
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPPROX: MEMORY EFFICIENT OPTIMIZATION VIA
ADAPTIVE RANDOMIZED LOW-RANK APPROXIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

As deep learning models expand, adaptive learning rate algorithms such as Adam
face significant memory consumption challenges due to the need to store of opti-
mizer states, including first and second moment data. Existing memory-efficient
methods such as Adafactor and CAME often compromise approximation accu-
racy with their constant rank-1 matrix factorization techniques. In response, we
introduce Adapprox, a novel optimizer that employs adaptive randomized low-rank
matrix approximation to more effectively and accurately approximate the second
moment. This method dynamically adjusts the rank used for approximation across
iterations and weight matrices, mitigating the increase in computation burden while
maintaining comparable accuracy. In experiments with GPT-2 and BERT, Adap-
prox achieves substantial memory savings compared to AdamW and surpasses
other memory-efficient counterparts in convergence iterations and downstream task
performance, with only a modest increase in the overall latency.

1 INTRODUCTION

The emergence of large language models (LLMs) presents substantial memory consumption chal-
lenges (Steiner et al., 2023; Shazeer & Stern, 2018; Luo et al., 2023). For instance, BERT (Devlin
et al., 2018) consists of up to 300 million parameters, while GPT-3 (Brown et al., 2020) includes as
many as 175 billion parameters. Among the most popular optimization algorithms for pretraining
LLMs, Adam (Kingma & Ba, 2014) and its variant, AdamW (Loshchilov & Hutter, 2018), intensify
these challenges. These optimizers require additional memory to store both first and second moments
for each parameter, a feature that contributes to their faster convergence speeds compared to SGD.

To address these challenges, significant efforts have been made to develop memory-efficient opti-
mizers that aim to preserve the advantages of adaptive learning rates while minimizing the memory
footprint of optimizer states (Shazeer & Stern, 2018; Anil et al., 2019; Li et al., 2023; Luo et al., 2023).
Given the insight that second moment matrices exhibit low-rank characteristics, as shown in Figure 1,
applying low-rank matrix approximation techniques can significantly reduce memory footprint during
LLM training. Adafactor (Shazeer & Stern, 2018) reduces memory usage by offering an option
to omit the first moment and employing a constant rank-1 matrix approximation technique (Anil
et al., 2019; Luo et al., 2023) to compress the second moment. However, this approach often results
in diminished training effectiveness due to approximation errors. To mitigate these shortcomings,
CAME (Luo et al., 2023) builds on Adafactor by introducing a confidence-based scaling factor
that matches the dimensions of the second moment. This factor modulates the update step size,
slowing it when confidence is low and accelerating it when confidence is high. However, CAME still
employs the same factorization method to store confidence statistics to reduce the additional memory
consumption, thereby inheriting the fundamental challenges of Adafactor.

Therefore, a key focus is to enhance the method of approximating the second moment to address
these ongoing challenges. Figure 1 highlights the shortcomings of the fixed rank-1 approximation.
Specifically, the presence of multiple dominant singular values indicates that a rank-1 approximation
cannot capture the full complexity of the matrix, leading to reduced accuracy. Although some
methods in the literature employ singular value decomposition (SVD) for low-rank approximation by
truncating the smallest singular values (Jha & Yadava, 2010; Tsybakov et al., 2011; Kishore Kumar
& Schneider, 2017), this technique can be prohibitively time-consuming when iteratively applied to a
large number of high-dimensional matrices during LLM training. To overcome the computational

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 20 40 60
Index

0

1

2

3

4

5

6

M
ag

ni
tu

de
 o

f S
in

gu
la

r
Va

lu
e 1e 5

largest
2nd largest

0 20 40 60
Index

0

2

4

6

8

M
ag

ni
tu

de
 o

f S
in

gu
la

r
Va

lu
e 1e 6

largest
2nd largest

0 20 40 60
Index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ag

ni
tu

de
 o

f S
in

gu
la

r
Va

lu
e 1e 7

largest
2nd largest

0 20 40 60
Index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ag

ni
tu

de
 o

f S
in

gu
la

r
Va

lu
e 1e 6

largest
2nd largest

Figure 1: Distribution of singular values in selected second moment matrices. This figure displays
the top 60 singular values from 4 second moment matrices, each with a full rank of 1,024, derived
from training a GPT-2 345M model using AdamW at the 45,000th iteration.

expense, we employ a Gaussian sampling variant of the randomized SVD algorithm (Halko et al.,
2011; Liberty et al., 2007; Li et al., 2014; Batselier et al., 2018), which allows for an efficient low-rank
approximation. Additionally, we enhance the approximation accuracy by incorporating oversampling
and subspace iteration techniques. Our method enhances computational efficiency compared to the
traditional SVD method while achieving approximation accuracy that is on par with it.

Leveraging the principles of randomized low-rank approximation, we introduce Adapprox (Adaptive
approximation), a novel method that dynamically adjust the rank for low-rank approximation across
iterations and weight matrices, enabling more accurate capture of second moment matrices’ features.
Specifically, Adapprox assesses approximation accuracy by computing the error ratio between the
Euclidean distances of the second moments, which are updated with the true squared gradients and
their approximated counterparts. Beginning with an initial rank setting based on memory constraints
and an upper bound, this adaptive process ensures that if the error ratio exceeds a predefined threshold,
the rank is increased in the next training step to improve accuracy. Conversely, if the error ratio
stays below the threshold, the rank is reduced, optimizing computational efficiency and memory
usage without sacrificing precision. Additionally, to ensure stable rank adaptation, we introduce a
rank moment that employs an exponential averaging mechanism across iterations to determine the
new rank. Our experimental results show that our method maintains the initial rank scale during the
early stages of training, with the required rank dramatically decreasing in subsequent stages, thereby
mitigating the overall training time.

We conduct extensive experiments on pretraining GPT-2 and BERT, as well as a variety of downstream
tasks, to demonstrate the effectiveness of Adapprox. Our results show that Adapprox significantly
reduces memory usage compared to AdamW. Additionally, it achieves superior convergence iterations,
lower validation loss, and enhanced performance in downstream tasks compared to the established
state-of-the-art methods, Adafactor and CAME. Moreover, we observed only a modest increase in
latency with Adapprox due to the introduced randomized low-rank approximation steps, which is a
small price to pay for the benefits gained. All of the above supports Adapprox’s overall superiority in
terms of both efficiency and effectiveness.

2 RELATED WORK

Low-Rank Matrix Approximation. Low-rank matrix approximation aims to represent a matrix using
lower-rank matrices, seeking more efficient data representation while retaining as much information
as possible. For example, a rank-k approximation can represent an m× n matrix while reducing the
memory footprint from O(mn) to O(k(m+ n)). This technique is utilized across a wide spectrum
of applications, including principal component analysis (Shen & Huang, 2008; Papailiopoulos et al.,
2013), image processing (Haeffele et al., 2014; Guo et al., 2017; Chen et al., 2017), and various
machine learning scenarios (Paterek, 2007; Li et al., 2016).

Memory Efficient Optimizers. Memory-efficient optimizers aim to reduce memory usage by
compressing optimizer states during training, ideally without affecting performance. To achieve
this goal, various strategies have been proposed, including low-rank matrix approximation (Shazeer
& Stern, 2018; Luo et al., 2023) and quantization techniques (Li et al., 2023). Notably, these two

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

categories of methods are orthogonal and can be integrated seamlessly. Adafactor (Shazeer & Stern,
2018) and CAME (Luo et al., 2023) are notable examples that utilize low-rank matrix approximation,
significantly reducing memory usage, though this can come at the expense of accuracy due to their
rank-1 factorization approaches. Quantization techniques, as employed in 8-bit Adam (Dettmers
et al., 2021) and 4-bit Adam (Li et al., 2023), offer another avenue for memory savings by reducing
the precision of stored values without drastically affecting performance. In this paper, we focus on
enhancing low-rank matrix approximation techniques to reduce memory usage while maintaining
high accuracy and performance during LLM training.

3 METHODOLOGY

This section begins with an overview of Adam and AdamW to contextualize the necessity for
compressing the optimizer state when training LLMs. We then introduce two key components of
our method: the randomized low-rank approximation for the second moment and the adaptive rank
selection mechanism. Finally, we provide a detailed description of the Adapprox optimizer.

3.1 OVERVIEW OF THE ADAM AND ADAMW

Consider a function f(W), where W ∈ Rm×n denotes the parameters of the neural network. The
update rule for Adam (Kingma & Ba, 2014) at the t-th iteration is defined as follows:

(Adam)

Gt = ∇f (Wt−1) ,

Mt = β1Mt−1 + (1− β1)Gt,

Vt = β2Vt−1 + (1− β2)G
2
t ,

M̂t = Mt/
(
1− βt

1

)
,

V̂t = Vt/
(
1− βt

2

)
,

Wt = Wt−1 − αM̂t

/(√
V̂t + ϵ

)
.

(1a)
(1b)

(1c)

(1d)

(1e)

(1f)

Here, all computations are element-wise. Gt represents the gradient arranged in matrix form. Mt

and Vt are the exponential running averages of the first and second moments, respectively. M̂t and
V̂t are the bias-corrected versions of Mt and Vt. The parameters β1 and β2 control these moment
estimates. Additionally, α denotes the learning rate, and ϵ is a small positive constant introduced
to prevent division by zero. Building upon Adam, AdamW (Loshchilov & Hutter, 2018) decouples
weight decay from the gradient updates. With this change, the parameter update step in AdamW is

Wt = Wt−1 − α

(
M̂t

/(√
V̂t + ϵ

)
+ λWt−1

)
, (2)

where λ is the rate of the weight decay. Adam and AdamW require the storage of both Mt and Vt at
each step, which necessitates O(mn) extra memory compared with SGD.

3.2 RANDOMIZED LOW-RANK APPROXIMATION FOR THE SECOND MOMENT

Adafactor (Shazeer & Stern, 2018) provides the option to eliminate the first moment entirely, which
may lead to slower convergence rates (see Appendix A). In contrast, the second moment typically
exhibits low-rank characteristics, as illustrated in Figure 1. This property enables the application of
efficient compression techniques, such as low-rank approximation. Therefore, we concentrate on
compressing the second moment matrices to reduce the memory footprint required for storage.

For a matrix A ∈ Rm×n, deriving its low-rank approximation can be formulated as an optimization
problem:

min
Q,U
∥A−QU⊤∥2F , (3)

where ∥ · ∥F is the Frobenius norm and Q ∈ Rm×k and U ∈ Rn×k are two feature matrices with
1 ≤ k ≪ min{m,n}. Then, the resulting matrix Ak = QU⊤ servers as the rank-k approximation

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Streamlined Randomized Subspace Iteration
Inputs: Target matrix A ∈ Rm×n, target rank k

U ∼ N (0, 1)n×(k+p) # generate U from a standard Gaussian distribution
Q,R← 0m×(k+p),0(k+p)×(k+p) # initialize Q and R
for i← 1, 2, . . . , l do

Q← AU # compute Q as a random sample from the column space of A
Q,R← QR decomposition(Q) # transform Q into an orthogonal matrix
U ← A⊤Q # compute U as the projection of Q onto the row space of A

end for
return Q[:, : k], U [:, : k]

of A. The optimal Ak can be determined through a complete SVD of A, followed by truncation
to retain only the top k singular values and their corresponding singular vectors. This yields the
representation (Golub & Van Loan, 2013):

Ak =

k∑
i=1

σiuiv
T
i , ∥A−Ak∥2F =

min{m,n}∑
i=k+1

σ2
i , (4)

where σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} ≥ 0 are singular values of A, and ui and vi are corresponding
left and right singular vectors.

Nevertheless, computing the full SVD for large matrices poses significant computational and memory
challenges (Jha & Yadava, 2010; Tsybakov et al., 2011; Kishore Kumar & Schneider, 2017). To
address these issues, we employ randomized low-rank matrix approximation algorithms (Liberty
et al., 2007; Halko et al., 2011; Nakatsukasa, 2020), which provide a balance between computational
efficiency and memory economy while yielding high-quality low-rank approximations. Specifically,
our implementation utilizes the Gaussian sampling variant of the randomized SVD algorithm (Halko
et al., 2011). In this approach, we bypass singular value estimation to streamline the process, focusing
solely on the extraction of feature matrices. The comprehensive procedure of this modified method is
detailed in Algorithm 1, termed Streamlined Randomized Subspace Iteration (S-RSI).

The objective of S-RSI is to compute an approximate basis Q ∈ Rm×k with orthonormal columns
for the column space of the target matrix A ∈ Rm×n, such that

Ak = QQ⊤A. (5)

Accoring to Equation 3, we then form U = Q⊤A, resulting in Q ∈ Rm×k and U ∈ Rn×k. To
achieve this, we compute Q efficiently using random sampling methods. Consider drawing a random
vector u, where each element is independently and identically distributed according to a standard
Gaussian distribution. Then, the computation q = Au serves as a stochastic representation of the
column space of A, as q represents a random linear combination of the columns of A. By repeating
this sampling process k times, we obtain a set of random vectors:

{qi | qi = Aui, i = 1, 2, . . . , k} . (6)

Due to the inherent randomness in the generation of ui, the set of vectors {ui}ki=1 is expected to
occupy a general linear position, which implies a high likelihood that any subset of these vectors is
linearly independent. Consequently, this observation leads us to propose the following:
Proposition 3.1. Given a set of randomly generated vectors {ui}ki=1 that are in a general linear
position, and a full-rank matrix A ∈ Rm×n, the set of vectors {qi | qi = Aui}ki=1 are also linearly
independent.

Proof. Linear independence of {ui}ki=1 implies that
∑k

i=1 aiui = 0 holds only when all scalars
{ai}ki=1 are zero. We examine a linear combination of the vectors {qi}ki=1:

k∑
i=1

aiqi =

k∑
i=1

aiAui = A

k∑
i=1

aiui. (7)

Since A is full rank,
∑k

i=1 aiqi ̸= 0 unless all ai are zero, indicating that vectors {qi}ki=1 are linearly
independent.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100

Step=20000

0.5

1.0

1e 5

0 20 40 60 80 100

Step=25000

2.5

5.0

7.5
1e 6

0 20 40 60 80 100

Step=30000

2.5

5.0

7.5
1e 6

0 20 40 60 80 100

Step=35000

2.5

5.0

7.5

1e 6

0 20 40 60 80 100

Step=40000

2

4

6

1e 6

0 20 40 60 80 100

Step=45000

2

4

1e 6

Rank

M
ea

n
Ap

pr
ox

im
at

io
n

E
rr

or
s

Adafactor SVD S-RSI

(a) Mean Approximation Error vs. Rank k.

0 20 40 60 80 100
Step=20000

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100
Step=25000

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100
Step=30000

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100
Step=35000

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100
Step=40000

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100
Step=45000

0.00

0.05

0.10

0.15

0.20

Rank

M
ea

n
C

om
pu

ta
tio

n
Ti

m
e

Adafactor SVD S-RSI

(b) Mean Computation Time vs. Rank k.

Figure 2: Comparative analysis of the S-RSI (l = 5 and p = 5) against Adafactor and full SVD. All
methods are applied to the second-moment matrices derived from training a GPT-2 345M model
using the AdamW, with results captured at various stages of the training process. (a) shows that
S-RSI achieves similar approximation performance to full SVD; (b) shows that the time cost of S-RSI
(in seconds) is significantly lower than that of full SVD and remains approximately constant as the
rank k increases.

By Proposition 3.1, the set {qi}ki=1 can be arranged as the columns of the matrix Q, followed by
the application of an orthonormalization procedure such as QR decomposition (Golub & Van Loan,
2013). To enhance the robustness of our approximation, we incorporate an oversampling mechanism
by sampling k+ p columns for Q, where k is the target rank and p is a small oversampling parameter
(e.g., p = 5; see Appendix B for details on the selection of p). By sampling k+p columns, we capture
a richer set of directions in the original space. This approach mitigates the effects of numerical
instability and ensure a more complete representation of the relevant subspace, ultimately leading to
improved accuracy in the low-rank approximation.

Power iteration (Rokhlin et al., 2010; Halko et al., 2011; Golub & Van Loan, 2013) is a technique
designed to enhance the singular values of a matrix, allowing us to distinguish more effectively
between the significant and less significant components. This is particularly beneficial in low-rank
approximations, where the goal is to capture the most relevant features of the data while ignoring noise
or less informative structures. By applying the power iteration method, we seek to amplify the singular
values of the target matrix A. The key is to perform multiple applications of the transformation,
which increases the prominence of larger singular values. Mathematically, this can be represented as:

Al = (QΣUT)l = QΣlUT , (8)

where l is a positive integer that indicates the number of iterations (e.g., l = 5; see Appendix B for
details on the selection of l). The effect is that the singular values σi in Σ are raised to the l-th power,
emphasizing larger values. In our context, we specifically consider the modified matrix

A′ = (AA⊤)lA = (QΣU⊤UΣQ⊤)lQΣU⊤ = QΣ2l+1U⊤, (9)

where the term Σ2l+1 indicates that the singular values grow exponentially with respect to l, signifi-
cantly differentiating the larger singular values from the smaller ones. Therefore, by utilizing power
iteration, the significant singular values become disproportionately larger compared to less significant
ones. This allows for a more robust approximation of the original matrix A.

Following the randomized SVD algorithm (Halko et al., 2011), the approximation error bound is:

E∥A−QU⊤∥ ≤

(1 +√ k

p− 1

)2l+1

σ2l+1
k+1 +

e
√
k + p

p

√∑
j>k

σ
2(2l+1)
j

1/(2l+1)

. (10)

According to Equation 10, the approximation error can be reduced by increasing k, p, and l. Using
the S-RSI method, we can efficiently compress the storage of matrix A fromO(mn) toO(k(m+n))
with a time complexity of O(lmn(k + p)). In contrast, the time complexity for computing the full
SVD is O(mn2 +m2n).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

m = n = 1024 m = n = 2048 m = n = 4096 m = n = 5120 m = n = 8192

k = 8 7.6× 10−4s 7.5× 10−4s 7.8× 10−4s 7.8× 10−4s 8.2× 10−4s
k = 64 8.8× 10−4s 9.5× 10−4s 7.7× 10−4s 7.7× 10−4s 7.9× 10−4s
k = 256 1.5× 10−3s 1.4× 10−3s 2.1× 10−3s 2.1× 10−3s 2.0× 10−3s

Table 1: Actual time cost of S-RSI with various model size and rank settings, where p = l = 5.

We demonstrate the efficacy of S-RSI through empirical comparisons with Adafactor and full SVD.
Our experiments utilize second-moment matrices obtained during the training of a GPT-2 345M
model with AdamW as the target matrices. Figure 2 shows the mean approximation error and
computation time across varying ranks. The x-axis represents the rank set for S-RSI and full SVD,
while Adafactor employs its fixed rank-1 approximation.

Both full SVD and S-RSI show significant error reductions with modest rank increases compared to
Adafactor, with S-RSI nearing the performance of full SVD. This observation underscores the limita-
tion of relying on fixed rank-1 approximation and highlights the substantial benefits in approximation
accuracy that can be achieved with only a slight increase in rank k.

In terms of computation time, Adafactor remains the most efficient, while S-RSI significantly reduces
computation time compared to full SVD. Although S-RSI theoretically exhibits a linear relationship
with rank k and a quadratic relationship with increases in m and n, our observations indicate that
the actual time consumption on GPUs is less significant than theoretically expected. We conduct an
experiment to evaluate the actual time consumption of S-RSI for compressiong a matrix in relation
to k, m, and n on a NVIDIA A100 GPU with p = l = 5. This assessment considers model sizes
ranging from GPT-2 345M (hidden size 1024) to LLaMA-3-70B (hidden size 8192), focusing on the
additional time required for larger models. As shown in Table 1, the time cost does not follow the
theoretically expected relationship with increases in k, m, and n. We attribute this discrepancy to the
parallel computation capabilities of the hardware. Overall, S-RSI effectively balances approximation
accuracy and computational efficiency.

3.3 ADAPTIVE RANK SELECTION

The results in Figure 2 underscore the importance of selecting the appropriate rank k for low-rank
approximation of the second moment. Choosing a larger k can result in increased computational
demands for marginal precision improvements, while a smaller k risks significantly compromising
accuracy. To address this, we develop an adaptive rank selection mechanism that dynamically adjusts
k for each target matrix through iterations for S-RSI.

Specifically, we employ a step-wise reflection rank control mechanism. At each step after runing
S-RSI, we evaluate the approximation error ratio by

ξ =
∥A−QU⊤∥F
∥A∥F

. (11)

If ξ > ξthresh, it implies that k is not large enough to meet the approximation precision requirement,
and the rank should be increased in the next iteration. Conversely, if ξ ≤ ξthresh, it implies that k
is sufficient for the approximation precision requirement, and the rank should be decreased in the
next iteration. Additionally, we impose a constraint on knext to ensure that kmin ≤ knext ≤ kmax. The
pseudocode for this method is summarized in Algorithm 2, which we designate as Adaptive S-RSI
(AS-RSI). In our experiments, we set the step size ∆k to max{⌈0.02kmax⌉, 1}.

3.4 ADAPPROX ALGORITHM

The integration of the proposed methodologies culminates in the Adapprox algorithm defined in
Algorithm 3. At each step, ft represents a stochastic realization of the objective function f , ex-
emplified by the loss function computed using a randomly selected mini-batch of data. We then
compute the gradient Gt relative to the previous parameters and the exponential running averages
of the second moment Vt. Note that Vt−1 is reconstructed from the product Qt−1U

⊤
t−1, after which

Vt is compressed using the AS-RSI method. Following this, the moment of rank k is computed

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 Adaptive S-RSI
Inputs: Target matrix A ∈ Rm×n, rank k, the bound kmin and kmax, and ξthresh

Q,U⊤ ← S-RSI(A, k)
ξ ← ∥A−QU⊤∥F /∥A∥F # evaluate the error ratio based on the current rank k
if ξ > ξthresh then

knext ← k +∆k # increase k if the current error ratio exceeds an acceptable threshold
else

knext ← k −∆k # decrease k if the current error ratio is acceptable
end if
knext ← min{kmax,max{kmin, knext}
return Q[:, : k], U [:, : k], knext

Algorithm 3 Adapprox
Inputs: Initial point W0 ∈ Rm×n, M0 = 0m×n, Q0 = 0m×k0 , and U0 = 0n×k0 , learning rates {αt}Tt=1,
moment decay β1 and β2, small constant ϵ, clipping threshold d, initial rank k0, the bounds of rank kmin and
kmax, integer l, integer p with (k0 + p) ≤ kmax, moment decay β3 for rank adaption, threshold ξthresh, and
weight decay rate λ
for t← 1, 2, . . . , T do

Gt ← ∇ft(Wt−1) # compute the gradient
Vt ← β2[Qt−1U

⊤
t−1]+ + (1− β2)G

2
t # compute the second moment Vt

Qt, U
⊤
t , kt ← AS-RSI(Vt, kt−1, kmin, kmax, ξthresh) # compress Vt for the next iteration

kt ← β3kt−1 + (1− β3)kt # update the rank k
Mt ← Gt/(

√
Vt + ϵ)

Mt ←Mt/max(1,RMS(Mt)/d) # the clipping mechanism
if β1 > 0 then

Mt ← β1Mt−1 + (1− β1)Mt # compute the first moment if necessary
end if
Wt ←Wt−1 − αt(Mt + λWt−1) # update the weights

end for

to smoothly adjust the rank value for approximation, as detailed in Section 3.3. Subsequently, we
calculate the update Mt = Gt/(

√
Vt+ϵ) and incorporate the update clipping mechanism as proposed

in Adafactor (Shazeer & Stern, 2018) to mitigate excessively large updates:

Mt ←
Mt

max(1,RMS(Mt)/d)
, RMS(Mt) =

∥Mt∥F√
mn

,

where d is the clipping threshold. We also offer the option to omit the first moment, depending
on whether β1 is set to zero. Finally, parameter updates are executed in a decoupled weight decay
fashion, as delineated in Equation 2.

4 EXPERIMENTS

We investigate GPT-2 117M/345M (Radford et al., 2019) and BERT 345M models (Devlin et al.,
2018). Our pretraining experiments utilize The Pile dataset (Gao et al., 2020) and the SentencePiece
tokenizer (Kudo & Richardson, 2018). We evaluate the pretrained models on several downstream
tasks, including Arc Easy (Clark et al., 2018), HellaSwag (Zellers et al., 2019), QQP (Quora, 2017),
SST-2 (Socher et al., 2013), RTE (Dagan et al., 2006), CoLA (Warstadt et al., 2018), MRPC (Dolan
& Brockett, 2005), QNLI (Wang et al., 2018), and WNLI (Wang et al., 2018). Our primary baselines
include AdamW (Loshchilov & Hutter, 2018), Adafactor (Shazeer & Stern, 2018), and CAME
(Luo et al., 2023). We have implemented our optimization algorithm using the PyTorch framework
(Paszke et al., 2019). Additionally, the pretraining of GPT-2 is conducted utilizing the Megatron-LM
framework (Shoeybi et al., 2019) and eight NVIDIA Tesla V100 GPUs.

For GPT-2 pretraining, we set β1, β2, and β3 at 0.9, 0.999, and 0.9, respectively, and maintain a
consistent weight decay rate of 0.1 for all compared algorithms. Adapprox’s additional parameters
are specified as follows: ϵ = 1× 10−8, k0 = 256, kmin = 1, kmax = k0, and ξthresh = 1× 10−3. For
Adafactor and CAME, the other parameters are set to their respective default values. We adopt a
linear warmup strategy followed by a cosine-style learning rate decay, both integrated within the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000 12000 14000
Iteration

10

0

10

20

30

40

R
an

k

rank
error

0.01

0.00

0.01

0.02

0.03

0.04

E
rr

or

(a) GPT-2 117M, rank vs. iteration.

0 2000 4000 6000 8000 10000 12000 14000
Iteration

20

0

20

40

60

80

R
an

k

rank
error

0.01

0.00

0.01

0.02

0.03

0.04

E
rr

or

(b) BERT 345M, rank vs. iteration.

Figure 3: Assessment of the rank adaptation mechanism during the training of GPT-2 117M and
BERT 345M. For clarity, we omit the details of the first 1,000 iterations, during which k decreases
from k0 = kmax = 256.

Megatron-LM framework. To guarantee fair comparisons, all evaluated optimizers use uniform
training parameters for each model, selected through empirical testing and established best practices.
This also allows us to isolate the impact of algorithmic differences rather than that of hyperparameter
tuning, ensuring a consistent basis for comparison. Specifically, the sequence length, batch size,
number of training iterations, number of warmup iterations, peak learning rate, and minimum learning
rate are set as follows: for GPT-2 117M, they are 1024, 128, 100K, 1K, 3× 10−4, and 5× 10−5; for
GPT-2 345M, 1024, 128, 100K, 1K, 3× 10−4, and 3× 10−5; and for BERT 345M, 1024, 128, 200K,
2K, 2× 10−4, and 2× 10−5, respectively.

For downstream tasks, we individually adjust the learning rates within the range [2 × 10−5, 4 ×
10−5, 5× 10−5] for GPT-2 117M and [1× 10−5, 5× 10−5, 1× 10−4, 2× 10−4] for BERT 345M,
fine-tuning models that were pretrained with each evaluated optimizer. We then select the best results
achieved under these learning rates. In addition, we conduct 3 fine-tuning epochs for the GPT-2 117M
and 1 epoch for the BERT 345M models. The bacth size is set to 128, the sequence length is set to
1024, the learning rate scheduler follows a cosine decay style, and the warmup ratio is set to 0.01.

4.1 ASSESSMENT OF RANK ADAPTATION

We investigate the variation in rank by AS-RSI during the training of GPT-2 117M and BERT
345M, with the results visualized in Figure 3. For clarity, we omit the details of the first 1,000
iterations, during which k decreases from k0 = kmax = 256. In the subsequent iterations, the rank
k fluctuates around a stable level. Furthermore, the mean rank during the training of GPT-2 117M
is approximately 1.4, whereas for BERT 345M, it is 7.7. This finding shows substantial memory
savings of Adapprox compared to the AdamW optimizer, which utilizes the full rank of the second
moment at 1024. We report the peak memory usage of Adapprox and memory usage during the most
of later iterations in Table 2.

GPT-2 117M BERT 345M

Method k = 256 k = 2 k = 256 k = 8

AdamW 819.18 MB 2565.75 MB
Adapprox 583.93 MB 412.77 MB 1704.62 MB 1297.39 MB

Table 2: Peak memory usage of Adapprox, along with memory usage during the majority of later
iterations for training GPT-2 117M and BERT 345M.

As illustrated above, the peak memory usage is related to kmax (also k0). In practice, the selection of
this upper bound may depend on specific models and available resources. Assuming m = tn, the
theoretical memory saving ratio is O(k(t+ 1)/tn). In practice, we ensure that k is set smaller than
n to guarantee memory savings. We provide an illustration of optimizer state memory usage with
compressed second moments across various values of k and model sizes in Appendix C.1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20000 40000 60000 80000 100000
Iteration

11

12

13

14

15

16

17

18

Pe
rp

le
xi

ty

AdamW
Adafactor
Came
Adapprox

(a) GPT-2 117M, perplexity vs. iter.

0 25000 50000 75000 100000125000150000175000200000
Iteration

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Pe
rp

le
xi

ty

AdamW
Adafactor
Came
Adapprox

(b) BERT 345M, perplexity vs. iter.

Figure 4: Comparative analysis of Adapprox against AdamW, Adafactor, and CAME for pretraining.

Model Method Arc-e HellaSwag QQP SST-2 Average

GPT-2 117M

AdamW 24.96 26.62 63.18 50.46 41.30
Adafactor 25.00 26.74 63.18 52.41 41.83

CAME 25.59 26.67 63.17 50.92 41.59
Adapprox 26.05 26.79 63.16 53.56 42.39

GPT-2 345M

AdamW 25.38 26.70 63.18 50.92 41.54
Adafactor 26.52 26.52 63.16 51.61 41.95

CAME 24.96 26.51 63.18 46.67 40.33
Adapprox 26.05 26.79 63.16 53.56 42.39

Table 3: Zero-shot results(accuracy, ↑) of pretrained GPT-2 models with various optimizers.

AdamW Adafactor CAME Adapprox

per iteration 1.81s 1.84s 1.85s 1.92s
10K iterations 5.10h 5.23h 5.27h 5.41h

Table 4: Time costs of methods applied to GPT-2 117M (“s” stands for seconds and “h” for hours).

4.2 GPT-2 AND BERT TRAINING

We present the convergence curves for validation loss and perplexity on GPT-2 117M and BERT
345M, zero-shot results on two GPT-2 models, and the associated time cost to demonstrate the
effectiveness of Adapprox for pretraining.

Figure 4 compares the performance of Adapprox with AdamW, Adafactor, and CAME during the
pretraining of GPT-2 117M and BERT 345M models, illustrating the validation perplexity. Compared
to AdamW, Adapprox generally exhibits comparable results. Although CAME initially demonstrates
lower perplexity, it tends to converge to suboptimal results as training progresses. These findings
suggest that Adapprox effectively balances accuracy with memory usage and may provide faster
convergence and superior performance relative to Adafactor and CAME.

The results of zero-shot tasks on pretrained GPT models are detailed in Table 3. These results indicate
that Adapprox surpasses existing methods on most tasks. Furthermore, when evaluating the average
accuracy across the four tasks, Adapprox consistently shows superior performance compared to
existing methods. The superior performance of Adapprox and Adafactor compared to AdamW in
zero-shot scenarios can be attributed to the clipping mechanism implemented in both, as discussed in
Section 3.4. This mechanism effectively address outdated second moment estimators in AdamW.

In Table 4, we present a comparison of running time per iteration and across 10K iterations (with
evaluations conducted every 1,000 iterations) for the methods applied to GPT-2 117M. There is only
a modest latency increase of approximately 6% with Adapprox compared to Adam, which is a small
trade-off for the memory savings achieved.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model Method RTE CoLA MRPC QNLI SST-2 WNLI Average

GPT-2 117M

AdamW 64.62 76.61 76.61 87.31 89.91 56.34 75.23
Adafactor 65.34 75.46 80.64 87.17 89.91 50.70 74.87

CAME 57.76 69.13 76.96 64.10 81.77 56.34 67.68
Adapprox 68.95 80.63 84.31 88.50 91.51 56.34 78.38

BERT 345M

AdamW 62.82 77.26 78.19 89.90 91.06 53.52 75.45
Adafactor 54.51 73.70 75.49 89.79 90.37 46.47 71.72

CAME 58.85 71.88 75.49 86.91 91.63 56.34 73.52
Adapprox 62.46 74.38 76.96 89.91 90.25 56.34 75.05

Table 5: Fine-tuning performance (accuracy, ↑) of the compared optimizers for GPT-2 117M and
BERT 345M models across various downstream tasks.

4.3 DOWNSTREAM TASKS

We evaluate the downstream task performance of GPT-2 117M and BERT 345M models, each
pretrained and fine-tuned with its corresponding optimizer. The empirical results are presented in
Table 5. Our experimental findings underscore the superiority of Adapprox compared to those using
Adafactor and CAME. Besides, Adapprox not only achieves performance comparable to AdamW but
also surpasses it in certain cases.

5 DISCUSSION

While Adapprox and Adafactor achieve significant memory savings through the low-rank approxima-
tion of the second moment and by omitting the first moment, our experiments demonstrate that the
absence of the first moment has a notable impact on convergence speed and overall performance (see
Appendix A). Consequently, we recommend retaining the first moment unless memory constraints
are extremely prohibitive. In the future, we aim to further reduce the time cost of Adapprox by
decreasing the frequency of rank adjustments in the later stages of training, where we observe that
the rank remains nearly constant (as shown in Figure 3).

6 CONCLUSION

In this paper, we present Adapprox, a novel optimizer engineered to mitigate memory consumption
challenges inherent in training large-scale models. We employ S-RSI, which leverages randomized
low-rank matrix approximation to reduce the memory footprint of the second moment. We observe
that the time cost of S-RSI is less significant in practice than theoretically expected, attributed to
the parallel computation capabilities of GPUs. Furthermore, we enhance S-RSI with an adaptive
rank selection mechanism, introducing AS-RSI that dynamically adjusts the rank value throughout
the training iterations. These components are integrated to formulate Adapprox. Our empirical
evaluations, encompassing both pretraining and downstream tasks for GPT-2 117M/345M and BERT
345M models, corroborate the efficacy of Adapprox. In comparison to AdamW, Adapprox delivers
substantial memory savings via its low-rank approximation strategy. Although there is a minor
trade-off in memory efficiency compared to state-of-the-art memory efficient optimizers such as
Adafactor and CAME, Adapprox surpasses these competitors in several critical performance metrics,
including validation loss and perplexity during pretraining, along with accuracy in downstream tasks.
These results position Adapprox as a balanced solution for memory-efficient training, successfully
balancing efficiency with minimal accuracy sacrifices.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive optimization.
Advances in Neural Information Processing Systems, 32, 2019.

Kim Batselier, Wenjian Yu, Luca Daniel, and Ngai Wong. Computing low-rank approximations of
large-scale matrices with the tensor network randomized svd. SIAM Journal on Matrix Analysis
and Applications, 39(3):1221–1244, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yongyong Chen, Yanwen Guo, Yongli Wang, Dong Wang, Chong Peng, and Guoping He. Denoising
of hyperspectral images using nonconvex low rank matrix approximation. IEEE Transactions on
Geoscience and Remote Sensing, 55(9):5366–5380, 2017.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Joaquin Quiñonero-Candela, Ido Dagan, Bernardo Magnini, and Florence d’Alché
Buc (eds.), Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object
Classification, and Recognising Tectual Entailment, volume 3944 of Lecture Notes in Computer
Science, pp. 177–190. Springer, 2006.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third International Workshop on Paraphrasing (IWP2005), 2005.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Qiang Guo, Shanshan Gao, Xiaofeng Zhang, Yilong Yin, and Caiming Zhang. Patch-based image
inpainting via two-stage low rank approximation. IEEE transactions on visualization and computer
graphics, 24(6):2023–2036, 2017.

Benjamin Haeffele, Eric Young, and Rene Vidal. Structured low-rank matrix factorization: Optimality,
algorithm, and applications to image processing. In International conference on machine learning,
pp. 2007–2015. PMLR, 2014.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):
217–288, 2011.

Sunil K Jha and RDS Yadava. Denoising by singular value decomposition and its application to
electronic nose data processing. IEEE Sensors Journal, 11(1):35–44, 2010.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

N Kishore Kumar and Jan Schneider. Literature survey on low rank approximation of matrices.
Linear and Multilinear Algebra, 65(11):2212–2244, 2017.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. arXiv preprint
arXiv:2309.01507, 2023.

Dongsheng Li, Chao Chen, Qin Lv, Junchi Yan, Li Shang, and Stephen Chu. Low-rank matrix
approximation with stability. In International Conference on Machine Learning, pp. 295–303.
PMLR, 2016.

Mu Li, Wei Bi, James T Kwok, and Bao-Liang Lu. Large-scale nyström kernel matrix approximation
using randomized svd. IEEE transactions on neural networks and learning systems, 26(1):152–164,
2014.

Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. Random-
ized algorithms for the low-rank approximation of matrices. Proceedings of the National Academy
of Sciences, 104(51):20167–20172, 2007.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Yang Luo, Xiaozhe Ren, Zangwei Zheng, Zhuo Jiang, Xin Jiang, and Yang You. Came: Confidence-
guided adaptive memory efficient optimization. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 4442–4453, 2023.

Yuji Nakatsukasa. Fast and stable randomized low-rank matrix approximation. arXiv preprint
arXiv:2009.11392, 2020.

Dimitris Papailiopoulos, Alexandros Dimakis, and Stavros Korokythakis. Sparse pca through low-
rank approximations. In International Conference on Machine Learning, pp. 747–755. PMLR,
2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
volume 32, pp. 8024–8035, 2019.

Arkadiusz Paterek. Improving regularized singular value decomposition for collaborative filtering. In
Proceedings of KDD cup and workshop, volume 2007, pp. 5–8, 2007.

Quora. Quora question pairs. https://data.quora.com/, 2017. Accessed: [2024-05-01].

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. A randomized algorithm for principal component
analysis. SIAM Journal on Matrix Analysis and Applications, 31(3):1100–1124, 2010.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Haipeng Shen and Jianhua Z Huang. Sparse principal component analysis via regularized low rank
matrix approximation. Journal of multivariate analysis, 99(6):1015–1034, 2008.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism,
2019.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pp.
1631–1642, 2013.

Benoit Steiner, Mostafa Elhoushi, Jacob Kahn, and James Hegarty. Model: memory optimizations for
deep learning. In International Conference on Machine Learning, pp. 32618–32632. PMLR, 2023.

AB Tsybakov, V Koltchinskii, and K Lounici. Nuclear-norm penalization and optimal rates for noisy
low-rank matrix completion. Annals of Statistics, 39(5):2302–2329, 2011.

12

https://data.quora.com/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, 2018.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471, 2018.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Hellaswag: Can a machine really finish
your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 4791–4800, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ANALYSIS OF FIRST MOMENT EFFICACY

0 2000 4000 6000 8000 10000
Iteration

2.5

3.0

3.5

4.0

4.5

5.0

Tr
ai

ni
ng

 L
os

s

AdamW (1 = 0.9)
Adafactor (1 = 0.9)
Adapprox (1 = 0.9)
AdamW (1 = 0.0)
Adafactor (1 = 0.0)
Adapprox (1 = 0.0)

Figure 5: Training loss vs. iteration for AdamW, Adafactor, and Adapprox optimizers, comparing
scenarios with and without the first moment.

Figure 5 demonstrates that incorporating the first moment significantly accelerates the convergence
process, evidenced by achieving lower training losses at the same iteration, for each optimizer
examined, including AdamW, Adafactor, and Adapprox. CAME is omitted from this analysis due
to its incompatibility with β1 = 0. Furthermore, while AdamW exhibits instability without the first
moment, Adafactor and Adapprox mitigate this through the use of a clipping mechanism, effectively
reducing large, unexpected updates and enhancing stability.

B ANALYSIS OF PARAMETERS IN S-RSI AND AS-RSI

The parameters k0, kmin, kmax, l, and p in S-RSI and AS-RSI are chosen to balance approximation
accuracy, memory efficiency, and computational cost.

Regarding approximation accuracy, Equation 10 demonstrates the impact of these parameters on the
low-rank approximation. Larger values of k, l, and p typically lead to smaller approximation errors,
as shown in Equation 10, but also increase computational cost and memory usage.

First, l denotes the number of power iterations in the S-RSI method. Increasing l enhances approxi-
mation accuracy but also raises computational cost due to the sequential nature of power iterations.
Our experiments indicate that l = 5 strikes a good balance between accuracy and efficiency. The
table below presents the results of an ablation study on l, where A is an m× n matrix sampled from
a normal distribution:

Table 6: Analysis on l, where A is an m× n matrix sampled from a normal distribution (m = 1024,
n = 1024, k = 256, p = 5).

l 1 2 3 4 5 6 7 8 9 10
∥A−QU⊤∥F

∥A∥F
0.1473 0.0968 0.0850 0.0828 0.0802 0.0786 0.0783 0.0779 0.0779 0.0778

As shown, l = 5 provides sufficient accuracy, with further increases offering only marginal gains.
Thus, we recommend l = 5 in our configuration. Similarly, we recommend setting p = 5 in our
configuration:

Additionally, k0, kmax, and kmin are key parameters that influence both approximation accuracy and
memory usage. We suggest setting kmin = 1 to fully leverage the low-rank structure of the second
moment matrix. Similarly, setting k0 = kmax helps effectively control the upper bound of memory

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Analysis on p, where A is an m× n matrix sampled from a normal distribution (m = 1024,
n = 1024, k = 256, l = 5).

p 1 2 3 4 5 6 7 8 9 10

∥A−QU⊤∥F /∥A∥F 0.0804 0.0797 0.0805 0.0807 0.0791 0.0797 0.0795 0.0803 0.0794 0.0799

consumption. The exact values for k0 and kmax should be determined based on the available memory
resources in practice.

Thank you for your suggestion. Below, we provide both a theoretical analysis and experimental
results regarding memory utilization. We will incorporate this information into the revised manuscript
accordingly.

C ANALYSIS OF MEMORY USAGE FOR COMPRESSED SECOND MOMENT

In low-rank approximation for the second moment matrix, memory utilization is dominated by the
storage of the decomposed matrices Q ∈ Rm×k and U ∈ Rn×k. For a second moment matrix
V ∈ Rm×n

≥0 , the memory usage under low-rank approximation is:

Memory Usage = k · (m+ n),

where k is the rank of the approximation. In contrast, storing the full matrix V requires m × n
elements. The ratio of memory saved can be expressed as:

Memory Savings = 1− k · (m+ n)

m · n
.

For larger models (with higher m and n), the relative savings increase as long as k remains small
compared to m and n. However, increasing k leads to higher memory usage, and for sufficiently
large k, the savings diminish. For example, consider a second moment matrix V of 1024 × 1024
(m = n = 1024):

• With k = 16, the memory savings are 1− 16 · (1024 + 1024)/10242 = 96.88%.
• With k = 256, the memory savings are 1− 256 · (1024 + 1024)/10242 = 50.00%.

In addition, to achieve memory savings in this example, k must be less than 512.

C.1 EXPERIMENTAL RESULTS

To validate the efficiency, we measured the memory utilization of optimizer states for various ranks
k across GPT-2 models of different sizes during active training. The memory usage includes both
the low-rank approximation and other optimizer states (e.g., first moment). Below are the results (in
MB):

Table 8: Memory utilization (in MB) of optimizer states across GPT-2 models for various ranks k.

Model k = 1 k = 8 k = 16 k = 32 k = 64 k = 128 k = 256 AdamW
GPT-2 125M 475.93 481.27 487.39 499.61 524.06 572.95 670.74 949.40
GPT-2 345M 1356.47 1368.40 1382.02 1409.28 1463.79 1572.81 1790.85 2707.09
GPT-2 1.1B 3550.78 3573.88 3600.29 3653.09 3758.69 3969.90 4392.31 7089.92

As shown in the results above, when k is small (e.g., 1 or 8), memory utilization for optimizer states
is reduced by nearly half compared to AdamW, demonstrating significant savings due to compressed
second moments. This reduction is particularly beneficial for larger models, such as GPT-2 1.1B.

As k increases, memory usage grows, approaching that of AdamW at higher ranks. For example,
at k = 256, memory utilization for GPT-2 1.1B is 38% lower than AdamW. This underscores the
importance of selecting an appropriate k to balance memory savings and approximation accuracy.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

These results highlight the efficiency of low-rank approximations in reducing memory utilization for
optimizer states, particularly when k is small.

16

	Introduction
	Related Work
	Methodology
	Overview of the Adam and AdamW
	Randomized Low-Rank Approximation for the Second Moment
	Adaptive Rank Selection
	Adapprox Algorithm

	Experiments
	Assessment of Rank Adaptation
	GPT-2 and BERT Training
	Downstream Tasks

	Discussion
	Conclusion
	Analysis of First Moment Efficacy
	Analysis of Parameters in S-RSI and AS-RSI
	Analysis of Memory Usage for Compressed Second Moment
	Experimental Results

