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Abstract. The angle of progression (AoP) is a critical parameter for as-
sessing fetal head descent during labor, requiring identification of three
anatomical landmarks in intrapartum ultrasound images. Manual anno-
tation is time-consuming and prone to inter- and intra-observer variabil-
ity, while automated methods are hindered by limited labeled data and
domain shifts across ultrasound devices. We propose an automated fetal
biometry method for AoP calculation based on a modified TransUNet
architecture with TinyViT backbone. The design integrates (i) MAE-
assisted knowledge distillation from an Ultrasound Foundation Model
(USFM) for robust representation learning, (ii) label perturbation to en-
hance robustness and cross-device generalization, and (iii) semi-supervised
learning with pseudo-labeling to leverage unlabeled data. The network
predicts heatmaps for landmark localization and calculates AoP from
the detected coordinates. On the IUGC2025 Challenge test set, the pro-
posed method achieved a mean radial error of 11.6749 pixels and a mean
absolute AoP error of 3.8061 degrees.
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1 Introduction

Labor monitoring is essential for ensuring maternal and fetal safety during child-
birth. The World Health Organization’s Labour Care Guide (LCG) emphasizes
the importance of systematic assessment of fetal head position and progression
for timely clinical decision-making. Among the critical parameters, the angle
of progression (AoP) measured from intrapartum ultrasound provides crucial
insights into fetal descent and directly influences intervention decisions [6, 12].
The AoP is calculated by identifying three anatomical landmarks: two points
along the pubic symphysis (PS1, PS2) and one point where a tangent from PS1
touches the fetal head (FH1).
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In recent years, deep learning has shown great promise for analyzing intra-
partum ultrasound images, particularly for pubic symphysis and fetal head seg-
mentation. Traditional approaches generally follow a two-stage pipeline: first seg-
menting the anatomical structures, then calculating the angle of progression. Lu
et al. [14] proposed a multitask deep neural network combining image segmenta-
tion, endpoint detection, and angle calculation using a shared encoder with mul-
tiple decoders. Bai et al. [1] developed a dual-branch network for computing AoP
from transperineal ultrasound images. Chen et al. [5] introduced direction-guided
and multi-scale feature screening methods for improved segmentation-based AoP
computation. Chen et al. [4] proposed a dual-path boundary-guided residual net-
work (DBRN) with attention mechanisms. Furthermore, Ou et al. [15] developed
RTSeg-Net, a lightweight model for real-time fetal head–pubic symphysis seg-
mentation in clinical settings.

Despite recent progress, segmentation-first pipelines face notable limitations.
First, the multi-stage process enables errors from the segmentation step to prop-
agate to landmark localization and AoP calculation, ultimately degrading final
accuracy. Second, segmentation requires dense pixel-level annotations, which are
costly to obtain and prone to inter-observer variability. These drawbacks mo-
tivate the exploration of direct landmark detection, which can mitigate error
accumulation, reduce annotation burden, and improve computational efficiency.

However, direct landmark detection in intrapartum ultrasound introduces
its own challenges. The images are inherently noisy with low contrast [7], and
substantial domain shifts across devices and manufacturers hinder model gen-
eralization [2, 18]. In addition, expert landmark annotation is time-consuming,
and the scarcity of labeled datasets makes it difficult to train robust models,
especially under cross-device variations.

To address these challenges, we propose a novel automated fetal biometry
method for AoP calculation that integrates self-supervised pretraining, lightweight
architecture design, and cross-device adaptation.

The main contributions of this paper are as follows:

• A MAE-assisted knowledge distillation framework using USFM as teacher to
train a lightweight TinyViT backbone specifically adapted for intrapartum
ultrasound;

• A modified TransUNet architecture combining ResNet-50 encoder, trans-
former bottleneck, and UNet decoder for precise heatmap-based landmark
detection;

• Training strategies incorporating cross-device adaptation through label per-
turbation and semi-supervised learning via iterative pseudo-labeling to lever-
age abundant unlabeled data.

Our method achieves superior performance compared to baseline approaches,
with mean radial error of 11.6749 pixels and absolute parameter difference of
3.8061 degrees on the test set, demonstrating significant potential to streamline
clinical workflows and improve diagnostic consistency in intrapartum care.
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2 Methods

2.1 Overview

Our approach for automated fetal biometry in intrapartum ultrasound images
consists of three main components: (1) a pretraining phase leveraging MAE-
assisted knowledge distillation to learn domain-specific features from intrapartum
ultrasound data, (2) a modified TransUNet architecture for keypoint detection,
and (3) training strategies that incorporate cross-device adaptation and semi-
supervised learning. This methodology is designed to address the core challenges
of limited labeled data, cross-device generalization, and the spatial relationship
modeling crucial for accurate anatomical landmark detection.

Fig. 1. Overview of the Pretraining Phase and Main Training Phase

2.2 Model Pretraining

To meet the demands of accurate and real-time keypoint detection in intra-
partum ultrasound, we adopt a compact TinyViT backbone enhanced via MAE-
assisted knowledge distillation, as shown in the upper part of Fig. 1. Specifically,
the Ultrasound Foundation Model (USFM) [10] serves as the teacher network,
transferring domain-specific anatomical representations to the lightweight stu-
dent model.
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The MAE pretraining method [8], which reconstructs masked image patches,
is particularly suited for heatmap-based keypoint detection, as it captures spatial
dependencies across image regions and facilitates precise landmark localization.
This formulation also enables effective utilization of unlabeled intrapartum ul-
trasound images to enrich the learned representations.

The overall distillation loss is defined as:

Ldistill = MSE(fstudent(x), fteacher(x)) + λLMAE(xmasked) (1)

where fstudent and fteacher represent the feature extraction functions of the
TinyViT and USFM models respectively, and LMAE is the masked autoencoder
reconstruction loss.

The resulting TinyViT model serves as the backbone for our keypoint de-
tection network, providing a computationally efficient yet powerful feature ex-
tractor that has been specifically adapted to the characteristics of transperineal
ultrasound images.

2.3 Network Architecture

Our keypoint detection model builds on a modified TransUNet [3] architecture
that integrates a ResNet-50 [9] backbone encoder, a ViT-style transformer bot-
tleneck using a distilled TinyViT [17], and a UNet-like decoder with skip con-
nections, designed to predict heatmaps for anatomical landmark localization in
intrapartum ultrasound images. As shown in the lower half of Fig. 1, the model
structure is mainly divided into the following parts.

Encoder The encoder employs a ResNet-50 pretrained backbone to extract hier-
archical feature maps at multiple scales. This multi-scale representation provides
rich local details from shallow layers and abstract semantic information from
deeper layers, facilitating precise anatomical localization.

TinyViT Bottleneck The last encoder layer is projected to a lower-dimensional
embedding and then fed into the pretrained TinyViT from Section 2.2 for fur-
ther processing. The output tokens are reshaped back into spatial features for
decoding.

Decoder The decoder reconstructs high-resolution feature maps through a se-
ries of transposed convolutional upsampling layers. At each upsampling stage,
features are concatenated with the corresponding encoder features via skip con-
nections to fuse local and global information effectively. Each concatenated fea-
ture map is refined by a lightweight double convolution block composed of two
sequential convolution, batch normalization, and ReLU activation layers. The
decoder progressively upsamples features until the spatial resolution matches
the desired heatmap size.
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Output Head and Coordinate Extraction A final 1× 1 convolution layer projects
the decoder’s output to K heatmaps (K = 3 in our case), each representing
the predicted spatial probability distribution of one anatomical landmark. The
heatmaps have a fixed spatial resolution of 64 × 64. Landmark coordinates are
extracted by locating the spatial maxima of each heatmap via an argmax oper-
ation, followed by normalization to relative coordinates.

Loss Funtion The model is trained using a single heatmap loss:

Lheatmap = MSE(heatmappred, heatmapgt) (2)

where heatmappred, and heatmapgt denote the predicted and ground-truth heatmaps,
respectively. The loss is computed as mean squared error (MSE) between them.

2.4 Training Strategies

Device-Domain Adaption The dataset presents a significant domain shift, as
the training images are acquired from two ultrasound machines, whereas the test
set consists of images from two different devices. To improve the model’s robust-
ness across domains, we apply label perturbation during training by injecting
Gaussian noise into the ground truth landmark coordinates:

(x̃i, ỹi) = (xi, yi) +N (0, σ2I) (3)

where σ = 2 pixels. This perturbation acts as a regularizer, encouraging the
network to learn features that are invariant to small spatial variations caused
by differences in machine calibration and imaging protocols, thus enhancing
generalization to unseen domains.

Pseudo Labeling Given the substantial imbalance between labeled and unla-
beled images, we employ iterative pseudo-labeling to leverage the abundant un-
labeled data. We generate pseudo-labels using the device-domain-adapted model
and select high-quality samples based on multiple criteria: (1) prediction confi-
dence measured by heatmap peak sharpness and (2) geometric plausibility en-
forcing anatomical constraints between landmarks.

3 Experiments

3.1 Datasets

The challenge organizers provide a training set comprising 300 labeled intra-
partum ultrasound images, each annotated with three anatomical landmarks
(PS1, PS2, FH1) and the angle of progression (AoP). The corresponding anno-
tations are stored in a CSV file containing the image filenames, landmark coordi-
nates (x, y), and AoP values. In addition, the dataset includes 31,421 unlabeled



6 C. Ma et al.

intrapartum ultrasound images. To facilitate standard-plane identification, 2,045
reference images depicting the standard acquisition view are also provided.

We further incorporate the FH-PS-AoP public dataset [11], containing 4,000
annotated intrapartum ultrasound images at a native resolution of 256 × 256,
for model pretraining. The detailed data statistics are shown in Table 1.

For each main training phase, the available labeled data are randomly split
into training and test subsets with a ratio of 4:1.

Table 1. Summary of datasets used in this study.

Dataset # Images Annotations Resolution

Labeled cases 300 PS1, PS2, FH1, AoP 512× 512
Unlabeled cases 31,421 None 512× 512
Standard-plane examples 2,045 None 512× 512
FH-PS-AoP 4,000 None 256× 256

Preprocessing All images are resized to 224×224 during pretraining. For main
training and evaluation phases, images are resized to 512 × 512, and landmark
coordinates are scaled accordingly.

For each annotated landmark, we generate a Gaussian heatmap representa-
tion to serve as the regression target. Given the landmark location (x0, y0), the
heatmap H at pixel location (x, y) is defined as:

H(x, y) = exp(− (x− x0)
2 + (y − y0)

2

2σ2
) (4)

where σ = 4 pixels controls the spatial spread. This continuous spatial encod-
ing provides localized supervision, allowing the network to learn more precise
keypoint localization compared to direct coordinate regression.

Data Augmentation To improve robustness to acquisition variability and mit-
igate overfitting, we employ both geometric and photometric augmentations.

Geometric: In-plane rotations, and random scaling with cropping are ap-
plied jointly to images and landmark coordinates to preserve spatial alignment,
with AoP values recalculated from the transformed points.

Photometric: Gamma correction and contrast adjustment are applied to
simulate device- and operator-induced appearance variations, without altering
landmark positions.

This augmentation strategy strengthens the model’s resilience to spatial per-
turbations and intensity variations, facilitating cross-device generalization in in-
trapartum ultrasound analysis.
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3.2 Experimental Settings

During the pretraining phase, we set the probability of spatial domain masking
at 0.75 and employed the AdamW optimizer with an initial learning rate of 1e-4,
complemented by a cosine learning rate decay strategy. The experiments were
trained for 400 epochs with a batch size of 1024.

In the main training, we employed the Adam optimizer with an initial learn-
ing rate of 3e-5 and adopt a StepLR learning rate decay strategy, training for
100 epochs with a batch size of 4.

All experiments were conducted on an AMD EPYC 7763 CPU and NVIDIA
A100 GPU. All models were developed using PyTorch.

4 Results and Discussion

4.1 Quantitative Results on Validation Phase

We evaluate all methods on two sets of metrics: one computed on our own
test split, and another obtained from the challenge platform’s validation phase.
Both sets report Mean Radial Error (MRE)—the average Euclidean distance
between predicted and ground-truth landmarks—and Absolute Parameter
Difference (APD)—the absolute difference in the predicted AoP angle. Lower
values indicate better performance.

Table 2 summarizes the results. Our proposed method consistently outper-
forms the baseline(a UNet [16] based model) across both test and validation sets.
Pretraining on external datasets and leveraging pseudo-labels further improve
accuracy, with label perturbation providing additional robustness and the best
overall results. As illustrated in Fig. 2, the heatmaps generated by our method
show significantly improved localization capability and reduced uncertainty com-
pared to other models.

Table 2. Comparison of different methods on test split and challenge platform vali-
dation phase. Metrics reported are Mean Radial Error (MRE) in pixels and Absolute
Parameter Difference (APD) in degrees; lower is better. (PL: pseudo-labeling; DDA:
device-domain adaptation)

Method Test Split Validation Phase

MRE ↓ APD ↓ MRE ↓ APD ↓

Baseline (Heatmap U-Net) 14.3266 6.2033 22.8510 8.8178
TransUNet 14.1093 5.8906 20.3387 7.4982
TransUNet + Pretrain 13.5632 5.5691 17.5204 6.6031
TransUNet + Pretrain + PL 12.8841 5.2377 15.6327 5.9873
TransUNet + Pretrain + PL + DDA 12.3115 4.9815 14.3584 5.1569
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Fig. 2. Comparison of heatmaps generated by different methods.(PL: pseudo-labeling;
DDA: device-domain adaptation)

4.2 Quantitative Results on Test Phase

We evaluated our final model, which incorporates pretraining, pseudo-labeling,
and device-domain adaptation, on the final test phase. The performance met-
rics include the Mean Radial Error (MRE) between predicted and ground truth
landmark points, and the Absolute Parameter Difference (APD) for the angle of
progression (AoP). Results, as shown in Table 3, demonstrate that the model
achieves robust and accurate landmark localization and AoP estimation on un-
seen test data.

Table 3. Test phase performance of the final model. Metrics reported are Mean Radial
Error (MRE) in pixels and Absolute Parameter Difference (APD) in degrees; lower is
better.

Model MRE ↓ APD ↓

TransUNet + Pretrain + PL + DDA 11.6749 3.8061

4.3 Limitation and Future Work

Despite the promising results, our device-domain adaptation (DDA) method ex-
hibits some instability. This is primarily due to the random noise introduced in
the label perturbation process, which can cause fluctuations in training perfor-
mance and occasionally result in poor outcomes on certain samples. For example,
a few images in the validation phase showed significantly degraded performance.
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In future work, we plan to explore more stable and robust unsupervised domain
adaptation techniques to mitigate this issue.

Additionally, constrained by the inference time limitations imposed by the
challenge and the need for rapid model iteration, we selected a lightweight
TinyViT model as our backbone. We also experimented with larger Vision Trans-
former variants such as USFM and SAM [13], integrated as backbones within
the TransUNet architecture. These larger models achieved performance com-
parable to the TinyViT model, which benefited from MAE-assisted knowledge
distillation specialized for intrapartum ultrasound images, despite not undergo-
ing the distillation process themselves. This not only validates the effectiveness
of our MAE-assisted distillation strategy but also suggests that further optimiz-
ing these larger models specifically for intrapartum data may yield even better
results. Future research will focus on targeted enhancements of USFM and SAM
models on intrapartum ultrasound images to further boost performance.

5 Conclusion

In this paper, we proposed a unified framework for precise anatomical land-
mark localization and angle of progression estimation in intrapartum ultrasound
images. Our method incorporates a lightweight TinyViT backbone—pretrained
with knowledge distillation on USFM using related ultrasound data—integrated
within a heatmap TransUNet architecture. Together with pseudo-labeling and
device-domain adaptation strategies, this approach significantly enhances accu-
racy and generalization across varied datasets. Experimental results demonstrate
strong performance and efficiency, highlighting the potential of our method for
practical intrapartum ultrasound analysis.
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