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Abstract
Decentralized bilevel optimization based machine
learning techniques are achieving remarkable suc-
cess in a wide variety of domains. However,
the intensive exchange of information (involv-
ing nested-loops of consensus or communica-
tion iterations) in existing decentralized bilevel-
optimization algorithms leads to a great challenge
to ensure rigorous differential privacy, which,
however, is necessary to bring the benefits of ma-
chine learning to domains where involved data
are sensitive. By proposing a new decentralized
stochastic bilevel-optimization algorithm which
avoids nested-loops of information-exchange iter-
ations, we achieve, for the first time, both differ-
ential privacy and accurate convergence in decen-
tralized bilevel optimization. This is significant
since even for single-level decentralized optimiza-
tion and learning, existing differential-privacy so-
lutions have to sacrifice convergence accuracy
for privacy. Besides characterizing the conver-
gence rate under nonconvex/convex/strongly con-
vex conditions, we also rigorously quantify the
price of differential privacy in the convergence
rate. Experimental results on machine learning
models confirm the efficacy of our algorithm.

1. Introduction
Bilevel stochastic optimization is evolving as an effective
tool for solving many machine learning problems having
a nested structure, with typical examples including meta-
learning (Bertinetto et al., 2019; Rajeswaran et al., 2019),
hyperparameter optimization (Franceschi et al., 2018), im-
itation learning (Arora et al., 2020), and neural architec-
ture search (Liu et al., 2018). So far, numerous centralized
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stochastic bilevel-optimization algorithms have been pro-
posed (Ghadimi & Wang, 2018; Khanduri et al., 2021; Ji
et al., 2021; Hong et al., 2023). Recently, with the increas-
ingly pressing need to parallelize learning algorithms in or-
der to handle the enormous growth in data and model sizes,
the following decentralized stochastic bilevel-optimization
(DSBO) problem is gaining increased traction (Lu et al.,
2022; Yang et al., 2022; Gao et al., 2023; Chen et al., 2023;
Zhang et al., 2023; Dong et al., 2023; Kong et al., 2024):

min
x∈Rp

F (x), F (x) =
1

m

m∑
i=1

fi(x, y
∗(x)),

s.t. y∗(x) = argminy∈Rqg(x, y) :=
1

m

m∑
i=1

gi(x, y),

(1)

where x ∈ Rp and y ∈ Rq represent the optimization pa-
rameters and m denotes the number of agents. Each agent
i only has access to its local upper-level objective function
fi and lower-level objective function gi, which, in machine
learning applications, are usually given by

fi(x, y) = Eφi
[h(x, y;φi)],

gi(x, y) = Eξi [l(x, y; ξi)].
(2)

In (2), φi and ξi represent random data samples which usu-
ally follow unknown and heterogeneous distributions across
different agents.

All above DSBO algorithms require participating agents
to explicitly share model updates in every iteration, which
raises severe privacy concerns when involved data are sen-
sitive. In fact, recent studies (Zhu et al., 2019; Triastcyn
& Faltings, 2020) have shown that even though raw data
are not shared, exploiting information shared in decentral-
ized optimization, external adversaries can still precisely
recover the raw data used for training (pixel-wise accurate
for images and token-wise matching for texts). As differen-
tial privacy is evolving as the de facto standard for privacy
preservation due to its rigorous mathematical foundations
yet implementation simplicity and post-processing immu-
nity (Dwork et al., 2010; 2014), it is of great interest to
achieve differential privacy in DSBO. However, given that
existing DSBO algorithms all involve nested-loops of com-
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munication (consensus) iterations1, directly incorporating
the standard differential-privacy noise injection mechanism
in existing DSBO algorithms will inevitably result in an ex-
ploding cumulative privacy budget as the iteration proceeds,
leading to diminishing privacy protection in the long run.
Another challenge is to maintain the accuracy of DSBO
under the constraint of differential privacy. In fact, even
for the simpler single-level decentralized optimization prob-
lem, existing differential-privacy solutions have to trade
optimization accuracy for privacy (Bellet et al., 2018; Cyf-
fers et al., 2022; Bietti et al., 2022), which is undesirable in
accuracy-sensitive applications.

1.1. Our Contributions

1. We propose a differentially private DSBO algorithm that
can ensure both accurate convergence and rigorous differ-
ential privacy, with the cumulative privacy budget bounded
even when the number of iterations tends to infinity. To the
best of our knowledge, no such results have been reported
before. Moreover, by employing the local differential pri-
vacy framework, our results can be applied to the fully
decentralized setting where no data aggregator or mediator
exists to gather data or assist privacy design.

2. A key enabler for our approach to achieving both differ-
ential privacy and accurate convergence is a novel algorithm
for DSBO. Except limited recent works (Zhang et al., 2023;
Dong et al., 2023; Kong et al., 2024) which use single-
loop consensus, most existing DSBO algorithms employ
nested-loops of consensus iterations. Our new algorithm
successfully circumvents nested-loops of consensus, which
makes it possible to alleviate the growth of the cumulative
privacy budget as the number of iterations increases. In
fact, given that using intensive (nested-loops of) consensus
or communication rounds is the only approach to ensuring
accurate convergence when the objective functions are het-
erogeneous across the agents (note that the results in Zhang
et al. (2023), Dong et al. (2023), and Kong et al. (2024) are
subject to an optimization error that is on the order of the
constant stepsize therein), our algorithm is of independent
interest even if privacy is not of concern.

3. We establish the convergence rate of our algorithm for
nonconvex/convex/strongly convex objective functions fi,
which is different from existing DSBO results (Lu et al.,
2022; Gao et al., 2023; Chen et al., 2023) that focus solely
on the nonconvex case. Moreover, our convergence analysis
relaxes the assumption that gi is Lipschitz continuous with
respect to y, which is widely used in existing DSBO litera-
ture (see, e.g., Chen et al. (2022) and Yang et al. (2022)).

1Note that the algorithm in Gao et al. (2023) assumes identical
data distributions for ξi and hence g1 = g2 = · · · = gm (see
equations (2) and (3) in Gao et al. (2023) or Appendix C.2 in Chen
et al. (2023)), and thus does not apply to our general setting here.

4. Despite retaining accurate convergence, our algorithm
does pay a price for obtained differential privacy in conver-
gence rate. We systematically quantify the tradeoff between
privacy and convergence rate. It is worth noting that by
avoiding estimating the full Hessian or Jacobian matrix, our
algorithm still achieves improved computational complexity
compared with the result for DSBO in Chen et al. (2022),
which does not consider privacy protection.

5. We conduct experiment evaluation using several machine
learning problems. The results confirm the efficiency of our
algorithm on both the synthetic and the real-world datasets.

1.2. Related Work

1.2.1. BILEVEL OPTIMIZATION

Bilevel optimization was first discussed in Bracken &
McGill (1973) for solving resource allocation problems.
Historically, it was treated by viewing the lower-level op-
timality condition as constraints to the upper-level prob-
lem (Hansen et al., 1992). More recently, Couellan &
Wang (2016) proposed a gradient-based algorithm provid-
ing asymptotic convergence and Ghadimi & Wang (2018)
developed a nested-loop stochastic approximated algorithm
establishing non-asymptotic convergence. Following these
developments, various centralized approaches have been in-
troduced, trying to improve the efficiency in solving bilevel-
optimization problems (Khanduri et al., 2021; Ji et al., 2021;
Hong et al., 2023).

Driven by the need for parallelized learning algorithms to
handle the enormous growth in data and model sizes in
machine learning, plenty of DSBO algorithms have been
proposed recently (Lu et al., 2022; Chen et al., 2022; Yang
et al., 2022; Gao et al., 2023; Chen et al., 2023). For ex-
ample, Lu et al. (2022) and Gao et al. (2023) considered
the DSBO problem where the lower-level objective function
is fully accessible to every agent. Chen et al. (2022), Yang
et al. (2022), and Chen et al. (2023) considered the case
where neither the upper-level function nor the lower-level
function is fully accessible to every local agent. In addi-
tion, the approaches in Chen et al. (2022) and Yang et al.
(2022) require computing the full Jacobian and/or Hessian
matrix, entailing a computational complexity of the order
O(pq) or O(q2) in every iteration. To reduce the computa-
tional complexity, Chen et al. (2023) proposed to estimate
the Hessian-vector and Jacobian-vector products, which re-
duces the per-iteration complexity from O(pq) (or O(q2))
to O(max{p, q}). However, none of the existing results
have addressed differential privacy for DSBO. In fact, as
discussed in Section 1, to ensure accurate enough local
estimation of the hypergradient, all of these algorithms em-
ploy nested-loops of consensus (communication) iterations,
which will result in an exploding cumulative privacy bud-
get if we incorporate these algorithms with the standard
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Laplace-noise mechanism in Dwork et al. (2014) to achieve
differential privacy. In Table 1, we summarize the difference
between our algorithm and existing results.

1.2.2. DIFFERENTIAL PRIVACY

Widely regarded as the “gold standard” for privacy pro-
tection (Cummings et al., 2021), differential privacy has
found numerous applications in distributed computation sce-
narios, including distributed deep learning (Papernot et al.,
2018; Ghazi et al., 2021; Kairouz et al., 2021), distributed
stochastic optimization (Bassily et al., 2019; Asi et al., 2021;
Altschuler & Talwar, 2022), and federated learning (Geyer
et al., 2017; Zhang et al., 2022). Note that the commonly
used differential-privacy framework assumes the presence
of a data aggregator/curator to collect the raw data and inject
noise. In the decentralized scenario, to ensure agent-level
privacy, we employ the local differential privacy (LDP)
framework (Kasiviswanathan et al., 2011), in which random
perturbations are performed locally by each agent, thereby
protecting individual data against external adversaries and
neighboring agents. LDP has been implemented in decen-
tralized stochastic optimization and federated learning algo-
rithms (Bellet et al., 2018; Cyffers et al., 2022; Bietti et al.,
2022); however, these algorithms often face a fundamental
tradeoff between optimization accuracy and privacy. It is
worth noting that although using the information-theoretic
approach, Kasiviswanathan et al. (2011) and Dwork et al.
(2014) have proven the possibility to retain accurate con-
vergence in differentially private learning by trading con-
vergence rate for privacy, it is only recently that Wang &
Nedić (2023) and Chen & Wang (2023) proposed concrete
implementable algorithms that actually achieve this goal in
decentralized optimization and learning. Nevertheless, these
results are for the conventional single-level decentralized
optimization and they cannot be combined with existing
bilevel-optimization algorithms to ensure both differential
privacy and accurate convergence. In fact, due to the ex-
istence of nested-loops of consensus iterations in existing
DSBO algorithms, directly applying the differential-privacy
mechanisms in Wang & Nedić (2023) and Chen & Wang
(2023) will result in both loss of convergence accuracy and
explosion of the cumulative privacy budget.

Notations: We denote ∇F (x) ∈ Rp as the gradient of
F (x). We use ∇xg(x, y) and ∇yg(x, y) to represent the
gradients of g with respect to x and y, respectively. We
write ∇2

xyg(x, y) ∈ Rp×q for the Jacobian matrix of g and
∇2

yyg(x, y) ∈ Rq×q for the Hessian matrix of g with respect
to y. We denote ∥·∥1 and ∥·∥ as the l1-norm and the l2-norm
of vectors, respectively. We use 1p to denote the all-ones
vector in Rp. We add an overbar to a letter to denote the
average of all agents, e.g., x̄t =

1
m

∑m
i=1 xi,t. We use bold

font to represent stacked vectors of all agents, e.g., xt =
col(x1,t, · · · , xm,t). We write P[A] for the probability of an

event A. We use Lap(ν) to denote the Laplace distribution
with a parameter ν > 0, featuring a probability density
function f(x|ν) = 1

2ν e
−|x|

ν . Lap(ν) has a mean of zero and
a variance of 2ν2. We denote the set of m agents as [m] and
the neighboring set of agent i as Ni. We denote the coupling
weight matrix as W = {wij}∈Rm×m, in which wij > 0 if
agent j interacts with agent i, and wij = 0 otherwise.

2. Preliminaries
2.1. Hypergradient Estimation

The major challenge in solving DSBO lies in the absence
of explicit knowledge of y∗(x), which makes it impos-
sible for individual agents to evaluate the hypergradient
∇F (x, y∗(x)). By leveraging the results for centralized
stochastic bilevel optimization (Ghadimi & Wang, 2018),
recently, Chen et al. (2022) proposed to calculate the hyper-
gradient using the following relation:

∇F (x) =
1

m

m∑
i=1

∇xfi(x, y
∗(x))−∇2

xyg(x, y
∗(x))

×
[
∇2

yyg(x, y
∗(x))

]−1 1

m

m∑
i=1

∇yfi(x, y
∗(x)).

(3)

It is evident that computing ∇F (x) requires global informa-
tion about g(x, y) = 1

m

∑m
i=1 gi(x, y), which is inaccessi-

ble to agent i in a decentralized setting. A natural approach
is to use ∇gi as a surrogate; however, due to data heterogene-
ity across the agents, this approach results in steady-state
errors. Therefore, every agent has to maintain local esti-
mates of the global hypergradient. Instead of estimating the
entire Hessian/Jacobian matrix, Chen et al. (2023) proposed
to estimate the Hessian-inverse-vector product:

z∗=

(
m∑
i=1

∇yygi(x, y
∗(x))

)−1( m∑
i=1

∇yfi(x, y
∗(x))

)
.

(4)
According to (3), the global hypergradient is given by

∇F (x) =
1

m

m∑
i=1

(
∇xfi(x, y

∗(x))−∇2
xygi(x, y

∗(x))z∗
)
,

(5)
where ∇2

xygi(x, y
∗(x))z∗ will be referred to as the Jacobian-

vector product.

From (5), we know that if each agent i can have an
accurate enough estimation of ∇xfi(x, y

∗(x)), z∗, and
∇2

xygi(x, y
∗(x))z∗, then every agent can have a good esti-

mate of the global hypergradient. Notably, estimating the
vector-valued z∗ and ∇2

xygi(x, y
∗(x))z∗ circumvents the

need for estimating the full Hessian and Jacobian matrices,
which substantially reduces the per-iteration computational
complexity.
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Table 1. We compare our Algorithm 2 (LDP-DSBO) with existing algorithms, including the centralized bilevel-optimization algorithm
BSA (Ghadimi & Wang, 2018), personalized DSBO algorithms SPDB (Lu et al., 2022) and VRDSBO (Gao et al., 2023), and DSBO
algorithms DSBO-JHIP (Chen et al., 2022), GBDSBO (Yang et al., 2022), and MA-DSBO (Chen et al., 2023). In the table, we use δ to
denote the optimization error. We use “Jacobian” to represent whether the algorithm requires computing the full Hessian or Jacobian
matrix. We use “DP” to represent whether the algorithm considers differential privacy. We also use “Privacy Budget” to refer to the
cumulative privacy budget of the algorithm when it is combined with the Laplace noise used in our algorithm to enable differential privacy.
The detailed cumulative privacy budget calculation is provided in Appendix H.2).

ALGORITHM DECENTRALIZED? COMPUTATIONAL COMPLEXITY JACOBIAN DP PRIVACY BUDGET

BSA NO O(δ−3 + (q2 log(δ−1) + pq)δ−2) YES NO O(δ−3)
SPDB YES O(max{p, q} log(δ−1)δ−2) NO NO O(δ−2)

VRDSBO YES O((pq + q2)δ−
3
2 ) YES NO O(δ−

3
2 )

DSBO-JHIP YES O(pq log(δ−1)δ−3) YES NO O(δ−3)
GBDSBO YES O((q2 log(δ−1) + pq)δ−2) YES NO O(δ−2)
MA-DSBO YES O(max{p, q} log(δ−1)δ−2) NO NO O(δ−2)
LDP-DSBO YES O(max{p, q}δ−2.6) NO YES O(1)

2.2. Assumptions

Assumption 2.1. The weight matrix W = {wij} ∈ Rm×m

is symmetric and satisfies 1TW = 0T and W1 = 0. The
eigenvalues of I+W (after arranged in an increasing order)
satisfy 0 = δ1 < δ2 ≤ · · · ≤ δm < 1.

Assumption 2.2. For any i ∈ [m], functions fi, ∇fi, ∇gi,
and ∇2gi are Lf,0, Lf,1, Lg,1, and Lg,2 Lipschitz continu-
ous, respectively. Moreover, each function gi is µg-strongly
convex in y.

Assumption 2.3. The stochastic oracles ∇h(x, y;φ),
∇2h(x, y;φ), ∇l(x, y; ξ), ∇2l(x, y; ξ), and ∇3l(x, y; ξ)
are unbiased with bounded variances, which are represented
as σ2

f,1, σ2
f,2, σ2

g,1, σ2
g,2, and σ2

g,3, respectively.

Assumptions 2.2 and 2.3 are standard in the DSBO litera-
ture (Lu et al., 2022; Chen et al., 2022; Yang et al., 2022;
Chen et al., 2023; Gao et al., 2023). They allow fi and
gi to be heterogeneous across the agents, which are more
general than the homogeneous-function assumption in Lu
et al. (2022) and Gao et al. (2023). In addition, we relax the
assumption that lower-level objective functions gi are Lips-
chitz continuous with respect to y, which is used in Chen
et al. (2022) and Yang et al. (2022).

2.3. Local Differential Privacy

In this paper, we consider the case where data arrive se-
quentially in a serial manner, and only one data point is
acquired by each agent at each time instant, i.e., at time
instant T , the dataset Di accessible to agent i is given by
Di = {ξi,1, · · · , ξi,T }. Then, we can introduce the follow-
ing definitions for differential privacy:

Definition 2.4. (Adjacency) Given two local datasets Di =
{ξi,1, · · · , ξi,T } and D′

i = {ξ′i,1, · · · , ξ′i,T } for any i ∈ [m]
and any time T ∈ N, Di and D′

i are adjacent if there exists
a time instant k ∈ {1, · · · , T} such that ξi,k ̸= ξ′i,k while

ξi,t = ξ′i,t for all t ̸= k, t ∈ {1, · · · , T}.

Definition 2.5. (Local Differential Privacy) Denote a DSBO
algorithm as a mapping Ai(Di, x−i) 7→ Oi, where x−i

denotes all messages received by agent i and Oi represents
the set of all possible observations on agent i. Then, for
any given ϵi > 0, we say that Ai is ϵi-locally differentially
private if for any adjacent datasets Di and D′

i, the following
inequality holds:

P[Ai(Di, x−i) ∈ Oi] ≤ eϵiP[Ai(D′
i, x−i) ∈ Oi]. (6)

The parameter ϵi is referred to as the cumulative privacy
budget for iterations 1, 2, · · · , T . A smaller ϵi indicates
closer distributions of observations under adjacent datasets,
thereby a higher level of privacy protection. Clearly, if ϵi
grows to infinity as the iteration number T tends to infinity,
privacy will be lost eventually in the infinite-time horizon.

Different from the commonly used “centralized” differential-
privacy framework where a data curator is needed to gather
data and inject noise, in LDP, each agent acts as its own
data curator and designs its noise independently of other
agents (Bellet et al., 2018). Therefore, adjacent datasets
in LDP allow variations in all agents’ data at a single time
instant. This is different from most existing differential
privacy solutions for (decentralized) stochastic convex opti-
mization (e.g., Zhang et al. (2018); Bassily et al. (2019); Lü
et al. (2020); Asi et al. (2021); Altschuler & Talwar (2022);
Huang et al. (2024)), which, at any time instant, only allow
difference in one agent’s dataset in adjacency definition.

3. The Proposed Algorithm
In this section, we first introduce an approach for individual
agents to locally estimate Hessian-inverse-vector product
under the constraint of differential privacy, which is nec-
essary for individual agents to locally estimate the global
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Algorithm 1 Subroutine for Estimating Hessian-Inverse-
Vector Product for Agent i, i ∈ [m]

1: Input: Parameters xi,t, yi,t, and zi,t; Data samples
{φi,k}k∈[0,t] and {ξi,t}k∈[0,t]; Stepsize λz,t =

λz,0

(t+1)vz

with λz,0 > 0 and vz∈(0, 1); DP-noise ϑi,t satisfying
Assumption 3.1.

2: Hi,tzi,t = ∇2
yygi,t(xi,t, yi,t)zi,t.

3: bi,t = ∇yfi,t(xi,t, yi,t).
4: ∇zϕi,t(zi,t) = Hi,tzi,t − bi,t.
5: zi,t+1 = zi,t +

∑
j∈Ni

wij(zj,t + ϑj,t − zi,t) −
λz,t∇zϕi,t(zi,t).

6: Output: zi,t+1 on agent i.

hypergradient according to (5). Using it as a subroutine, we
will then propose our differentially private DSBO algorithm.

Approximating z∗ in (4) amounts to letting each agent solve
for the following equation:

m∑
i=1

Hiz
∗ =

m∑
i=1

bi or z∗ ≜

(
m∑
i=1

Hi

)−1( m∑
i=1

bi

)
, (7)

where Hi and bi are given by Hi = ∇2
yygi(x, y

∗(x)) and
bi = ∇yfi(x, y

∗(x)), respectively. Equality (7) is essen-
tially the optimality condition of the following optimization
problem:

min
z∈Rq

1

m

m∑
i=1

ϕi(z), ϕi(z) =
1

2
zTHiz − bTi z. (8)

We present Algorithm 1 that enables all agents to collabora-
tively find the optimal solution z∗ to problem (8).

Since objective functions fi and gi in problem (8) are ex-
pectations over unknown distributions (see the equations
in (2)), they are inaccessible and can only be approxi-
mated from sampled data in practical implementations.
Therefore, under our setting of serially arriving data, we
use fi,t(x, y) = 1

t+1

∑t
k=0 h(x, y;φi,k) and gi,t(x, y) =

1
t+1

∑t
k=0 l(x, y; ξi,k).

Building on Algorithm 1, agent i can estimate the hypergra-
dient ∇F (x) in (5) locally by using the following equality:

ui,t = ∇xfi,t(xi,t, yi,t)−∇2
xygi,t(xi,t, yi,t)zi,t. (9)

With the hypergradient estimation (9), we propose a locally
differentially private algorithm to solve the DSBO prob-
lem (1) in Algorithm 2. The injected DP noises satisfy the
following assumption:

Assumption 3.1. For every i ∈ [m] and t ≥ 0, each ele-
ment of DP-noise vectors χi,t, ζi,t, and ϑi,t follows Laplace

distributions Lap
(

σi,x√
2(t+1)ςi,x

)
, Lap

(
σi,y√

2(t+1)ςi,y

)
, and

Algorithm 2 LDP Design for DSBO Algorithm for Agent
i, i ∈ [m]

1: Input: Random initialization xi,0 ∈ Rp, yi,0 ∈ Rq,
and zi,0 ∈ Rq for each agent i ∈ [m]. Stepsizes λx,t =

λx,0

(t+1)vx and λy,t =
λy,0

(t+1)vy with λx,0 > 0, λy,0 > 0,
and vx, vy ∈ (0, 1); DP-noises χi,t and ζi,t satisfying
Assumption 3.1.

2: for t = 0, 1, · · · , T − 1 do
3: Acquire current data φi,t and ξi,t.
4: yi,t+1 = yi,t +

∑
j∈Ni

wij(yj,t + ζj,t − yi,t) −
λy,t∇ygi,t(xi,t, yi,t).

5: Run Algorithm 1 and obtain the output zi,t+1.
6: Estimate hypergradient ui,t by using (9).
7: xi,t+1 = xi,t +

∑
j∈Ni

wij(xj,t + χj,t − xi,t) −
λx,tui,t.

8: end for
9: Output: xi,T on agent i.

Lap
(

σi,z√
2(t+1)ςi,z

)
, respectively, where σi,x, σi,y, and σi,z

are positive constants and the rates of noise variances satisfy

max
i∈[m]

{ςi,x} < vx, max
i∈[m]

{ςi,y} < vy, and max
i∈[m]

{ςi,z} < vz,

where vx, vy, vz ∈ (0, 1) are the decaying rates of the step-
sizes λx,t, λy,t, and λz,t, respectively, in Algorithm 2.

It is worth noting that different from existing DSBO algo-
rithms in Chen et al. (2022), Yang et al. (2022), and Gao et al.
(2023) which estimate the full Hessian matrix or Jacobian
matrix, Algorithm 2 only estimates a vector of dimension
max{p, q}, and hence has reduced computational complex-
ity. In addition, different from existing DSBO algorithms
in Chen et al. (2022) and Chen et al. (2023) which use a
nested communication (consensus) loop to estimate z∗, Al-
gorithm 2 avoids any nested-loops of consensus operations.
The avoidance of nested consensus loops is significant in
that under nested-loops of consensus iterations, the cumula-
tive privacy budget will grow quickly as iteration proceeds,
making it impossible to ensure a finite cumulative privacy
budget in the infinite-time horizon (see detailed explanations
in Appendix H.1).

4. Main Results
4.1. Convergence Rate of Algorithm 2

Theorem 4.1. Denote the lowest decaying rates of DP-noise
variances as ςx = mini∈[m]{ςi,x}, ςy = mini∈[m]{ςi,y},
and ςz = mini∈[m]{ςi,z}. Under Assumptions 2.1-2.3,
and 3.1, if the stepsize rates satisfy 0 < vz < vy < vx < 1,
then we have the following results for the iterates {xi} gen-
erated by Algorithm 2:

(i) If F (x) is strongly convex and the rates of DP-noise
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variances satisfy 2ςx > vx, 2ςx > vz + vy, 2ςy > vz + vy,
and 2ςz > vy , then we have

E
[
∥xi,T − x∗∥2

]
≤ O

(
T−β1

)
, (10)

where the rate β1 is given by β1 = min{2ςx − vx, 2ςx −
2vz, 2ςy − 2vz, 2ςz − vz, 2ςy − vy, 2− 2vy}.

(ii) If F is convex and the rates of DP-noise variances satisfy
ςx > 1

2 , 2ςx > vz+vy , 2ςx > 2vz+2−2vx, 2ςy > vz+vy ,
2ςy > 2vz+2−2vx, 2ςy > vy+2−2vx, 2ςz > vz+2−2vx,
and 2ςz > vy , then we have

1

T + 1

T∑
t=0

E [F (xi,t)−F (x∗)]≤O
(
T−(1−vx)

)
. (11)

(iii) If F is nonconvex and the rates of DP-noise variances
satisfy ςx > 1

2 , 2ςx > vz + vy, 2ςx > 2vz + 1 − vx,
2ςy > 2vz + 1 − vx, 2ςy > vy + 1 − vx, 2ςy > vz + vy,
2ςz > vz + 1− vx, and 2ςz > vy , then we have

1

T + 1

T∑
t=0

E
[
∥∇F (xi,t)∥2

]
≤ O

(
T−(1−vx)

)
. (12)

Theorem 4.1 proves that the optimization errors for strongly
convex, convex, and nonconvex F (x) decrease with itera-
tions at rates O

(
T−β1

)
, O
(
T−(1−vx)

)
, and O

(
T−(1−vx)

)
,

respectively.

Moreover, to give a more intuitive description of the compu-
tational complexity, we define a δ-solution to problem (1):

Definition 4.2. (Lian et al., 2017) For any i ∈ [m] and some
positive integer T , if E

[
∥xi,T − x∗∥2

]
≤ δ holds when F

is strongly convex, or 1
T+1

∑T
t=0 E [F (xi,t)− F (x∗)] ≤ δ

holds when F is convex, or 1
T+1

∑T
t=0 E

[
∥∇F (xi,t)∥2

]
≤

δ holds when F is nonconvex, then we say that the sequence
{xi,t}Tt=0 can reach a δ-solution to problem (1).

Definition 4.2 provides a direct quantitative measure of the
optimization error with respect to the optimal solution x∗

under strongly convex F . This measure is stronger than the
metrics in Ghadimi & Wang (2018) and Yang et al. (2022)
that characterize the distance between F (x̄T ) and F (x∗).
Moreover, in the nonconvex case, compared with Chen et al.
(2023), which uses the minimum hypergradient over all iter-
ations (i.e., min0<t<T E

[
∥∇F (x̄t)∥2

]
≤ δ), Definition 4.2

is much more stringent.

Corollary 4.3. (i) For a strongly convex F (x), if we choose
T = O(δ−

1
β1 ), then the computational complexity of Al-

gorithm 2 is O(max{p, q}δ−
1
β1 ) in finding a δ-solution.

For example, setting vx = 0.66, vy = 0.64, vz = 0.43,
ςx = 0.65, ςy = 0.63, and ςz = 0.42 yields β1 = 0.4 and a
computational complexity of O(max{p, q}δ−2.5).
(ii) For a convex F (x), if we set T = O

(
δ−

1
1−vx

)
,

then the computational complexity of Algorithm 2 is
O
(
max{p, q}δ−

1
1−vx

)
in finding a δ-solution. For example,

with vx = 0.77, vy = 0.75, vz = 0.5, ςx = 0.76, ςy = 0.74,
and ςz = 0.49, we have 1− vx = 0.23 and hence a compu-
tational complexity of O(max{p, q}δ−4.35).
(iii) For a nonconvex F (x), if we choose T = O

(
δ−

1
1−vx

)
,

then the computational complexity of Algorithm 2 is
O
(
max{p, q}δ−

1
1−vx

)
in finding a δ-solution. For example,

using vx = 0.615, vy = 0.60375, vz = 0.4, ςx = 0.61125,
ςy = 0.6, and ςz = 0.398125 yields 1− vx = 0.385 and a
computational complexity of O(max{p, q}δ−2.6).

Corollary 4.3 provides computational complexities under
different convexity assumptions. It is more comprehensive
than existing DSBO results (Chen et al., 2022; Gao et al.,
2023; Chen et al., 2023), which only focus on a nonconvex
function F (x). Moreover, it is worth noting that compared
with the computational complexity of O(pq log(δ−1)δ−3)
in Chen et al. (2022), our Algorithm 2 ensures an improved
computational complexity of O(max{p, q}δ−2.6), even un-
der the additional constraint of differential privacy.

4.2. Differential Privacy Analysis for Algorithm 2

In this subsection, we prove that besides accurate conver-
gence, Algorithm 2 can simultaneously ensure rigorous ϵi-
LDP for each agent, with a finite cumulative privacy budget
even when the number of iterations tends to infinity.

Assumption 4.4. Functions ∇h, ∇l, and ∇2l are Lh,1,
Ll,1, and Ll,2 Lipschitz continuous, respectively. Moreover,
there exist some positive constants ch0 and cl0 such that
∥∇yh(x, y;φi)∥1 ≤ ch0 and ∥∇yl(x, y; ξi)∥1 ≤ cl0 hold
for all i ∈ [m].

Assumption 4.4 is commonly used in differential-privacy
design for decentralized learning/optimization (Huang et al.,
2015; Bellet et al., 2018; Cyffers et al., 2022; Bietti et al.,
2022). Although it is stricter than Assumption 2.2 (which
assumes Lipschitz continuity of the gradients of expected
functions fi and gi), it is not required in our convergence
analysis. In fact, existing DSBO results (Chen et al., 2022;
Yang et al., 2022; Gao et al., 2023; Chen et al., 2023) often
do not clearly differentiate between Assumption 2.2 and
Assumption 4.4, and usually assume Lipschitz continuity of
loss functions h and l and their first-and second-order mo-
ments, similar to Assumption 4.4 (see e.g., Assumptions 3.3
and 3.4 in Yang et al. (2022) and Assumption 2.1 in Chen
et al. (2023)).

Theorem 4.5. Under Assumptions 2.1 and 4.4, if each el-
ement of χi,t, ζi,t, and ϑi,t follows the Laplace distribu-
tions given in Assumption 3.1, then xi,t (resp. F (xi,t) and
∇F (xi,t) in the general convex case and nonconvex case,
respectively) in Algorithm 2 converges in mean square to the
optimal solution x∗ to problem (1) (resp. in mean to F (x∗)
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and in mean square to zero, respectively). Furthermore,

(i) For any T ∈ N+, agent i’s implementation of Algorithm 2
is locally differentially private with a cumulative privacy
budget bounded by ϵi = ϵi,x + ϵi,y + ϵi,z , where ϵi,x, ϵi,y,
and ϵi,z are given by ϵi,x ≤

∑T
t=1

√
2Cϵx

σi,x(t+1)1+vx−ςx , ϵi,y ≤∑T
t=1

√
2Cϵy

σi,y(t+1)1+vy−ςy , and ϵi,z ≤
∑T

t=1

√
2Cϵz

σi,z(t+1)1+vz−ςz

with w̄ = mini∈[m]{|wii|}, Cϵx = 4
w̄

(
4(1+vx)

e ln( 4
2−2w̄ )

)1+vx

,

Cϵy = 4
w̄

(
4(1+vy)

e ln( 4
2−2w̄ )

)1+vy

, Cϵz = 4
w̄

(
4(1+vz)

e ln( 4
2−2w̄ )

)1+vz

.

(ii) The cumulative privacy budget ϵi is finite even when the
number of iterations T tends to infinity.

Theorem 4.5 shows that Algorithm 2 can ensure rigorous
ϵi-LDP and accurate convergence simultaneously. This
differs from most existing differential-privacy solutions for
decentralized single-level optimization (e.g., Bellet et al.
(2018); Cyffers et al. (2022); Bietti et al. (2022)), which
have to trade convergence accuracy for differential privacy.

A key reason for Algorithm 2 to ensure non-diminishing
privacy protection using diminishing noise variances is
that our algorithm design leads to a diminishing sensi-
tivity. Specifically, Lemma 2 in Huang et al. (2015)
proves that when

∑∞
t=1

∆
νt

≤ ϵ (where ∆ is the sensitivity
and νt is the parameter of Laplacian distribution Lap(νt))
is satisfied, the iterative algorithm is ϵ-differentially pri-
vate. According to (182)-(184) in the supplemental ma-
terial, the sensitivities ∆i,t,x ≤ O(t−(1+vx)), ∆i,t,y ≤
O(t−(1+vy)), and ∆i,t,z ≤ O(t−(1+vz)) of Algorithm 2
decay faster than the Laplacian variances νi,t,x ≤ O(t−ςx),
νi,t,y ≤ O(t−ςy ) and νi,t,z ≤ O(t−ςz ), which ensures∑∞

t=1

(
∆i,t,x

νi,t,x
+

∆i,t,y

νi,t,y
+

∆i,t,z

νi,t,z

)
≤ ϵi < ∞.

Remark 4.6. We would like to point out that the accurate
convergence of Algorithm 2 does not conflict with the con-
straints of differential privacy. More specifically, according
to the differential-privacy theory, conventional query mech-
anisms on a dataset can only achieve differential privacy
by sacrificing query accuracies, but the considered stochas-
tic optimization algorithm does not correspond to a simple
query mechanism on the optimal solution. Instead, what
are queried in stochastic optimization (machine learning)
are input data, and revealing the precise optimal solution is
not equivalent to revealing accurate input data (which is the
actual query target).

In fact, the achievement of rigorous LDP and accurate con-
vergence of Algorithm 2 comes at the expense of a reduced
convergence rate. We use the convergence rate and cumula-
tive privacy budget under a nonconvex F (x) as an example
to quantify this tradeoff:

Corollary 4.7. For any given cumulative privacy budget

ϵi > 0, i ∈ [m], the convergence rate of Algorithm 2 is

O
(

T−(1−vx)

mini∈[m]{ϵ2i }

)
with vx ∈ (0.6, 1).

Corollary 4.7 indicates that a higher level of differential
privacy, i.e., a smaller cumulative privacy budget ϵi, corre-
sponds to a reduced convergence rate.

Although the result of convergence rate in Corollary 4.7
appears inferior to the one achieved in Bassily et al. (2019)
for centralized single-level stochastic optimization under the
constraint of differential privacy, we would like to empha-
size that this difference is caused by the increased complex-
ity of decentralized bilevel optimization over centralized
single-level optimization. In fact, when we only consider
the lower-level optimization part in our algorithm, where
our bilevel optimization problem reduces to single-level
optimization, we can prove that our algorithm has exactly
the same order of convergence rate as that in Bassily et al.
(2019) (we summarize the result for this special lower-level
only case of our Algorithm 2 in Appendix G.3).

5. Experiments
In this section, we study the applications of Algorithm 2
in both hyperparameter optimization and meta learning. In
each experiment, we compared Algorithm 2 with state-of-
the-art DSBO algorithms, including MA-DSBO (Chen et al.,
2023) and GBDSBO (Yang et al., 2022). The interaction
pattern contains 10 agents connected in a circle, where each
agent can only communicate with its two immediate neigh-
bors. For the weight matrix W , we set wij = 0.3 if agents
i and j are neighbors, and wij = 0 otherwise. Due to
space limitation, we leave detailed experimental setups in
Appendix A.1.

To evaluate the convergence performance of Algorithm 2
in the absence of differential-privacy constraints, we also
conducted experiments without Laplacian noises, with the
results given in Appendix A.2.1. Furthermore, we pro-
vided comparison results with VRDSBO in Gao et al. (2023)
(which only addresses the special case of g1 = · · · = gm)
in Appendix A.2.2. In addition, we tested the efficacy of our
Algorithm 2 on various network topologies and with diverse
heterogeneous data distributions, with the respective results
given in Appendix A.2.3 and Appendix A.2.4.

5.1. Hyperparameter Optimization

The objective of a hyperparameter optimization problem
can be formulated as follows:

min
λ∈Rp

1

m

m∑
i=1

fi(λ, ω
∗(λ)),

s.t. ω∗(λ) = argminω∈Rq

1

m

m∑
i=1

gi(λ, ω),

7
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(c) Test accuracy

Figure 1. Comparison by using the synthetic dataset under differential-privacy constraints.
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(b) Test loss
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(c) Test accuracy

Figure 2. Comparison by using the “MNIST” dataset under differential-privacy constraints

in which we aim to find an optimal hyperparameter λ under
the constraint that ω∗(λ) is the optimal model parameter
with a given λ. We conducted experiments on both synthetic
and real-world datasets. The detailed experimental setup is
given in Appendix A.1.

Synthetic Data Following Chen et al. (2023), we define
loss functions for each agent i as follows:

h(λ, ω;φi) =
∑

(xi,e,yi,e)∈Dh
i,t

L(yi,ex
T
i,eω),

l(λ, ω; ξi) =
∑

(xi,e,yi,e)∈Dl
i,t

L(yi,ex
T
i,eω) +

1

2

200∑
s=1

eλsω2
s ,

where λs and ωs represent the s-th element of λ ∈ R200

and ω ∈ R200, respectively. The function L(·) is given by
L(x) = log(1 + e−x). Dl

i,t and Dh
i,t represent the training

dataset and the validation dataset for agent i, at time t,
respectively. For each agent i, the data distribution of xi,e

was drawn from a normal distribution N (0, i2), which is
heterogeneous due to the difference in variances. The label
ye was generated by yi,e = xT

i,eω + 0.1ε, where ε ∈ R200

denotes the noise vector sampled from the standard normal
distribution. The algorithm was executed for 100 iterations,
with each agent randomly selecting 50 training samples in
every iteration. The test dataset contains 20, 000 samples,
with 1, 000 samples randomly selected for each iteration.

The resulting training loss, test loss, and test accuracy are
shown in Figures 1(a), 1(b), and 1(c), respectively. It is clear
that the proposed algorithm has much lower training loss and
higher test accuracy under differential-privacy constraints.

MNIST We evaluated the performance of Algorithm 2 by
using the “MNIST” dataset (Grazzi et al., 2020). The loss
functions are defined as follows:

h(λ, ω;φi,t) =
1

|Dh
i,t|

∑
(xi,e,yi,e)∈Dh

i,t

L(xT
i,eω, yi,e),

l(λ, ω; ξi,t) =
1

|Dl
i,t|

∑
(xi,e,yi,e)∈Dl

i,t

L(xT
i,eω, yi,e)

+
1

cp

c∑
r=1

p∑
s=1

eλsωrs,

where c = 10 and p = 784 represent the number of classes
and features, respectively. λs denotes the s-th element of
the hyperparameter λ ∈ Rp and ωrs denotes the element in
the r-row and s-column of the model parameter ω ∈ Rc×p.
The function L(·) is used to calculate the cross entropy loss.

Figure 2 shows the results of our Algorithm 2, GBDSBO and
MA-DSBO. It is worth noting that GBDSBO failed to train
in this case (both its training and testing losses tended to
infinity), and hence we omitted its values in Figure 2(a) and
Figure 2(b). The results once again confirm the effectiveness
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Figure 3. Comparison by using the “CIFAR-10” dataset under differential-privacy constraints

of our algorithm under differential-privacy constraints.

5.2. Decentralized Meta Learning

Following Finn et al. (2017), we consider a meta-learning
problem with N tasks {Tq, q = 1, · · · , N}. Each task Tq
has a loss function L(x, yq; ξ) over each data sample ξ,
where x is the parameter of an embedding model shared by
all tasks, and yq is the task-specific parameter. The goal
of meta learning is to find an optimal parameter x∗ that
benefits all tasks, and building on this parameter x∗, the
model can quickly adapt its own parameter yq to any new
task Tq using only a few data points and training iterations.
The meta learning problem is essentially a bilevel optimiza-
tion problem. In the lower level, given a parameter x, the
base-learner of task Tq searches y∗q as the minimizer of its
loss over a training dataset Dtra

q . In the upper level, the
meta-learner evaluates the minimizers y∗q on a validation
dataset Dval

q . Let y∗ = col{y∗1 , · · · , y∗N} be all task-specific
optimal parameters.

Different from the conventional setting of centralized meta
learning, in decentralized training for a meta-learning task
Tq , training and validation data are distributed across various
devices (called agents). Therefore, we allocate each agent
i ∈ [m] with its own local datasets for task Tq, including
both a local training dataset Dtra

i,q and a validation dataset
Dval

i,q. Then, in the lower-level optimization, building on
a given parameter x, m base-learners associated with task
Tq cooperatively search for y∗q , while in the upper-level
optimization, m meta-learners cooperatively find an optimal
parameter x∗. The decentralized meta learning problem can
be formulated as follows:

min
x

F (x) :=
1

m

m∑
i=1

1

N

N∑
q=1

fi,q(x, y
∗
q (x)),

s.t. y∗(x) := argminyq

1

m

m∑
i=1

1

N

N∑
q=1

gi,q(x, yq),

(13)

where fi,q(x, y
∗
q (x)) = 1

|Dval
i,q|
∑

ξi,q∈Dval
i,q

L(x, y∗q (x); ξi,q)

and gi,q(x, y) =
1

|Dtra
i,q|
∑

ξi,q∈Dtra
i,q

L(x, yq; ξi,q)+Ri,x(yq)

with Ri,x(y) denoting a strongly-convex regularizer w.r.t y.

In this experiment, we evaluated the performance of Algo-
rithm 2 on the “CIFAR-10” dataset (Krizhevsky et al., 2010).
The detailed experimental setup is given in Appendix A.1.

From Figure 3, we can see that MA-DSBO fails to train in
the meta learning task, whereas our Algorithm 2 has much
better training and test accuracies. Moreover, since the
training loss and test loss of MA-DSBO tended to infinity,
they were not plotted in Figures 3-(a) and 3-(b). Note that
we did not show the results for the GBDSBO algorithm
in Yang et al. (2022) since its large overhead in computing
and communicating the full Hessian and Jacobian matrices
prohibited training under the large model and dataset.

6. Conclusions
In this paper, we proposed a decentralized stochastic bilevel-
optimization algorithm that can simultaneously ensure both
accurate convergence and rigorous differential privacy. This
is significant because even for the simpler problem of
single-level decentralized optimization/learning, existing
differential-privacy solutions have to sacrifice convergence
accuracy for privacy. Lying at the core of our approach is a
new algorithm for decentralized stochastic bilevel optimiza-
tion that avoids any nested-loops of consensus (communica-
tion) iterations. This is important since all existing decentral-
ized algorithms for bilevel optimization rely on nested-loops
of consensus iterations, which, unfortunately, constitutes an
obstacle for achieving differential privacy because the inten-
sive consensus operations lead to an exploding cumulative
privacy budget. We systematically characterized the conver-
gence performance of our algorithm under both nonconvex
and convex objective functions, and quantified the price and
tradeoff in the convergence rate. Experimental results on
practical machine learning models confirm the efficacy of
our algorithm.
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A. Experimental Setups and Additional Experiments
A.1. Experimental Setups

Synthetic data In the synthetic-data experiment of Section 5.1, the stepsizes for Algorithm 2 were set to λx,t =
0.05

(t+1)0.95 ,
λy,t =

0.05
(t+1)0.87 , and λz,t =

0.02
(t+1)0.75 . Each element of DP-noise vectors χi,t, ζi,t, and ϑi,t for agent i follows Laplace

distributions Lap
(

1√
2(t+1)0.8+0.01i

)
, Lap

(
1√

2(t+1)0.76+0.01i

)
, and Lap

(
1√

2(t+1)0.6+0.01i

)
, respectively. In our comparison,

near-optimal stepsizes were selected for MA-DSBO and GBDSBO, ensuring that doubling these stepsizes would lead to
non-converging behaviors. The number of nested-loops for MA-DSBO and GBDSBO was set to 10. We applied the fastest
decaying DP-noise variance Lap

(
1√

2(t+1)0.8+0.01i

)
to MA-DSBO and GBDSBO, as using a slower decaying DP noise to

make their privacy budget the same as ours results in divergence of both algorithms (this gives them an edge in accuracy
comparison).

MNIST In the “MNIST” experiments of Section 5.1, both the training and validation datasets consist of 60, 000 images,
and the test dataset contains 10, 000 images. We assigned 50% of the data from the i-th class to agent i, while the remaining
50% of the data is split evenly among the other agents. In each iteration, 50 images (forming a mini-batch of size 50) are
randomly sampled from each agent’s local training dataset. The training is conducted over 6 epochs. For Algorithm 2, the
stepsizes were set to λx,t =

1.2
(t+1)0.95 , λy,t =

1.2
(t+1)0.87 , and λz,t =

1.2
(t+1)0.75 . All other parameters were the same as those

employed in the previous synthetic-data experiment.

Meta learning on the “CIFAR-10” dataset In the decentralized meta learning experiment of Section 5.2, all agents
were equipped with the same convolutional neural network architecture given in the MAML framework (Finn et al.,
2017). In this specific application, y corresponds to the parameter of the last linear layer of the neural network and x
corresponds to the parameter of the remaining layers. This setup ensures that the lower-level objective function gi,q(x, y) is
strongly-convex w.r.t y while the upper-level objective function F (x) is generally nonconvex w.r.t x. The algorithm was
executed over 32 batches of tasks over 1000 iterations, with each task involving a training dataset Dtra

q and a validation
dataset Dval

q , both designed for 5-way classification with 50-shot for each class. Different from conventional centralized
meta learning, the training data and validation data were distributed among different agents for cooperative learning
in each task. We considered heterogeneous distribution, in which 30% of the data from the i-th class was assigned to
agent i, while the remaining 70% was evenly distributed among the other agents. Note that heterogeneous distribution
is particularly likely to happen in the decentralized learning setting since the data are collected by multiple agents from
multiple sources. In this experiment, we also compared our Algorithm 2 with the nested-loop-based decentralized bilevel
optimization algorithm (MA-DSBO) in (Chen et al., 2023). For Algorithm 2, the stepsizes were set to λx,t =

1
(k+1)0.53 ,

λy,t =
1

(k+1)0.52 , and λz,t =
1

(k+1)0.50 . Each element of DP-noise vectors χi,t, ζi,t and ϑi,t for agent i follows Laplace
distribution Lap( 1

(t+1)0.42+0.01i ), Lap( 1
(t+1)0.41+0.01i ), and Lap( 1

(t+1)0.4+0.01i ), respectively. In our comparison, the same
stepsizes and DP-noises were applied to the MA-DSBO algorithm.

A.2. Additional Experimental Results

A.2.1. COMPARISON BETWEEN ALGORITHM 2 WITH MA-DSBO AND GBDSBO IN THE ABSENCE OF DP-NOISE

To further assess the performance of our Algorithm 2 in the absence of DP-noise, we conducted additional experiments to
compare Algorithm 2 with MA-DSBO and GBDSBO using both synthetic dataset and the “MNIST” dataset. In the synthetic-
data experiment, we chose the stepsizes for our Algorithm 2 as λx,t =

0.05
(t+1)0.55 , λy,t =

0.05
(t+1)0.5 , and λz,t =

0.02
(t+1)0.45 . The

stepsizes for MA-DSBO (Chen et al., 2023) were set to α = β = 0.03 and γ = 0.01, and the stepsizes for GBDSBO (Yang
et al., 2022) were set to α = β = 0.05 and γ = 0.02. Those stepsizes were set in accordance with the guidelines provided
in these works. In the “MNIST” experiment, the stepsizes for our Algorithm 2 were set to λx,t =

1.2
(t+1)0.55 , λy,t =

1.2
(t+1)0.5 ,

and λz,t =
1.2

(t+1)0.45 . The stepsizes for MA-DSBO and GBDSBO were all set to 0.1. For all experiments, the number of
nested-loops for both MA-DSBO and GBDSBO was set to 10. This setup corresponds to 10 outer iterations, which is
equivalent to 100 iterations used in our algorithm, ensuring a fair comparison.

Figure 5-(a) shows that Algorithm 2 achieves similar test accuracy to MA-DSBO and higher test accuracy than GBDSBO in
the synthetic-data experiment. Figures 5-(b) and 5-(c) confirm the advantage of our proposed algorithm in both training loss
and test accuracy.
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Figure 5. Comparison by using the synthetic dataset and the “MNIST” dataset in the absence of DP noises.
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Figure 6. Comparison Algorithm 2 with VRDSBO by using the “MNIST” dataset in the presence and the absence of DP noises.

A.2.2. COMPARISON BETWEEN ALGORITHM 2 WITH VRDSBO

In this subsection, we compared our algorithm with the single-loop algorithm VRDSBO in Gao et al. (2023). While
VRDSBO eliminates the need for nested-loops of communication (consensus) iterations, it is not applicable to general
DSBO problems because it implicitly assumes homogeneous lower-level functions (a detailed illustration was provided in
Appendix C.2 in Chen et al. (2023)). Therefore, we did not include this comparative experiment in the main text.

In the absence of DP-noise, the stepsizes for our Algorithm 2 were set to λx,t =
1.2

(t+1)0.55 , λy,t =
1.2

(t+1)0.5 , and λz,t =
1.2

(t+1)0.45 . When considering DP-noise, the stepsizes of our Algorithm 2 were set to λx,t =
1.2

(t+1)0.95 , λy,t =
1.2

(t+1)0.87 , and
λz,t =

1.2
(t+1)0.75 . The stepsizes for VRDSBO were set to α1 = α2 = 3, β1 = β2 = 1, and η = 1.2

(t+1)0.95 (with η specifically
designed to avoid divergent behaviors). The DP-noise variances were the same as those employed in Section 5.1. Figure 6
shows that under heterogeneous lower-level objective functions, our Algorithm 2 outperforms VRDSBO both in the presence
and the absence of differential-privacy constraints.

A.2.3. EXPERIMENTAL RESULTS ON VARIOUS NETWORK TOPOLOGIES

We have conducted additional experimental results to evaluate the efficacy of our Algorithm 2 under different network
topologies. We considered a network of m = 10 agents, with the interaction graph being a ring network and random
r-regular graph (Bollobás, 1986) with r set to 2, 3, 5, and 8. We used the same parameters as those employed in Section 5.1.
The results in Figure 7 show that the performance of our algorithm is insensitive to changes in topologies.

A.2.4. EXPERIMENTAL RESULTS ON VARIOUS HETEROGENEOUS DATA DISTRIBUTIONS

We have also conducted new experimental results to evaluate the convergence performance of our Algorithm 2 under
different degrees of heterogeneity in data distributions using both the synthetic dataset and the “MNIST” dataset. More
specifically, for the synthetic dataset experiment, we considered three heterogeneous data distributions for each agent i: (i)
data xi,e followed a normal distribution N (0, i2); (ii) data xi,e followed a Chi-squared distribution X 2(i); (iii) if agents i
mod (2) = 0 (i.e., i is an even number), data xi,e followed a normal distribution N (0, i2), otherwise, data xi,e following a
Chi-squared distribution X 2(i). In the “MNIST” dataset experiment, the training dataset contains 60, 000 images, while the
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Figure 7. Convergence performance of Algorithm 2 for different network topologies under LDP constraints.
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Figure 8. Convergence performance of Algorithm 2 for different data distributions under LDP constraints.

validation dataset contains 10, 000 images. We assigned q, q = 30%, 50%, 100% of the data from the i-th class to agent i,
while the remaining (100%− q) of the data is split evenly among the other agents. Note that q measures the heterogeneity
in data distribution among all agents.

Figure 8-(a) shows that the degree of data heterogeneity does affect convergence performance of our algorithm. Figure 8-(b)
and 8-(c) imply that our algorithm is moderately affected by the degree of data heterogeneity in the “MNIST” dataset.

B. Notations and Auxiliary Lemmas
B.1. Additional Notations

Throughout this paper, we add a bar over a letter to denote the average of all agents and use bold font to represent stacked
vectors of m agents. For further notational simplicity, we introduce the following notations:

Ĥt = Ht − 1m ⊗ H̄t, x̂t = xt − 1m ⊗ x̄t, ŷt = yt − 1m ⊗ ȳt,

gt(x, y) =
1

m

m∑
i=1

gi,t(x, y), Ft(x, y) =
1

m

m∑
i=1

fi,t(x, y), Ft(x) =
1

m

m∑
i=1

fi,t(x, y
∗(x)),

ẑt = zt − 1m ⊗ z̄t, z̆t = (∇2
yygt(x̄t, ȳt))

−1∇Ft(x̄t, ȳt), ût = ut − 1m ⊗ ūt,

χwi,t =
∑
j∈Ni

wijχi,t, ζwi,t =
∑
j∈Ni

wijζi,t, ϑwi,t =
∑
j∈Ni

wijϑi,t,

χ̂t = χt − 1m ⊗ χ̄t, ζ̂t = ζt − 1m ⊗ ζ̄t, ϑ̂t = ϑt − 1m ⊗ ϑ̄t,

σ+
x = max

i∈[m]
{σi,x}, σ+

y = max
i∈[m]

{σi,y}, σ+
z = max

i∈[m]
{σi,z},

ςx = min
i∈[m]

{ςi,x}, ςy = min
i∈[m]

{ςi,y}, ςz = min
i∈[m]

{ςi,z},

σx,t =
σ+
x

(t+ 1)ςx
, σy,t =

σ+
y

(t+ 1)ςy
, σz,t =

σ+
z

(t+ 1)ςz
.
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B.2. Auxiliary Lemmas

In this subsection, we introduce some well-known results from the existing literature, along with auxiliary lemmas that will
be used in our subsequent convergence analysis.

Lemma B.1. (Ghadimi & Wang, 2018; Chen et al., 2023) Under Assumption 2.2, ∇F (x) defined in (1) is LF -Lipschitz
continuous, i.e., for any given x1, x2 ∈ Rp, we have

∥∇F (x1)−∇F (x2)∥ ≤ LF ∥x1 − x2∥, (14)

where the Lipschitz constant LF is given by LF = Lf,1 +
2Lf,1Lg,1+Lg,2L

2
f,0

µg
+

2Lg,1Lf,0Lg,2+L2
g,1Lf,1

µ2
g

+
Lg,2L

2
g,1Lf,0

µ3
g

.

Lemma B.2. (Wang & Nedić, 2023) Let {vt} be a nonnegative sequence, and {at} and {bt} be positive sequences satisfying
a0 < 1, limt→∞ at = 0,

∑∞
t=0 at = ∞, and limt→∞

bt
at

= 0. If vt+1 ≤ (1− at)vt + bt holds for all t > 0, then we always
have vt ≤ C bt

at
for all t > 0, where C is some positive constant.

Lemma B.3. For any given pairs (x, y) ∈ Rp × Rq, we introduce an auxiliary function l(x, y; ξ) : Rp × Rq 7→ R with a
random variable ξ. If Eξ [l(x, y; ξ)] is L-Lipschitz continuous and ∇l(x, y; ξ) is unbiased with a bounded variance σ2, then
for any given pairs (x1, y1) and (x2, y2) ∈ Rp × Rq , the following inequality always holds:

Eξ

[
∥l(x1, y1; ξ)− l(x2, y2; ξ)∥2

]
≤ 2(L2 + σ2)(∥x1 − x2∥2 + ∥y1 − y2∥2). (15)

Proof. The mean value theorem implies that there must exist some constant r ∈ (0, 1) such that for any xr = rx1+(1−r)x2

and yr = ry1 + (1− r)y2, the following inequality holds:

E
[
∥l(x1, y1; ξ)− l(x2, y2; ξ)∥2

]
= E

[
(⟨∇xl(xr, yr; ξ), x1 − x2⟩+ ⟨∇yl(xr, yr; ξ), y1 − y2⟩)2

]
≤ 2E

[
∥∇xl(xr, yr; ξ)∥2

]
∥x1 − x2∥2 + 2E

[
∥∇yl(xr, yr; ξ)∥2

]
∥y1 − y2∥2.

Since both terms E[∥∇xl(xr, yr; ξ)∥2] and E[∥∇yl(xr, yr; ξ)∥2] are no larger than E[∥∇l(xr, yr; ξ)∥2], we can arrive
at (15) based on the relationship E[∥∇l(xr, yr; ξ)∥2] ≤ L2 + σ2.

C. Empirical Risk Minimization Problems and Useful Properties of Empirical Functions
C.1. Empirical Risk Minimization Problem with respect to Problem (1)

We introduce the following ERM problem to approximate problem (1) under sequentially arriving data:

min
x∈Rp

Ft(x), Ft(x) =
1

m

m∑
i=1

fi,t(x, y
∗
t (x)),

s.t. y∗t (x) = argminy∈Rqgt(x, y) :=
1

m

m∑
i=1

gi,t(x, y),

(16)

for any t ≥ 0, where empirical functions fi,t and gi,t are given by fi,t(x, y) =
1

t+1

∑t
k=0 h(x, y;φi,k) and gi,t(x, y) =

1
t+1

∑t
k=0 l(x, y; ξi,k), respectively.

In the following lemmas, we present some useful properties of empirical functions Ft(x) and gt(x, y). To this end, we
define an auxiliary function Ft(x, y) ≜ 1

m

∑m
i=1 fi,t(x, y) for any given pair (x, y) ∈ Rp × Rq .

Lemma C.1 proves the boundedness properties of Ft(x, y) and gt(x, y).

Lemma C.1. Under Assumptions 2.2 and 2.3, for any given pair (x, y) ∈ Rp × Rq , the following inequalities hold:

E
[
∥∇yFt(x, y)∥2

]
≤ 2σ2

f,1 + 2L2
f,0, E[∥∇2

yygt(x, y)∥2] ≤ 2σ2
g,2 + 2L2

g,1,

E[∥∇2
xygt(x, y)∥2] ≤ 2σ2

g,2 + 2L2
g,1, E[∥∇2

yygt(x, y)∥2] ≥ µ2
g.

(17)
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Proof. By using the definition of Ft(x, y), Assumption 2.2, and Assumption 2.3, we have

E
[
∥∇yFt(x, y)∥2

]
≤ 1

m

m∑
i=1

E

∥∥∥∥∥ 1

t+ 1

t∑
k=0

∇yh(x, y;φi,k)−∇yfi(x, y) +∇yfi(x, y)

∥∥∥∥∥
2


≤
2σ2

f,1

t+ 1
+

2

m

m∑
i=1

∥∇yfi(x, y)∥2 ≤
2σ2

f,1

t+ 1
+ 2L2

f,0 ≤ 2σ2
f,1 + 2L2

f,0.

Similarly, based on the definition of gt(x, y), Assumption 2.2, and Assumption 2.3, we obtain

E
[
∥∇2

yygt(x, y)∥2
]
≤ 1

m

m∑
i=1

E

∥∥∥∥∥ 1

t+ 1

t∑
k=0

∇2
yyl(x, y; ξi,k)−∇2

yygi(x, y) +∇2
yygi(x, y)

∥∥∥∥∥
2


≤
2σ2

g,2

t+ 1
+

2

m

m∑
i=1

∥∇2
yygi(x, y)∥2 ≤

2σ2
g,2

t+ 1
+ 2L2

g,1 ≤ 2σ2
g,2 + 2L2

g,1,

and the following inequality:

E
[
∥∇2

xygt(x, y)∥2
]
≤ 1

m

m∑
i=1

E

∥∥∥∥∥ 1

t+ 1

t∑
k=0

∇2
xyl(x, y; ξi,k)−∇2

xygi(x, y) +∇2
xygi(x, y)

∥∥∥∥∥
2
 ≤ 2σ2

g,2 + 2L2
g,1.

The µg-strongly convexity of lower-level functions gi in Assumption 2.2 implies

E
[
∇2

yygt(x, y)
]
=

1

m

m∑
i=1

E

[
1

t+ 1

t∑
k=0

∇2
yyl(x, y; ξi,k)−∇2

yygi(x, y) +∇2
yygi(x, y)

]
= ∇2

yyg(x, y) ≥ µgIq,

which implies the last inequality in (17).

By using Lemma B.3, we establish Lemma C.2 for Lipschitz continuity of functions Ft(x, y) and gt(x, y).

Lemma C.2. Under Assumptions 2.2 and 2.3, we have the following statements:

(i) For any given pairs (x1, y1) ∈ Rp × Rq and (x2, y2) ∈ Rp × Rq and any t > 0, we have

E
[
∥∇yFt(x2, y2)−∇yFt(x1, y1)∥2

]
≤ 2(L2

f,1 + σ2
f,2)

(
∥x2 − x1∥2 + ∥y2 − y1∥2

)
. (18)

(ii) For any given pairs (x1, y1) ∈ Rp × Rq and (x2, y2) ∈ Rp × Rq and any t > 0, we obtain

E
[∥∥∥(∇2

yygt(x2, y2)
)−1 −

(
∇2

yygt(x1, y1)
)−1
∥∥∥2] ≤ 2(L2

g,2 + σ2
g,3)

µ4
g

(
∥x2 − x1∥2 + ∥y2 − y1∥2

)
, (19)

E
[∥∥∇2

ygt(x2, y2)−∇2
ygt(x1, y1)

∥∥2] ≤ 2(L2
g,1 + σ2

g,2)
(
∥x2 − x1∥2 + ∥y2 − y1∥2

)
. (20)

Proof. (i) By using the definition of Ft(x, y) and Lemma B.3, we obtain

E
[
∥∇yFt(x2, y2)−∇yFt(x1, y1)∥2

]
≤ 1

m

m∑
i=1

1

t+ 1

t∑
k=0

E
[
∥∇yh(x2, y2;φi,k)−∇yh(x1, y1;φi,k)∥2

]
≤ 2(L2

f,1 + σ2
f,2)

(
∥x2 − x1∥2 + ∥y2 − y1∥2

)
,

where we have used ∇yfi(x, y) = E [∇yh(x, y;φi,k)], Lf,1-Lipschitz continuity of ∇yfi(x, y), and the bounded variance
σ2
f,2 of ∇2h(x, y;φi,k) in the last inequality.
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(ii) According to the definition of gt(x, y), we use Lemma B.3 to obtain

E
[∥∥∥(∇2

yygt(x2, y2)
)−1 −

(
∇2

yygt(x1, y1)
)−1
∥∥∥2] ≤ E

[∥∥∇2
yygt(x2, y2)−∇2

yygt(x1, y1)
∥∥2]

µ4
g

≤
2(L2

g,2 + σ2
g,3)

µ4
g

(
∥x2 − x1∥2 + ∥y2 − y1∥2

)
,

where in the derivation we have used the following inequality from the proof of Lemma 2.2 in Ghadimi & Wang (2018) for
any symmetrical matrices A1 ∈ Rq×q and A2 ∈ Rq×q satisfying A1 ≥ µgI and A2 ≥ µgI:

∥A−1
1 −A−1

2 ∥ = ∥A−1
1 (A2 −A1)A

−1
2 ∥ ≤ ∥A−1

1 ∥∥A−1
2 ∥∥A2 −A1∥ ≤ ∥A2 −A1∥

µ2
g

. (21)

Additionally, using an argument similar to the derivation of (18), we arrive at (20).

Lemma C.3 establishes the variations of functions ∇yFt+1(x, y) and ∇yygt(x, y) over iterations.

Lemma C.3. Under Assumptions 2.2 and 2.3, for any given pairs (x, y) and any t > 0, the following inequalities hold:

E
[
∥∇yFt+1(x, y)−∇yFt(x, y)∥2

]
≤

8(σ2
f,1 + L2

f,0)

(t+ 2)2
and E

[
∥∇yygt+1(x, y)−∇yygt(x, y)∥2

]
≤

8(σ2
g,2 + L2

g,1)

(t+ 2)2
.

(22)

Proof. We estimate an upper bound on E
[
∥∇yFt+1(x, y)−∇yFt(x, y)∥2

]
by using the definition of Ft(x, y):

E
[
∥∇yFt+1(x, y)−∇yFt(x, y)∥2

]
≤ 1

m

m∑
i=1

E

∥∥∥∥∥ 1

t+ 2
∇yh(x, y;φi,t+1) +

1

t+ 2

t∑
k=0

∇yh(x, y;φi,k)−
1

t+ 1

t∑
k=0

∇yh(x, y;φi,k)

∥∥∥∥∥
2


≤ 2

m(t+ 2)2

m∑
i=1

E
[
∥∇yh(x, y;φi,t+1)∥2

]
+

2

m

m∑
i=1

(
1

(t+ 2)(t+ 1)

)2

E

∥∥∥∥∥
t∑

k=0

∇yh(x, y;φi,k)

∥∥∥∥∥
2
 .

(23)

The first term on the right hand side of (23) satisfies

E
[
∥∇yh(x, y;φi,t+1)∥2

]
≤ E

[
2 ∥∇yh(x, y;φi,t+1)−∇yfi(x, y)∥2 + 2 ∥∇yfi(x, y)∥2

]
≤ 2σ2

f,1 + 2L2
f,0. (24)

The second term on the right hand side of (23) satisfies

E

∥∥∥∥∥
t∑

k=0

∇yh(x, y;φi,k)

∥∥∥∥∥
2
 ≤ (t+ 1)

t∑
k=0

E
[
∥∇yh(x, y;φi,k)∥2

]
≤ 2(t+ 1)2(σ2

f,1 + L2
f,0), (25)

where we have used (a1 + · · ·+ an)
2 ≤ n(a21 + · · ·+ a2n) in the first inequality and (24) in the last inequality.

After substituting (24) and (25) into (23), we arrive at the first term in (22). Furthermore, by employing an argument similar
to the derivation of the first term in (22), we can obtain the second term in (22).

Lemma C.4 quantifies the distance between the optimal solution y∗t (x) to the lower-level ERM problem in (16) and the true
optimal solution y∗(x) to the lower-level optimization problem in (1):

Lemma C.4. Under Assumptions 2.2 and 2.3, for any given x ∈ Rp and any t > 0, we have

E
[
∥y∗t (x)− y∗(x)∥2

]
≤

4σ2
g,1

µ2
g(t+ 1)

. (26)
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Proof. We introduce the auxiliary functions ḡx,t(y) = gt(x, y) and ḡx(y) = g(x, y), each with its optimal solution denoted
as y∗t = argminy∈Rq ḡx,t(y) and y∗ = argminy∈Rq ḡx(y), respectively. For any given x ∈ Rp, at time t, it follows that
y∗t = y∗t (x) and y∗ = y∗(x).

Given the definition of y∗t , we obtain ḡx,t(y
∗
t ) ≤ ḡx,t(y

∗), which further implies

ḡx(y
∗
t )− ḡx(y

∗) ≤ (ḡx(y
∗
t )− ḡx,t(y

∗
t ))− (ḡx(y

∗)− ḡx,t(y
∗)). (27)

By applying the mean value theorem to (27), we have

ḡx(y
∗
t )− ḡx(y

∗) ≤ ⟨∇y ḡx(θ)−∇y ḡx,t(θ), y
∗
t − y∗⟩ ≤ ∥∇y ḡx(θ)−∇y ḡx,t(θ)∥∥y∗t − y∗∥, (28)

where the variable θ is given by θ = ry∗t + (1− r)y∗ with some constant r ∈ (0, 1).

The definition ∇y ḡx(θ) =
1
m

∑m
i=1 E[∇yl(x, θ; ξi)] implies

E [∥∇y ḡx,t(θ)−∇y ḡx(θ)∥] = E

[∥∥∥∥∥ 1

m

m∑
i=1

∇ygi,t(x, θ)−∇yg(x, θ)

∥∥∥∥∥
]

≤ 1

m

m∑
i=1

1

t+ 1

t∑
k=0

E [∥∇yl(x, θ; ξi,k)− E [∇yl(x, θ; ξi,k)]∥] .
(29)

Considering that the data points ξi,k are independently and identically distributed across iterations, we use Assumption 2.3
and the Lyapunov inequality E[∥X∥] ≤ (E[∥X∥p])

1
p , ∀p ≥ 1 to obtain

t∑
k=0

E [∥∇yl(x, θ; ξi,k)− E [∇yl(x, θ; ξi,k)]∥] ≤

√√√√√E

( t∑
k=0

∥∇yl(x, θ; ξi,k)− E [∇yl(x, θ; ξi,k)]∥

)2


≤

√√√√E

[
t∑

k=0

∥∇yl(x, θ; ξi,k)−∇ygi(x, θ)∥2
]
≤ σg,1

√
t+ 1.

(30)

Substituting (30) into (29) yields E [∥∇y ḡx,t(θ)−∇y ḡx(θ)∥] ≤ σg,1√
t+1

. Further combing this relation with (28) leads to

E [∥ḡx(y∗t )− ḡx(y
∗)∥] ≤ σg,1√

t+ 1
E [∥y∗t − y∗∥] . (31)

The µg-strongly convex of gi implies µg

2 ∥y∗t − y∗∥2 ≤ ḡx(y
∗
t )− ḡx(y

∗). By combing this relation with (31), we have

µg

2
E
[
∥y∗t − y∗∥2

]
≤ σg,1√

t+ 1
E [∥y∗t − y∗∥] , (32)

which implies E[∥y∗t −y∗∥] ≤ 2σg,1

µg

√
t+1

. Substituting this inequality into (32), we obtain E[∥y∗t −y∗∥2] ≤ 4σ2
g,1

µ2
g(t+1) . Recalling

relationships y∗t = y∗t (x) and y∗ = y∗(x) for any given x ∈ Rp, at time t, we arrive at (26).

Remark C.5. Since ∇yg(x, y
∗(x)) = 0 is valid for any given x ∈ Rp, it follows from Lemma C.4 that

E
[
∥∇yg(x, y

∗
t (x))∥2

]
= E

[
∥∇yg(x, y

∗
t (x))−∇yg(x, y

∗(x))∥2
]
≤ L2

g,1E
[
∥y∗t (x)− y∗(x)∥2

]
≤

4L2
g,1σ

2
g,1

µ2
g(t+ 1)

. (33)

We would like to point out that the relation (33) is a key to circumventing the assumption of Lipschitz continuity of the
lower-level objective function g(x, y) with respect to y, which is used in existing DSBO results (see Assumption 2.1 in Chen
et al. (2022) and Assumption 3.4(iv) in Yang et al. (2022).)

Furthermore, we define y∗i (x) = argminy∈Rqgi(x, y) for any given x ∈ Rp. By using an argument similar to the derivation
of (26), we can obtain

E
[
∥∇ygi(x, y

∗
t (x))∥2

]
= E

[
∥∇ygi(x, y

∗
t (x))−∇ygi(x, y

∗
i (x))∥

2
]
≤ L2

g,1E
[
∥y∗t (x)− y∗i (x)∥

2
]
≤

4L2
g,1σ

2
g,1

µ2
g(t+ 1)

. (34)
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In Lemma C.6, we quantify the variation of y∗t (x) over iteration t.

Lemma C.6. Under Assumptions 2.2 and 2.3, for any given x ∈ Rp, the following inequality always holds:

E
[
∥y∗t+1(x)− y∗t (x)∥2

]
≤

2σ2
g,1(µ

2
g + 4L2

g,1)

µ4
g(t+ 1)2

. (35)

Proof. For any given x ∈ Rp, the definition of y∗t (x) implies ∇ygt(x, y
∗
t (x)) = 0, which further implies

∇2
yxgt(x, y

∗
t (x)) +∇2

yygt(x, y
∗
t (x))∇xy

∗
t (x) = 0 or ∇xy

∗
t (x) = −

(
∇2

yygt(x, y
∗
t (x))

)−1 ∇2
yxgt(x, y

∗
t (x)). (36)

Taking the squared norm and expectation on both sides of (36), we obtain the following inequality based on Lemma C.1:

E
[
∥∇xy

∗
t (x)∥

2
]
≤

2σ2
g,2 + 2L2

g,1

µ2
g

. (37)

The differential mean value theorem implies Lipschitz continuity of y∗t (x):

E
[
∥y∗t (x2)− y∗t (x1)∥2

]
≤

2σ2
g,2 + 2L2

g,1

µ2
g

∥x2 − x1∥2. (38)

We proceed to estimate an upper bound on E
[
∥y∗t+1(x)− y∗t (x)∥

]
.

For any given x ∈ Rp, we define an auxiliary function gx,t(y) ≜ 1
m

∑m
i=1 l(x, y; ξi,t). Considering the definition of

gt(x, y), we obtain the relation gt(x, y) =
1

t+1

∑t
k=0 gx,k(y), which further implies the following two inequalities based

on y∗t (x) = argminy∈Rqgt(x, y):

t∑
k=0

∇ygx,k(y
∗
t (x)) = 0 and

t+1∑
k=0

∇ygx,k(y
∗
t+1(x)) = 0. (39)

Given
∑t+1

k=0 ∇ygx,k(y
∗
t+1(x)) =

∑t
k=0 ∇ygx,k(y

∗
t+1(x)) +∇ygx,t+1(y

∗
t+1(x)), we use (39) to obtain

t∑
k=0

〈
y∗t+1(x)− y∗t (x),∇ygx,k(y

∗
t+1(x))−∇ygx,k(y

∗
t (x))

〉
=

〈
y∗t+1(x)− y∗t (x),

t+1∑
k=0

∇ygx,k(y
∗
t+1(x))−∇ygx,t+1(y

∗
t+1(x))−

t∑
k=0

∇ygx,k(y
∗
t (x))

〉
= −

〈
y∗t+1(x)− y∗t (x),∇ygx,t+1(y

∗
t+1(x))

〉
.

(40)

Recalling the definition gt(x, y) = 1
t+1

∑t
k=0 gx,k(y), Assumptions 2.2, and 2.3, for any given x ∈ Rp, y1 ∈ Rq, and

y2 ∈ Rq , the following inequality always holds:

E

[
t∑

k=0

⟨y1 − y2,∇ygx,k(y1)−∇ygx,k(y2)⟩

]
= (t+ 1)E [⟨y1 − y2,∇ygt(x, y1)−∇ygt(x, y2)⟩]

= (t+ 1) ⟨y1 − y2,∇yg(x, y1)−∇yg(x, y2)⟩ ≥ µg(t+ 1)∥y1 − y2∥2,

which further implies

E

[
t∑

k=0

〈
y∗t+1(x)− y∗t (x),∇ygx,k(y

∗
t+1(x))−∇ygx,k(y

∗
t (x))

〉]
≥ µg(t+ 1)E

[
∥y∗t+1(x)− y∗t (x)∥2

]
. (41)

Combing (40) and (41) leads to

−E
[〈
y∗t+1(x)− y∗t (x),∇ygx,t+1(y

∗
t+1(x))

〉]
≥ (t+ 1)µgE

[
∥y∗t+1(x)− y∗t (x)∥2

]
. (42)

21



LDP Distributed Bilevel Optimization

By using Assumption 2.2, Assumption 2.3, and Lemma C.4, we have

E
[
∥∇ygx,t+1(y

∗
t+1(x))∥2

]
= E

∥∥∥∥∥ 1

m

m∑
i=1

∇yl(x, y
∗
t+1(x); ξi,t+1)−∇yg(x, y

∗
t+1(x)) +∇yg(x, y

∗
t+1(x))

∥∥∥∥∥
2


≤ 2σ2
g,1 + 2E

[∥∥∇yg(x, y
∗
t+1(x))−∇yg(x, y

∗(x))
∥∥2] ≤ 2σ2

g,1 +
8L2

g,1σ
2
g,1

µ2
g(t+ 1)

,

which implies E
[
∥∇ygx,t+1(y

∗
t+1(x))∥

]
≤ σg,1

√
2 +

8L2
g,1

µ2
g

. Further combing this inequality and (42), we arrive at

σg,1

√
2 +

8L2
g,1

µ2
g

E
[
∥y∗t+1(x)− y∗t (x)∥

]
≥ (t+ 1)µgE

[
∥y∗t+1(x)− y∗t (x)∥2

]
, (43)

which implies (35) in Lemma C.6.

C.2. Empirical Risk Minimization Problem with respect to Problem (8)

We introduce the following ERM problem to approximate problem (8) under sequentially arriving data:

min
z∈Rq

1

m

m∑
i=1

ϕi,t(z), ϕi,t(z) =
1

2
zTH∗

i,tz − (b∗i,t)
T z, (44)

Here, H∗
i,t and b∗i,t are given by H∗

i,t = ∇2
yygi,t(x, y

∗(x)) and b∗i,t = ∇yfi,t(x, y
∗(x)).

D. Results of Algorithm 2
This section is devoted to analyzing the consensus error of the iterative variables generated by Algorithm 2. To this end,
several technical lemmas are presented in Subsections D.1-D.10, with their interrelationships depicted in Figure 4.

D.1. Estimation of E
[
∥x̄t+1 − x̄t∥2

]
in Lemma D.1 and Its Proof

Recalling Algorithm 2 Step 7: xi,t+1 = xi,t +
∑

j∈Ni
wij(xj,t +χj,t − xi,t)−λx,tui,t, we express the update rule of x̄t+1

as follows:

x̄t+1 = x̄t + χ̄t − λx,tūt with ūt =
1

m

m∑
i=1

(
∇xfi,t(xi,t, yi,t)−∇2

xygi,t(xi,t, yi,t)zi,t
)
. (45)

Lemma D.1. Under Assumptions 2.1-2.3 and 3.1, for any t > 0, we have

E
[
∥x̄t+1 − x̄t∥2

]
≤ σ2

x,t + cx̄1λ
2
x,tE

[
∥x̂t∥2

]
+ cx̄2λ

2
x,tE

[
∥ŷt∥2

]
+ cx̄3λ

2
x,tE

[
∥ẑt∥2

]
+ cx̄4λ

2
x,tE

[
∥z̄t − z̆t∥2

]
+ cx̄5λ

2
x,tE

[
∥ȳt − y∗t (x̄t)∥2

]
+ cx̄6λ

2
x,t,

(46)

where the constants cx̄1 to cx̄6 are given by cx̄1 =
36L2

f,0(σ
2
g,2+L2

g,1)

mµ2
g

, cx̄2 =
18L2

f,0

m , cx̄3 =
12(σ2

g,2+L2
g,1)

m , cx̄4 = cx̄3m,

cx̄5 = cx̄2m, and cx̄6 = 6(σ2
f,1 + L2

f,0) +
24(σ2

g,2+L2
g,1)(σ

2
f,1+L2

f,0)

µ2
g

.
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Proof. Considering the definition of ūt in (45), we have

E
[
∥ūt∥2

]
=

1

m

m∑
i=1

E
[
∥∇xfi,t(xi,t, yi,t)−∇2

xygi,t(xi,t, yi,t)zi,t∥2
]

≤ 2

m

m∑
i=1

E
[
∥∇xfi,t(xi,t, yi,t)∥2

]
+

2

m

m∑
i=1

E
[
∥∇2

xygi,t(xi,t, yi,t)∥2∥z̄t∥2
]
,

≤ 2

m

m∑
i=1

E
[
∥∇xfi,t(xi,t, yi,t)−∇xfi(xi,t, yi,t) +∇xfi(xi,t, yi,t)−∇xfi(xi,t, y

∗
t (xi,t)) +∇xfi(xi,t, y

∗
t (xi,t))∥2

]
+

2

m

m∑
i=1

E
[
∥∇2

xygi,t(xi,t, yi,t)∥2∥z̄t∥2
]

≤
6σ2

f,1

t+ 1
+

6

m

m∑
i=1

E
[
∥∇xfi(xi,t, yi,t)−∇xfi(xi,t, y

∗
t (xi,t))∥2

]
+ 6L2

f,0 +
4

m

(
σ2
g,2 + L2

g,1

)
E
[
∥zt∥2

]
≤

6σ2
f,1

t+ 1
+

6L2
f,0

m
E
[
∥yt − y∗

t (x)∥2
]
+ 6L2

f,0 +
4

m

(
σ2
g,2 + L2

g,1

)
E
[
∥zt∥2

]
,

(47)
where yt and y∗

t (x) are given by yt = col(y1,t, · · · , ym,t) and y∗
t (x) = col(y∗t (x1,t), · · · , y∗t (xm,t)).

To further analyze the term E
[
∥yt − y∗

t (x)∥2
]

in (47), we use the following decomposition:

E
[
∥yt − y∗

t (x)∥2
]
≤ E

[
∥yt − 1m ⊗ ȳt + 1m ⊗ ȳt − 1m ⊗ y∗t (x̄t) + 1m ⊗ y∗t (x̄t)− y∗

t (x)∥2
]

≤ 3E
[
∥ŷt∥2

]
+ 3mE

[
∥ȳt − y∗t (x̄t)∥2

]
+ 3

m∑
i=1

E
[
∥y∗t (x̄t)− y∗t (xi,t)∥2

]
≤ 3E

[
∥ŷt∥2

]
+ 3mE

[
∥ȳt − y∗t (x̄t)∥2

]
+

6(σ2
g,2 + L2

g,1)

µ2
g

E
[
∥x̂t∥2

]
,

(48)

with ŷt = yt − 1m ⊗ ȳt and x̂t = xt − 1m ⊗ x̄t. In the last inequality, we have used (38).

We now focus on characterizing the term E
[
∥zt∥2

]
in (47). Considering that both the first term in (17) from Lemma C.1

and Assumption 2.2 lead to E
[
∥z̆t∥2

]
= E

[
∥(∇2

yygt(x̄t, ȳt))
−1∇yFt(x̄t, ȳt)∥2

]
≤ 2σ2

f,1+2L2
f,0

µ2
g

, we subsequently obtain

E
[
∥zt∥2

]
= E

[
∥ẑt + 1m ⊗ (z̄t − z̆t) + 1m ⊗ z̆t∥2

]
≤ 3E

[
∥ẑt∥2

]
+ 3mE

[
∥z̄t − z̆t∥2

]
+

6m(σ2
f,1 + L2

f,0)

µ2
g

, (49)

where ẑt is defined as ẑt = zt − 1m ⊗ z̄t.

Substituting (48) and (49) into (47), we arrive at

E
[
∥ūt∥2

]
≤

6σ2
f,1

t+ 1
+

36L2
f,0(σ

2
g,2 + L2

g,1)

mµ2
g

E
[
∥x̂t∥2

]
+

18L2
f,0

m
E
[
∥ŷt∥2

]
+

12
(
σ2
g,2 + L2

g,1

)
m

E
[
∥ẑt∥2

]
+ 18L2

f,0E
[
∥ȳt − y∗t (x̄t)∥2

]
+ 12

(
σ2
g,2 + L2

g,1

)
E
[
∥z̄t − z̆t∥2

]
+

24
(
σ2
g,2 + L2

g,1

)
(σ2

f,1 + L2
f,0)

µ2
g

+ 6L2
f,0.

(50)

Taking the squared norm and the expectation on both sides of (45) and then substituting (50) into (45), we arrive at (46).

D.2. Estimation of E
[
∥ȳt+1 − ȳt∥2

]
in Lemma D.2 and Its Proof

Recalling Algorithm 2 Step 4: yi,t+1 = yi,t +
∑

j∈Ni
wij(yj,t + ζj,t − yi,t)− λy,t∇ygi,t(xi,t, yi,t), we express the update

rule of ȳt+1 as follows:

ȳt+1 = ȳt + ζ̄t − λy,t
1

m

m∑
i=1

∇ygi,t(xi,t, yi,t). (51)
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Lemma D.2. Under Assumptions 2.1-2.3 and 3.1, for any t > 0, we have

E
[
∥ȳt+1 − ȳt∥2

]
≤ σ2

y,t + cȳ1λ
2
y,tE

[
∥x̂t∥2

]
+ cȳ2λ

2
y,tE

[
∥ŷt∥2

]
+ cȳ3λ

2
y,tE

[
∥ȳt − y∗t (x̄t)∥2

]
+ cȳ4

λ2
y,t

t+ 1
, (52)

with cȳ1 =
24L2

g,1(σ
2
g,2+L2

g,1)

mµ2
g

, cȳ2 =
12L2

g,1

m , cȳ3 = cȳ2m, and cȳ4 = 2σ2
g,1

(
1 +

8L2
g,1

µ2
g

)
.

Proof. By taking the squared norm and expectation on both sides of (51), we have

E
[
∥ȳt+1 − ȳt∥2

]
≤ E

[
∥ζ̄t∥2

]
+ λ2

y,tE

 2

m

m∑
i=1

∥∇ygi,t(xi,t, yi,t)−∇ygi(xi,t, yi,t)∥2 + 2

∥∥∥∥∥ 1

m

m∑
i=1

∇ygi(xi,t, yi,t)

∥∥∥∥∥
2


≤ σ2
y,t +

2σ2
g,1λ

2
y,t

t+ 1
+ 2λ2

y,tE

2 1

m

m∑
i=1

∥∇ygi(xi,t, yi,t)−∇ygi(xi,t, y
∗
t (xi,t))∥2 + 2

∥∥∥∥∥ 1

m

m∑
i=1

∇ygi(xi,t, y
∗
t (xi,t))

∥∥∥∥∥
2


≤ σ2
y,t +

2σ2
g,1λ

2
y,t

t+ 1
+

4L2
g,1

m
λ2
y,tE

[
∥yt − y∗

t (x)∥2
]
+ 4λ2

y,tE
[
∥∇yg(xi,t, y

∗
t (xi,t))∥2

]
≤ σ2

y,t +
4L2

g,1

m
λ2
y,tE

[
∥yt − y∗

t (x)∥2
]
+ 2σ2

g,1

(
1 +

8L2
g,1

µ2
g

)
λ2
y,t

t+ 1
,

(53)
where we have used (33) in the last inequality. Further substituting (48) into (53) yields (52).

D.3. Estimation of E
[
∥z̆t+1 − z̆t∥2

]
in Lemma D.3 and Its Proof

Recalling the definition z̆t = (∇2
yygt(x̄t, ȳt))

−1∇yFt(x̄t, ȳt) with ∇yFt(x̄t, ȳt) ≜ 1
m

∑m
i=1 ∇fi,t(x̄t, ȳt), we express

z̆t+1 − z̆t as follows:

z̆t+1 − z̆t = (∇2
yygt+1(x̄t+1, ȳt+1))

−1∇yFt+1(x̄t+1, ȳt+1)− (∇2
yygt(x̄t, ȳt))

−1∇yFt(x̄t, ȳt). (54)

Lemma D.3. Under Assumptions 2.2 and 2.3, for any t > 0, we have

E
[
∥z̆t+1 − z̆t∥2

]
< cz̆1E

[
∥x̄t+1 − x̄t∥2

]
+ cz̆1E

[
∥ȳt+1 − ȳt∥2

]
+

cz̆2
(t+ 2)2

, (55)

with cz̆1 =
8(L2

f,1+σ2
f,2)

µ2
g

+
16(L2

g,2+σ2
g,3)(σ

2
f,1+L2

f,0)

µ4
g

and cz̆2 =
32(σ2

f,1+L2
f,0)

µ2
g

(
1 +

2(σ2
g,2+L2

g,1)

µ2
g

)
.

Proof. By taking the squared norm and the expectation on both sides of (54), we have

E
[
∥z̆t+1 − z̆t∥2

]
= E

[∥∥(∇2
yygt+1(x̄t+1, ȳt+1))

−1∇yFt+1(x̄t+1, ȳt+1)− (∇2
yygt(x̄t, ȳt))

−1∇yFt(x̄t, ȳt)
∥∥2]

≤ 4E
[∥∥(∇2

yygt(x̄t, ȳt))
−1∇yFt(x̄t+1, ȳt+1)− (∇2

yygt(x̄t, ȳt))
−1∇yFt(x̄t, ȳt)

∥∥2]
+ 4E

[∥∥(∇2
yygt(x̄t+1, ȳt+1))

−1∇yFt(x̄t+1, ȳt+1)− (∇2
yygt(x̄t, ȳt))

−1∇yFt(x̄t+1, ȳt+1)
∥∥2]

+ 4E
[∥∥(∇2

yygt(x̄t+1, ȳt+1))
−1∇yFt+1(x̄t+1, ȳt+1)− (∇2

yygt(x̄t+1, ȳt+1))
−1∇yFt(x̄t+1, ȳt+1)

∥∥2]
+ 4E

[∥∥(∇2
yygt+1(x̄t+1, ȳt+1))

−1∇yFt+1(x̄t+1, ȳt+1)− (∇2
yygt(x̄t+1, ȳt+1))

−1∇yFt+1(x̄t+1, ȳt+1)
∥∥2] .

(56)

Using both (17) in Lemma C.1 and (18) in Lemma C.2, we obtain

E
[∥∥(∇2

yygt(x̄t, ȳt))
−1∇yFt(x̄t+1, ȳt+1)− (∇2

yygt(x̄t, ȳt))
−1∇yFt(x̄t, ȳt)

∥∥2]
≤ E

[∥∥(∇2
yygt(x̄t, ȳt))

−1
∥∥2]E [∥∇yFt(x̄t+1, ȳt+1)−∇yFt(x̄t, ȳt)∥2

]
≤

2(L2
f,1 + σ2

f,2)

µ2
g

(
E
[
∥x̄t+1 − x̄t∥2

]
+ E

[
∥ȳt+1 − ȳt∥2

])
.

(57)
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Similarly, using (17) in Lemma C.1 and (19) in Lemma C.2, we have

E
[∥∥(∇2

yygt(x̄t+1, ȳt+1))
−1∇yFt(x̄t+1, ȳt+1)− (∇2

yygt(x̄t, ȳt))
−1∇yFt(x̄t+1, ȳt+1)

∥∥2]
≤ E

[∥∥(∇2
yygt(x̄t+1, ȳt+1))

−1 − (∇2
yygt(x̄t, ȳt))

−1
∥∥2]E [∥∇yFt(x̄t+1, ȳt+1)∥2

]
≤

4(L2
g,2 + σ2

g,3)(σ
2
f,1 + L2

f,0)

µ4
g

(
E
[
∥x̄t+1 − x̄t∥2

]
+ E

[
∥ȳt+1 − ȳt∥2

])
.

(58)

Using (17) in Lemma C.1 and the first term in (22) of Lemma C.3, one yields

E
[∥∥(∇2

yygt(x̄t+1, ȳt+1))
−1∇yFt+1(x̄t+1, ȳt+1)− (∇2

yygt(x̄t+1, ȳt+1))
−1∇yFt(x̄t+1, ȳt+1)

∥∥2]
≤ 1

µ2
g

E
[
∥∇yFt+1(x̄t+1, ȳt+1)−∇yFt(x̄t+1, ȳt+1)∥2

]
≤

8(σ2
f,1 + L2

f,0)

µ2
g(t+ 2)2

.
(59)

Utilizing (21), the results in (17) from Lemma C.1 and the second term in (22) of Lemma C.3, we arrive at

E
[∥∥(∇2

yygt+1(x̄t+1, ȳt+1))
−1∇yFt+1(x̄t+1, ȳt+1)− (∇2

yygt(x̄t+1, ȳt+1))
−1∇yFt+1(x̄t+1, ȳt+1)

∥∥2]
≤ E

[∥∥(∇2
yygt+1(x̄t+1, ȳt+1))

−1 − (∇2
yygt(x̄t+1, ȳt+1))

−1
∥∥2]E [∥∇yFt+1(x̄t+1, ȳt+1)∥2

]
≤ 1

µ4
g

E
[
∥∇2

yygt+1(x̄t+1, ȳt+1)−∇2
yygt(x̄t+1, ȳt+1)∥2

]
E [∥∇yFt(x̄t+1, ȳt+1)∥]

≤
16(σ2

g,2 + L2
g,1)(σ

2
f,1 + L2

f,0)

µ4
g(t+ 2)2

.

(60)

Substituting (57) to (60) into (56), we arrive at (55).

In the following Subsections D.4-D.7, we quantify the distance between the iterative variables generated by Algorithm 2 and
their corresponding average values.

D.4. Estimation of E
[
∥ût∥2

]
in Lemma D.4 and Its Proof

Here, we use the definitions ût = ut − 1m ⊗ ūt, ut = col(u1,t, · · · , um,t), and ūt =
1
m

∑m
i=1 ui,t with ui,t given by

ui,t = ∇xfi,t(xi,t, yi,t)−∇2
xygi,t(xi,t, yi,t)zi,t. (61)

Lemma D.4. Under Assumptions 2.2 and 2.3, for any t > 0, the following inequality always holds:

E
[
∥ût∥2

]
≤ cû1E

[
∥x̂t∥2

]
+ cû2E

[
∥ŷt∥2

]
+ cû3E

[
∥ẑt∥2

]
+ cû4E

[
∥z̄t − z̆t∥2

]
+ cû5E

[
∥ȳt − y∗t (x̄t)∥2

]
+ cû6, (62)

where the constants cû1 to cû6 are given by cû1 =
144L2

f,0(σ
2
g,2+L2

g,1)

µ2
g

, cû2 = 72L2
f,0, cû3 = 48(σ2

g,2 + L2
g,1), cû4 = cû3m,

cû5 = cû2m, and cû6 = 24mσ2
f,1 + 24mL2

f,0 +
2cû4(σ

2
f,1+L2

f,0)

µ2
g

.

Proof. We first determine an upper bound on E
[
∥ut∥2

]
. Based on (61) and Lemma C.1, we have

E
[
∥ut∥2

]
≤ 2

m∑
i=1

E
[
∥∇xfi,t(xi,t, yi,t)∥2 + ∥∇2

xygi,t(xi,t, yi,t)∥2∥zi,t∥2
]

≤ 2

m∑
i=1

E
[
∥∇xfi,t(xi,t, yi,t)−∇xfi(xi,t, yi,t) +∇xfi(xi,t, yi,t)∥2

]
+ 2

m∑
i=1

E
[
∥∇2

xygi,t(xi,t, yi,t)∥2∥zi,t∥2
]

≤
6mσ2

f,1

t+ 1
+ 6

m∑
i=1

E
[
∥∇xfi(xi,t, yi,t)−∇xfi(xi,t, y

∗
t (xi,t))∥2

]
+ 6mL2

f,0 + 4

(
σ2
g,2

t+ 1
+ L2

g,1

)
E
[
∥zt∥2

]
≤

6mσ2
f,1

t+ 1
+ 6L2

f,0E
[
∥yt − y∗

t (x)∥2
]
+ 6mL2

f,0 + 4
(
σ2
g,2 + L2

g,1

)
E
[
∥zt∥2

]
.

(63)
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Then, we characterize the term E
[
∥1m ⊗ ūt∥2

]
. By using (47), we have

E
[
∥1m ⊗ ūt∥2

]
≤

6mσ2
f,1

t+ 1
+ 6L2

f,0E
[
∥yt − y∗

t (x)∥2
]
+ 6mL2

f,0 + 4
(
σ2
g,2 + L2

g,1

)
E
[
∥zt∥2

]
. (64)

Based on the relation ∥ût∥2 = 2∥ut∥2 + 2∥1m ⊗ ūt∥2, by summing up the corresponding sides of (63) and (64), we obtain

E
[
∥ût∥2

]
≤

24mσ2
f,1

t+ 1
+ 24L2

f,0E
[
∥yt − y∗

t (x)∥2
]
+ 24mL2

f,0 + 16
(
σ2
g,2 + L2

g,1

)
E
[
∥zt∥2

]
. (65)

Substituting (48) and (49) into (65), we can arrive at (62).

D.5. Estimation of E
[
∥x̂t∥2

]
in Lemma D.5 and Its Proof

Recalling the definitions x̂t = xt − 1m ⊗ x̄t, xt = col(x1,t, · · · , xm,t), and x̄t = 1
m

∑m
i=1 xi,t with xi,t+1 = xi,t +∑

j∈Ni
wij(xj,t + χj,t − xi,t)− λx,tui,t in Algorithm 2 Step 7, we have

x̂t+1 = (I +W ⊗ Ip)x̂t + χ̂t − λx,tût. (66)

Lemma D.5. Under Assumptions 2.1-2.3 and 3.1, for any t > 0, we have

E
[
∥x̂t+1∥2

]
≤
(
1− δ2

2
+ cx̂1λ

2
x,t

)
E
[
∥x̂t∥2

]
+ 4mσ2

x,t + cx̂2λ
2
x,tE

[
∥ŷt∥2

]
+ cx̂3λ

2
x,tE

[
∥ẑt∥2

]
+ cx̂4λ

2
x,tE

[
∥z̄t − z̆t∥2

]
+ cx̂5λ

2
x,tE

[
∥ȳt − y∗t (x̄t)∥2

]
+ cx̂6λ

2
x,t,

(67)

where cx̂1 to cx̂6 are given by cx̂i =
(
1 + 2

δ2

)
cûi, i = {1, · · · , 6} with cûi given in the statement of Lemma D.4.

Proof. By taking the squared norm and the expectation on both sides of (66), we obtain

E
[
∥x̂t+1∥2

]
= ∥I +W ⊗ Iq∥2E

[
∥x̂t∥2

]
+ 4mσ2

x,t + λ2
x,tE

[
∥ût∥2

]
− 2E [⟨(I +W ⊗ Iq)x̂t, λx,tût⟩]

≤
(
1− δ2

2

)
E
[
∥x̂t∥2

]
+ 4mσ2

x,t +

(
1 +

2

δ2

)
λ2
x,tE

[
∥ût∥2

]
,

(68)

where in the derivation we have used Assumptions 2.1, Assumption 3.1, and the following inequality:

−2E [⟨(I +W ⊗ Iq)x̂t, λx,tût⟩] ≤
δ2
2
E
[
∥x̂t∥2

]
+

2λ2
x,t

δ2
E
[
∥ût∥2

]
.

Substituting (62) from Lemma D.4 into (68), we arrive at (67).

D.6. Estimation of E
[
∥ŷt∥2

]
in Lemma D.6 and Its Proof

Recalling the definitions ŷt = yt − 1m ⊗ ȳt, yt = col(y1,t, · · · , ym,t), and ȳt = 1
m

∑m
i=1 yi,t with yi,t+1 = yi,t +∑

j∈Ni
wij(xj,t + ζj,t − yi,t)− λy,t∇ygi,t(xi,t, yi,t) given in Algorithm 2 Step 4, we have

ŷt+1 = (I +W ⊗ Iq)ŷt + ζ̂t − λy,t∇yĝt(xt,yt), (69)

with ∇yĝt(xt,yt) = col(∇y ĝ1,t, · · · , ĝm,t) and ∇y ĝi,t = ∇ygi,t(xi,t, yi,t)− 1
m

∑m
i=1 ∇ygi,t(xi,t, yi,t).

Lemma D.6. Under Assumptions 2.1- 2.3 and 3.1, for any t > 0, the following inequality always holds:

E
[
∥ŷt+1∥2

]
≤
(
1− δ2

2
+ cŷ1λ

2
y,t

)
E
[
∥ŷt∥2

]
+ 4mσ2

y,t + cŷ2λ
2
y,tE

[
∥x̂t∥2

]
+ cŷ3λ

2
y,tE

[
∥ȳt − y∗t (x̄t)∥2

]
+ cŷ4

λ2
y,t

t+ 1
,

(70)

where the constants cŷ1 to cŷ4 are given by cŷ1 = 48L2
g,1

(
1 + 2

δ2

)
, cŷ2 =

(
1 + 2

δ2

)
96(σ2

g,2+L2
g,1)L

2
g,1

µ2
g

, cŷ3 = cŷ1m, and

cŷ4 = 8σ2
g,1m

(
1 + 2

δ2

)(
1 +

8L2
g,1

µ2
g

)
.
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Proof. By taking the squared norm and expectation on both sides of (69), we obtain

E
[
∥ŷt+1∥2

]
= ∥I +W ⊗ Iq∥2E

[
∥ŷt∥2

]
+ 4mσ2

y,t + λ2
y,tE

[
∥∇yĝt(xt,yt)∥2

]
− 2E [⟨(I +W ⊗ Iq)ŷt, λy,t∇yĝt(xt,yt)⟩]

≤
(
1− δ2

2

)
E
[
∥ŷt∥2

]
+ 4mσ2

y,t +

(
1 +

2

δ2

)
λ2
y,tE

[
∥∇yĝt(xt,yt)∥2

]
.

(71)

We proceed to characterize the term E
[
∥∇yĝt(xt,yt)∥2

]
in (71). Considering the definition of ∇yĝt(xt,yt), we have

E
[
∥∇yĝt(xt,yt)∥2

]
≤ 2

m∑
i=1

E
[
∥∇ygi,t(xi,t, yi,t)∥2

]
+ 2

m∑
i=1

E

∥∥∥∥∥ 1

m

m∑
i=1

∇ygi,t(xi,t, yi,t)

∥∥∥∥∥
2
 . (72)

We first analyze the first term on the right hand side of (72):

m∑
i=1

E
[
∥∇ygi,t(xi,t, yi,t)∥2

]
≤

2mσ2
g,1

t+ 1
+ 2

m∑
i=1

E
[
∥∇ygi(xi,t, yi,t)∥2

]
≤

2mσ2
g,1

t+ 1
+ 2

m∑
i=1

E
[
2∥∇ygi(xi,t, yi,t)−∇ygi(xi,t, y

∗
t (xi,t))∥2 + 2∥∇ygi(xi,t, y

∗
t (xi,t))∥2

]
≤ 4L2

g,1E
[
∥yt − y∗

t (x)∥2
]
+

2σ2
g,1m

t+ 1

(
1 +

8L2
g,1

µ2
g

)
,

(73)

where we have used (34) in the last inequality. Similarly, the second term on the right hand side of (72) satisfies

m∑
i=1

E

∥∥∥∥∥ 1

m

m∑
i=1

∇ygi,t(xi,t, yi,t)

∥∥∥∥∥
2
 ≤ 4L2

g,1E
[
∥yt − y∗

t (x)∥2
]
+

2σ2
g,1m

t+ 1

(
1 +

8L2
g,1

µ2
g

)
. (74)

Substituting (73) and (74) into (72) and subsequently substituting (72) and (48) into (71), we arrive at (70).

D.7. Estimation of E
[
∥ẑt∥2

]
in Lemma D.7 and Its Proof

Using z̄t =
1
m

∑m
i=1 zi,t, zi,t+1 = zi,t +

∑
j∈Ni

wij(xj,t + ϑj,t − zi,t)− λz,t∇zϕi,t(zi,t) from Algorithm 1 Step 5, and
∇zϕi,t(zi,t) = Hi,tzi,t − bi,t from Algorithm 1 Step 4, we have

z̄t+1 = z̄t + ϑ̄t − λz,t
1

m

m∑
i=1

Hi,tzi,t + λz,tb̄t, (75)

with b̄t =
1
m

∑m
i=1 bi,t and bi,t = ∇yfi,t(xi,t, yi,t).

Recalling definitions ẑi,t = zi,t − z̄t, Hi,t = ∇2
yygi,t(xi,t, yi,t), and H̄t =

1
m

∑m
i=1 Hi,t, we obtain

Hi,tzi,t −
1

m

m∑
i=1

Hi,tzi,t = Hi,tzi,t −
1

m

m∑
i=1

Hi,t(ẑi,t + z̄t) = Hi,tzi,t −
1

m

m∑
i=1

Hi,tẑi,t − H̄tz̄t

= Hi,tẑi,t −
1

m

m∑
i=1

Hi,tẑi,t +
(
Hi,t − H̄t

)
z̄t.

(76)

We define auxiliary variables H̃t = H̆t − 1
m (1m ⊗ Iq)(Ht)

T ∈ Rmq×mq with H̆t = diag(H1,t, · · · , Hm,t) ∈ Rmq×mq

and Ht = col(H1,t, · · · , Hm,t). Further using the definitions ẑt = zt − 1m ⊗ z̄t ∈ Rmq , b̂t = bt − 1m ⊗ b̄t ∈ Rmq , and
Ĥt = Ht − 1m ⊗ H̄t ∈ Rmq×q , and then combining (75) and (76), we obtain the following equality:

ẑt+1 = (I +W ⊗ Iq) ẑt + ϑ̂t − λz,tH̃tẑt − λz,tĤtz̄t + λz,tb̂t. (77)
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Lemma D.7. Under Assumptions 2.1-2.3 and 3.1, for any t > 0, the following inequality always holds:

E
[
∥ẑt+1∥2

]
≤
(
1− δ2

2

)
E
[
∥ẑt∥2

]
+ 4mσ2

z,t + cẑ1λ
2
z,tE

[
∥z̄t − z̆t∥2

]
+ cẑ2λ

2
z,t, (78)

where cẑ1 and cẑ2 are given by cẑ1 = 8mL2
g,1

(
3 + 8(1−δ2)

2

δ2

)
and cẑ2 = cẑ1

2L2
g,1

(
4L2

g,1(σ
2
f,1+L2

f,0)

µ2
g

+ L2
f,0

)
.

Proof. By taking the squared norm and expectation on both sides of (77), and then using inequality (a+ b+ c+ d)2 ≤
a2 + b2 + c2 + d2 + 2ab+ 2ac+ 2ad+ 2bc+ 2bd+ 2cd, we have

E
[
∥ẑt+1∥2

]
= E

[
∥ (I +W ⊗ Iq) ẑt∥2

]
+ E

[
∥ϑ̂t∥2

]
+ λ2

z,tE
[
∥H̃t∥2∥ẑt∥2

]
+ λ2

z,tE
[
∥Ĥt∥2∥z̄t∥2

]
+ λ2

z,tE
[
∥b̂t∥2

]
− 2E

[〈
(I +W ⊗ Iq) ẑt, λz,tH̃tẑt

〉]
− 2E

[〈
(I +W ⊗ Iq) ẑt, λz,tĤtz̄t

〉]
+ 2E

[〈
(I +W ⊗ Iq) ẑt, λz,tb̂t

〉]
+ 2E

[〈
λz,tH̃tẑt, λz,tĤtz̄t

〉]
− 2E

[〈
λz,tH̃tẑt, λz,tb̂t

〉]
− 2E

[〈
λz,tĤtz̄t, λz,tb̂t

〉]
,

(79)
where in the derivation we have used Assumption 3.1, which implies E[⟨·, ϑ̂t⟩] = 0.

By using the relationships 2ab ≤ a2 + b2 and 2⟨a, λz,tb⟩ ≤ κ1a
2 + 1

κ1
λ2
z,tb

2 holding for all κ1 > 0, we can obtain

− 2E
[〈

(I +W ⊗ Iq) ẑt, λz,tH̃tẑt

〉]
≤ 2λz,tE

[
∥I +W ⊗ Iq∥ ∥H̃t∥ ∥ẑt∥2

]
,

− 2E
[〈

(I +W ⊗ Iq) ẑt, λz,tĤtz̄t

〉]
≤ κ1∥I +W ⊗ Iq∥2E

[
∥ẑt∥2

]
+

λ2
z,t

κ1
E
[
∥Ĥt∥2∥z̄t∥2

]
,

2E
[〈

(I +W ⊗ Iq) ẑt, λz,tb̂t

〉]
≤ κ1∥I +W ⊗ Iq∥2E

[
∥ẑt∥2

]
+

λ2
z,t

κ1
E
[
∥b̂t∥2

]
,

2E
[〈

λz,tH̃tẑt, λz,tĤtz̄t

〉]
≤ λ2

z,tE
[
∥H̃t∥2∥ẑt∥2

]
+ λ2

z,tE
[
∥Ĥt∥2∥z̄t∥2

]
,

2E
[〈

λz,tH̃tẑt, λz,tb̂t

〉]
≤ λ2

z,tE
[
∥H̃t∥2∥ẑt∥2

]
+ λ2

z,tE
[
∥b̂t∥2

]
,

− 2E
[〈

λz,tĤtz̄t, λz,tb̂t

〉]
≤ λ2

z,tE
[
∥Ĥt∥2∥z̄t∥2

]
+ λ2

z,tE
[
∥b̂t∥2

]
.

(80)

Substituting (80) into (79), we arrive at

E
[
∥ẑt+1∥2

]
= ∥I +W ⊗ Iq∥2E

[
∥ẑt∥2

]
+ E

[
∥ϑ̂t∥2

]
+

(
3λ2

z,t +
λ2
z,t

κ1

)
E
[
∥Ĥt∥2∥z̄t∥2

]
+ (3λ2

z,t +
λ2
z,t

κ1
)E
[
∥b̂t∥2

]
+ 3λ2

z,tE
[
∥H̃t∥2

]
E
[
∥ẑt∥2

]
+ 2κ1∥I +W ⊗ Iq∥2E

[
∥ẑt∥2

]
+ 2λz,t∥I +W ⊗ Iq∥E

[
∥H̃t∥

]
E
[
∥ẑt∥2

]
.

(81)
By using the definition of H̃t and Assumption 2.2, we obtain

E
[
∥H̃t∥2

]
≤ 2E

[
∥H̆t∥2

]
+ 2E

[∥∥∥∥ 1

m
(1m ⊗ Iq)(Ht)

T

∥∥∥∥2
]
≤ 4mL2

g,1. (82)

We choose κ1 ≤ δ2
8(1−δ2)2

, leading to 2κ1(1 − δ2)
2 ≤ δ2

4 . Additionally, since the stepsize λz,t decays with time, the

inequality 12mL2
g,1λ

2
z,t + 4

√
mLg,1λz,t(1 − δ2) ≤ δ2

4 always holds for a sufficiently large iteration T . Without loss of
generality, we can set λz,0 as a small constant, ensuring that above inequality is satisfied. This strategy is commonly used in
the DSBO result, such as Yang et al. (2022). Then, the summation of the last three terms on the right hand side of (81) can
be simplified as follows:

3λ2
z,tE

[
∥H̃t∥2

]
E
[
∥ẑt∥2

]
+ 2λz,t∥I +W ⊗ Iq∥E

[
∥H̃t∥

]
E
[
∥ẑt∥2

]
+ 2κ1∥I +W ⊗ Iq∥2E

[
∥ẑt∥2

]
≤ δ2

2
E
[
∥ẑt∥2

]
,

(83)
where in the derivation we have used (82) and ∥I +W ⊗ Iq∥ ≤ 1− δ2 from Assumption 2.1.
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Substituting (83) into (81) and using (1− δ2)
2 < 1− δ2 based on δ2 < 1, we have

E
[
∥ẑt+1∥2

]
≤
(
1− δ2

2

)
E
[
∥ẑt∥2

]
+

(
3 +

1

κ1

)
λ2
z,tE

[
∥Ĥt∥2∥z̄t∥2

]
+

(
3 +

1

κ1

)
λ2
z,tE

[
∥b̂t∥2

]
+ E

[
∥ϑ̂t∥2

]
≤
(
1− δ2

2

)
E
[
∥ẑt∥2

]
+ 4mL2

g,1

(
3 +

1

κ1

)
λ2
z,t

(
2E
[
∥z̄t − z̆t∥2

]
+ 2E

[
∥z̆t∥2

])
+ 4mL2

f,0

(
3 +

1

κ1

)
λ2
z,t + 4mσ2

z,t

≤
(
1− δ2

2

)
E
[
∥ẑt∥2

]
+ 4mσ2

z,t + cẑ1λ
2
z,tE

[
∥z̄t − z̆t∥2

]
+ cẑ2λ

2
z,t,

where we have used E[∥Ĥt∥2] ≤ 4mL2
g,1 and E[∥b̂t∥2] ≤ 4mL2

f,0 from Assumption 2.2, as well as E[∥ϑ̂t∥2] ≤ 4mσ2
z,t

from Assumption 3.1 in the second inequality. Moreover, we have utilized E[∥z̆t∥2] ≤
2σ2

f,1+2L2
f,0

µ2
g

from Lemma C.1 in the
last inequality.

D.8. Estimation of E
[
∥z̄t+1 − z̆t+1∥2

]
in Lemma D.8 and Its Proof

Here, we use definitions z̄t = 1
m

∑m
i=1 zi,t and z̆t = (∇2

yygt(x̄t, ȳt))
−1∇yFt(x̄t, ȳt). The update of z̄t+1 satisfies

z̄t+1 = z̄t + ϑ̄t − λz,t
1

m

m∑
i=1

Hi,tzi,t + λz,tb̄t. (84)

Lemma D.8. Under Assumptions 2.1-2.3 and 3.1, for any t > 0, we have

E
[
∥z̄t+1 − z̆t+1∥2

]
≤

(
1− λz,tµg

4
+ cz1λ

2
z,t + cz2

λ2
x,t

λz,t

)
E
[
∥z̄t − z̆t∥2

]
+

(
cz3λz,t + cz4κ2 + cz5

λ2
x,t

λz,t
+ cz6

λ2
y,t

λz,t

)
E
[
∥x̂t∥2

]
+

(
cz3λz,t + cz4κ2 + cz7

λ2
x,t

λz,t
+ cz8

λ2
y,t

λz,t

)
E
[
∥ŷt∥2

]
+

(
cz9λz,t + cz10

λ2
x,t

λz,t

)
E
[
∥ẑt∥2

]
+

(
cz11

λ2
x,t

λz,t
+ cz12

λ2
y,t

λz,t

)
E
[
∥ȳt − y∗t (x̄t)∥2

]
+ cz13σ

2
z,t + cz14

σ2
x,t

λz,t
+ cz14

σ2
y,t

λz,t
+ cz15(λz,t)

2 + cz16
λ2
x,t

λz,t
+ cz17

λ2
y,t

λz,t(t+ 1)
+ cz18

1

λz,t(t+ 2)2
,

(85)

where the constants cz1 to cz18 are given by cz1 = cz̄1

(
1 +

λz,0µg

4

)
, cz2 = cz̆1cx̄4

(
λz,0 +

4
µg

)
, cz3 = cz1cz̄2

cz̄1
, cz4 =

cz1cz̆3
cz̄1

, cz5 = cz2cx̄1

cx̄4
, cz6 =

cz2cȳ1

cx̄4
, cz7 = cz2cx̄2

cx̄4
, cz8 =

cz2cȳ2

cx̄4
, cz9 = cz1cz̄3

cz̄1
, cz10 = cz2cx̄3

cx̄4
, cz11 = cz2cx̄5

cx̄4
, cz12 =

cz2cȳ3

cx̄4
,

cz13 = cz1
cz̄1

, cz14 = cz2
cx̄4

, cz15 = cz1cz̄4
cz̄1

, cz15 = cz12cz̄4, cz16 = cz2cx̄6

cx̄4
, cz17 =

cz2cȳ4

cx̄4
, and cz18 = cz2cz̆2

cx̄4
.

Proof. According to the update of z̄t+1 in (84) and the definition of z̆t, we have

E
[
∥z̄t+1 − z̆t∥2

]
= E

[
∥z̄t − z̆t∥2

]
+ E

[
∥ϑ̄t∥2

]
+ λ2

z,tE

∥∥∥∥∥ 1

m

m∑
i=1

Hi,tzi,t − b̄t

∥∥∥∥∥
2


− 2E

[〈
z̄t − z̆t, λz,t

(
1

m

m∑
i=1

Hi,tzi,t − b̄t

)〉]
.

(86)

The definition of ẑi,t implies zi,t = ẑi,t + z̄t, which further implies

E

∥∥∥∥∥ 1

m

m∑
i=1

Hi,tzi,t − H̄tz̄t

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1

m

m∑
i=1

Hi,tẑi,t

∥∥∥∥∥
2
 ≤

2(σ2
g,2 + L2

g,1)

m
E
[
∥ẑt∥2

]
, (87)

where in the derivation we have used E[∥Hi,t∥2] = E[∥∇2
yygi,t(xi,t, yi,t)∥2] ≤ 2(σ2

g,2 + L2
g,1) from Lemma C.1.
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Substituting (87) into the third term on the right hand side of (86) yields

E

∥∥∥∥∥ 1

m

m∑
i=1

Hi,tzi,t − b̄t

∥∥∥∥∥
2
 ≤ 2E

∥∥∥∥∥ 1

m

m∑
i=1

Hi,tzi,t − H̄tz̄t

∥∥∥∥∥
2
+ 2E

[∥∥H̄tz̄t − b̄t
∥∥2]

≤
4(σ2

g,2 + L2
g,1)

m
E
[
∥ẑt∥2

]
+ 16

(
σ2
g,2 + L2

g,1

)
E
[
∥z̄t − z̆t∥2

]
+ 32

(
σ2
g,2 + L2

g,1

) σ2
f,1 + L2

f,0

µ2
g

+ 8
(
σ2
f,1 + L2

f,0

)
,

(88)
where we have used the following inequality in the last inequality:

E
[∥∥H̄tz̄t − b̄t

∥∥2] ≤ E
[
2
∥∥H̄t

∥∥2 (2 ∥z̄t − z̆t∥2 + 2∥z̆t∥2
)
+ 2

∥∥b̄t∥∥2]
≤ 8

(
σ2
g,2 + L2

g,1

)
E
[
∥z̄t − z̆t∥2

]
+

16
(
σ2
g,2 + L2

g,1

)
(σ2

f,1 + L2
f,0)

µ2
g

+ 8
(
σ2
f,1 + L2

f,0

)
,

(89)

and relations E[∥H̄t∥2] ≤ 2σ2
g,2 + 2L2

g,1, E[∥z̆t∥2] ≤
2σ2

f,1+2L2
f,0

µ2
g

and E[∥b̄t∥2] ≤ 2σ2
f,1 + 2L2

f,0 from Lemma C.1.

To characterize the last term on the right hand side of (86), we define an auxiliary variable z̆′t as follows:

z̆′t = (H̄t)
−1b̄t =

(
1

m

m∑
i=1

∇2
yygi,t(xi,t, yi,t)

)−1(
1

m

m∑
i=1

∇yfi,t(xi,t, yi,t)

)
.

Then, we can obtain the following relationship:

λz,tE
[〈
z̄t − z̆′t, (H̄tz̄t − b̄t)

〉]
= λz,tE

[〈
z̄t − z̆′t, (H̄tz̄t − H̄tz̆

′
t)
〉]

≥ λz,tµgE
[
∥z̄t − z̆′t∥2

]
, (90)

where we have used Eξ [∇yygt(x, y)] = ∇yyg(x, y) for any given (x, y) and Assumption 2.2 in the last inequality.

By using (90) and 2⟨a, λz,tb⟩ ≤ κ2a
2 + 1

κ2
λ2
z,tb

2 for any κ2 > 0, we obtain the following inequality:

2λz,tE
[〈
z̄t − z̆t, H̄tz̄t − b̄t

〉]
= 2λz,tE

[〈
z̄t − z̆′t, H̄tz̄t − b̄t

〉]
+ 2λz,tE

[〈
z̆′t − z̆t, H̄tz̄t − b̄t

〉]
≥ 2λz,tµgE

[
∥z̄t − z̆′t∥2

]
+ 2λz,tE

[〈
z̆′t − z̆t, (H̄tz̄t − b̄t)

〉]
≥ λz,tµgE

[
∥z̄t − z̆t∥2

]
− 2λz,tµgE

[
∥z̆′t − z̆t∥2

]
−

(
κ2E

[
∥z̆′t − z̆t∥2

]
+

λ2
z,t

κ2
E
[
∥H̄tz̄t − b̄t∥2

])
,

(91)

where in the last inequality we have used the inequality ∥b∥2 ≤ 2∥a∥2 + 2∥b− a∥2 resulting in ∥a∥2 ≥ ∥b∥2

2 − ∥b− a∥2
for any a, b, c ∈ Rq .

According to definitions z̆t = (∇2
yygt(x̄t, ȳt))

−1∇yFt(x̄t, ȳt) and z̆′t = (
∑m

i=1 ∇2
yygi,t(xi,t, yi,t))

−1
∑m

i=1 ∇yfi,t(xi,t, yi,t),
we estimate an upper bound on E

[
∥z̆′t − z̆t∥2

]
as follows:

E
[
∥z̆′t − z̆t∥2

]
= E

∥∥∥∥∥(
m∑
i=1

∇2
yygi,t(xi,t, yi,t))

−1
m∑
i=1

∇yfi,t(xi,t, yi,t)− (∇2
yygt(x̄t, ȳt))

−1∇yFt(x̄t, ȳt)

∥∥∥∥∥
2


≤ 2E

∥∥∥∥∥(
m∑
i=1

∇2
yygi,t(xi,t, yi,t))

−1 − (∇2
yygt(x̄t, ȳt))

−1

∥∥∥∥∥
2
E

∥∥∥∥∥
m∑
i=1

∇yfi,t(xi,t, yi,t)

∥∥∥∥∥
2


+ 2E
[
∥(∇2

yygt(x̄t, ȳt))
−1∥2

]
E

∥∥∥∥∥∇yFt(x̄t, ȳt)−
m∑
i=1

∇yfi,t(xi,t, yi,t)

∥∥∥∥∥
2


≤ cz̆3E
[
∥x̂t∥2

]
+ cz̆3E

[
∥ŷt∥2

]
,

(92)
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where we have used Lemma C.1, as well as (18) and (19) from Lemma C.2 in the second inequality. The constants cz̆3 is
given by cz̆3 = cz̆1

2m with cz̆1 given in the statement of Lemma D.3.

By using inequalities (87), (89), (91), and (92), the last term on the right hand side of (86) satisfies

− 2E

[〈
z̄t − z̆t, λz,t

(
1

m

m∑
i=1

Hi,tzi,t − b̄t

)〉]

= −2λz,tE
[〈
z̄t − z̆t, H̄tz̄t − b̄t

〉]
+ 2λz,tE

[〈
z̄t − z̆t, H̄tz̄t −

1

m

m∑
i=1

Hi,tzi,t

〉]

≤ −λz,tµgE
[
∥z̄t − z̆t∥2

]
+ (2λz,tµg + κ2)E

[
∥z̆′t − z̆t∥2

]
+

λ2
z,t

κ2
E
[
∥H̄tz̄t − b̄t∥2

]
+

λz,tµg

2
E
[
∥z̄t − z̆t∥2

]
+

2λz,t

µg
E

∥∥∥∥∥H̄tz̄t −
1

m

m∑
i=1

Hi,tzi,t

∥∥∥∥∥
2


≤ −λz,tµg

2
E
[
∥z̄t − z̆t∥2

]
+ (2λz,tµg + κ2)cz̆3

(
E
[
∥x̂t∥2

]
+ E

[
∥ŷt∥2

])
+

4(σ2
g,2 + L2

g,1)

mµg
λz,tE

[
∥ẑt∥2

]
+

8
(
σ2
g,2 + L2

g,1

)
κ2

λ2
z,tE

[
∥z̄t − z̆t∥2

]
+

8
(
σ2
f,1 + L2

f,0

)
κ2

(
4
(
σ2
g,2 + L2

g,1

)
µ2
g

+ 1

)
λ2
z,t.

(93)

Substituting (88) and (93) into (86), we arrive at

E
[
∥z̄t+1 − z̆t∥2

]
≤
(
1− λz,tµg

2
+ cz̄1λ

2
z,t

)
E
[
∥z̄t − z̆t∥2

]
+ σ2

z,t

+ (cz̄2λz,t + κ2cz̆3)E
[
∥x̂t∥2

]
+ (cz̄2λz,t + κ2cz̆3)E

[
∥ŷt∥2

]
+ cz̄3λz,tE

[
∥ẑt∥2

]
+ cz̄4λ

2
z,t,

(94)

where the constants cz̄1 to cz̄4 are given by cz̄1 = 8
(
σ2
g,2 + L2

g,1

) (
2 + 1

κ2

)
, cz̄2 = 2µgcz̆3, cz̄3 =

4(σ2
g,2+L2

g,1)

m ( 1
µg

+λz,0),

and cz̄4 =
(

32(σ2
g,2+L2

g,1)(σ
2
f,1+L2

f,0)

µ2
g

+ 8(σ2
f,1 + L2

f,0)
)
(1 + 1

κ2
).

We proceed to use the following decomposition:

∥z̄t+1 − z̆t+1∥2 ≤
(
1 +

λz,tµg

4

)
∥z̄t+1 − z̆t∥2 +

(
1 +

4

λz,tµg

)
∥z̆t+1 − z̆t∥2. (95)

Substituting (55) in Lemma D.3 into (95) yields

E
[
∥z̄t+1 − z̆t+1∥2

]
≤
(
1 +

λz,tµg

4

)
E
[
∥z̄t+1 − z̆t∥2

]
+

(
1 +

4

λz,tµg

)(
cz̆1E

[
∥x̄t+1 − x̄t∥2

]
+ cz̆1E

[
∥ȳt+1 − ȳt∥2

]
+

cz̆2
(t+ 2)2

)
.

(96)

Further substituting (46) in Lemma D.1, (52) in Lemma D.2, and (94) into (96), we arrive at (85).

D.9. Estimation of E
[
∥ȳt+1 − y∗t+1(x̄t+1)∥2

]
in Lemma D.9 and Its Proof

Here, we use definitions ȳt = 1
m

∑m
i=1 yi,t and y∗t (x̄t) := argminy∈Rqgt(x̄t, y) with x̄t =

1
m

∑m
i=1 xi,t . We express the

update rule of ȳt+1 as follows:

ȳt+1 = ȳt + ζ̄t − λy,t
1

m

m∑
i=1

∇ygi,t(xi,t, yi,t). (97)

Lemma D.9. Under Assumptions 2.1-2.3 and 3.1, for any t > 0, we have

E
[
∥ȳt+1 − y∗t+1(x̄t+1)∥2

]
≤
(
1− λy,tµg

4
+ cy1λ

2
y,t

)
E
[
∥ȳt − y∗t (x̄t)∥2

]
+ cy2σ

2
y,t + cy3

λ2
y,t

t+ 1

+ cy4λy,tE
[
∥x̂t∥2

]
+ cy5λy,tE

[
∥ŷt∥2

]
+

cy6
λy,t(t+ 1)2

,

(98)
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where the constants cy1 to cy6 are given by cy1 =
(
1 +

λy,0µg

4

)
cȳ3, cy2 =

cy1

cȳ3
, cy3 = cy2cȳ4, cy4 =

cy2

(
8(L2

g,1+σ2
g,2)

mµg
+ cȳ1λy,0

)
, cy5 = cy2

(
8(L2

g,1+σ2
g,2)

mµg
+ cȳ2λy,0

)
, and cy6 =

(
λy,0 +

4
µg

)
2σ2

g,1(µ
2
g+4L2

g,1)

µ4
g

.

Proof. Taking the squared norm and the expectation on both sides of (97), we obtain

E
[
∥ȳt+1 − y∗t (x̄t)∥2

]
≤ E

[
∥ȳt − y∗t (x̄t)∥2

]
+ σ2

y,t + λ2
y,tE

∥∥∥∥∥ 1

m

m∑
i=1

∇ygi,t(xi,t, yi,t)

∥∥∥∥∥
2


− 2λy,tE

[〈
ȳt − y∗t (x̄t),

1

m

m∑
i=1

∇ygi,t(xi,t, yi,t)

〉]
.

(99)

By using an argument similar to the derivation of (52), we have

E

∥∥∥∥∥ 1

m

m∑
i=1

∇ygi,t(xi,t, yi,t)

∥∥∥∥∥
2
 ≤ cȳ1E

[
∥x̂t∥2

]
+ cȳ2E

[
∥ŷt∥2

]
+ cȳ3E

[
∥ȳt − y∗t (x̄t)∥2

]
+

cȳ4
t+ 1

. (100)

By using (20) in Lemma C.2, we obtain

E

∥∥∥∥∥ 1

m

m∑
i=1

∇ygi,t(xi,t, yi,t)−∇ygt(x̄t, ȳt)

∥∥∥∥∥
2
 ≤

4(L2
g,1 + σ2

g,2)

m

(
E
[
∥x̂t∥2

]
+ E

[
∥ŷt∥2

])
, (101)

which further implies

− 2λy,tE

[〈
ȳt − y∗t (x̄t),

1

m

m∑
i=1

∇ygi,t(xi,t, yi,t)

〉]
= −2λy,tE [⟨ȳt − y∗t (x),∇ygt(x̄t, ȳt)⟩]

+ 2λy,tE

[〈
ȳt − y∗t (x̄t),∇ygt(x̄t, ȳt)−

1

m

m∑
i=1

∇ygi,t(xi,t, yi,t)

〉]

≤ −λy,tµgE
[
∥ȳt − y∗t (x̄t)∥2

]
+

λy,tµg

2
E
[
∥ȳt − y∗t (x̄t)∥2

]
+

8(L2
g,1 + σ2

g,2)λy,t

mµg

(
E
[
∥x̂t∥2

]
+ E

[
∥ŷt∥2

])
,

(102)

where we have used Assumption 2.2 and (101) in the last inequality.

Substituting (100) and (102) into (99), we obtain

E
[
∥ȳt+1 − y∗t (x̄t)∥2

]
≤
(
1− λy,tµg

2
+ cȳ3λ

2
y,t

)
E
[
∥ȳt − y∗t (x̄t)∥2

]
+ σ2

y,t + cȳ4
λ2
y,t

t+ 1

+

(
8(L2

g,1 + σ2
g,2)

mµg
+ cȳ1λy,0

)
λy,tE

[
∥x̂t∥2

]
+

(
8(L2

g,1 + σ2
g,2)

mµg
+ cȳ2λy,0

)
λy,tE

[
∥ŷt∥2

]
.

(103)

We proceed to use the following decomposition:

E
[
∥ȳt+1 − y∗t+1(x̄t+1)∥2

]
=

(
1 +

λy,tµg

4

)
E
[
∥ȳt+1 − y∗t (x̄t)∥2

]
+

(
1 +

4

λy,tµg

)
E
[
∥y∗t+1(x̄t+1)− y∗t (x̄t)∥2

]
.

(104)
By substituting (35) and (103) into (104), we arrive at (98).

D.10. Consensus Errors of Algorithm 2

In this subsection, we summarize the consensus errors of the iterative variables generated by Algorithm 2. The analysis is
based on the definitions: x̂t = xt − 1m ⊗ x̄t, ŷt = yt − 1m ⊗ ȳt, and ẑt = zt − 1m ⊗ z̄t.
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Lemma D.10. Under Assumptions 2.1-2.3 and 3.1, if the stepsize rates satisfy 1 > vx > vy > vz > 0 and the rates of
DP-noise variances satisfy 2ςx > vz + vy , 2ςy > vz + vy and 2ςz > vy , then the following inequality always holds:

E
[
∥x̂t∥2

]
+ E

[
∥ŷt∥2

]
+ E

[
∥ẑt∥2

]
+ E

[
∥z̄t − z̆t∥2

]
+ E

[
∥ȳt − y∗t (x̄t)∥2

]
≤ C0

(t+ 1)β0
, (105)

where the rate β0 is given by β0 = min{2ςx − vz − vy, 2ςy − vz − vy, 2ςz − vy, 2− 2vy} and C0 > 0 is some constant.

Proof. We sum up both sides of (67), (70), (78), (85), and (98) to obtain

E
[
∥x̂t+1∥2

]
+ E

[
∥ŷt+1∥2

]
+ E

[
∥ẑt+1∥2

]
+ E

[
∥z̄t+1 − z̆t+1∥2

]
+ E

[
∥ȳt+1 − y∗t (x̄t+1)∥2

]
≤

(
1− δ2

2
+ cx̂1λ

2
x,t + cŷ2λ

2
y,t + cz3λz,t + cz4κ2 + cz5

λ2
x,t

λz,t
+ cz6

λ2
y,t

λz,t
+ cy4λy,t

)
E
[
∥x̂t∥2

]
+

(
1− δ2

2
+ cŷ1λ

2
y,t + cx̂2λ

2
x,t + cz3λz,t + cz4κ2 + cz7

λ2
x,t

λz,t
+ cz8

λ2
y,t

λz,t
+ cy5λy,t

)
E
[
∥ŷt∥2

]
+

(
1− δ2

2
+ cx̂3λ

2
x,t + cz9λz,t + cz10

λ2
x,t

λz,t

)
E
[
∥ẑt∥2

]
+

(
1− λz,tµg

4
+ cz1λ

2
z,t + cz2

λ2
x,t

λz,t
+ cx̂4λ

2
x,t + cẑ1λ

2
z,t

)
E
[
∥z̄t − z̆t∥2

]
+

(
1− λy,tµg

4
+ cy1λ

2
y,t + cx̂5λ

2
x,t + cŷ3λ

2
y,t + cz11

λ2
x,t

λz,t
+ cz12

λ2
y,t

λz,t

)
E
[
∥ȳt − y∗t (x̄t)∥2

]
+ 4mσ2

x,t + (4m+ cy2)σ
2
y,t + (4m+ cz13)σ

2
z,t + cz14

σ2
x,t

λz,t
+ cz14

σ2
y,t

λz,t
+ cx̂6λ

2
x,t + (cŷ4 + cy3)

λ2
y,t

t+ 1

+ (cẑ2 + cz15)(λ
2
z,t) + cz16

λ2
x,t

λz,t
+ cz17

λ2
y,t

λz,t(t+ 1)
+

cy6
λy,t(t+ 1)2

+
cz18

λz,t(t+ 1)2
.

(106)

To guarantee cz4κ2 ≤ δ2
4 , we select κ2 ≤ δ2

4cz4
. Furthermore, considering decaying stepsizes satisfying λx,t ≤ λx,0,

λy,t ≤ λy,0, and λz,t ≤ λz,0, we can choose the initial stepsizes λx,0, λy,0, and λz,0 to satisfy the following inequalities:

δ2
4

≥ λy,0µg

8
+ cx̂1λ

2
x,0 + cŷ2λ

2
y,0 + cz3λz,0 + cz5

λ2
x,0

λz,0
+ cz6

λ2
y,0

λz,0
+ cy4λy,0,

δ2
4

≥ λy,0µg

8
+ cŷ1λ

2
y,0 + cx̂2λ

2
x,0 + cz3λz,0 + cz7

λ2
x,0

λz,0
+ cz8

λ2
y,0

λz,t
+ cy5λy,0,

δ2
2

≥ λy,0µg

8
+ cx̂3λ

2
x,0 + cz9λz,0 + cz10

λ2
x,0

λz,0
,

µg

8
≥ cz1λz,0 + cz2

λ2
x,0

λ2
z,0

+ cx̂4
λ2
x,0

λz,0
+ cẑ1λz,0,

µg

8
≥ cy1λy,0 + cx̂5

λ2
x,0

λy,0
+ cŷ3λy,0 + cz11

λ2
x,0

λz,0λy,0
+ cz12

λy,0

λz,0
.

(107)

It should be noted that in practical applications, the initial stepsizes λx,0, λy,0, and λz,0 can be chosen as any positive
constants, without strictly following (107). This flexibility is due to the decaying property of the terms on the right hand
side of (107), which guarantees that there will be a time instant T0 > 0 such that (107) is valid for all t > T0.

Considering the relations in (107), inequality (106) can be rewritten as

E
[
∥x̂t+1∥2

]
+ E

[
∥ŷt+1∥2

]
+ E

[
∥ẑt+1∥2

]
+ E

[
∥z̄t+1 − z̆t+1∥2

]
+ E

[
∥ȳt+1 − y∗t (x̄t+1)∥2

]
≤
(
1− λy,0µg

8(t+ 1)vy

)(
E
[
∥x̂t∥2

]
+ E

[
∥ŷt∥2

]
+ E

[
∥ẑt∥2

]
+ E

[
∥z̄t − z̆t∥2

]
+ E

[
∥ȳt − y∗t (x̄t)∥2

])
+Φt,

(108)
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where Φt is given by

Φt =
4m(σ+

x )
2

(t+ 1)2ςx
+

(4m+ cy2)(σ
+
y )

2

(t+ 1)2ςy
+

(4m+ cz13)(σ
+
z )

2

(t+ 1)2ςz
+

cz14(σ
+
x )

2

λ2
z,0(t+ 1)2ςx−vz

+
cz14(σ

+
y )

2

λ2
z,0(t+ 1)2ςy−vz

+
cx̂6λ

2
x,0

(t+ 1)2vx
+

(cŷ4 + cy3)λ
2
y,0

(t+ 1)2vy+1
+

(cẑ2 + cz15)λ
2
z,0

(t+ 1)2vz
+

cz16λ
2
x,0

λz,0(t+ 1)2vx−vz
+

cz17λ
2
y,0

λz,0(t+ 1)2vy+1−vz

+
cy6

λy,0(t+ 1)2−vy
+

cz18
λz,0(t+ 1)2−vz

≤ c1
(t+ 1)s

,

(109)

with c1 = 4m(σ+
x )

2 + (4m+ cy2)(σ
+
y )

2 + (4m+ cz13)(σ
+
z )

2 + cz14(σ
+
x )

2 + cz14(σ
+
y )

2 + cx̂6λ
2
x,0 + (cŷ4 + cy3)λ

2
y,0 +

(cẑ2 + cz15)(λz,0)
2 + cz16λ

2
x,0 + cz17λ

2
y,0 +

cy6

λy,0
+ cz18

λz,0
, and s = min{2ςx − vz, 2ςy − vz, 2ςz, 2− vy}.

Recalling the conditions 1 > vx > vy > vz > 0 , 2ςx > vz + vy, 2ςy > vz + vy, and 2ςz > vy given in the lemma
statement, we know that s > vy always holds. Hence, using Lemma B.2 leads to (105).

To accurately characterize the consensus error of iterative variables generated by Algorithm 2, we present the following
lemma, which is derived from Lemma D.10.
Lemma D.11. Under the same assumptions given in Lemma D.10, we have

E
[
∥x̂t∥2

]
≤ ĉx

(t+ 1)2ςx
, E

[
∥ŷt∥2

]
≤ ĉy

(t+ 1)2ςy
, E

[
∥ȳt − y∗t (x̄t)∥2

]
≤ c̄y

(t+ 1)min{2ςy−vy,2−2vy}
,

E
[
∥ẑt∥2

]
≤ ĉz

(t+ 1)2ςz
, E

[
∥z̄t − z̆t∥2

]
≤ c̄z

(t+ 1)min{2ςx−2vz,2ςy−2vz,2ςz−vz}
,

(110)

where the constants ĉx, ĉy , ĉz , c̄y , and c̄z are given in (112), (113), (114), (116), and (118), respectively.

Proof. Combing (105) in Lemma D.10 with (67) in Lemma D.5 yields

E
[
∥x̂t+1∥2

]
≤
(
1− δ2

2
+ cx̂1λ

2
x,t

)
E
[
∥x̂t∥2

]
+

4m(σ+
x )

2

(t+ 1)2ςx
+

∑5
i=2 cx̂iC0λ

2
x,0

(t+ 1)2vx+β0
+

cx̂6λ
2
x,0

(t+ 1)2vx

≤
(
1− δ2

4

)
E
[
∥x̂t∥2

]
+

cx
(t+ 1)2ςx

,

(111)

where the constant cx is given by cx = 4m(σ+
x )

2 +
∑5

i=2 cx̂iC0λ
2
x,0 + cx̂6λ

2
x,0.

By using Lemma 11 from Chen & Wang (2023), we can obtain the following inequality:

E
[
∥x̂t∥2

]
≤ E

[
∥x̂t∥2

]
≤ ĉx

(t+ 1)2ςx
with ĉx = cx

(
8ςx

e ln( 8
8−δ2

)

)2ςx (E
[
∥x̂0∥2

]
(4− δ2)

4cx
+

8

δ2

)
. (112)

By combining (105) in Lemma D.10 with (70) in Lemma D.6 and (78) in Lemma D.7, we use again Lemma 11 from Chen
& Wang (2023) to obtain

E
[
∥ŷt∥2

]
≤ E

[
∥ŷt∥2

]
≤ ĉy

(t+ 1)2ςy
with ĉy = cy

(
8ςy

e ln( 8
8−δ2

)

)2ςy (E
[
∥ŷ0∥2

]
(4− δ2)

4cy
+

8

δ2

)
, (113)

E
[
∥ẑt∥2

]
≤ E

[
∥ẑt∥2

]
≤ ĉz

(t+ 1)2ςz
with ĉz = cz

(
8ςz

e ln( 8
8−δ2

)

)2ςz (E
[
∥ẑ0∥2

]
(4− δ2)

4cz
+

8

δ2

)
, (114)

where cy and cz are given by cy = 4m(σ+
y )

2 + (cŷ2 + cŷ3)C0λ
2
y,0 + cŷ4λ

2
y,0 and cz = 4m(σ+

z )
2 + cẑ1C0λ

2
z,0 + cẑ2λ

2
z,0.

Utilizing (105) in Lemma D.10, (107), (112), (113), and (98) in Lemma D.9, we obtain

E
[
∥ȳt+1 − y∗t+1(x̄t+1)∥2

]
≤
(
1− λy,0µg

8(t+ 1)vy

)
E
[
∥ȳt − y∗t (x̄t)∥2

]
+

cy2(σ
+
y )

2

(t+ 1)2ςy
+

cy3λ
2
y,0

(t+ 1)2vy+1
+

cy4λy,0ĉx
(t+ 1)2ςx+vy

+
cy5λy,0ĉy

(t+ 1)2ςy+vy
+

cy6
λy,0(t+ 1)2−vy

≤
(
1− λy,0µg

8(t+ 1)vy

)
E
[
∥ȳt − y∗t (x̄t)∥2

]
+

cȳ∗
(t+ 1)min{2ςy,2−vy}

,

(115)

34



LDP Distributed Bilevel Optimization

where the constant cȳ∗ is given by cȳ∗ = cy2(σ
+
y )

2 + cy3λ
2
y,0 + cy4λy,0ĉx + cy5λy,0ĉy + cy6.

Applying Lemma B.2 to (115), we have

E
[
∥ȳt − y∗t (x̄t)∥2

]
≤ c̄y

(t+ 1)βȳ
, (116)

where the rate βȳ is given by βȳ = min{2ςy − vy, 2− 2vy} and c̄y is some positive constant.

Furthermore, we use (105) in Lemma D.10, (107), (112), (113), (114), and (85) in Lemma D.8 to obtain

E
[
∥z̄t+1 − z̆t+1∥2

]
≤
(
1− λz,tµg

8

)
E
[
∥z̄t − z̆t∥2

]
+

(
cz3λz,0 + cz4κ2 + cz5

λ2
x,0

λz,0
+ cz6

λ2
y,0

λz,0

)
ĉx

(t+ 1)2ςx

+

(
cz3λz,0 + cz4κ2 + cz7

λ2
x,0

λz,0
+ cz8

λ2
y,0

λz,0

)
ĉx

(t+ 1)2ςy
+

(
cz9 + cz10

λ2
x,0

λ2
z,0

)
λz,0ĉz

(t+ 1)vz+2ςz

+

(
cz11

λ2
x,0

λ2
y,0

+ cz12

)
λ2
y,0c̄y

λz,0(t+ 1)2vy−vz+βȳ
+

cz13(σ
+
z )

2

(t+ 1)2ςz
+

cz14(σ
+
x )

2

λz,0(t+ 1)2ςx−vz
+

cz14(σ
+
y )

2

λz,0(t+ 1)2ςy−vz

+
cz15(λz,0)

2

(t+ 1)2vz
+

cz16(λx,0)
2

λz,0(t+ 1)2vx−vz
+

cz17(λy,0)
2

λz,0(t+ 1)2vy+1−vz
+

cz18
λz,0(t+ 1)2−vz

≤
(
1− λz,0µg

8(t+ 1)vz

)
E
[
∥z̄t − z̆t∥2

]
+

cz̄z̆
(t+ 1)min{2ςx−vz,2ςy−vz,2ςz}

,

(117)

where the constant ccz̄z̆ is given by ccz̄z̆ = 2cz4κ2ĉx+(2cz3ĉx+cz9ĉz)λz,0+((cz5+cz7)ĉx+cz10ĉz+cz11c̄y+cz16)
λ2
x,0

λz,0
+

cz13(σ
+
z )

2 + ((cz6 + cz8)ĉx + cz12c̄y + cz17)
λ2
y,0

λz,0
+ (cz14((σ

+
x )

2 + (σ+
y )

2) + cz18)
1

λz,0
+ cz15λ

2
z,0.

By applying Lemma B.2 to (117), we arrive at

E
[
∥z̄t − z̆t∥2

]
≤ c̄z

(t+ 1)βz̄
, (118)

where the rate βz̄ is given by βz̄ = min{2ςx − 2vz, 2ςy − 2vz, 2ςz − vz} and c̄z is some positive constant.

D.11. Estimation of E
[
∥ūt − u∗

t ∥2
]

in Lemma D.12 and Its Proof

Here, we use the definitions ūt = 1
m

∑m
i=1 ui,t and ŭt = ∇xFt(x̄t, ȳt) + ∇2

xygt(x̄t, ȳt)z̆t. Moreover, we define the
following auxiliary variables:

z̄∗t =
(
∇2

yygt(x̄t, y
∗(x̄t))

)−1 ∇yFt(x̄t, y
∗(x̄t)), ū∗

t = ∇xFt(x̄t, y
∗(x̄t))−∇2

xygt(x̄t, y
∗(x̄t))z̄

∗
t ,

z∗t =
(
∇2

yyg(x̄t, y
∗(x̄t))

)−1 ∇yF (x̄t, y
∗(x̄t)), u∗

t = ∇xF (x̄t, y
∗(x̄t))−∇2

xyg(x̄t, y
∗(x̄t))z

∗
t .

(119)

Lemma D.12. Under Assumptions 2.1- 2.3 and 3.1, for any t > 0, the following inequality always holds:

E
[
∥ūt − u∗

t ∥2
]
≤

3(cū∗
1
+ cū∗

2
+ cū∗

4
)

t+ 1
+ 3cū∗

3
E
[
∥ȳt − y∗t (x̄t)∥2

]
+ 3cū∗

5
E
[
∥x̂t∥2

]
+ 3cū∗

5
E
[
∥ŷt∥2

]
+ 3cū∗

6
E
[
∥ẑt∥2

]
+ 3cū∗

7
E
[
∥z̄t − z̆t∥2

]
,

(120)

where the constants cū∗
1

to cū∗
7

are given by cū∗
1

= 2σ2
f,1 +

8σ2
g,2(σ

2
f,1+L2

f,0)

µ2
g

+ 4L2
g,1cz̄∗ with cz̄∗ =

2σ2
f,1

µ2
g

+

2L2
f,0σ

2
g,2

µ4
g

, cū∗
2
= 12σ2

f,1

(
1 +

2(σ2
g,2+L2

g,1)

µ2
g

)
+

48(σ2
f,1+L2

f,0)

µ2
g

(
σ2
g,2 +

σ2
g,2(σ

2
g,2+L2

g,1)

µ2
g

)
, cū∗

3
= 12L2

f,1

(
1 +

2(σ2
g,2+L2

g,1)

µ2
g

)
+

48(σ2
f,1+L2

f,0)

µ2
g

(
L2
g,2 +

L2
g,2(σ

2
g,2+L2

g,1)

µ2
g

)
, cū∗

4
= 12σ2

f,1 +
48σ2

g,2(σ
2
f,1+L2

f,0)

µ2
g

, cū∗
5

=
12L2

f,1

m +
48L2

g,2(σ
2
f,1+L2

f,0)

mµ2
g

, cū∗
6

=

16(σ2
g,2+L2

g,1)

m , and cū∗
7
= 16(σ2

g,2 + L2
g,1).
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Proof. We use the following decomposition:

E
[
∥u∗

t − ūt∥2
]
≤ 3E

[
∥u∗

t − ū∗
t ∥2
]
+ 3E

[
∥ū∗

t − ŭt∥2
]
+ 3E

[
∥ŭt − ūt∥2

]
. (121)

By using Assumption 3.1, the definitions of z̄∗t and z∗t , and Lemma C.1, we have

E
[
∥z̄∗t − z∗t ∥2

]
≤ 2E

[∥∥∥(∇2
yygt(x̄t, y

∗(x̄t))
)−1
∥∥∥2 ∥∇yFt(x̄t, y

∗(x̄t))−∇yF (x̄t, y
∗(x̄t))∥2

]
+ 2E

[∥∥∥(∇2
yygt(x̄t, y

∗(x̄t))
)−1 −

(
∇2

yyg(x̄t, y
∗(x̄t))

)−1
∥∥∥2 ∥∇yF (x̄t, y

∗(x̄t))∥2
]
≤ cz̄∗

t+ 1
,

(122)

where cz̄∗ is given by cz̄∗ =
2σ2

f,1

µ2
g

+
2L2

f,0σ
2
g,2

µ4
g

. Using the definitions of ū∗
t and u∗

t and inequality (122), we further obtain

E
[
∥ū∗

t − u∗
t ∥2
]
≤ 2E

[
∥∇xFt(x̄t, y

∗(x̄t))−∇xF (x̄t, y
∗(x̄t))∥2

]
+ 2E

[
∥∇2

xygt(x̄t, y
∗(x̄t))z̄

∗
t −∇2

xyg(x̄t, y
∗(x̄t))z

∗
t ∥2
]

≤
2σ2

f,1

t+ 1
+ 4E

[
∥∇2

xygt(x̄t, y
∗(x̄t))−∇2

xyg(x̄t, y
∗(x̄t))∥2∥z̄∗t ∥2

]
+ 4E

[
∥∇2

xyg(x̄t, y
∗(x̄t))∥2∥z̄∗t − z∗t ∥2

]
≤

2σ2
f,1

t+ 1
+

8σ2
g,2(σ

2
f,1 + L2

f,0)

µ2
g(t+ 1)

+
4L2

g,1cz̄∗

t+ 1
=

cū∗
1

t+ 1
,

(123)

where we have used the relationship E
[
∥z̄∗t ∥2

]
≤ 2(σ2

f,1+L2
f,0)

µ2
g

from Lemma C.1 in the last inequality.

We proceed to estimate an upper bound on E
[
∥ū∗

t − ŭt∥2
]

in (121) based on the definitions of ū∗
t and ŭt:

E
[
∥ū∗

t − ŭt∥2
]
≤ 2E

[
∥∇xFt(x̄t, y

∗(x̄t))−∇xFt(x̄t, ȳt)∥2
]
+ 2E

[
∥∇2

xygt(x̄t, y
∗(x̄t))z̄

∗
t −∇2

xygt(x̄t, ȳt)z̆t∥2
]

≤ 2

(
6σ2

f,1

t+ 1
+ 6L2

f,1E
[
∥y∗t (x̄t)− ȳt∥2

])
+ 4E

[
∥∇2

xygt(x̄t, y
∗(x̄t))z̄

∗
t −∇2

xygt(x̄t, ȳt)z̄
∗
t ∥2
]
+ 4E

[
∥∇2

xygt(x̄t, ȳt)z̄
∗
t −∇2

xygt(x̄t, ȳt)z̆t∥2
]

≤

(
12σ2

f,1 +
48σ2

g,2(σ
2
f,1 + L2

f,0)

µ2
g

)
1

t+ 1
+

(
12L2

f,1 +
48L2

g,2(σ
2
f,1 + L2

f,0)

µ2
g

)
E
[
∥y∗t (x̄t)− ȳt∥2

]
+ 8(σ2

g,2 + L2
g,1)E

[
∥z̄∗t − z̆t∥2

]
,

(124)
where in the derivation we have used the following inequalities:

E
[
∥∇xFt(x2, y2)−∇xFt(x1, y1)∥2

]
≤

6σ2
f,1

t+ 1
+ 6L2

f,1

(
∥x2 − x1∥2 + ∥y2 − y1∥2

)
,

E
[∥∥∇2

xygt(x2, y2)−∇2
xygt(x1, y1)

∥∥2] ≤ 6σ2
g,2

t+ 1
+ 6L2

g,2

(
∥x2 − x1∥2 + ∥y2 − y1∥2

)
,

(125)

for any given pairs (x1, y1), (x2, y2) ∈ Rp × Rq and any t > 0. Moreover, we have utilized E
[
∥z̄∗t ∥2

]
≤ 2(σ2

f,1+L2
f,0)

µ2
g

and

E
[
∥∇2

xygt(x̄t, ȳt)∥2
]
≤ 2(σ2

g,2 + L2
g,1) in the last inequality.

Next, we characterize the term E
[
∥z̄∗t − z̆t∥2

]
in (124) as follows:

E
[
∥z̄∗t − z̆t∥2

]
≤ 2E

[
∥
(
∇2

yygt(x̄t, y
∗(x̄t))

)−1 ∥2∥∇yFt(x̄t, y
∗(x̄t))−∇yFt(x̄t, ȳt)∥2

]
+ 2E

[
∥
(
∇2

yygt(x̄t, y
∗(x̄t))

)−1 −
(
∇2

yygt(x̄t, ȳt)
)−1 ∥2∥∇yFt(x̄t, ȳt)∥2

]
≤

(
12σ2

f,1

µ2
g

+
24σ2

g,2(σ
2
f,1 + L2

f,0)

µ4
g

)
1

t+ 1
+

(
12L2

f,1

µ2
g

+
24L2

g,2(σ
2
f,1 + L2

f,0)

µ4
g

)
E
[
∥y∗t (x̄t)− ȳt∥2

]
,

(126)
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where we have used the following relationship in the last inequality:

E
[∥∥∥(∇2

yygt(x2, y2)
)−1 −

(
∇2

yygt(x1, y1)
)−1
∥∥∥2] ≤ 6σ2

g,2

µ4
g(t+ 1)

+
6L2

g,2

µ4
g

(
∥x2 − x1∥2 + ∥y2 − y1∥2

)
, (127)

for any given pairs (x1, y1), (x2, y2) ∈ Rp × Rq and any t > 0.

Substituting (126) into (124), we arrive at

E
[
∥ū∗

t − ŭt∥2
]
≤

cū∗
2

t+ 1
+ cū∗

3
E
[
∥ȳt − y∗t (x̄t)∥2

]
. (128)

Now we estimate an upper bound on E
[
∥ŭt − ūt∥2

]
in (121):

E
[
∥ūt − ŭt∥2

]
∥ ≤ 2

m

m∑
i=1

(
E
[
∥∇xfi,t(xi,t, yi,t)−∇xfi,t(x̄t, ȳt)∥2

]
+ E

[
∥∇2

xygi,t(xi,t, yi,t)zi,t −∇2
xygi,t(x̄t, ȳt)z̆t∥2

])
.

(129)
The last term on the right hand side of (129) satisfies

2

m

m∑
i=1

E
[
∥∇2

xygi,t(xi,t, yi,t)zi,t −∇2
xygi,t(x̄t, ȳt)z̆t∥2

]
≤ 4

m

m∑
i=1

E
[
∥∇2

xygi,t(xi,t, yi,t)zi,t −∇2
xygi,t(xi,t, yi,t)z̆t∥2

]
+

4

m

m∑
i=1

E
[
∥∇2

xygi,t(xi,t, yi,t)z̆t −∇2
xygi,t(x̄t, ȳt)z̆t∥2

]
≤

8(σ2
g,2 + L2

g,1)

m
E
[
∥zt − 1m ⊗ z̆t∥2

]
+

(
24σ2

g,2

t+ 1
+

24L2
g,2

m

(
E
[
∥x̂t∥2

]
+ E

[
∥ŷt∥2

])) 2(σ2
f,1 + L2

f,0)

µ2
g

,

≤
48σ2

g,2(σ
2
f,1 + L2

f,0)

µ2
g(t+ 1)

+
48L2

g,2(σ
2
f,1 + L2

f,0)

mµ2
g

(
E
[
∥x̂t∥2

]
+ E

[
∥ŷt∥2

])
+

16(σ2
g,2 + L2

g,1)

m
E
[
∥ẑt∥2

]
+ 16(σ2

g,2 + L2
g,1)E

[
∥z̄t − z̆t∥2

]
,

(130)

where we have used the relationship E
[
∥z̆t∥2

]
≤ 2(σ2

f,1+L2
f,0)

µ2
g

in the third inequality.

By using (125) and substituting (130) into (129), we obtain

E
[
∥ūt − ŭt∥2

]
∥ ≤

cū∗
4

t+ 1
+ cū∗

5
E
[
∥x̂t∥2

]
+ cū∗

5
E
[
∥ŷt∥2

]
+ cū∗

6
E
[
∥ẑt∥2

]
+ cū∗

7
E
[
∥z̄t − z̆t∥2

]
, (131)

where the constants cū∗
5

to cū∗
7

are given in the lemma statement.

Substituting (123), (128), and (131) into (121), we arrive at (120).

E. Proof of Theorem 4.1
In this section, we establish convergence rates of Algorithm 2 under different convexity assumptions on the upper-level
objective function F . Specifically, the convergence rate for a strongly convex F is given in Theorem E.1, for a convex F is
given in Theorem E.2, and for a nonconvex F is given in Theorem E.3.

E.1. Convergence Rate for a Strongly Convex Upper-Level Objective Function

Theorem E.1. Under Assumptions 2.1-2.3 and 3.1, if the upper-level objective function F (x) is µf -strongly convex, the
stepsize rates satisfy 0 < vz < vy < vx < 1, and the rates of DP-noise variances satisfy 2ςx > vz + vy, 2ςy > vz + vy,
2ςz > vy and 2ςx > vx, then the following inequality always holds:

E
[
∥xi,T − x∗∥2

]
≤ O

(
T−β1

)
, (132)

for all T > 0 and any i ∈ [m], where β1 is given by β1 = min{2ςx− vx, 2ςx− 2vz, 2ςy − 2vz, 2ςz − vz, 2ςy − vy, 2− 2vy}.

37



LDP Distributed Bilevel Optimization

Proof. We first characterize the distance between the average sequence x̄t+1 and the optimal solution x∗ to problem (1).

Recalling the update of xi,t in Algorithm 2 Step 7, we have x̄t+1 = x̄t + χ̄t − λx,tūt, which further implies

E
[
∥x̄t+1 − x∗∥2

]
≤ E

[
∥x̄t − x∗∥2

]
+ σ2

x,t + λ2
x,tE

[
∥ūt∥2

]
− 2λx,tE [⟨x̄t − x∗, ūt⟩]

≤ E
[
∥x̄t − x∗∥2

]
+ σ2

x,t + λ2
x,tE

[
∥ūt∥2

]
− 2λx,tE [⟨x̄t − x∗, u∗

t ⟩] + 2λx,tE [⟨x̄t − x∗, u∗
t − ūt⟩]

≤ E
[
∥x̄t − x∗∥2

]
+ σ2

x,t + λ2
x,tE

[
∥ūt∥2

]
− λx,tµfE

[
∥x̄t − x∗∥2

]
+

λx,tµf

2
E
[
∥x̄t − x∗∥2

]
+

2λx,t

µf
E
[
∥u∗

t − ūt∥2
]

≤
(
1− λx,tµf

2

)
E
[
∥x̄t − x∗∥2

]
+ σ2

x,t + λ2
x,tE

[
∥ūt∥2

]
+

2λx,t

µf
E
[
∥u∗

t − ūt∥2
]
,

(133)
where we have used the µf -strong convexity of F (x), i.e., 2λx,t⟨x̄t − x∗, u∗

t ⟩ ≥ λx,tµf∥x̄t − x∗∥2.

By substituting (48) and (49) into (47), we can obtain an upper bound on E
[
∥ūt∥2

]
:

E
[
∥ūt∥2

]
≤ cx̄1E

[
∥x̂t∥2

]
+ cx̄2E

[
∥ŷt∥2

]
+ cx̄3E

[
∥ẑt∥2

]
+ cx̄4E

[
∥z̄t − z̆t∥2

]
+ cx̄5E

[
∥ȳt − y∗t (x̄t)∥2

]
+ cx̄6. (134)

By further substituting (134) and (120) in Lemma D.12 into (133), inequality (133) can be rewritten as

E
[
∥x̄t+1 − x∗∥2

]
≤
(
1− λx,tµf

2

)
E
[
∥x̄t − x∗∥2

]
+ σ2

x,t + cx1λx,tE
[
∥x̂t∥2

]
+ cx2λx,tE

[
∥ŷt∥2

]
+ cx3λx,tE

[
∥ẑt∥2

]
+ cx4λx,tE

[
∥z̄t − z̆t∥2

]
+ cx5λx,tE

[
∥ȳt − y∗t (x̄t)∥2

]
+ cx6λ

2
x,t + cx7

λx,t

t+ 1
,

(135)

where the constants cx1 to cx7 are given by cx1 = cx̄1λx,0 +
6cū∗

5

µf
, cx2 = cx̄2λx,0 +

6cū∗
5

µf
, cx3 = cx̄3λx,0 +

6cū∗
6

µf
,

cx4 = cx̄4λx,0 +
6cū∗

7

µf
, cx5 = cx̄5λx,0 +

6cū∗
3

µf
, cx6 = cx̄6, and cx7 =

6(cū∗
1
+cū∗

2
+cū∗

4
)

µf
.

Using the results in Lemma D.11, we rewrite inequality (135) as follows:

E
[
∥x̄t+1 − x∗∥2

]
≤
(
1− λx,0µf

2(t+ 1)vx

)
E
[
∥x̄t − x∗∥2

]
+

(σ+
x )

2

(t+ 1)2ςx
+

cx1λx,0ĉx
(t+ 1)2ςx+vx

+
cx2λx,0ĉy

(t+ 1)2ςy+vx
+

cx3λx,0ĉz
(t+ 1)2ςz+vx

+
cx4λx,0c̄z

(t+ 1)min{2ςx−2vz+vx,2ςy−2vz+vx,2ςz−vz+vx}
+

cx5λx,0c̄y
(t+ 1)min{2ςy−vy+vx,2−2vy+vx}

+
cx6λ

2
x,0

(t+ 1)2vx
+

cx7λx,0

(t+ 1)1+vx

≤
(
1− λx,0µf

2(t+ 1)vx

)
E
[
∥x̄t − x∗∥2

]
+

c2
(t+ 1)s1

,

(136)
with c2 = (σ+

x )
2 + (cx1ĉx + cx2ĉy + cx3ĉz + cx4c̄z + cx5c̄y)λx,0 + cx7λx,0 and s1 = min{2ςx, 2ςx − 2vz + vx, 2ςy −

2vz + vx, 2ςz − vz + vx, 2ςy − vy + vx, 2− 2vy + vx}.

According to the conditions given in the theorem statement (or given in the statement of Theorem 4.1-(i)), we know that
s1 > vx always holds. Therefore, by using Lemma B.2, we arrive at

E
[
∥x̄t − x∗∥2

]
≤ c3

(t+ 1)β1
. (137)

where the rate β1 is given by β1 = min{2ςx−vx, 2ςx−2vz, 2ςy −2vz, 2ςz −vz, 2ςy −vy, 2−2vy} and c3 is some positive
constant.

By using the definition x̂t = xt − 1m ⊗ x̄t and the first term of inequality (110) in Lemma D.11, we obtain

E
[
∥xi,t − x∗∥2

]
≤ 2E

[
∥xi,t − x̄t∥2

]
+ 2E

[
∥x̄t − x∗∥2

]
≤ C1(t+ 1)−β1 , (138)

where the constant C1 is given by C1 = 2(ĉx+ c3) and the rate β1 satisfies β1 = min{2ςx−vx, 2ςx−2vz, 2ςy −2vz, 2ςz −
vz, 2ςy − vy, 2− 2vy}. Inequality (138) directly implies (132) in Theorem E.1 and (10) in Theorem 4.1-(i).
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E.2. Convergence Rate for a Convex Upper-Level Objective Function

Theorem E.2. Under Assumptions 2.1-2.3 and 3.1, if the upper-level objective function F (x) is convex, the stepsize rates
satisfy 0 < vz < vy < vx < 1, and the rates of DP-noise variances satisfy ςx > 1

2 , 2ςx > vz + vy, 2ςx > 2vz + 2− 2vx,
2ςy > 2vz +2−2vx, 2ςy > vy+2−2vx, 2ςy > vz +vy , 2ςz > vz +2−2vx, and 2ςz > vy , then the following inequalities
always hold:

E
[
∥xT − 1m ⊗ x̄T ∥2

]
≤ O

(
T−2ςx

)
,

1

T + 1

T∑
t=0

E [F (x̄t)− F (x∗)] ≤ O
(
T vx−1

)
,

1

T + 1

T∑
t=0

E [F (xi,t)− F (x∗)] ≤ O
(
T vx−1

)
,

(139)

for all T > 0 and any i ∈ [m], where vx is the rate of stepsize λx,t given in Algorithm 2 satisfying vx − 1 < 0.

Proof. (i) Based on the definition x̂t = xt − 1m ⊗ x̄t, the first inequality in (139) follows naturally from (110) in
Lemma D.11.

(ii) We now proceed to prove the second inequality in (139). Taking the squared norm and expectation on both sides of
equality x̄t+1 = x̄t + χ̄t − λx,tūt yields

E
[
∥x̄t+1 − x∗∥2

]
≤ E

[
∥x̄t − x∗∥2

]
+ σ2

x,t + λ2
x,tE

[
∥ūt∥2

]
− 2E [⟨x̄t − x∗, λx,tūt⟩] . (140)

According to the definition u∗
t = ∇xF (x̄t, y

∗(x̄t))−∇2
xyg(x̄t, y

∗(x̄t))z
∗
t , we have u∗

t = ∇F (x̄t). Using this relation and
the convexity of F , the last term on the right hand side of (140) satisfies

− 2E [⟨x̄t − x∗, λx,tūt⟩] = 2E [⟨x∗ − x̄t, λx,tu
∗
t ⟩]− 2E [⟨x̄t − x∗, λx,t(ūt − u∗

t )⟩]

≤ −2λx,tE [F (x̄t)− F (x∗)] + atE
[
∥x̄t − x∗∥2

]
+

λ2
x,t

at
E
[
∥ūt − u∗

t ∥2
]
,

(141)

where at is an auxiliary decaying sequence satisfying at =
1

(t+1)r with 1 < r < 2vx.

Substituting (141) into (140) leads to

E
[
∥x̄t+1 − x∗∥2

]
≤ −2λx,tE [F (x̄t)− F (x∗)] + (1 + at)E

[
∥x̄t − x∗∥2

]
+Φt, (142)

where the term Φt is given by

Φt =
λ2
x,t

at
E
[
∥ūt − u∗

t ∥2
]
+ σ2

x,t + λ2
x,tE

[
∥ūt∥2

]
. (143)

Since the relation F (x̄t) ≥ F (x∗) always holds, we drop the negative term −2λx,tE [F (x̄t)− F (x∗)] in (142) to obtain

E
[
∥x̄t+1 − x∗∥2

]
≤ (1 + at)E

[
∥x̄t − x∗∥2

]
+Φt ≤

(
T∏

t=0

(1 + at)

)(
E
[
∥x̄0 − x∗∥2

]
+

T∑
t=0

Φt

)
. (144)

By using the relation ln(1 + u) ≤ u holding for any u > 0 and the definition at =
1

(t+1)r with 1 < r < 2vx, we have

ln

(
T∏

t=0

(1 + at)

)
=

T∑
t=0

ln(1 + at) ≤
T∑

t=0

at ≤ a0 +

T∑
t=1

1

(t+ 1)r
≤ a0 +

∫ ∞

1

1

xr
dx ≤ a0(r − 1)

r − 1
, (145)

which implies
∏T

t=0(1 + at) ≤ e
a0(r−1)

r−1 . Then, inequality (144) can be rewritten as follows:

E
[
∥x̄t+1 − x∗∥2

]
≤ e

a0(r−1)
r−1

(
E
[
∥x̄0 − x∗∥2

]
+

T∑
t=0

Φt

)
. (146)

Next, we estimate an upper bound on
∑T

t=0 Φt, where Φt is defined in (143).
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Substituting (120) and (134) into (143) and subsequently using (110) and the relation at ≤ 1, we obtain
T∑

t=0

Φt ≤
T∑

t=0

(
3(cū∗

1
+ cū∗

2
+ cū∗

4
)λ2

x,t

at(t+ 1)
+
(
3cū∗

3
+ cx̄5

) λ2
x,t

at
E
[
∥ȳt − y∗t (x̄t)∥2

]
+
(
3cū∗

5
+ cx̄1

) λ2
x,t

at
E
[
∥x̂t∥2

]
+
(
3cū∗

5
+ cx̄2

) λ2
x,t

at
E
[
∥ŷt∥2

]
+
(
3cū∗

6
+ cx̄3

) λ2
x,t

at
E
[
∥ẑt∥2

]
+
(
3cū∗

1
+ cx̄4

) λ2
x,t

at
E
[
∥z̄t − z̆t∥2

]
+ σ2

x,t + cx̄6λ
2
x,t

)

≤
T∑

t=0

3λ2
x,0(cū∗

1
+ cū∗

2
+ cū∗

4
)

(t+ 1)2vx−r+1
+

T∑
t=0

(
3cū∗

3
+ cx̄5

)
c̄yλ

2
x,0

(t+ 1)min{2vx−r+2ςy−vy,2vx−r+2−2vy}
+

T∑
t=0

(
3cū∗

5
+ cx̄1

)
ĉxλ

2
x,0

(t+ 1)2vx−r+2ςx

+

T∑
t=0

(
3cū∗

5
+ cx̄2

)
ĉyλ

2
x,0

(t+ 1)2vx−r+2ςy
+

T∑
t=0

(
3cū∗

6
+ cx̄3

)
ĉzλ

2
x,0

(t+ 1)2vx−r+2ςz
+

T∑
t=0

(
3cū∗

1
+cx̄4

)
c̄zλ

2
x,0

(t+ 1)min{2vx−r+2ςx−2vz,2vx−r+2ςy−2vz,2vx−r+2ςz−vz}

+

T∑
t=0

(σ+
x )

2

(t+ 1)2ςx
+

T∑
t=0

cx̄6λ
2
x,0

(t+ 1)2vx
.

(147)
By using the following inequality:

T∑
t=0

1

(t+ 1)r
= 1 +

T+1∑
t=2

1

ts
≤ 1 +

∫ ∞

1

1

xr
dx ≤ r

r − 1
, (148)

and the constant r satisfying 1 < r < 2vx, we can rewrite inequality (147) as follows:
T∑

t=0

Φt ≤
3λ2

x,0(cū∗
1
+ cū∗

2
+ cū∗

4
)(2vx − r + 1)

2vx − r
+

2(σ+
x )

2ςx
2ςx − 1

+
2cx̄6λ

2
x,0vx

2vx − 1

+
(
3cū∗

3
+ cx̄5

)
c̄yλ

2
x,0 max

{
2vx − r + 2ςy − vy

2vx − r + 2ςy − vy − 1
,
2vx − r + 2− 2vy
2vx − r + 1− 2vy

}
+

(
3cū∗

5
+ cx̄1

)
ĉxλ

2
x,0(2vx − r + 2ςx)

2vx − r + 2ςx − 1

+

(
3cū∗

5
+ cx̄2

)
ĉyλ

2
x,0(2vx − r + 2ςy)

2vx − r + 2ςy − 1
+

(
3cū∗

6
+ cx̄3

)
ĉzλ

2
x,0(2vx − r + 2ςz)

2vx − r + 2ςz − 1

+
(
3cū∗

1
+ cx̄4

)
c̄zλ

2
x,0 max

{
2vx − r + 2ςx − 2vz

2vx − r + 2ςx − 2vz − 1
,

2vx − r + 2ςy − 2vz
2vx − r + 2ςy − 2vz − 1

,
2vx − r + 2ςz − vz

2vx − r + 2ςz − vz − 1

}
≜ c4.

(149)
Substituting (149) into (146), we can arrive at

E
[
∥x̄t+1 − x∗∥2

]
≤ e

a0(r−1)
r−1

(
E
[
∥x̄0 − x∗∥2

]
+ c4

)
. (150)

We proceed to sum up both sides of (142) from 0 to T (T can be any positive integer):
T∑

t=0

2λx,tE [F (x̄t)− F (x∗)] ≤ −
T∑

t=0

E
[
∥x̄t+1 − x∗∥2

]
+

T∑
t=0

(1 + at)E
[
∥x̄t − x∗∥2

]
+

T∑
t=0

Φt. (151)

The first and second terms on the right hand side of (151) can be simplified as follows:
T∑

t=0

(1 + at)E
[
∥x̄t − x∗∥2

]
−

T∑
t=0

E
[
∥x̄t+1 − x∗∥2

]
≤ a0E

[
∥x̄0 − x∗∥2

]
+

T∑
t=1

atE
[
∥x̄t − x∗∥2

]
+ E

[
∥x̄0 − x∗∥2

]
− E

[
∥x̄t+1 − x∗∥2

]
≤

T∑
t=1

1

(t+ 1)r

(
e

a0(r−1)
r−1

(
E
[
∥x̄0 − x∗∥2

]
+ c4

))
+ (1 + a0)E

[
∥x̄0 − x∗∥2

]
≤

(
re

a0(r−1)
r−1

r − 1
+ (1 + a0)

)
E
[
∥x̄0 − x∗∥2

]
+

c4r

r − 1
≜ c5,

(152)
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where we have used (150) in the second inequality and (148) in the last inequality.

Substituting (149) and (152) into (151) and using λx,T ≤ λx,t for any t ∈ [0, T ] yield
∑T

t=0 2λx,tE [F (x̄t)− F (x∗)] ≤
c4 + c5, which further implies

1

T + 1

T∑
t=0

E [F (x̄t)− F (x∗)] ≤ c4 + c5
2λx,0(T + 1)1−vx

=
C ′

2

(T + 1)1−vx
, (153)

with C ′
2 = c4+c5

2λx,0
. Inequality (153) directly implies the second inequality in (139).

(iii) We now prove the third inequality in (139).

Assumption 2.2 implies E [F (xi,t)− F (x̄t)] ≤ Lf,0(E [∥x̂t∥] + E [∥ŷt∥]). By using Lemma D.11, we have

E [F (xi,t)− F (x̄t)] ≤ Lf,0

( √
ĉx

(t+ 1)ςx
+

√
ĉy

(t+ 1)ςy

)
. (154)

Since
∑T

t=0
1

(t+1)p ≤
∫ T+1

x=0
1
xp dx ≤ (T+1)1−p

1−p always holds for any p ∈ (0, 1), we arrive at

1

T + 1

T∑
t=0

E [F (xi,t)− F (x̄t)] ≤ Lf,0

( √
ĉx

(T + 1)ςx
+

√
ĉy

(T + 1)ςy

)
=

C2

(T + 1)min{ςx,ςy}
, (155)

where the constant C2 is given by C2 = Lf,0(
√
ĉx +

√
ĉy).

According to the conditions 2ςx > vz + vy + 2 − 2vx and 2ςy > vz + vy + 2 − 2vx given in the theorem statement (or
given in the statement of Theorem 4.1-(ii)), we have 1− vx < ςx and 1− vx < ςy . Hence, by using (153), we arrive at the
third inequality in (139) and (11) in Theorem 4.1-(ii).

E.3. Convergence Rate for a Nonconvex Upper-Level Objective Function

Theorem E.3. Under Assumptions 2.1-2.3 and 3.1, if the upper-level objective function F (x) is nonconvex, the stepsize
rates satisfy 0 < vz < vy < vx < 1, and the rates of DP-noise variances satisfy ςx > 1

2 , 2ςx > vz+vy , 2ςx > 2vz+1−vx,
2ςy > 2vz + 1− vx, 2ςy > vy + 1− vx, 2ςy > vz + vy , 2ςz > vz + 1− vx, and 2ςz > vy , then the following inequalities
always hold:

E
[
∥xT − 1m ⊗ x̄T ∥2

]
≤ O

(
T−2ςx

)
,

1

T + 1

T∑
t=0

E
[
∥∇F (xi,t)∥2

]
≤ O

(
T vx−1

)
,

(156)

for all T > 0 and any i ∈ [m], where vx is the rate of stepsize λx,t given in Algorithm 2 satisfying vx − 1 < 0.

Proof. The first inequality in (156) follows naturally from (110) in Lemma D.11.

We proceed to prove the second inequality in (156).

Assumption 2.2 implies

F (x̄t+1) ≤ F (x̄t) + ⟨∇F (x̄t), x̄t+1 − x̄t⟩+
Lf,1

2
∥x̄t+1 − x̄t∥. (157)

Taking expectation on both sides of (157) yields

E [F (x̄t+1)− F (x̄t)] ≤ E [⟨∇F (x̄t), x̄t+1 − x̄t⟩] +
Lf,1

2
E
[
∥x̄t+1 − x̄t∥2

]
. (158)

Substituting the relation x̄t+1 − x̄t = χ̄t − λx,tūt into the terms on the right hand side of (158) yields

E [⟨∇F (x̄t), x̄t+1 − x̄t⟩] +
Lf,1

2
E
[
∥x̄t+1 − x̄t∥2

]
= −E [⟨∇F (x̄t), λx,tūt⟩] +

Lf,1

2
E
[
∥χ̄t − λx,tūt∥2

]
≤ −E [⟨∇F (x̄t), λx,tūt⟩] +

Lf,1

2

(
σ2
x,t + λ2

x,tE
[
∥ūt∥2

])
.

(159)
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The definition of u∗
t implies u∗

t = ∇F (x̄t). Hence, the first term on the right hand side of (159) satisfies

−E [⟨∇F (x̄t), λx,tūt⟩] = −λx,tE [⟨∇F (x̄t), u
∗
t ⟩]− λx,tE [⟨∇F (x̄t), ūt − u∗

t ⟩]

≤ −λx,tE
[
∥∇F (x̄t)∥2

]
+

λx,t

2
E
[
∥∇F (x̄t)∥2

]
+

λx,t

2
E
[
ūt − u∗

t ∥2
]

≤ −λx,t

2
E
[
∥∇F (x̄t)∥2

]
+

λx,t

2
E
[
ūt − u∗

t ∥2
]
.

(160)

By substituting (159) and (160) into (158), we have

E [F (x̄t+1)− F (x̄t)] ≤ −λx,t

2
E
[
∥∇F (x̄t)∥2

]
+

λx,t

2
E
[
ūt − u∗

t ∥2
]
+

Lf,1

2
σ2
x,t +

Lf,1

2
λ2
x,tE

[
∥ūt∥2

]
. (161)

Summing up both sides of (161) from 0 to T and using the relationship F (x∗) ≤ F (x̄t+1), we obtain

T∑
t=0

λx,t

2
E
[
∥∇F (x̄t)∥2

]
≤ E [F (x̄0)− F (x∗)] +

T∑
t=0

λx,t

2
E
[
ūt − u∗

t ∥2
]
+

T∑
t=0

Lf,1(σ
+
x )

2

2(t+ 1)2ςx
+

T∑
t=0

Lf,1λ
2
x,t

2
E
[
∥ūt∥2

]
.

(162)

Combining (162) and the relation λx,tE
[
∥∇F (xi,t)∥2

]
≤ λx,t

2 E
[
∥∇F (xi,t)− F (x̄t)∥2

]
+

λx,t

2 E
[
∥∇F (xi,t)∥2

]
yields

T∑
t=0

λx,tE
[
∥∇F (xi,t)∥2

]
≤ E [F (x̄0)− F (x∗)] +

t∑
t=0

Φt. (163)

where the term Φt is given by

Φt = λx,tE
[
∥∇F (x̄t)−∇F (xi,t)∥2

]
+

λx,t

2
E
[
ūt − u∗

t ∥2
]
+

Lf,1(σ
+
x )

2

2(t+ 1)2ςx
+

Lf,1λ
2
x,t

2
E
[
∥ūt∥2

]
. (164)

We proceed to estimate an upper bound on
∑T

t=0 Φt.

Substituting (120) and (134) into (164), and then using Lemma B.1 and Lemma D.11, we have

T∑
t=0

Φt ≤
T∑

t=0

[(
LF

m
+

3cū∗
5
+ Lf,1cx̄1λx,0

2

)
λx,tE

[
∥x̂t∥2

]
+

(
3cū∗

5
+ Lf,1cx̄2λx,0

2

)
λx,tE

[
∥ŷt∥2

]
+

(
3cū∗

6
+ Lf,1cx̄3λx,0

2

)
λx,tE

[
∥ẑt∥2

]
+

(
3cū∗

7
+ Lf,1cx̄4λx,0

2

)
λx,tE

[
∥z̄t − z̆t∥2

]
+

(
3cū∗

3
+ Lf,1cx̄5λx,0

2

)
λx,tE

[
∥ȳt − y∗t (x̄t)∥2

]
+

3(cū∗
1
+ cū∗

2
+ cū∗

4
)

2

λx,t

t+ 1
+

Lf,1(σ
+
x )

2

2(t+ 1)2ςx
+

Lf,1cx̄6
2

λ2
x,t

]
≤

T∑
t=0

3λx,0(cū∗
1
+ cū∗

2
+ cū∗

4
)

2(t+ 1)1+vx
+

T∑
t=0

Lf,1(σ
+
x )

2

2(t+ 1)2ςx
+

T∑
t=0

Lf,1cx̄6(λx,0)
2

2(t+ 1)2vx

+

T∑
t=0

(
LF

m
+

3cū∗
5
+ Lf,1cx̄1λx,0

2

)
ĉxλx,0

(t+ 1)2ςx+vx
+

T∑
t=0

(
3cū∗

5
+ Lf,1cx̄2λx,0

2

)
ĉyλx,0

(t+ 1)2ςy+vx

+

T∑
t=0

(
3cū∗

6
+ Lf,1cx̄3λx,0

2

)
ĉzλx,0

(t+ 1)2ςz+vx

+

T∑
t=0

(
3cū∗

7
+ Lf,1cx̄4λx,0

2

)
c̄zλx,0

(t+ 1)min{2ςx−2vz+vx,2ςy−2vz+vx,2ςz−vz+vx}

+

T∑
t=0

(
3cū∗

3
+ Lf,1cx̄5λx,0

2

)
c̄yλx,0

(t+ 1)min{2ςy−vy+vx,2−2vy+vx}
.

(165)
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Using inequality (148) yields

T∑
t=0

Φt ≤
3λx,0(cū∗

1
+ cū∗

2
+ cū∗

4
)(1 + vx)

2vx
+

Lf,1(σ
+
x )

2ςx
2ςx − 1

+
Lf,1cx̄6(λx,0)

2vx
2vx − 1

+

(
LF

m
+

3cū∗
5
+ Lf,1cx̄1λx,0

2

)
ĉxλx,0(2ςx + vx)

2ςx + vx − 1
+

(
3cū∗

5
+ Lf,1cx̄2λx,0

2

)
ĉyλx,0(2ςy + vx)

2ςy + vx − 1

+

(
3cū∗

6
+ Lf,1cx̄3λx,0

2

)
ĉzλx,0(2ςz + vx)

2ςz + vx − 1

+

(
3cū∗

7
+ Lf,1cx̄4λx,0

2

)
c̄zλx,0 max

{
2ςx − 2vz + vx

2ςx − 2vz + vx − 1
,

2ςy − 2vz + vx
2ςy − 2vz + vx − 1

,
2ςz − vz + vx

2ςz − vz + vx − 1

}
+

(
3cū∗

3
+ Lf,1cx̄5λx,0

2

)
c̄yλx,0 max

{
2ςy − vy + vx

2ςy − vy + vx − 1
,
2− 2vy + vx
1− 2vy + vx

}
≜ c6.

(166)

Substituting (166) into (163) and defining c7 ≜ E [F (x̄0)− F (x∗)], we can obtain
∑T

t=0 λx,tE
[
∥∇F (xi,t)∥2

]
≤ c6 + c7,

which implies
1

T + 1

T∑
t=0

E
[
∥∇F (xi,t)∥2

]
≤ c6 + c7

λx,0(T + 1)1−vx
=

C3

(T + 1)1−vx
, (167)

with C3 = c6+c7
2λx,0

. Inequality (167) directly implies the second inequality in (156) and (12) in Theorem 4.1-(iii).

F. Proof of Theorem 4.5
In this section, we prove that in addition to accurate convergence, Algorithm 2 can also simultaneously ensure rigorous
ϵi-LDP for each agent, even when the number of iterations T tends to infinity. To this end, we first provide a definition for
the sensitivity of agent i’s implementation Ai:

Definition F.1. (Sensitivity) The sensitivity of agent i’s implementation Ai is

∆i,t = max
Adj(Di,D′

i)
∥Ai(Di, θ−i,t)−Ai(D′

i, θ−i,t)∥1 , (168)

where Adj(Di,D′
i) represents the adjacent relationship between agent i’s adjacent datasets Di and D′

i, and θ−i,t represents
all information agent i receives from its neighbors at time t.

According to Definition F.1, under Algorithm 2, each agent i’s implementation involves three sensitivities: ∆i,t,x, ∆i,t,y,
and ∆i,t,z , which correspond to xi,t, yi,t, and zi,t, respectively. With this understanding, we have the following lemma:

Lemma F.2. (Huang et al., 2015) At each time t ≥ 0, if agent i injects into each of its shared variables xi,t, yi,t, and zi,t
noise vectors χi,t, ζi,t, and ϑi,t consisting of p, q, and q independent Laplace noises with parameters νi,t,x, νi,t,y , and νi,t,z ,

respectively, such that
∑∞

t=1

(
∆i,t,x

νi,t,x
+

∆i,t,y

νi,t,y
+

∆i,t,z

νi,t,z

)
≤ ϵi, then agent i’s implementation Ai of Algorithm 2 is ϵi-LDP.

For the convenience of privacy analysis, we represent the different data points between upper-level adjacent datasets Dfi

and D′
fi

(as well as between lower-level adjacent datasets Dgi and D′
gi) as the k-th one, i.e., φi,k in Dfi and φ′

i,k in D′
fi

(ξi,k in Dgi and ξ′i,k in D′
gi ), without loss of generality. We further denote xi,t, yi,t, and zi,t as the parameters generated by

Algorithm 2 based on Dfi and Dgi . We also use x′
i,t, y

′
i,t, and z′i,t to represent the parameters generated by Algorithm 2

based on D′
fi

and D′
gi .

Now, we are in position to prove Theorem 4.5.

Proof. The convergence results follow naturally from Theorem 4.1.

(1) To prove the statement on privacy, we first analyze the sensitivities of agent i’s implementation under Algorithm 2.

According to the definition of sensitivity, we have zj,t+ϑj,t = z′j,t+ϑ′
j,t, yj,t+ζj,t = y′j,t+ζ ′j,t, and xj,t+χj,t = x′

j,t+χ′
j,t

for all t ≥ 0 and j ∈ Ni. Since we assume that only the k-th data point is different between Dfi and D′
fi

, as well as between
Dgi and D′

gi , when t < k, we have zi,t = z′i,t, yi,t = y′i,t, and xi,t = x′
i,t. However, when t ≥ k, since the difference in
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loss functions kicks in at iteration k, i.e., h(x, y;φi,k) ̸= h(x, y;φ′
i,k) and l(x, y; ξi,k) ̸= l(x, y; ξ′i,k), we have zi,t ̸= z′i,t,

yi,t ̸= y′i,t, and xi,t ̸= x′
i,t. Hence, for agent i’s implementation of Algorithm 2, we have

∥yi,t+1 − y′i,t+1∥1 = ∥(1 + wii)(yi,t − y′i,t)− λy,t(∇ygi,t(xi,t, yi,t)−∇yg
′
i,t(x

′
i,t, y

′
i,t))∥1,

for all t ≥ 0. Let w̄ = min{|wii|}, i ∈ [m], the sensitivity ∆i,t,y satisfies

∆i,t+1,y ≤ (1− w̄)∆i,t,y +
λy,t

t+ 1

t∑
p=k

∥∇yl(xi,t, yi,t; ξi,p)−∇yl(x
′
i,t, y

′
i,t; ξ

′
i,p)∥1

≤ (1− w̄)∆i,t,y +
λy,t

t+ 1

t∑
p=0

∥∇yl(xi,t, yi,t; ξi,p)−∇yl(x
′
i,t, y

′
i,t; ξ

′
i,p)∥1.

(169)

Given that the difference in loss functions kicks in at iteration k, we have
∑k−1

p=0 ∇yl(xi,t, yi,t; ξi,p) =∑k−1
p=0 ∇yl(x

′
i,t, y

′
i,t; ξ

′
i,p), which are used in the last inequality.

By leveraging inequality (169) and the relation ξi,p = ξ′i,p for p ̸= k, we have

∆i,t+1,y ≤ (1− w̄)∆i,t,y +
λy,t

t+ 1

t∑
p=0,p̸=k

∥∇yl(xi,t, yi,t; ξi,p)−∇yl(x
′
i,t, y

′
i,t; ξi,p)∥1

+
λy,t

t+ 1
∥∇yl(xi,t, yi,t; ξi,k)−∇yl(x

′
i,t, y

′
i,t; ξ

′
i,k)∥1.

(170)

Assumption 4.4 implies that for the same data ξi,p, we can rewrite (170) as follows:

∆i,t+1,y ≤
(
1− w̄ +

Ll,1λy,tt

t+ 1

)
∆i,t,y +

Ll,1λy,tt

t+ 1
∆i,t,x +

2cl0λy,t

t+ 1
. (171)

Similarly, by using the update of xi,t in the Step 7 of Algorithm 2, we have

∥xi,t+1 − x′
i,t+1∥1 = ∥(1 + wii)(xi,t − x′

i,t)− λx,t(ui,t − u′
i,t)∥1, (172)

for all t ≥ 0. Then, the sensitivity ∆i,t,x satisfies

∆i,t+1,x ≤ (1− w̄)∆i,t,x +
λx,t

t+ 1

t∑
p=k

∥∇yh(xi,t, yi,t;φi,p)−∇yh(x
′
i,t, y

′
i,t;φ

′
i,p)∥1

+
λx,t

t+ 1

t∑
p=k

∥∇2
xyl(xi,t, yi,t; ξi,p)zi,t −∇2

xyl(x
′
i,t, y

′
i,t; ξ

′
i,p)z

′
i,t∥1

≤ (1− w̄)∆i,t,x +
λx,t

t+ 1

t∑
p=0

∥∇yh(xi,t, yi,t;φi,p)−∇yh(x
′
i,t, y

′
i,t;φ

′
i,p)∥1

+
λx,t

t+ 1

t∑
p=0

∥∇2
xyl(xi,t, yi,t; ξi,p)zi,t −∇2

xyl(x
′
i,t, y

′
i,t; ξ

′
i,p)z

′
i,t∥1.

(173)

By using the relation φi,p = φ′
i,p for all p ̸= k, the second term on the right hand side of (173) satisfies

λx,t

t+ 1

t∑
p=0

∥∇yh(xi,t, yi,t;φi,p)−∇yh(x
′
i,t, y

′
i,t;φ

′
i,p)∥1

≤ λx,t

t+ 1

t∑
p=0,p̸=k

∥∇yh(xi,t, yi,t;φi,p)−∇yh(x
′
i,t, y

′
i,t;φi,p)∥1

+
λx,t

t+ 1
∥∇yh(xi,t, yi,t;φi,k)−∇yh(x

′
i,t, y

′
i,t;φ

′
i,k)∥1

≤ Lh,1λx,tt

t+ 1
(∆i,t,x +∆i,t,y) +

2ch0λx,t

t+ 1
.

(174)
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Using an argument similar to the derivation of (174), the third term on the right hand side of (173) satisfies

λx,t

t+ 1

t∑
p=0

∥∇2
xyl(xi,t, yi,t; ξi,p)zi,t −∇2

xyl(x
′
i,t, y

′
i,t; ξ

′
i,p)z

′
i,t∥1

≤ λx,t

t+ 1

t∑
p=0

(
∥∇2

xyl(xi,t, yi,t; ξi,p)zi,t −∇2
xyl(x

′
i,t, y

′
i,t; ξ

′
i,p)zi,t∥1

+∥∇2
xyl(x

′
i,t, y

′
i,t; ξ

′
i,p)zi,t −∇2

xyl(x
′
i,t, y

′
i,t; ξ

′
i,p)z

′
i,t∥1

)
≤ λx,t

t+ 1

t∑
p=0,p̸=k

∥∇2
xyl(xi,t, yi,t; ξi,p)−∇2

xyl(x
′
i,t, y

′
i,t; ξi,p)∥1∥zi,t∥1

+
λx,t

t+ 1
∥∇2

xyl(xi,t, yi,t; ξi,k)−∇2
xyl(x

′
i,t, y

′
i,t; ξ

′
i,k)∥1∥zi,t∥1 +

λx,t

t+ 1

t∑
p=0

∥∇2
xyl(x

′
i,t, y

′
i,t; ξ

′
i,p)∥1∥zi,t − z′i,t∥1

≤ czLl,2λx,tt

t+ 1
(∆i,t,x +∆i,t,y) +

2czLl,1λx,t

t+ 1
+ Ll,1λx,t∆i,t,z.

(175)
Substituting (174) and (175) into (173) yields

∆i,t+1,x ≤
(
1− w̄ +

(Lh,1 + czLl,2)λx,tt

t+ 1

)
∆i,t,x +

(Lh,1 + czLl,2)λx,tt

t+ 1
∆i,t,y

+
2(ch0 + czLl,1)λx,t

t+ 1
+ Ll,1λx,t∆i,t,z.

(176)

Furthermore, by using the update of zi,t in the Step 5 of Algorithm 1, we have

∥zi,t+1 − z′i,t+1∥1 = ∥(1 + wii)(zi,t − z′i,t)− λz,t(Hi,tzi,t −H ′
i,tz

′
i,t) + λz,t(bi,t − b′i,t)∥1,

for all t ≥ 0. Then, the sensitivity ∆i,t,z satisfies

∆i,t+1,z ≤ (1− w̄)∆i,t,z +
λz,t

t+ 1

t∑
p=k

∥∇2
yyl(xi,t, yi,t; ξi,p)zi,t−∇2

yyl(x
′
i,t, y

′
i,t; ξ

′
i,p)z

′
i,t∥1

+
λz,t

t+ 1

t∑
p=k

∥∇yh(xi,t, yi,t;φi,p)−∇yh(x
′
i,t, y

′
i,t;φ

′
i,p)∥1

≤ (1− w̄)∆i,t,z +
λz,t

t+ 1

t∑
p=0

∥∇yh(xi,t, yi,t;φi,p)−∇yh(x
′
i,t, y

′
i,t;φ

′
i,p)∥1

+
λz,t

t+ 1

t∑
p=0

∥∇2
yyl(xi,t, yi,t; ξi,p)zi,t−∇2

yyl(x
′
i,t, y

′
i,t; ξ

′
i,p)z

′
i,t∥1.

(177)

Given that the difference in loss functions kicks in at iteration k, we have
∑k−1

p=0 ∇2
yyl(xi,t, yi,t; ξi,p)zi,t =∑k−1

p=0 ∇2
yyl(x

′
i,t, y

′
i,t; ξ

′
i,p)z

′
i,t, and

∑k−1
p=0 ∇yh(xi,t, yi,t;φi,p) =

∑k−1
p=0 ∇yh(x

′
i,t, y

′
i,t;φ

′
i,p), which are used in the last

inequality.

Furthermore, by leveraging (177) and using an argument similar to the derivation of (176), we have

∆i,t+1,z ≤ (1− w̄ + cl1λz,t)∆i,t,z + (Lh,1 + czLl,2)
λz,tt

t+ 1
(∆i,t,x +∆i,t,y) +

2(ch0 + czLl,1)λz,t

t+ 1
. (178)
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Summing up both sides of (171), (176), and (178), we obtain

∆i,t+1,x +∆i,t+1,y +∆i,t+1,z ≤
(
1− w̄ +

Ll,1λy,tt

t+ 1
+ (Lh,1 + czLl,2)

λx,tt

t+ 1
+ (Lh,1 + czLl,2)

λz,tt

t+ 1

)
∆i,t,x

+

(
1− w̄ +

Ll,1λy,tt

t+ 1
+ (Lh,1 + czLl,2)

λx,tt

t+ 1
+ (Lh,1 + czLl,2)

λz,tt

t+ 1

)
∆i,t,y

+ (1− w̄ + Ll,1λx,t + cl1λz,t)∆i,t,z +
2cl0λy,t

t+ 1
+

2(ch0 + czLl,1)λx,t

t+ 1
+

2(ch0 + czLl,1)λz,t

t+ 1
.

(179)

Since stepsizes λx,t, λy,t, and λz,t are decaying sequences, we can choose proper initial stepsizes such that the following
inequality always holds:

∆i,t+1,x +∆i,t+1,y +∆i,t+1,z

≤
(
1− w̄

2

)
(∆i,t,x +∆i,t,y +∆i,t,z) +

2cl0λy,t

t+ 1
+

2(ch0 + czLl,1)λx,t

t+ 1
+

2(ch0 + czLl,1)λz,t

t+ 1

≤
(
1− w̄

2

)
(∆i,t,x +∆i,t,y +∆i,t,z) +

M1

(t+ 1)βϵ
,

(180)

with M1 = 2cl0λy,0 + 2(ch0 + czLl,1)λx,0 + 2(ch0 + czLl,1)λz,0 and βϵ = min{1 + vx, 1 + vy, 1 + vz}.

According to Lemma 11 in (Chen & Wang, 2023), the following inequality holds:

∆i,t,x +∆i,t,y +∆i,t,z ≤ M2t
−βϵ , (181)

where the constant M2 is given by M2 = 4
w̄

(
4βϵ

e ln( 4
2−2w̄ )

)βϵ

with given ∆i,0,x = ∆i,0,y = ∆i,0,z = 0.

According to (181), we have ∆i,t,x ≤ M2, ∆i,t,y ≤ M2, and ∆i,t,z ≤ M2 for all t > 0. Substituting ∆i,t,x ≤ M2

into (171) and using again Lemma 11 in (Chen & Wang, 2023), we have

∆i,t,y ≤ Cϵy

(t+ 1)1+vy
, with Cϵy =

(
4(1 + vy)

e ln( 4
2−2w̄ )

)1+vy (
∆i,0,y(1− w̄

2 )

Ll,1λy,0M2 + 2cl0λy,0
+

4

w̄

)
. (182)

Similarly, substituting ∆i,t,x ≤ M2 and ∆i,t,y ≤ M2 into (178), we have

∆i,t,z ≤ Cϵz

(t+ 1)1+vz
, with Cϵz =

(
4(1 + vz)

e ln( 4
2−2w̄ )

)1+vz (
∆i,0,z(1− w̄

2 )

(2M2(Lh,1 + czLl,2) + 2(ch0 + czLl,1))λz,0
+

4

w̄

)
.

(183)

Furthermore, substituting ∆i,t,y ≤ M2 and ∆i,t,z ≤ Cϵz

(t+1)1+vz into (176) yields

∆i,t,x ≤ Cϵz

(t+ 1)1+vx
, with Cϵx =

(
4(1 + vx)

e ln( 4
2−2w̄ )

)1+vx (
∆i,0,x(1− w̄

2 )

((Lh,1 + czLl,2)M2 + 2(ch0 + czLl,1) + Ll,1Cϵz)λx,0
+

4

w̄

)
.

(184)

By using (182)-(184) and Lemma F.2, we arrive at

T∑
t=1

∆i,t,x

νi,x
≤

T∑
t=1

√
2Cϵx

σi,x(t+ 1)1+vx−ςx
,

T∑
t=1

∆i,t,y

νi,y
≤

T∑
t=1

√
2Cϵy

σi,y(t+ 1)1+vy−ςy
,

T∑
t=1

∆i,t,z

νi,z
≤

T∑
t=1

√
2Cϵz

σi,z(t+ 1)1+vz−ςz
,

(185)
where νi,x, νi,y , and νi,z are given by νi,x =

σi,x√
2(t+1)ςx

, νi,y =
σi,y√

2(t+1)ςy
, and νi,z =

σi,z√
2(t+1)ςz

from Assumption 2.3. By
incorporating ∆i,0,x = ∆i,0,y = ∆i,0,z = 0 into Cϵx, Cϵy , and Cϵz in (182)-(184), we arrive at the result in Theorem 4.5-(i).

(2) The inequalities in (185) implies that ϵi = ϵi,z + ϵi,y + ϵi,x is finite even when T tends to infinity since vx > ςx, vy > ςy ,
and vz > ςz .
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G. Proofs of Corollary 4.3 and Corollary 4.7, as well as Further Discussion
G.1. Proof of Corollary 4.3

Proof. (i) For a strongly convex F (x), the convergence rate of Algorithm 2 is O(T−β1) based on (10). Therefore, setting
T−β1 = δ yields that the iteration complexity of Algorithm 2 is O(δ−

1
β1 ) in finding a δ-solution. Furthermore, since the

per-iteration complexity of Algorithm 2 is max{p, q}, the computational complexity of Algorithm 2 is O(max{p, q}δ−
1
β1 )

in finding a δ-solution.

According to the conditions 0 < vz < vy < vz < 1, 2ςx > vx, 2ςx > vz + vy, 2ςy > vz + vy, and 2ςz > vy given
in Theorem 4.1-(i), we can choose vx = 0.66, vy = 0.64, vz = 0.43, ςx = 0.65, ςy = 0.63, and ςz = 0.42. Under
these parameters, we have β1 = min{0.64, 0.44, 0.4, 0.43, 0.62, 0.72} = 0.4 and hence a computational complexity of
O(max{p, q}δ−2.5).

(ii) Similarly, for a convex F (x), the convergence rate of Algorithm 2 is O(T−(1−vx)) based on (11). Therefore, the
computational complexity of Algorithm 2 is O(max{p, q}δ−

1
1−vx ) in finding a δ-solution. Recalling the conditions

0 < vz < vy < vz < 1, ςx > 1
2 , 2ςx > vz+vy , 2ςx > 2vz+2−2vx, 2ςy > vz+vy , 2ςy > 2vz+2−2vx, 2ςy > vy+2−2vx,

2ςz > vz + 2 − 2vx, and 2ςz > vy given in Theorem 4.1-(ii), we can select vx = 0.77, vy = 0.75, vz = 0.5, ςx = 0.76,
ςy = 0.74, and ςz = 0.49 yielding 1− vx = 0.23 and a computational complexity of O(max{p, q}δ−4.35).

(iii) For a nonconvex F (x), the convergence rate of Algorithm 2 is O(T−(1−vx)) based on (12). Therefore, the computational
complexity of Algorithm 2 is O(max{p, q}δ−

1
1−vx ) in finding a δ-solution. We use vx = 0.615, vy = 0.60375, vz = 0.4,

ςx = 0.61125, ςy = 0.6, and ςz = 0.398125 to satisfy the conditions 0 < vz < vy < vx < 1, ςx > 1
2 , 2ςx > vz + vy,

2ςx > 2vz + 1 − vx, 2ςy > 2vz + 1 − vx, 2ςy > vy + 1 − vx, 2ςy > vz + vy, 2ςz > vz + 1 − vx, and 2ςz > vy
given in Theorem 4.1-(iii). Under these parameters, we have 1 − vx = 0.385 and hence a computational complexity of
O(max{p, q}δ−2.6).

G.2. Proof of Corollary 4.7

Proof. We select vx = 3
5 + κ, vy = 3

5 + κ
4 , vz = 2

5 , ςx = vx − κ
4 , ςy = vy − κ

4 , and ςz = vz − κ
8 with κ ∈ (0, 2

5 ) that
satisfy the conditions given in Theorem 4.1-(iii). Therefore, the accurate convergence of Algorithm 2 remains attainable.
Next, we quantify the tradeoff between the convergence rate of Algorithm 2 and the given cumulative privacy budget.

According to (185) in the proof of Theorem 4.5-(i), it has proven that the privacy budget ϵi is bounded by

ϵi ≤
T∑

i=1

√
2Cϵx

σi,x(t+ 1)1+vx−ςx
+

T∑
i=1

√
2Cϵy

σi,y(t+ 1)1+vy−ςy
+

T∑
i=1

√
2Cϵz

σi,z(t+ 1)1+vz−ςz
, (186)

where Cϵx, Cϵy , and Cϵz are positive constants, as given in the statement of Theorem 4.5-(i).

We proceed to characterize the inequality (186). By applying the following relationship

T∑
t=1

1

(t+ 1)r
≤
∫ T

0

1

(x+ 1)r
dx =

1

1− r
((T + 1)1−r − 1),

to (186), we can derive

ϵi = ϵi,x + ϵi,y + ϵi,y ≤
√
2Cϵx

σi,x(vx − ςx)

(
1− (T + 1)−(vx−ςx)

)
+

√
2Cϵy

σi,y(vy − ςy)

(
1− (T + 1)−(vy−ςy)

)
+

√
2Cϵz

σi,z(vz − ςz)

(
1− (T + 1)−(vz−ςz)

)
,

≤
√
2Cϵx

σi,x(vx − ςx)
+

√
2Cϵy

σi,y(vy − ςy)
+

√
2Cϵz

σi,z(vz − ςz)
. (187)

We denote the given cumulative privacy budget as ϵ′i > 0. According to the inequality (187), we can choose DP-noise

parameters as σi,x = 3
√
2Cϵx

(vx−ςx)ϵ′i
, σi,y =

3
√
2Cϵy

(vy−ςy)ϵ′i
, and σi,z = 3

√
2Cϵz

(vz−ςz)ϵ′i
, in which the parameters vx, vy, vz , ςx, ςy and ςz
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are fixed constants (predetermined parameters) that satisfy the conditions given in the statement of Theorem 4.1-(iii). It is
clear that a smaller ϵ′i will result in larger values of σi,x, σi,y , and σi,z .

Next, we analyze the convergence rate of Algorithm 2 under a nonconvex F (x), with setting DP-noise parameters
σi,x = 3

√
2Cϵx

(vx−ςx)ϵ′i
, σi,y =

3
√
2Cϵy

(vy−ςy)ϵ′i
, and σi,z = 3

√
2Cϵz

(vz−ςz)ϵ′i
.

Based on (167) in the proof of Theorem 4.1-(iii), we have

1

T + 1

T∑
t=0

E
[
∥∇F (xi,t)∥2

]
≤ C3

(T + 1)1−vx
. (188)

Given that vx is independent of σi,x, σi,y and σi,z , the accurate convergence of Algorithm 2 remains attainable even if ϵ′ tends
to zero. However, C3 is a positive constant that is positively correlated with DP-noise parameters σ2

i,x, σ2
i,y and σ2

i,z . This
correlation can be evidenced by the definition C3 = c6+c7

2λx,0
with c6 given in (166) and c7 given by c7 ≜ E [F (x̄0)− F (x∗)]:

C3 ≜
c6 + c7
2λx,0

=
3(cū∗

1
+ cū∗

2
+ cū∗

4
)(1 + vx)

4vx
+

Lf,1(σ
+
x )

2ςx
2λx,0(2ςx − 1)

+
Lf,1cx̄6λx,0vx
2(2vx − 1)

+

(
LF

m
+

3cū∗
5
+ Lf,1cx̄1λx,0

2

)
ĉx(2ςx + vx)

2(2ςx + vx − 1)
+

(
3cū∗

5
+ Lf,1cx̄2λx,0

2

)
ĉy(2ςy + vx)

2(2ςy + vx − 1)

+

(
3cū∗

6
+ Lf,1cx̄3λx,0

4

)
ĉz(2ςz + vx)

2ςz + vx − 1
+

E [F (x̄0)− F (x∗)]

2λx,0

+

(
3cū∗

7
+ Lf,1cx̄4λx,0

4

)
c̄z max

{
2ςx − 2vz + vx

2ςx − 2vz + vx − 1
,

2ςy − 2vz + vx
2ςy − 2vz + vx − 1

,
2ςz − vz + vx

2ςz − vz + vx − 1

}
+

(
3cū∗

3
+ Lf,1cx̄5λx,0

4

)
c̄y max

{
2ςy − vy + vx

2ςy − vy + vx − 1
,
2− 2vy + vx
1− 2vy + vx

}
,

in which ĉy and ĉz are given by

ĉy =
(
4m(σ+

y )
2 + (cŷ2 + cŷ3)C0λ

2
y,0 + cŷ4λ

2
y,0

)( 8ςy

e ln( 8
8−δ2

)

)2ςy (E
[
∥ŷ0∥2

]
(4− δ2)

4cy
+

8

δ2

)
,

ĉz = (4m(σ+
z )

2 + cẑ1C0λ
2
z,0 + cẑ2λ

2
z,0)

(
8ςz

e ln( 8
8−δ2

)

)2ςz (E
[
∥ẑ0∥2

]
(4− δ2)

4cz
+

8

δ2

)
.

Based on the definition σ+
x = maxi∈[m]{σi,x}, σ+

y = maxi∈[m]{σi,y}, and σ+
z = maxi∈[m]{σi,z}, we have that C3 is

directly proportional to σ2
i,x, σ2

i,y, and σ2
i,z . Given that σ2

i,x, σ2
i,y, and σ2

i,z are all inversely proportional to (ϵ′i)
2, this leads

us to deduce the following inequality based on (188):

1

T + 1

T∑
t=0

E
[
∥∇F (xi,t)∥2

]
≤ C3

(T + 1)1−vx
= O

(
T−(1−vx)

mini∈[m]{(ϵ′i)2}

)
.

Recalling that ϵ′i > 0 represents any given cumulative privacy budgets and considering that vx = 3
5 + κ with κ ∈ (0, 2

5 )
satisfies vx ∈ (0.6, 1), we arrive at the result in Corollary 4.7.

G.3. Discussion on Relation with Existing Results on Single-Level Stochastic Optimization under The Constraint of
Differential Privacy

In this subsection, we briefly show that when we only consider the lower-level optimization part of our algorithm, i.e.,
when our bilevel optimization problem reduces to single-level optimization, our algorithm has exactly the same order of
convergence rate as that in Bassily et al. (2019) for single-level stochastic optimization under the constraint of differential
privacy.
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Proposition G.1. In the special case where the bilevel optimization problem in (1) does not have the upper-level optimization
objective function, problem (1) reduces to decentralized single-level optimization with the objective function g(y) =
1
m

∑m
i=1 gi(y) and gi(y) = Eξi [l(y; ξi)]. If the data ξi satisfies an arbitrary n-dimension (unknown) distribution, the

objective function g(y) is convex, the optimization variable y is within a convex set Y ⊂ Rd, and the number of iterations T

is given by T = O(
(maxi∈[m]{ϵi}n)4

M4d2 ) with M = maxy∈Y ∥y∥, then the loss at yiT generated by Algorithm 2 satisfies

E[g(yiT )− g(y∗)] ≤ M · O

( √
d

mini∈[m]{ϵi}n
+

1√
n

)
,

where y∗ = argminy∈Yg(y), ϵi is the privacy budget of agent i, and d is the dimension of the optimization variable y.

Proof. Following Bassily et al. (2019), we denote the data distribution as Pn, Di = (ξ1i , · · · , ξni ) as a sequence of i.i.d.
samples from Pn, and g(yit;Pn)− g(y∗;Pn) as the excess population loss of y.

By leveraging an argument similar to that of Theorem 3 in Chen & Wang (2023), we can derive

E[g(yiT ;Di)−min
y∈Y

g(y;Di)] ≤ O(T−β) ≈ O(T−0.25), (189)

where Di ∼ Pn and β =
1−vy

2 = 1
4 (vy represents the decaying rate of the stepsize λy,t given in Algorithm 2; here we set

vy = 0.5).

We define y∗n = argminy∈Yg(y;D) with D ∼ Pn. According to Section 5.1.2 in Shapiro et al. (2021), we can obtain the
following relationship:

E[g(y∗n;P)− g(y∗;P)] ≤ O
(

M√
n

)
. (190)

Given that Di and D follow the same distribution, we set T in (189) as T = O
(

((maxi∈[m]{ϵi}n)4

M4d2

)
and then combine (189)

and (190) to obtain

E[g(yiT ;Pn)− g(y∗;Pn)] ≤ M · O

( √
d

mini∈[m]{ϵi}n
+

1√
n

)
, (191)

which implies the result in Proposition G.1.

H. The Reason why Existing DSBO Algorithms cannot Ensure a Finite Cumulative Privacy
Budget ϵi

H.1. The Limitation of Existing DSBO Algorithms under Differential-Privacy Constraints

In this section, we explain the limitation of existing DSBO algorithms in Chen et al. (2022), Yang et al. (2022), and Chen
et al. (2023) under LDP constraints. Specifically, to obtain good approximations of the hypergradient and/or the optimal
solution y∗ to the lower-level optimization problem in (1), these algorithms incorporate inner-loop iterations into the outer
algorithmic iteration, which leads to a cumulative privacy budget that grows to infinity as the number of outer iterations
tends to infinity.

We use the DSBO-HIGP algorithm in Chen et al. (2023) as an example to illustrate this idea. To ensure privacy, persistent
DP-noises have to be added to messages transmitted in each iteration of the DSBO-HIGP algorithm. Then, the modified
DSBO-HIGP algorithm with injected DP-noises is described in the following Algorithm 3. It can be seen that Algorithm 3
has double inner-loops: a K-step inner-loop (lines 4-8) for achieving a good approximation of y∗ (the optimal solution to the
lower-level optimization problem in (1)) and an N -step inner-loop (lines 9-15) for a good estimation of the hypergradient
∇F (x). DP-noises have been injected into all communication steps to enable privacy. According to Theorem 3.3
in Chen et al. (2023), the convergence of the original DSBO-HIGP can be guaranteed only when K = log(T ), N ≥ 1,
αt = O( 1√

T
), ∀T > 0, βt = O( 1√

T
), ∀T > 0, and γ ∈ (c1, c2) with 0 < c1 < c2. It is worth noting that when T tends to

infinity, the number of iterations K also tends to infinity.
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Algorithm 3 LDP design for DSBO-HIGP
1: Input: Stepsizes αt, βt, and γ; Iterations T > 0, K > 0, and N = log(T ); Initialization y0i,k = 0, xi,0 = ri,0 = 0,

d0i,t = −b0i,t, s
0
i,t = −b0i,t, and z0i,t = 0; DP-noises ϑk

i,t, ζ
k
i,t, and χk

i,t satisfying Assumption 3.1.
2: for t = 0, 1, · · · , T − 1 do
3: y0i,t = yKi,t−1.
4: for k = 0, 1, · · · ,K − 1 do
5: for i = 0, 1, · · · ,m− 1 do
6: yk+1

i,t = yki,t +
∑

j∈Ni
wij(y

k
j,t + ζkj,t − yki,t)− βtv

k
i,t with vki,t = ∇ygi(xi,t, y

k
i,t; ξ

k
i,t).

7: end for
8: end for
9: for k = 0, 1, · · · , N − 1 do

10: for i = 0, 1, · · · ,m− 1 do
11: zk+1

i,t = zki,t +
∑

j∈Ni
wij(z

k
j,t + ϑk

j,t − zki,t)− γdki,t,

12: sk+1
i,t = Hk+1

i,t zk+1
i,t − bk+1

i,t ,

13: dk+1
i,t = dki,t +

∑
j∈Ni

wij(d
k
j,t + ϑk

j,t − dki,t) + sk+1
i,t − ski,t.

14: end for
15: end for
16: ui,t = ∇xfi(xi,t, y

K
i,t;φi,0)−∇2

xygi(xi,t, y
K
i,t; ξi,0)z

N
i,t.

17: for i = 0, 1, · · · ,m− 1 do
18: xi,t+1 = xi,t +

∑
j∈Ni

wij(xj,t + χj,t − xi,t)− αtri,t,
19: ri,t+1 = (1− αt)ri,t + αtui,t.
20: end for
21: end for
22: Output: x̄T = 1

m

∑m
i=1 xi,T .

With this understanding, we first analyze the cumulative privacy budget ϵi,y associated with yi,t in Algorithm 3. By
leveraging (185), the cumulative privacy budget ϵi,y of Algorithm 3 satisfies

ϵi,y ≤
T∑

t=1

K∑
k=1

O

(
βt

σk
i,y,t(t+ 1)

)
, (192)

where σk
i,y,t represents the variance of the DP-noise ζki,t.

When the DP-noise variance decays over the outer-loop iteration t (in this case, a fixed DP-noise is injected into the
consensus operation at Algorithm 3 Step 6 during each inner-loop iteration, which degrades the estimation performance of
the global y∗), the convergence of Algorithm 3 is significantly affected. Therefore, we consider the following two designs
for σk

i,y,t:

(1) The DP-noise variance decays over both inner-loop iterations k and outer-loop iterations t, i.e., σk
i,y,t =

O
(

1
(t+1)ςy (k+1)ςy

)
,

(2) The DP-noise variance decays over inner-loop iterations k, i.e.,σk
i,y,t = O

(
1

(k+1)ςy

)
.

By using the decaying stepsize βt = O( 1
(t+1)vy ) with vy ∈ (0, 1), the cumulative privacy budget ϵi,y for the aforementioned

two scenarios satisfy

(1) ϵi,y ≤
T∑

t=1

O
(

1

(t+ 1)1+vy−ςy

) K∑
k=1

O ((k + 1)ςy ) , (2) ϵi,y ≤
T∑

t=1

O
(

1

(t+ 1)1+vy

) K∑
k=1

O ((k + 1)ςy ) ,

which imply that the cumulative privacy budget ϵi,y in both scenarios will grow to infinity when the number of outer
iterations T tends to infinity, thus violating rigorous ϵi-LDP privacy constraints. Of course, employing a constant stepsize γ
in the N -step inner-loop (lines 9-15) of Algorithm 3 exacerbates this issue, leading to a significant increase in the cumulative
privacy budget ϵi,z (see the following Section H.2 for details).

The above mentioned issue also exists in other inner-loop-based DSBO algorithms (Chen et al., 2022; Yang et al., 2022).
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H.2. The Calculations of the Cumulative Privacy Budget for the Algorithms Listed in Table 1

First, we compute the computational complexity and the cumulative privacy budget of our Algorithm 2, i.e., LDP-DSBO.
We select vx = 3

5 + κ, vy = 3
5 + κ

4 , vz = 2
5 , ςx = vx − κ

4 , ςy = vy − κ
4 , and ςz = vz − κ

8 with κ ∈ (0, 2
5 ) that satisfy the

conditions given in Theorem 4.1-(iii) (Since all results in Table 1 are obtained for a nonconvex F ). Under these settings, the
iteration complexity of Algorithm 2 is O

(
δ−

5
2−5κ

)
and the cumulative privacy budget is O

(
1
κ

)
(Detailed computations of

the iteration complexity and the cumulative privacy budget have been given in the proof of Corollary 4.7 in Appendix G.2).
In this case, we can choose κ ≈ 0.015 such that the iteration complexity of Algorithm 2 is no more than O

(
δ−2.6

)
and the

cumulative privacy budget is 66.67, which is a constant and hence has an order of O(1).

Then, we compute the cumulative privacy budget of the remaining algorithms (except LDP-DSBO) listed in Table 1. For
these algorithms, we employ the same Laplace noise used in our algorithm.

Given that all remaining algorithms in Table 1 use a constant stepsize, we estimate their cumulative privacy budgets ϵi under
a stepsize γ > 0 and the DP-noise variance O

(
1

(t+1)ς

)
for some ς ∈ (0, 1). Additionally, we do not include inner-loops

in this estimation. As explained in Subsection H.1, inner-loops cannot ensure a finite cumulative privacy budget in the
infinite-time horizon, and thus a relaxed condition is considered for these algorithms, which makes the results better than the
actual case. Based on (185), we obtain

ϵi ≤
T∑

t=1

O
(

γ

σt(t+ 1)

)
≤

T∑
t=1

O
(

1

(t+ 1)1−ς

)
≤ O ((T + 1)ς) , (193)

where σt is the DP-noise variance and we have used the following relation for the last inequality:

T∑
t=1

1

(t+ 1)1−ς
≤
∫ T+1

1

xς−1dx ≤ 1

ς
(T + 1)ς − 1

ς
≤ 1

ς
(T + 1)ς . (194)

By substituting the respective complexities of the algorithms listed in Table 1 into (194), we can obtain the results given in
the last column of Table 1.
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