid

B. equilateral quadrilateral
C. pentagon

D. quadrangle

Ground Truth: C

GPT-40 Answer N

Stepl: The object labeled CJLNR in the picture is a
quadrangle, which is a four-sided polygon.

Step2: The red auxiliary lines do not form any additional
sides or angles that would change the classification of the
shape.

Step3: Therefore, the correct answer to the question is D:
quadrangle.

Figure 19: Examples of Chain-of-Thought (CoT) Errors in GPT-4o.
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Chain-of-Thought (CoT) Errors

Question: What is the shape of object IPYR in the image?
Y

p
A. right trapezoid C

B. isosceles trapezoid S \\
C. equilateral quadrilateral h\
D. equilateral triangle £

Ground Truth: B

GPT-40 Answer A

Stepl: To determine the shape of object IPYR, we need to
analyze the angles and sides.

Step2: The angles at [ and P appear to be right angles, and the
sides IP and PR are parallel.

Step3: This suggests that IPYR is a right trapezoid. So, the
answer is A: right trapezoid.

Figure 20: An example of Chain-of-Thought (CoT) Errors in GPT-4o0.
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Chain-of-Thought (CoT) Errors
Question: Can you identify the type of object in the picture?

E
A. isosceles triangle
B. circle
C. scalene triangle
D. right triangle c

Ground Truth: D
Qwen2.5-VL-7B Answer

Stepl: The image shows a triangle with three vertices labeled
as D, C, and E.

Step2: To determine the type of triangle, we need to look at
the lengths of its sides.

Step3: If two sides are equal, it is an isosceles triangle. If all
sides are of different lengths, it is a scalene triangle. If one
angle is 90 degrees, it is a right triangle.

Step4: From the image, we can see that the lengths of the
sides DE, EC, and DC are not equal, so the triangle is not
isosceles or right.

StepS: Therefore, the correct answer is C: scalene triangle

Figure 21: An example of Chain-of-Thought (CoT) Errors in Qwen2.5-VL-7B.
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Chain-of-Thought (CoT) Errors

Question: Can you count the total number of objects in the image?

A4.3
B. 4
C.2

D.5 (D
Ground Truth: A

Qwen2.5-VL-7B Answer

Let's count the objects in the image step by step:

Stepl: There are 5 points labeled: A, J, G, L, and S.

Step2: There are 4 lines connecting these points: AJ, AG, JL, and
LS.

Step3: So, the total number of objects in the image is 5 points and
4 lines, which makes it 9 objects in total.

Step4: However, the options provided are A:3, B:4, C:2, and D:5.
It seems there might be a misunderstanding in the question or the
options. Based on the image, the correct answer should be: D:5.

Figure 22: An example of Chain-of-Thought (CoT) Errors in Qwen2.5-VL-7B.
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Chain-of-Thought (CoT) Errors

Question: Can you explain how line GI and line OS in the
image are related to each other? !

w

A. parallel

B. perpendicular
C.on

D. incircle

Ground Truth: A

Qwen2.5-VL-7B Answer %

To determine the relationship between line GI and line OS in
the image, let's analyze the given options:

Stepl: A: Parallel - Lines that never intersect and are always
the same distance apart. B: Perpendicular - Lines that
intersect at a 90-degree angle. C: On - One line is on the
other line. D: Incircle - A circle that is tangent to all three
sides of a triangle.

Step2: In the image, line GI and line OS are not parallel, not
perpendicular, and not on each other.

Step3: However, they are both radii of the same circle, which
means they are equal in length and emanate from the same
center point (O).

Step4: Given the options, the correct answer is: C: On

Figure 23: An example of Chain-of-Thought (CoT) Errors in Qwen2.5-VL-7B.
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Recognition Errors

Question: How many objects are there in the image?

SRS
W W —

D.2
Ground Truth: D

GPT-40 Answer
C:3

Recognition Errors

Question: You can only see 2 objects in the picture, can't you?

E

A. Yes |

| L
B. No . W

C

u Q
Ground Truth: B o
Y
GPT-40 Answer
A: Yes

Figure 24: Examples of Recognition Errors in GPT-4o.
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Recognition Errors

Question: Can you identify the type of object QRUW in the
picture? W

A. isosceles trapezoid
B. trapezoid

C. pentagon

D. right trapezoid y \ Q
Ground Truth: B AN
GPT-40 Answer R

I can't identify the object QRUW in the picture.

Recognition Errors

Question: Please provide the bounding box coordinate of the
region this sentence describes: right triangle FGK.

Ground Truth: [113, 182, 398, 329]

Qwen2.5-VL-7B Answer
bbox 2d:[109, 135, 347, 286], label: right triangle FGK

Figure 25: Examples of Recognition Errors in GPT-4o (top) and Qwen2.5-VL-7B (bottom).
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Recognition Errors
Question: What is the shape of object AFJP in the image?

A. isosceles triangle
B. equilateral quadrilateral Q
C. rectangle X p
D. right trapezoid \
Ground Truth: C ‘ A
Qwen2.5-VL-7B Answer

B

Recognition Errors

Question: Please ignore any shapes formed by red auxiliary
lines. What is the shape of object ABFT in the image?

T

A. trapezoid A
B. circle x AW
C. square
D. ellipse
Ground Truth: A F v

Qwen2.5-VL-7B Answer

The correct answer is C: square

Figure 26: Examples of Recognition Errors in Qwen2.5-VL-7B.
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Recognition Errors

Question: Can you identify the type of object AHM in the
picture?

A. right triangle

B. isosceles triangle
C. rectangle

D. equilateral triangle

Ground Truth: B

SVE-Math-DeepSeek™ Answer
A

Recognition Errors

Question: Please provide the bounding box coordinate of the
region this sentence describes: quadrangle GSJY.

y G
Lk
Ground Truth: [243, 186, 343, 350] ‘ s
He [y y
W o M
SVE-Math-DeepSeek™ Answer

[287, 159, 399, 297]

Figure 27: Examples of Recognition Errors in SVE-Math-DeepSeek *-7B.

Recognition Errors
Question: What is the shape of object IPYR in the image?

A. right trapezoid

B. isosceles trapezoid

C. equilateral quadrilateral
D. equilateral triangle

Ground Truth: B

SVE-Math-DeepSeek* Answer
C

Figure 28: An example of Recognition Errors in SVE-Math-DeepSeek +-7B.
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