Under review as a conference paper at ICLR 2024

LECO-NERF: LEARNING COMPACT OCCUPANCY FOR
LLARGE-SCALE NEURAL RADIANCE FIELDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Radiance Fields (NeRFs) have shown impressive results in modeling large-
scale scenes. A critical problem is how to effectively estimate the occupancy to
guide empty-space skipping and point sampling. Although grid-based methods
show their advantages in occupancy estimation for small-scale scenes, large-scale
scenes typically have irregular scene bounds and more complex scene geometry
and appearance distributions, which present severe challenges to the grid-based
methods for handling large scenes, because of the limitations of predefined bound-
ing boxes and grid resolutions, and high memory usage for grid updating. In this
paper, we propose to learn a compact and efficient occupancy representation of
large-scale scenes. Our main contribution is to learn and encode the occupancy
of a scene into a compact MLP in an efficient and self-supervised manner. We
achieve this by three core designs. First, we propose a novel Heterogeneous Mix-
ture of Experts (HMoE) structure with common Scene Experts and a tiny Empty-
Space Expert. The heterogeneous structure can be effectively used to model the
imbalanced unoccupied and occupied regions in NeRF where unoccupied regions
need much fewer parameters. Second, we propose a novel imbalanced gate loss
for HMoE, motivated by the prior that most of the 3D points are unoccupied. It
enables the gating network of HMOoE to accurately dispatch the unoccupied and
occupied points. Third, we also design an explicit density loss to guide the gating
network. Then, the occupancy of the entire large-scale scene can be encoded into
a very compact gating network of the HMoE. As far as we know, we are the first
to learn the compact occupancy of large-scale NeRF by an MLP. We show in the
experiments that our occupancy network can very quickly learn more accurate,
smooth, and clean occupancy compared to the occupancy grid. With our learned
occupancy as guidance for empty space skipping, our method can consistently ob-
tain 2.5 speed-up on the state-of-the-art method Switch-NeRF, while achieving
highly competitive performances on several challenging large-scale benchmarks.

1 INTRODUCTION

Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) have been used to model large-scale 3D
scenes by scene decomposition, such as Mega-NeRF (Turki et al., 2022), Block-NeRF(Tancik et al.,
2022), and Switch-NeRF (MI & Xul |2023). Although they have achieved promising performances,
the critical problem of modeling occupancy for large-scale scenes remains under-explored. A large
3D scene is usually very sparse, with a large portion of the 3D scene as empty spaces. Thus,
modeling the occupancy can effectively guide the empty-space skipping and point sampling. Us-
ing an occupancy grid to guide the point sampling has become a common practice in small-scale
NeRF (Miiller et al.| [2022; [Fridovich-Keil et al., [2022; [Hu et al.l [2022; L1 et al., 2022). The occu-
pancy grid stores density and occupancy in grid cells. The occupancy is computed from the density
value by evaluating the NeRF network and defining a density threshold. During the training of NeRF,
they sample 3D points from the grid cells and compute new density values to update the occupancy
in a momentum way. The computation of updating the grid is thus related to the resolution of grids.

The occupancy grid works well for modeling the occupancy of small-scale scenes. However, it has
clear limitations on large-scale scenes. Firstly, the memory used to store the grid and the computa-
tion used to update it increase significantly along with the grid resolution. This limits the grid from
increasing its resolution to model large-scale scenes in detail. Secondly, the occupancy grid needs
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Figure 1: Illustration of the differences between the occupancy grid and our occupancy network.
Our occupancy network is a compact MLP with only 0.147M parameters, trained by our designed
losses within HMoE. The occupancy grid stores 2.0M parameters with a resolution of 1283, It needs
is not aware of the training losses. The images are the visualization of the occupied and unoccupied
parts as stated in[4.2]

more prior knowledge of the geometry of the scene. The scene should be more regular so that it can
be bounded by a tight bounding box. Thirdly, most of the grids are unoccupied due to the sparsity
of the scene, making the grid not compact enough and wasting memory and computation. Finally,
the momentum updating of the occupancy grid is not directly related to the actual rendering loss,
making it agnostic to the actual rendering quality, leading to unsatisfactory results. These limitations
make the occupancy grid challenging to be directly applied to model complex large-scale scenes.

To tackle the challenges of modeling occupancy for large-scale scenes, in this paper, we propose
LeCO-NeRF to learn a compact occupancy representation with an MLP. Fig. [T] compares the oc-
cupancy grid and our occupancy network. An essential nature of a 3D scene is that the occupied
points are much fewer than the unoccupied points, while containing significantly more important
information. Therefore, modeling occupancy is naturally very imbalanced and heterogeneous. This
motivates us to propose a Heterogeneous Mixture of Experts (HMoE) network, an imbalanced gate
loss, and a density loss to learn the occupancy. Our contributions are discussed below.

Firstly, we propose a novel Heterogeneous Mixture of Experts (HMoE) network to learn the oc-
cupancy of a large-scale scene. The HMOoE network consists of several Scene Experts designed to
encode the occupied points. It contains another special Empty Space Expert designed to handle the
unoccupied 3D points. A compact gating network is used by HMoE to determine which expert a 3D
point should be dispatched into. If a 3D point is dispatched to the Empty Space Expert, this point is
seen as unoccupied. Therefore, the gating network can serve as a representation of the occupancy.
The HMOE is heterogeneous in the structure of experts. The empty space expert is designed to be a
very tiny network with much fewer parameters than the scene experts, as the unoccupied points are
less informative and much easier to model. Secondly, we propose an imbalanced gate loss for the
gating network in HMoE. Since a large portion of the space is unoccupied, the decision of our gating
network should explicitly model the imbalance of occupancy. We accordingly design an imbalanced
gate loss to make the gating network dispatch a large portion of the 3D points to the empty space
expert, instead of dispatching samples uniformly as in previous MoE methods (Lepikhin et al., 2021}
Fedus et al., [2022; MI & Xu, [2023). With the two designs of HMoE and imbalanced gate loss, we
find that the gating network can already effectively distinguish the occupied and unoccupied points
implicitly. Thirdly, to better learn the occupancy of a large-scale scene, we further propose a den-
sity loss to guide the training of the gating network. In a NeRF representation, the density of an
unoccupied point is much smaller than that of an occupied point. We explicitly use this constraint
to design a density loss to make the gating network dispatch points with small density values to the
Empty Space Expert. This density loss can ensure the network predicts more accurate occupancy.

Our LeCO-NeRF converges very fast in learning the scene occupancy. The imbalanced gate loss
and the density loss also work together with the rendering loss, so that our network is more aware
of the rendering quality. After training the occupancy, we can utilize it to guide the point sampling
in the state-of-the-art large-scale NeRF method, i.e. Switch-NeRF (MI & Xu, 2023). We freeze
the learned occupancy network and use it as an occupancy predictor. If a point is predicted as
unoccupied, it is discarded and is not processed by the main NeRF network. In our experiments, we
can consistently outperform the occupancy grid in terms of accuracy, and achieve 2.5X acceleration
compared to Switch-NeRF, while obtaining highly competitive performance. Our method can also
learn more accurate, smooth, and clean occupancy compared to the occupancy grid. The smoothness
is apparent as shown in the rendered videos in the supplementary.
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2 RELATED WORK

NeREF. Neural Radiance Fileds (Mildenhall et al., [2020) utilize a multilayer perceptron (MLP) net-
work to encode a 3D scene from multi-view images. It has been extended to model a lot of tasks Liu
et al.| (2020); I Xu et al.[(2022); |Kerbl et al.| (2023); [Zhang et al.[|(2023) or even city-level large-scale
scenes (Turki et al} |2022; Tancik et al.| 2022} [MI & Xul 2023)). The main idea of these large-scale
NeRF methods is to decompose the large-scale scene into partitions and use different sub-networks
to encode different parts, and then compose the sub-networks. The Mega-NeRF (Turki et al., [2022)
and Block-NeRF (Tancik et al.l [2022) manually decompose the scene by distance or image distri-
bution. The sub-networks are trained separately and composed with manually defined rules. The
Switch-NeRF (MI & Xul 2023) learns the scene decomposition by an MoE network and trains dif-
ferent experts in an end-to-end manner. There are also several methods (Xu et al., [2023}; zha, [2023)
employing the hash encoding (Miiller et al., 2022) and plane encoding (Chan et al., |2022; (Chen
et al.| 2022)) while not decomposing the scene. In contrast to these existing works, our LeCO-NeRF
method focuses on learning the occupancy of a large-scale scene. The learned occupancy can be
used to accelerate large-scale NeRF methods.

Occupancy and efficient sampling in NeRF. Many methods are proposed to estimate the important
regions. The original NeRF Mildenhall et al.| (2020)) trains a coarse and fine network together for
hierarchical sampling. The Mip-NeRF 360 (Barron et al.|[2022) designs a small proposal network
to predict density and converts it into a sampling weight vector. Apart from these methods directly
predicting the weight distributions, there are many methods (Miiller et al.| |2022} [Fridovich-Keil
et al., 2022; Hu et al.l [2022; L1 et al., 2022) use the binary occupancy for sampling. The Plenoxels
method (Fridovich-Keil et al.| 2022) reconstructs a sparse voxel grid and prunes empty voxels during
the training. The NerfAcc (Li et al., |2022) provided a plug-and-play occupancy grid module and
has shown in extensive experiments that estimating occupancy can greatly accelerate the training of
various NeRF methods. The Instant-NGP (Miiller et al., | 2022)) uses multi-scale occupancy grids to
encode the occupancy. These existing methods using occupancy grids typically focus on small-scale
scene modeling. The occupancy grid faces problems on large-scale scenes, as described above. In
this paper, we focus on learning a compact binary occupancy representation on large-scale scenes.

Mixture of experts. The representative Mixture-of-Experts method (Shazeer et al., 2017) proposes
Sparsely Gated Mixture of Experts (MoE). It selects different experts for different inputs by a gat-
ing network. The MoE has been applied to build large-scale models for various fields, such as
NLP (Lepikhin et al.,[2021}; [Fedus et al., 2022) and Computer Vision (Riquelme et al.,[2021;[Hwang
et al., 2022). The Switch-NeRF (MI & Xul [2023)) is the first to successfully apply MoE on large-
scale NeRF. Our method also uses MoE in NeRF. However, Our model has fundamental differences
from Switch-NeRF: (i) The gating network in Switch-NeRF is homogeneous and not controllable.
In contrast, our model is the first to control the MoE to learn the imbalanced occupancy of NeRF in
a self-supervised manner. (ii) Learning occupancy with MoE relies on our proposed novel designs
of the Heterogeneous MoE, the imbalanced gate loss, and the density loss.

3 METHOD

3.1 OVERVIEW

Our LeCO-NeRF learns occupancy of a 3D scene in the training of a Neural Radiance Field F'. The
proposed framework of LeCO-NeRF is shown in Fig.|2| F' takes a 3D point x and its direction d as
input. It predicts the color ¢ and density o for each x. Each 3D point is processed independently.
To effectively learn the scene occupancy, we design a Heterogeneous Mixture-of-Experts (HMoE)
network structure. It contains an occupancy network O, several expert networks, and prediction
heads. The occupancy network is a typical gating network in MoE structure. We have two parts
of expert networks: the scene experts and an empty space expert. The scene experts consist of a
set of n scene expert networks & = {E;,i = 1...n}, and the empty space expert is designed to be
a special tiny network E.. The occupancy is encoded in the gate network O in HMoE. The scene
experts share a prediction head H,. The empty space expert has its own prediction head H..

An input 3D point x of LeCO-NeRF first goes through the occupancy network O and obtains n + 1
gate values. These values correspond to the n scene experts and the empty space expert. Then, x
will be dispatched into only one expert according to the gate values. If a scene expert is selected, this
indicates that this x is occupied. x will be input to this expert and then goes through the prediction
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Figure 2: Our proposed LeCO-NeRF. The occupancy network serves as a gating network of our
HMOoE. x; and x5 go through the occupancy network and are dispatched to the Empty Space Expert
and a scene expert respectively according to the gate values. The occupancy can be trained together
end-to-end with the NeRF network by multiplying the gate values on the output of the experts. If a
point is dispatched into the Empty Space Expert, it is classified as unoccupied. The occupancy net-
work is a small MLP. We enlarge the figure of the occupancy network to clearly show its operation.

head H for o and c. If the empty expert is selected, this represents that this x is not occupied by
the scene. It will go through E, and H. to directly predict o and ¢. After processing all the sampled
points along a ray r, the pixel color C(r) is accumulated by volume rendering, and we compute a
rendering loss between the rendered pixel color and the corresponding ground truth pixel color.

3.2 HETEROGENEOUS MIXTURE OF EXPERTS (HMOE)

Experts and heads. The proposed HMoE is heterogeneous because the experts and their operations
are different. The scene experts & = {E;,7 = 1...n} contain n experts with the same architecture.
They are used to encode the points occupied by the scene. In our implementation, each scene expert
contains 7 linear layers. The prediction head H for & are shared. H also accepts the view direction
d and appearance embedding AE (Martin-Brualla et al.|[2021) as inputs to encode a view-dependent
color. The Empty Space Expert E, is defined as a tiny network. It is used to encode unoccupied
(i.e. empty space) points. We use an identity layer in our implementation to directly feed forward
the input. H, is the prediction head for E., which only takes the output of H, for predictions. The
tiny E. results in fewer parameters for empty space. As a result, the empty space network tends to
predict smooth values and therefore favors the empty space whose density is small and smooth. The
scene experts £, contain much more network parameters than the empty space expert F., because
the occupied points have much more important information to be modeled.

Occupancy network as a gating network. The occupancy network O in our HMoE serves as a
gating network to dispatch input 3D points to different experts. The architecture of the occupancy
network is shown in Fig.[2| O predicts a vector of n + 1 normalized gate values O(x) for a input 3D
point x. The first n gate values correspond to the n scene experts. The last gate value corresponds
to the empty space F.. We apply a Top-1 operation to O(x) and obtain the index k of the Top-1
value. Then, we dispatch x into the expert of index k. The gate value is multiplied by the output of
the expert. This enables the occupancy network to be trained together with the whole network
architecture. If x is assigned to FE., it means X is unoccupied. It goes through E. and H,. to
predict o and color ¢. If the assigned expert is one of the scene experts, this indicates x is an
occupied surface point. Then x goes through the corresponding scene expert and is input into the
head H, to predict o and c¢. After training the whole network, the occupancy of a 3D scene can be
encoded into the designed compact occupancy network. we can use the occupancy network O as an
occupancy predictor. An input point is unoccupied if the occupancy network dispatches it to E.. In
our implementation, the occupancy network contains 4 linear layers and a layer-norm layer.

3.3 OCCUPANCY OPTIMIZATION LOSSES

Based on the designed Heterogeous Mixture-of-Experts (HMoE) structure, we further propose an
imbalanced gate loss and a density loss to regularize the optimization of the occupancy network and
improve the accuracy of the occupancy, as shown in Fig. [3|a).

Imbalanced gate loss. Common MoE methods typically use a loss to ensure each expert obtains
roughly the same number of input points. This gate loss helps the different experts to be fully
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Figure 3: (a) the computation of imbalanced gate loss and density loss from gate values. (b) After
training the occupancy network of a scene, we can use our frozen occupancy network to guide the
sampling and training of NeRF methods.

utilized. However, in our framework, the empty space expert should naturally secure more 3D
points, because a large portion of the 3D scene points is unoccupied. If we dispatch a similar
number of points to the scene experts and the empty space expert, the learned occupancy is not
sparse enough, and it does conform to the essential sparsity nature of the scene. Using it to guide the
3D point sampling does not help to largely reduce the number of scene points to be processed, thus
no benefits for speeding up the training. Therefore, we design an imbalanced gate loss L, which
can not only dispatch more points into E., but also can keep the number of points roughly the same
for each scene expert. This means that L, is imbalanced for the empty space expert while balanced
for the scene experts. We first introduce the balanced gate loss L; described in (Lepikhin et al.,
2021). Let n be the number of total experts, and f; be the fraction of points dispatched into expert
i. Then > fi2 is minimized if all f; are equal. However, » fi2 is not differentiable, so it cannot be
used as a loss function. As shown in (Lepikhin et al.l 2021)), we can replace one f; by a soft version
pi, where p; is the fraction of the gate values dispatched to expert ¢. Therefore, the balanced gate
loss can be defined as L, = n Z;;l fips. Under the optimal balance gating, L; will be 1. Inspired
by L;, we define the imbalanced loss L,. We can consider E, as v virtual experts. The fraction of
each virtual expert is thus f./v, and the fraction of the gate values is p./v. Then, we can compute
the balanced loss for the v virtual experts and the n scene experts. When n + v experts are balanced,
E, can obtain more points. Therefore, we define L, by modifying L; as follows:

ng(n+v)< fepe+2fzpl> (n+v) (fepWZfzpz) (1)

1=1 =1

When optimal dispatching is achieved, E, obtains a portion of v/(n + v) points. Each scene expert
obtains a portion of 1/(n + v). Ly is 1.0. This definition of L, is beneficial for setting loss weights
because its scale is invariant W1th respect to v. This makes it convement to set the loss weight for
Ly. We set n = 8, v = 80 in our experiments. These values typically make the occupancy network
dispatch about 85% points to the empty space expert.

Density loss. We design a density loss to explicitly guide the occupancy network to learn better
occupancy. Our main idea is that the average density of the points dispatched to the empty space
expert . should be much smaller than that of the scene experts &;. Let the set of points dispatched
to F. and & be X and ), respectively. The average density o, of F, is 0, = ﬁ > icx Ti-

The average density o for & is o5 = ﬁ Ziey o;. Then, the ratio o, /o should be small if the

occupancy is learned correctly. The problem is that the o, /o cannot affect the gating network.
Similar to the balanced gate loss, we include the gate values in the computation of the mean density.
The o, and o can be rewritten as o, = ﬁ Zie ygio;and o5 = ﬁ Ziey g;0;. The value g; used
for a point of the scene experts is the sum of the gate values for the n scene experts. Therefore, the
density loss L, can be defined as:

Ld — E ‘y| ZIEX gi0;
Os |X‘ Zzey Gi0i
We detach ¢ when computing Lg4, which is similar to the distillation training strategy utilized in
several NeRF methods (Srinivasan et al.,|2021; Barron et al.||2022). When Ly is large, it optimizes
the output of the occupancy network to make it dispatch correctly.

2)



Under review as a conference paper at ICLR 2024

Rendering loss. Our network learns the occupancy during the training of NeRF. Therefore, our
main optimization loss is the rendering loss (Mildenhall et al., 2020). We sample N 3D points along
a ray r and predict the density o; and color ¢; for each 3D point x; by the network. We use o; to
compute «; = 1 — exp(—o0;9;), where J; is the distance of two nearby points. Then we compute the

transmittance T; = exp(— 22;11 0;9;) of x; along the ray. The predicted color C(r) is computed as
C(r) = ZZ\LI T;vic;. The rendering loss L, is computed by C'(r) and the ground-truth color C(r).

. 2
Let the set of rays be R. L, is defined as L, =} HC’(I‘) —C(r) H .
2

Final loss. The final optimization loss Ly of our method is the weighted sum of L,, L, and Lq.
Ly =w.L, +wygLy+ wqLg, where w,., wg, and wgy are their corresponding loss weights.

3.4 OCCUPANCY AS GUIDANCE

After the occupancy network of a large-scale 3D scene is trained, we can freeze it and use it to
guide the 3D point sampling of NeRF, shown in Fig. 3{b). We first sample a set of coarse samples
and input them into the occupancy network O and filter empty space points. Then we split the
reserved samples to get finer sampling. This can reduce the number of points requiring evaluating
the occupancy network. The unoccupied empty space points are discarded, typically 85% points
from our observation. Since O is much smaller than the main NeRF network, the training can be
significantly accelerated. In the experiments, we typically sample 128 samples along each ray and
use the occupancy to filter the sample and split each occupied sample into 8 new samples.

4 EXPERIMENTS

4.1 DATASETS

We use two publicly available large-scale datasets for evaluation. The Mega-NeRF dataset is adapted
by Mega-NeRF (Turki et al.,2022)) from its Mill 19 dataset and the UrbanScene3D (Liu et al., 2021},
consisting of the Building, Rubble, Residence, Sci-Art, and Campus scenes. Each of them contains
from 2k to 6k images with a resolution of about 5k x 3k. The Block-NeRF dataset Tancik et al.
(2022) contains a scene with 12k images with a resolution of about 1k x 1k.

4.2 METRICS AND VISUALIZATION

We evaluate the occupancy accuracy with Oc-  Table 1: Accuracy, Precision, Recall and F1-
cupancy Metrics and apply the occupancy on  Score, parameter number and occupancy ratio of
the sampling of Switch-NeRF (MI & Xu,[2023)  different occupancy methods. Our method clearly
to compute the Image Reconstruction Metrics.  outperforms the occupancy grid with a compact

Occupancy metrics. We evaluate the classifi- parameter size and occupancy ratio.

cation accuracy of the occupancy. The ground-  Dataset
truth occupancy is usually not available in real- ¢ s,
world large-scale NeRF datasets. Since a fully-

Method | Accu. Preci. Recall ~ Fl | Para. Occ.

Grid 0912 0315 0519 0392 | 2.0M 228%
Ours | 0.904 0.339 0.795 0476 | 0.15M 13.0%

|
‘ Grid ‘0‘619 0.371  0.746 0.496‘ 2.0M  34.0%

trained NeRF without using occupancy can get ~ C4™PUS | ous | 0.684 0437 0883 0584 | 0.1M 14.5%
a good estimation of the geometry of the scene, .1k Grid | 0697 0269 0666 0383 | 20M 33.6%
) ) Ours | 0712 0319 0914 0473 | 0.15M 13.0%
we use it as a good reference for evaluation. We o
1

extract depth maps predicted by vanilla Switch- ~ Building
NeRF (MI & Xu, 2023) and convert them into
an occupancy grid. Then we also convert our
learned occupancy into another occupancy grid by sampling and evaluating point occupancy. The
occupancy accuracy is computed by comparing the converted occupancy grids.

0.711  0.322 0.683 0.438

Grid 0.656 0232 0.634 0.339
Ours | 0.703 0.314 0.958 0.473

0.15M  15.0%

2.0M  37.5%
0.15M  159%

Ours

0.521 0.183  0.549 (1274‘ 2.0M  44.0%

Residence

Image reconstruction metrics. We apply our learned occupancy on a state-of-the-art large-scale
Switch-NeRF (MI & Xu, [2023) method. We use PSNR, SSIM (Wang et al., 2004) (both higher is
better) and LPIPS (Zhang et al.}[2018) (lower is better) to evaluate the validation images.

Occupancy visualization. We visualize the occupancy as point clouds. We sample and merge
3D points of rays in the validation images. These point clouds are visualized by two methods.
The first one is to directly visualize the predicated color of each point. The second one uses the
a = 1—exp(—o;9;) as an additional channel to show the color and transparency of the point clouds.
The unoccupied points should be largely transparent. The two visualization methods complement
each other for better visualization of the occupancy.
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4.3 IMPLEMENT DETAILS

For the training of occupancy of our LeCO-NeRF on Mega-NeRF dataset, we use 8 scene experts
and 1 empty space expert. The gating network contains 1 input layer, 2 inner layers, 1 layernorm
and 1 output layer. The channel of the number of the main layers is set as 256. we set w, = 1.0,
wy = 0.0005, wg = 0.1 and v = 80. We sample 512 points for each ray. We train the occupancy
for 40k steps. The training of the occupancy network takes from 1.6h to 1.8h. The learning rate is
set as 5 x 10~%. For the training of occupancy of our LeCO-NeRF on Block-NeRF dataset, we use
Mip embedding proposed in Barron et al.|(2021)). The channel of the number of the main layers is
set as 512. wy is set as 0.005. v is set as 40.

To apply our learned occupancy on Switch-
NeRF (MI & Xu, 2023), we replace their
sampling in their foreground NeRF with the
guided sampling by the learned occupancy. To
compare with the occupancy grid, we employ
the OccGridEstimator from NeRFAcc [Li et al.

Table 2: The image accuracy on large-scale
Block-NeRF dataset (Tancik et al., [2022). Our
method not only outperforms Switch-NeRF (MI
& Xu, [2023)), but also outperforms the occupancy
grid method by a PSNR of 0.84.

(2022) in S;Vtich—NeRF. The grid size is set as  Method | PSNRT  SSIM LPIPS| Time (h))
default 1.28 . The QccGrldEstlmator is upglaFed Switch-NeRF | 2285 0742 0515 23.8h
along with the main network. Other training  Switch+Grid | 2226  0.740 0511 23.8h
settings and network structures remain the same ~ Switch+Ours | 23.10 0751  0.498 23.8h

as the original Switch-NeRF. The main results
are trained on 8 NVIDIA RTX 3090 GPUs. We sample 1024 rays for each GPU for Mega-NeRF
dataset and 1664 rays for Block-NeRF dataset. We align the training time based on the grid method.

4.4 BENCHMARK PERFORMANCE

Occupancy Metrics. We evaluate our occu-
pancy accuracy with the Occupancy Metrics.
Since the unoccupied and occupied points are
highly imbalanced, we report the Accuracy,
Precision, Recall and F1-Score to complement
each other. As shown in Table [1} our learned
occupancy can clearly outperform the Occu-
pancy Grid in almost all the metrics in all
Mega-NeRF dataset, with compact parameter
sizes. Notably, our network is much better on
Recall, indicating that it is good at correctly

Table 3: The accuracy, training time and memory
on large-scale Mega-NeRF dataset (Turki et al.}
2022). Our method (S+Ours) clearly outper-
forms Switch-NeRF (S-NeRF*) (MI & Xu, [2023)
and the occupancy grid (S+Grid) methods. Our
method also consumes less memory when being
used to guide the training of Switch-NeRF. S-
NeRF* is trained with the same time as S+Grid.

Dataset | Metrics | M-NeRF ~ S-NeRF | S-NeRF*  S+Grid ~ S+Ours

predicting the occupied point, which is critical PSNRT | 2560 2652 | 2546 2548  26.04

e | SSIMP | 077 0795 | 0762 0760  0.772

for. bgtter NeRF optimization. .The occupancy T [iepsi| 0390 030 | 0400 0413 0398

ratio in Table [I| means the ratio of points re- A | Tme | 37h 4sdh | ldho 4140

. . Mem. | 56G 105G | 105G 58G 27

tained to go through the main NeRF. Our oc- o

. . PSNRT | 2342 2362 | 2276 2275 2321

cupancy network also retains fewer points than £ | SSIMF | 0537 0541 | 0507 0500 0517

: : : _ £ |LPIPS| | 0618 0609 | 0659 0671  0.635

the occupancy grid while getting bett.er accu E ol e o | ba b ra

racy. This means our network can predict more Mem. | 48G 101G | 101G 60G  23G

accurate and compact occupancy. PSNR? 24.06 24.31 23.58 23.69 23.96

2| SSIMP | 0553 0562 | 0519 052 0548

. . £ |LPIPSL| 0516 049 | 0546 0549 0516

Image Reconstruction Metrics. We report the Z | Time | 2osn  aish | 13sh  138h  13sh

PSNR, SSIM, LPIPS of applying our learned Mem. | 50G 103G | 103G 61G 246G

occupancy on Switch-NeRF (MI & Xu, 2023)) o | PSNRT | 2093 2154 | 2050 2033 20.64

. 2| ssIMf | 0547 0579 | 0517 0495 0522

on Block-NeRF in Table I  Our method 2 |LPIPSL| 0504 0474 | 0526 0547 0517

: 2 Time | 307h  425h | 137h  137h  13.7h

can qutperform the occupancy grid by a large Mol 506 196 | 1096 616 246

margin z%nc.i out.perform SWltCh'NeRE .Wlth.the » | PSNRT | 2208 2257 | 2177 2218 2210

same training time. Note that the training time 2 | ssIMt| 0628 0654 | 0611 062 0626

. . 2 | LPIPSL | 0489 0457 | 0501 0500  0.485

of our method includes our occupancy training 3 Time | 329n  43.4h 148h  148h  14.8h

time for fair comparison. Mem. | 54G 105G | 105G  64G  29G

The results on Mega-NeRF dataset are in Ta-

ble[3] The results of Mega-NeRF (M-NeRF) (Turki et all2022) and Switch-NeRF (S-NeRF) (MI &
Xu, |2023)) are taken from their papers. The S+Ours mean using our learned occupancy for sampling
in Switch-NeRF. The S+Grid means using an occupancy grid for sampling. S-NeRF* are the results
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of vanilla Switch-NeRF trained with the same time as S+Grid for fair comparison. We highlight
the best values among S-NeRF*, S+Grid and S+Ours. Note that we include the occupancy train-
ing time in S+Ours for a fair comparison. As shown in Table [3] when trained with the same time,
our method consistently outperforms vanilla Switch-NeRF and the occupancy grid. Therefore, our
method is significant to speed up the training of Switch-NeRF while getting competitive accuracy.
We visualize the point clouds of occupancy in Fig.[7in Appendix [A] The point clouds show that our
network can learn more compact and clean occupancy than the occupancy grid. We also provide the
visualization comparison of rendered images in Appendix[B]and a video in the supplementary files.

4.5 ABLATION STUDY

In this section, we perform several ablations to analyze the designs of our HMOoE, the density loss,
and the learned occupancy. The experiments are performed by applying our occupancy on Switch-
NeRF and the Sci-Art scene for 40K occupancy steps and S00K NeRF steps if not specified.

HMOoE. We perform experiments to show our

Heterogeneous Mixture of Experts (HMoE) can  Taple 4: Ablation on Homogeneous MoE, Het-
implicitly learn the occupancy. We design a  erogeneous MoE with L, without the density loss
Homogeneous MoE by setting the empty space [, Homogeneous MoE cannot learn reasonable
expert the same large as the scene experts. As  occupancy while Heterogeneous MoE can learn

shown in Table[d] the rendering accuracy of the good occupancy and get better accuracy.
Homogeneous MoE (Homo.) largely dropped

compared with our Heterogeneous Mixture of

Experts (HMoE) (Heter.). Our HMoE can get Method ‘ PSNRT SSIMT LPIPS|
reasonable accuracy. Note that the density loss Homo. | 20.23  0.631 0.506
is not used in these experiments. As shown in Heter. 26.30  0.781  0.383

Fig.[]a), the scene experts of HMOE handle the
full occupied points. The scene experts of the Homogeneous MoE only handle a part of the occupied
points. This means that the Homogeneous MoE cannot learn reasonable occupancy and its rendered
image is thus of low quality. These experiments show that, to implicitly model the heterogeneous
occupancy of a 3D scene, it is important to design a heterogeneous network structure.

Density loss. We ablate on the density loss Ly
on Building scene in Table [5} Our full method Taple 5: Ablation on the density loss L, on Build-
achieves better accuracy than that without den-  jng scene. Ly can help our occupancy network

sity loss. As shown in Fig. Ekt?)’ with Lg, the  Jearn better occupancy and get better accuracy.
network can separate the occupied and unoccu-

pied points more clearly and the rendered im- Method | PSNRT  SSIMtT  LPIPS|
ages contain fewer artifacts in the challenging Ours w/o | 20.59 0516 0.521
region. These experiments show that our den- Ours d 20'79 0' 531 0.508

sity loss can give more explicit information to
the occupancy network and make the occupancy network learn more accurate occupancy.

Figure 4: (a) The occupancy and images with Homogeneous MoE and our Heterogeneous MoE.
The Heterogeneous MoE learns good occupancy and renders better images. The Homogeneous
MOoE cannot distinguish the occupied and unoccupied regions. (b) Point clouds of the scene experts
and the empty space expert with and without the density loss. We visualize the point clouds of the
empty space expert with transparency related to alpha values as described in Sec. [#.2]to better show
whether the points are empty or not. L, can make our Heterogeneous MoE learn better occupancy
thus the image for F is all empty. With L, the images are more complete in challenging regions.

8



Under review as a conference paper at ICLR 2024

Occupancy analysis. We analyze the occupancy statistics related to the points of scene experts and
the empty space expert with respect to the occupancy training steps. They are computed with the
model of different training steps on the evaluation images of the Sci-Art scene. These values are
shown in Fig. [5}] We also visualize the point clouds of different training steps in Fig. [f|complement-
ing the quantitative results.

Fig.[5alis the portion of points in scene experts £ and the empty space expert E. of different training
steps. There are consistently more than 80% points in E,. The portion also increases during training.
This figure proves the effectiveness of our imbalanced gate loss. It also means that we can speed up
the training a lot if we use learned occupancy to guide the sampling of points. Fig.[5b|and Fig.
show mean density values and alpha values of points in £ and E.. The points of £ have clearly
much larger densities and alpha values than those of E,. The values of points in F, are nearly zero.
This shows that our network can dispatch points according to their densities. Fig. [5d| shows the
density value ratio and alpha value ratio between points in £ and E.. The values of points in & are
several magnitudes larger than those in E.. The ratios are the direct target of the density loss so they
validate the effectiveness of the design of the density loss.

Fig. [6] visualizes the point clouds dispatched to the scene experts and empty space experts. The
points in the scene experts have larger opacity. They cover the whole scene surface quickly only
after 10k steps of training. The points in the empty space expert consistently have very small opacity,
indicating that they are empty. The first row visualizes points without transparency and the second
row visualizes points with transparency.

The analyses of occupancy show clearly that LeCO-NeRF can learn the occupancy of a 3D scene
accurately and fast. The occupancy can be effectively encoded into the compact occupancy network.

0200
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0175 Empty space 80000

0150
s 0125
G000
< 0.075
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Empty space
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g

0.025
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1 2 3 4 5 20 30 40 50 100 200 1 2 3 4 5 20 30 40 50 100 200 1 30 40 50 100 200 30 40 50 100 200
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(a) Point proportions. (b) Mean density. (c) Mean alpha. (d) Ratio between values.

Figure 5: The statistics of scene experts £, and the empty space expert E. in different training steps.
(a) The portion of points in £ and F,. (b) (c) The mean density values and alpha values of points
in & and E.. (d) The density value ratio and alpha value ratio between points in £ and F.

Figure 6: The point clouds dispatched to the scene experts and the empty space expert in each step.
The scene experts converge fast to the whole occupied area. The points in the empty space experts
consistently have very small opacity. Our network can learn accurate occupancy with only 20k to

40k steps. The two rows visualize the point clouds without and with transparency respectively as
described in Sec.[4.2}

5 CONCLUSION

In this paper, we propose LeCO-NeRF to learn compact occupancy for large-scale scenes. We
achieve by our core designs of a novel Heterogeneous Mixture of Experts (HMoE) structure, an im-
balanced gate loss, and a density loss. Experiments on challenging large-scale datasets have shown
that our learned occupancy clearly outperforms the occupancy grid and can achieve competitive ac-
curacy with much less time. Since occupancy is a very important concept in many 3D research areas,
this work will give more inspiration to the research of learning and representation of occupancy.
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APPENDIX

A OCCUPANCY POINT CLOUD

We compare the occupancy point cloud of our occupancy network and occupancy grid on Mega-
NeRF dataset (Turki et al.,[2022)) in Fig.[7} The point clouds show that our network can learn more
compact and clean occupancy than the occupancy grid.

__________________ 1

Ours/13.0% Grid/33.6% :

Residence

Figure 7: The visualization of our occupancy and grid occupancy as point clouds. Our predicted
occupied points (scene) are cleaner and have fewer points than the occupancy grid. They fit the
surface of the buildings more compactly.

11
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B RENDERED IMAGES

We compare the rendered images of our occupancy network and occupancy grid on Mega-NeRF

dataset 2022).

Sci-Art

Grid Ground Truth

Ours

Grid Ground Truth

Ours

Figure 8: The rendered images of our occupancy network and the occupancy grid. Our method can
get more complete, clean, and high-quality images than those of the occupancy grid.

C INSTANT-NGP AS BASELINE

Apart from the Switch-NeRF 2023), we use our learned occupancy network to guide
the 3D point sampling of a fast NeRF method Instant-NGP (Miiller et al.},[2022). The Instant-NGP
uses efficient hash encodings for NeRF representation and the occupancy grid for empty space skip-
ping. In our experiments on Instant-NGP, we adapt the Instan-NGP into the unbounded large-scale
dataset. For the foreground, we use the standard hash grids in Instant-NGP. For the background, we
contract the space into a bounded space and define hash grids on the contracted space, following the
contraction in Mip-NeRF 360 (Barron et al.| 2022) and Nerfacc 2022). An occupancy grid
is used to guided the sampling in Instant-NGP. We train the Instant-NGP for 500K steps on 2 GPUs
with a batch size of 8192. We also use our learned occupancy network in our main experiments to
guided the training of the hash encodings (Ours+NGP). We align the training time of (Ours+NGP)
to the traing time of Instant-NGP. A shown in Table [6] our method (NGP+Ours) clearly outperform

12
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the original Instant-NGP by large margins. Since the original Instant-NGP use the occupancy grid
to cache the occupancy, the results clearly demonstrate that our learned compact occupancy network

can learn much better occupancy than the occupancy grid.

Table 6: The accuracy, training time on large-scale Mega-NeRF dataset (Turki et al., 2022) with
Instant-NGP as baseline. When training with the same time, our method (NGP+Ours) clearly out-
performs the original Instant-NGP (Miiller et al.}|2022)). by large margins. Since the original Instan-
NGP use the occupancy grid to cache the occupancy, the results clearly show that our compact
occupancy network can learn much better occupancy than the occupancy grid.

Dataset | Metrics | NGP  NGP+Ours
PSNR?T | 2398  24.50

. SSIMt | 0.724  0.754
Sci-Art | 1 pips| | 0445  0.412
Time | 129h  12.9h

PSNRT | 21.76  22.83

Camous | SSIMT | 0475 0.518
P LPIPS| | 0.677  0.623
Time | 12.7h  12.7h

PSNRYT | 22.94  23.66

SSIMT | 0.498  0.558

Rubble | 1 pips| | 0572 0.501
Time | 10.4h  10.4h

PSNRT | 1948 2033

Building | SSIMT | 0454 0.511
€ | LPIPS) | 0.585 0.518
Time | 1242  12.42

PSNRT | 2127  21.77
Residence | SSIMT | 0591 0.626
LPIPS) | 0.515 0473

Time | 11.0h  11.0h

D ACCURACY OF DIFFERENT TRAINING TIMES.

We analyze the detailed accuracy of our method on Sci-Art with respect to the training time in
Fig. [0l Our method (S+Ours) demonstrates remarkable convergence speed compared to the grid-
based occupancy (S+Grid) and the original Switch-NeRF (MI & Xu, 2023)) (S-NeRF). Note that the
training time of our method in this figure includes training time of our occupancy network.

26
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Figure 9: Analysis of training time and accuracy: Our method (S+Ours) demonstrates remark-
able convergence speed when compared to grid-based occupancy (S+Grid) and the original Switch-
NeRF (MI & Xu,, 2023)) on Sci-Art. Note that the training time for our method includes the training
time of our occupancy network.
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E ABLATION ON GRID RESOLUTION.

We analyze the effect of the resolution of the occupancy grid to better show the advantage of our
compact occupancy network. In the main experiments, we use an occupancy grid of 128°. In this
ablation study, we use an occupancy grid of 2563 to guide the training of Switch-NeRF. As shown in
Table [/ the occupancy grid with a resolution of 256 (Grid-256) consumes dramatically more time
and memory for training. It takes over 46 hours for training of 500K steps, which is much slower
than Grid-128, and still gets worse results than ours trained by 14.1h. Moreover, Grid-256 consumes
about 5x memory than our method. This study shows clearly the advantage of the compactness of
our occupancy network.

Table 7: Ablation study on the resolution of the occupancy grid. With a resolution of 256 (Grid-
256), the occupancy grid method takes over 46 hours for training of 500K steps, which is much
slower than Grid 128, and still gets worse results than ours trained by 14.1h. Moreover, Grid-256
consumes about 5x memory than our method.

Method | PSNRT SSIM? LPIPS| Time) Mem.}

Grid-128 | 25.48 0.760 0.413 14.1h  5.8G
Grid-256 | 25.86 0.764 0409  46.0h 12.5G
Ours 26.04 0.772 0.398 14.1h  2.7G

F TRAINING TIME

In the main experiments, we train the grid-based method for 500% steps and report the results of our
method aligning with the training time of the grid based method. In this ablation study, we align the
training time with the original Switch-NeRF to analyze the accuracy of our method with respect to
the training time. As shown in Table§]

Table 8: The ablation of the same more training time

Dataset | Metrics S-NeRF ~ S+Grid ~ S+Ours

PSNR 2431 23.94 24.52
SSIM 0.562 0.538 0.581

Rubble | /'bips 0496 0526 0477

Time  41.5h  41.5h  41.5h

PSNR 2257 2248  22.88

. SSIM  0.654 0645  0.658
Residence

LPIPS 0.457 0.474 0.454
Time 43.4h 43.4h 43.4h
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G ABLATION ON SIZE OF EMPTY SPACE EXPERT.

We perform ablation study on the size of our proposed expert space expert in Table 0] below. In
the table, Homo. is a large MLP with 7 layers. The 4-layer version can learn better occupancy
wile the Identity version can gets results very close to Switch-NeRF. Therefore, from our extensive
experiments, with an Identity layer as the expert space expert can learn very good results. The output
of the Identity empty space expert will still go through the prediction head so the network can still
be trained.

Table 9: Ablation on the size of the expert space expert.

Method | PSNRT  SSIMt  LPIPS]

Homo 20.23 0.631 0.506
4-layer | 23.62 0.701 0.463
Identity | 26.30  0.781 0.383
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