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Figure 1: VFXMaster is a unified reference-based cinematic visual effect (VFX) generation frame-
work that can reproduce the intricate dynamics and transformations from a reference video onto
a user-provided image. It not only shows outstanding performance on in-domain effects, but also
strong generalization capability on out-of-domain effects.

ABSTRACT

Visual effects (VFX) are crucial for the expressive power of digital media, yet
their creation remains a major challenge for generative AI. Prevailing methods
often rely on the one-LoRA-per-effect paradigm, which is resource-intensive and
fundamentally incapable of generalizing to unseen effects, thus limiting scalabil-
ity and creation. To address this challenge, we introduce VFXMaster, the first
unified, reference-based framework for VFX video generation. It recasts effect
generation as an imitation task, enabling it to reproduce diverse dynamic effects
from a reference video onto a target content. Critically, it demonstrates remarkable
generalization to unseen effect categories. Specifically, we design an in-context
conditioning strategy that prompts the model with a reference example. We use
an in-context attention mask to precisely decouple and inject the essential effect
attributes, allowing a single unified model to master the effect imitation without
information leakage. In addition, we propose an efficient one-shot effect adapta-
tion mechanism to boost generalization capability on tough unseen effects from
a single user-provided video rapidly. Extensive experiments demonstrate that our
method effectively imitates various categories of effect information and exhibits
outstanding generalization to out-of-domain effects. To foster future research, we
will release our code, models, and a comprehensive dataset to the community.
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1 INTRODUCTION

Visual effects (VFX) are an integral component of modern digital media, greatly enriching the vi-
sual expressiveness of films, games, and social media content. Traditional VFX production is a
time-consuming and labor-intensive process that demands specialized skills across multiple stages,
including modeling, rigging, animation, rendering, and compositing (Du et al., 2021). Recent and
rapid advancements in generative AI bring revolutionary opportunities for content creation (Ma
et al., 2025; Wang et al., 2024). In particular, the growing maturity of video generation models (Yang
et al., 2024; Kong et al., 2024; Wan et al., 2025; HaCohen et al., 2024) is ushering in a new era of
controllable content synthesis. However, due to data scarcity and sophisticated transformations, the
dynamic visual effect generation task is still rarely studied so far.

Existing video generation models, pretrained on large-scale real-world datasets, possess powerful
content generation capability. However, VFX often contain anti-physical, surreal, and counter-
intuitive elements, such as the particle dynamics of an energy beam or the brilliant patterns of
magical elements (Bai et al., 2025b). These highly abstract and imaginative concepts represent an
out-of-domain challenge that falls significantly outside the knowledge scope of pretrained models.
Even with highly detailed text prompts, these models struggle to produce the desired effects accu-
rately. Furthermore, prevailing controllable generation methods focus on spatial-aligned conditions,
such as keypoints (Gu et al., 2025; Jeong et al., 2025), depth maps (Peng et al., 2024; Wang et al.,
2025), or edge sketches (Yang et al., 2025b; Geng et al., 2025), which cannot effectively model the
intricate, unstructured dynamics and textures of visual effects. Several recent works have achieved
preliminary visual effect generation by finetuning Low-Rank Adapters (LoRA) on pretrained mod-
els (Hu et al., 2022; Liu et al., 2025).

However, the one-LoRA-per-effect paradigm suffers from a fundamental scalability bottleneck. This
paradigm requires dedicated data and training for each effect. More critically, this closed-set training
paradigm strictly confines the model’s capability to known effects. It is unable to handle any unseen
effect category, which severely limits the system’s applicability and the user’s creative freedom.
Recently, Mao et al. (2025) has made initial attempts using the LoRA-MoE architecture for learning
the effects in the training set jointly, but they still cannot generalize to unseen effects. So how can
we break through this limitation and achieve straightforward VFX video generation? We observe
that videos sharing the same VFX differ only in subjects and backgrounds, but maintain similar
dynamics and transformation process. This observation inspires us to regard two videos with the
same VFX as a reference-target data pair for in-context learning, i.e., using one video as reference
to guide the model in reproducing its visual effect. Such a reference-based paradigm maximizes data
utilization and enables a unified framework for learning a general VFX imitation capability rather
than memorizing specific effects. This provides users with an intuitive and friendly creative tool.

In this work, we propose VFXMaster, the first unified framework for VFX video generation. By
learning from reference effects via in-context learning, VFXMaster integrates diverse effects into
a single model and demonstrates strong generalization capability beyond its training set. Specifi-
cally, we design an in-context learning paradigm where a reference prompt-video pair serves as an
example, while a target prompt and the first frame act as a query to condition the model for the
target video. However, the reference context contains components irrelevant to the effect. To pre-
vent information leakage and interference, we introduce an in-context attention mask mechanism to
learn only the visual effect from the reference example. Furthermore, to enhance generalization to
Out-of-Domain (OOD) effects, we design an efficient one-shot effect adaptation strategy that intro-
duces a set of learnable concept-enhance tokens to further learn the fine-grained VFX dynamics and
transformations from a single user-provided sample. With a low-cost token finetuning, the model
can rapidly improve the generalization capability on tough OOD samples.

We conduct extensive experiments on existing benchmarks to evaluate our method. In addition, to
validate generalization capability, we build a new OOD test set and design a comprehensive evalua-
tion metric tailored for reference-based effect generation. The results demonstrate that VFXMaster
achieves remarkable VFX generation performance and strong generalization capability when facing
OOD data. To support future research, the curated dataset and designed metric will be released. In
summary, our contributions are as follows:

• We propose VFXMaster, the first unified reference-based framework for VFX video gener-
ation. It achieves high-quality effect imitation and strong generalization to unseen effects.

2
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• We introduce an in-context conditioning strategy that incentivizes the model to reproduce
the visual effect from a reference example onto a target image. We design an in-context
attention mask to focus on the visual effect and prevent information leakage.

• We propose an efficient one-shot effect adaptation strategy. Using a set of concept-enhance
tokens enables the model to further learn fine-grained VFX from a single video, signifi-
cantly improving its generalization capability for tough OOD scenarios.

2 RELATED WORK

2.1 CONTROLLABLE VIDEO GENERATION

Diffusion models have significantly advanced video generation, as evidenced by the work of (Ho
et al., 2020; Song et al., 2020a;b; Rombach et al., 2022), facilitating numerous innovative method-
ologies. Among these, the Diffusion Transformer (DiT) (Peebles & Xie, 2023) leverages Trans-
former architectures to effectively capture long-range dependencies, thereby improving temporal
coherence and dynamics. Based on DiT, CogVideoX (Yang et al., 2024) utilizes 3D full atten-
tion to ensure spatial–temporal consistency, whereas Hunyuan-DiT (Kong et al., 2024) integrates
large-scale pre-trained models to enhance contextual details. Controllable video generation has also
garnered considerable interest for its applications in video editing and content creation. Several stud-
ies (Bai et al., 2025a; 2024) introduce 3D control signals to manipulate object positions, motion tra-
jectories, and camera perspectives within the 3D scene. Other work (Yang et al., 2025a)incorporates
VLM as a motion planner to generate physically plausible videos, or by introducing additional
mechanisms such as StyleMaster (Ye et al., 2025), which combines style extraction mechanism with
motion control to enhance video stylization and transfer. In addition, ControlNet (Zhang et al.,
2023) facilitates image generation through control signals by replicating designated layers from pre-
trained models and connecting them with zero convolutions. FlexiAct (Zhang et al., 2025) utilizes
the denoising process’s capability to focus on various frequency components over time, facilitating
the transfer of motion from a reference video to a selected target image. Beyond controllability,
other works extend video generation capability. Wan-FLFV (Wan et al., 2025) generates smooth
transitions between user-specified starting and ending frames, while VACE (Jiang et al., 2025) inte-
grates ID-to-video generation, video-to-video editing, and mask-based editing into a unified model,
enabling efficient video generation and editing.

2.2 VISUAL EFFECTS GENERATION

Visual effects (VFX) have recently been explored through video generation models, providing a
more efficient alternative to traditional production. Despite advancements in general video genera-
tion, the generation of controllable visual effects (VFX) remains insufficiently explored, largely due
to the lack of VFX data and the constraints of conditional control. MagicVFX (Guo et al., 2024)
is restricted to adding green-screen overlays, lacking extensibility and controllability. VFXCre-
ator (Liu et al., 2025) generates effects by training a separate LoRA for each case, which limits it to
single-effect video generation. Although OminiEffects (Mao et al., 2025) represents a step forward
by employing LoRA-MoE to enable spatially controllable composite effects, the supported effect
types are still narrow and confined to in-domain combinations. Despite these advances, current ap-
proaches cannot unify diverse effects within a single framework and show limited generalization to
out-of-domain effects. In this work, we propose the first unified framework for VFX video genera-
tion to fill the gap in previous research, offering a comprehensive solution for this task.

3 METHOD

Controllable visual effect (VFX) generation aims to provide more intricate pixel-level dynamic guid-
ance beyond text prompts, thereby enabling cinematic VFX video creation. In this work, we present
VFXMaster, the first reference-based framework that evolves image-to-video (I2V) generation for
this task through in-context learning. With a single reference VFX video provided, users can repro-
duce this effect on a target image. In Section 3.1, we provide preliminary about the base model. In
Section 3.2, we introduce the design of our reference-based in-context learning on diverse categories
of dynamic visual effects. In Section 3.3, we present efficient one-shot effect adaptation for tough
Out-of-Domain (OOD) cases.

3
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Figure 2: Overview of VFXMaster. 1) During training, we randomly sample two prompt-video
pairs with the same visual effects as reference and target respectively. By sharing the same 3D
VAE and text encoder, the reference part and the target part are landed into the same latent space.
We concatenate them along the token dimension as a unified token sequence and feed into the DiT
blocks. 2) We design an attention mask to manage information flow to focus on the visual effect
of the reference and prevent information leakage. 3) For the tough Out-of-Domain (OOD) samples,
we propose an efficient one-shot effect adaptation process to train the concept-enhance tokens for
improving the generalization capability.

3.1 PRELIMINARY

We adopt CogVideoX-5B-I2V (Yang et al., 2024) as our basic image-to-video model, which is built
upon a 3D Variational Autoencoder (VAE) (Kingma & Welling, 2013), a Diffusion Transformer
(DiT) architecture and the T5 encoder (Raffel et al., 2020). Given an image I ∈ Rh×w×c and a text
prompt, CogVideoX generates a video V ∈ Rf×h×w×c. During training, 3D VAE compresses the
input video into a latent z. The first image of target video is padded with −1 to match the temporal
length of the input video and then encoded as zi. Subsequently, zi and z are concatenated along the
channel dimension, and fed into the DiT blocks. This process is supervised by minimizing the gap
between the predicted noise and standard Gaussian noise (Ho et al., 2020):

Ldiff (Θ) = Ext,t,c,ϵ

[
∥ϵ− ϵΘ (zt, t, g)∥22

]
where Θ denotes the denoising network, ϵ ∈ N (0, I) represents standard Gaussian noise. xt is the
noised sample at timestep t ∈ [1, 1000). g denotes the text embeddings.

3.2 IN-CONTEXT CONDITIONING FOR VFX VIDEO GENERATION

To achieve straightforward VFX video generation, we propose a unified in-context conditioning
framework, eliminating the need for training massive LoRA models for each effect. Specifically,
we define a new input-output pair format: {Example: reference prompt → reference video, Query:
target prompt & target image → ?}, which motivates the neural network to imitate the sophisticated
relationships between reference pairs and reproduce on a target image. An interesting observation is
that videos with the same VFX naturally form reference-target data pairs. Therefore, we randomly
sample two prompt-video pairs from the same VFX set as reference and target at each training step.
The reference prompt and target prompt are encoded as word embeddings gtarget and gref by the
text encoder. As shown in Fig. 2, the reference video and target video are encoded as latent codes
zref and ztarget by the 3D VAE, where ztarget is noised. We apply identical 3D Rotary Position
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Embedding (RoPE) (Su et al., 2024) to both target and reference video, explicitly promoting the
model to perceive the relative spatial-temporal relationships during contextual interaction. Since the
reference part and the target part are landed in the same latent space, we concatenate them along
the token dimension as a unified token sequence zuni = {gori, gref , zori, zref}. Thus, we only
need to finetune the spatial-temporal attention to learn the VFX imitation process between these
tokens, without introducing any additional trainable parameters or modules. During optimization,
the diffusion loss is only calculated for the target video.

In-Context Attention Mask. In the spatial-temporal attention, text embeddings serve as seman-
tic anchors that guide the noise prediction process by establishing fine-grained correspondences
between text descriptions and visual features. However, unstrained token concatenation will cause
unexpected information leakage and disrupt the alignment between each video and its corresponding
text description, e.g., the target video may generate subjects and background mentioned in the refer-
ence prompt. To address this, we introduce an in-context attention mask to manage information flow,
as shown in Fig. 2. When the target prompt tokens serve as query, they can attend to all contexts.
The VFX-relevant components in target and reference prompt tokens that exhibit high semantic sim-
ilarity are amplified, while other information is attenuated. The reference prompt-video pair only
attends to each other to provide sufficient effect representations. The target video tokens could only
attend to the corresponding prompt tokens and the reference video tokens. The visual information
flows from clean reference tokens to noisy target video tokens. As the network depth increases, the
multi-head attention layers progressively refine the target representations through reference-guided
feature interactions. This information transfer is crucial for enabling high-fidelity VFX generation
in a single forward pass.

After training on a curated dataset with diverse categories of dynamic visual effects, the model not
only masters unified VFX imitation capability on the training set but also exhibits strong generaliza-
tion capability on unseen visual effects.

3.3 EFFICIENT ONE-SHOT EFFECT ADAPTATION

Although in-context conditioning equips the model with a unified effect imitation capability, it might
show suboptimal performance when dealing with Out-of-Domain (OOD) effects. To solve this
problem, we introduce an efficient one-shot effect adaptation strategy, which enables the model to
further understand the intricate characteristics of a new effect from a single user-provided example
at a minimal computational cost. Specifically, we fix the base model and introduce a small set of
learnable concept-enhance tokens zce, which are concatenated with the unified token sequence zuni
along the token dimension. To prevent these new parameters from overfitting to this single example,
we apply data augmentations, such as random cropping, flipping, shearing, and sharpening during
the one-shot adaptation. Furthermore, an in-context attention mask is applied, ensuring that the
concept-enhance tokens zce can interact with all contexts for learning fine-grained visual effect,
only the target text and video tokens can attend to zce. Such an efficient one-shot effect adaptation
strategy encourages tokens to comprehensively excavate the detailed attributes of the effect from a
single example. After training, these tokens act as a precise semantic proxy for the new effect.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets. The training data in our experiments is sourced from the open-source Open-VFX (Liu
et al., 2025) dataset, commercial platforms such as Higgsfield (Higgsfield, 2025) and PixVerse (Pix-
verse, 2025), and other online resources. In total, it consists of 10k samples across 200 effect cat-
egories, including character transformations, environment transitions, and artistic style changes. In
addition, to assess the generalization capability of our method, we constructed a test dataset specif-
ically for OOD effects. This dataset enables evaluation of the model’s robustness to effects unseen
during training.

Implement Details. We train VFXMaster on the 10k effect dataset by randomly pairing samples
of the same effect category, using CogVideoX-5B as the backbone. Considering the diverse sources
of the dataset and the varying resolutions of user-provided videos in practice, we adopt a multi-
resolution training strategy, where reference videos are padded to match the shape of the training
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Figure 3: In-Domain Comparison. Qualitative comparison of ours with VFXCreator (Liu et al.,
2025) and OminiEffects (Mao et al., 2025) on the OpenVFX dataset. CogVideoX* refers to
CogVideoX after supervised fine-tuning on our VFX dataset. All human portraits used in the exper-
iment are AI-generated, and this applies to all subsequent images.

videos. Each training video is uniformly sampled to 49 frames at 8 fps. For training, we update
only the 3D full-attention layers within the DiT blocks using the Adam optimizer with a learning
rate of 1e-4. The model is trained for 40,000 steps on NVIDIA A800 GPUs. The concept-enhance
tokens zce ∈ R1×226×c, initialized with zero, where c denotes the embedding dimension (default
c = 3072). For further details, please see Appendix B.2 and B.3.

Comparison Methods. We evaluate our method on the test set of the Open-VFX dataset, comparing
it against the baseline model CogVideoX-5B as well as state-of-the-art VFX generation approaches,
VFXCreator and Omni-Effects. For fairness, the baseline model is fine-tuned on the same dataset
for an equal number of training steps. Since existing methods show limited generalization to out-of-
domain effects, we further conduct an additional evaluation to specifically assess the generalization
capability of our method.

Evaluation Metrics. Following prior work (Liu et al., 2025), we evaluate our method using two
established metrics: Fréchet Video Distance (FVD) (Unterthiner et al., 2018) and Dynamic De-
gree (Huang et al., 2024). In addition, to comprehensively assess the quality of visual effects gener-
ation, we introduce a new evaluation framework, the VFX-Comprehensive Assessment Score (VFX-
Cons.). VFX-Cons. leverages the reference video and prompts Visual Language Model (VLM) (Co-
manici et al., 2025) to evaluate visual effects quality from three perspectives: Effect Occurrence
Score (EOS), Effect Fidelity Score (EFS), and Content Leakage Score (CLS). EOS measures
whether visual effects occur in the generated video. Building upon EOS, EFS assesses whether
the generated effects are consistent with those in the reference video, while CLS evaluates whether
non-effect-related attributes from the reference video are undesirably transferred to the generated
video. Complete details of the metrics are provided in Appendix C.2.

4.2 QUANTITATIVE EVALUATION

In-domain Effects. To quantitatively evaluate the generation of in-domain effects, we conducted
experiments on 15 effect categories from the OpenVFX test set. As shown in Table 1, we performed
a comprehensive comparison of VFXMaster against two state-of-the-art VFX generation methods
and a baseline model fine-tuned on our collected data. The results indicate that VFXMaster outper-
forms all competing methods on the average scores across all evaluation metrics. It shows significant
advantages in visual quality, temporal coherence, and dynamic range, particularly for effects with
complex details and intense motion such as “Explode”, “Harley”, and “Venom”. Furthermore, VFX-
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Table 1: Performance comparison on OpenVFX dataset. CogvideoX* refers to CogVideoX after
supervised fine-tuning on our VFX dataset. Avg. represents the average score over all effects. And
the highest metric values are highlighted in bold.

Metrics Methods Cake Crumble Crush Decapitate Deflate Dissolve Explode Eye-pop Harley Inflate Levitate Melt Squish Ta-da Venom Avg.

FVD↓

CogvideoX* 1647 1951 1273 2188 1662 2268 2461 1649 2188 2037 1512 3260 1876 1338 2838 2010
VFX Creator 1776 1580 1156 1754 1997 1607 1886 1447 2815 2089 1143 2547 1880 1107 3062 1856
Omini-Effects 1548 1410 1136 1263 1037 1543 2044 1559 2501 1464 1295 2418 1923 1368 2678 1679

Ours 1479 1276 1065 1761 981 1335 981 1395 1173 1626 882 2282 1432 876 1992 1369

Dynamic
Degree ↑

CogvideoX* 1.0 1.0 0.6 0.6 0.4 0.4 1.0 0.0 1.0 0.4 0.0 0.6 1.0 0.8 1.0 0.65
VFX Creator 1.0 1.0 0.0 0.6 0.0 0.8 1.0 0.0 1.0 1.0 0.0 0.6 1.0 1.0 1.0 0.67
Omini-Effects 1.0 1.0 0.6 0.6 0.2 0.4 1.0 0.2 1.0 1.0 0.0 0.8 1.0 0.8 1.0 0.71

Ours 1.0 1.0 1.0 0.8 0.8 0.4 1.0 0.2 1.0 1.0 0.2 0.8 1.0 0.8 1.0 0.80

VFX Cons.↑

CogvideoX* 0.73 0.87 1.00 0.47 0.27 0.80 0.40 0.93 1.00 0.73 0.60 0.93 0.80 0.73 1.00 0.75
VFX Creator 0.73 0.80 0.80 0.27 0.73 1.00 0.67 1.00 1.00 0.87 0.73 1.00 1.00 0.87 1.00 0.83
Omini-Effects 0.87 0.87 0.73 0.87 0.53 1.00 0.67 1.00 1.00 0.80 0.80 1.00 0.87 0.80 1.00 0.85

Ours 0.80 0.93 1.00 0.93 0.80 1.00 0.73 1.00 1.00 0.80 0.80 1.00 1.00 0.87 1.00 0.91

Master achieved the highest score on our proposed comprehensive metric, VFX Cons. This validates
the effectiveness of our designed in-context conditioning paradigm and in-context attention mask.
These results prove that our model not only transfers reference effects successfully but also pre-
serves their visual details with high fidelity. It precisely decouples effect attributes from irrelevant
content, thus effectively preventing content leakage.
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Figure 4: Out-of-Domain Comparison.

Out-of-Domain Effects. We con-
ducted a dedicated OOD test to eval-
uate the model’s generalization capa-
bility to unseen effects. Since exist-
ing methods generally lack this capa-
bility, our comparison focused on two
versions of our model: one trained
only with in-context learning and an-
other enhanced with one-shot effect
adaptation. This comparison aimed
to validate the effectiveness of our
two core designs. in-context con-
ditioning establishes a foundational
generalization capability, while effi-
cient one-shot effect adaptation fur-
ther enhances it. As shown in
Table 2, the results show that in-
context conditioning alone provides
the model with some OOD gener-
alization capability. After incorpo-
rating one-shot effect adaptation, all
performance metrics improved sig-
nificantly. Specifically, the Effect Fi-
delity Score (EFS) increased substan-
tially from 0.47 to 0.70, and the Con-
tent Leakage Score (CLS) rose from
0.79 to 0.87. This data demonstrates
that the one-shot adaptation mecha-
nism can efficiently capture the core
visual features of a new effect from a single sample. It accurately guides the generation process,
significantly improving effect fidelity and effectively suppressing content leakage.

4.3 QUALITATIVE EVALUATION

In-domain Qualitative Analysis. We present a qualitative comparison of VFXMaster against three
representative models across four different effects, as shown in Fig. 3. In the first three examples,
our method demonstrates superior dynamic trajectories, texture details, and material representation.
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Table 2: Out-of-Domain Tests and Ablation Studies. Ours (one-shot) refers to the method en-
hanced by one-shot adaptation based on Ours.

Methods FVD↓ Dynamic Degree↑ EOS ↑ EFS ↑ CLS ↑ VFX Cons. ↑

Ours (10k) 2153 0.79 1.00 0.47 0.79 0.75
Ours (one-shot) 2047 0.84 1.00 0.70 0.87 0.86

w/o attn mask 3467 0.80 0.89 0.11 0.24 0.41
w/o ref prompt 2483 0.74 1.00 0.40 0.76 0.72

Ours (2k) 2938 0.60 0.97 0.34 0.77 0.69
Ours (4k) 2572 0.64 0.99 0.40 0.76 0.72
Ours (6k) 2350 0.74 1.00 0.42 0.79 0.74

In the fourth example, our method not only successfully imitates the “Harley Quinn” style makeup
effect but also achieves more precise identity preservation. The overall comparison indicates that
for in-domain data, VFXMaster consistently generates VFX videos with the highest visual fidelity
and dynamic complexity.

Out-of-Domain Qualitative Analysis. Leveraging the generalization capability of the VFXMas-
ter framework, we showcase its performance on various OOD data. Fig. 4 compares the model
trained with only in-context conditioning against the one enhanced by one-shot effect adaptation. It
is evident that with in-context conditioning, the model acquires a foundational generalization abil-
ity, enabling it to generate effects that are consistent with the reference video in terms of content,
dynamic patterns, and visual style. Furthermore, after being enhanced with one-shot effect adapta-
tion, the model can better capture the unique texture details and core dynamic features from a single
sample. This leads to higher-quality generalization results, fully demonstrating the effectiveness of
our model design.

4.4 ABLATION STUDY

In-Context Attention Mask. We conducted an ablation study to verify the critical role of our
in-context attention mask. The results are presented in the second section of Table 2. Re-
moving this module caused a catastrophic drop in model performance. The quality and co-
herence of the generated videos were severely degraded. Critically, the Effect Fidelity Score
(EFS) plummeted to an almost negligible 0.11, while the Content Leakage Score (CLS) fell
sharply from 0.79 to 0.24. In some cases, the effect failed to generate entirely. These
outcomes indicate that without effective information flow control, the model cannot isolate
core effect attributes from the reference video. Instead, it couples irrelevant content with
the effect, leading to severe content leakage. This indiscriminate information injection un-
dermines content accuracy and heavily interferes with effect imitation. This study confirms
the necessity of the in-context attention mask for targeted injection and high-fidelity imitation.

Table 3: User study statistics of the preference rate for
Effect Consistency (E.C.) & Aesthetic Quality (A.Q.).

Methods E. C. (↑) A. Q. (↑)

CogVideoX* 4% 10%
VFX Creator 22% 28%
Omini-Effects 32% 30%

Ours 42% 32%

Reference Prompt. We also investigated
the role of the reference prompt in our in-
context learning framework. As shown in
the second section of Table 2, removing
the reference prompt resulted in a consis-
tent decline across all metrics, although
the model retained its basic effect imita-
tion capability. This finding suggests that
while the reference video is the primary
source of visual dynamics, the textual information provides crucial auxiliary support. The refer-
ence prompt acts as a high-level conceptual anchor. It guides the model to understand the essence
of the effect semantically, rather than merely imitating it at the pixel level. Therefore, this joint
visual-textual context is essential for learning more robust and generalizable effect representations,
effectively improving imitation accuracy and fidelity. Details of the ablation study are provided in
Appendix B.4.

Datasets Scaling. We found that the scale of training data significantly impacts the model’s gen-
eralization capability during in-context conditioning, as shown in the third section of Table 2. We
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trained VFXMaster on different subsets of our data, using 2k, 4k, 6k, and 10k (the full dataset)
video pairs. The results clearly show a strong positive correlation between the training data volume
and the model’s performance, particularly on OOD generalization metrics. This trend confirms the
effectiveness and excellent scalability of the VFXMaster framework. The underlying reason is that
our model’s core objective is to learn a unified effect imitation capability, not to memorize a few
specific effects. A larger and more diverse dataset allows the model to observe a richer variety of
examples. This helps it learn the abstract principles governing effect dynamics, textures, and styles.
This not only improves its average performance on in-domain tasks but, more importantly, the gen-
eralized knowledge extracted from massive data is crucial for understanding and imitating unseen
OOD effects.

4.5 USER STUDY

To complement our objective metrics and evaluate the generated results from a human perceptual
standpoint, we conducted a user study. We adopted the Two-Alternative Forced Choice (2AFC)
paradigm, a gold standard in psychophysics. Participants were presented with a reference VFX
video alongside a pair of generated videos: one from VFXMaster and one from a competing method.
They were asked to choose the better video based on effect consistency with the reference and overall
aesthetic quality. We collected responses from 50 participants, summarized in Table 3. The results
show a user preference for VFXMaster over both Omini-Effect and VFX Creator. This outcome
aligns with our quantitative analysis and can be attributed to VFXMaster’s large-scale training data
and efficient learning paradigm.

5 CONCLUSION

In this work, we introduce VFXMaster, the first unified, in-context learning framework for visual
effects generation that achieves efficient imitation of diverse effects. To accomplish this, we design
two core components. First, our in-context conditioning strategy injects reference information as
context. It uses an in-context attention mask to successfully decouple effect attributes from irrelevant
content for targeted injection, effectively preventing content leakage. Second, to enhance generaliza-
tion to unseen effects, we propose an efficient one-shot effect adaptation mechanism. This method
uses a set of learnable concept-enhance tokens, enabling the model to learn the core features of a
new effect from a single example. Extensive experiments show that VFXMaster significantly out-
performs state-of-the-art methods on in-domain effects across multiple metrics. More importantly,
it demonstrates unprecedented generalization capability on our dedicated OOD metric. VFXMaster
also exhibits excellent data scalability, proving its potential as a unified VFX generation framework.
In summary, VFXMaster provides a viable path toward building scalable and generalizable systems
for dynamic effect creation. It promises to lower the barrier for high-quality content production,
empowering creators in film, gaming, and social media.

9
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experiments have been properly licensed and attributed. We also recognize the potential implications
of this work, particularly in the context of generative AI, especially in the field of visual effects.
We are committed to promoting responsible usage and addressing ethical concerns related to AI-
generated content. We have made efforts to avoid bias or unfairness in the generation process and
ensure that the generated content aligns with the intended ethical guidelines.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of this research. The code, model weights, and
datasets used in this study will be made publicly available. Detailed descriptions of the model
architecture, complete experimental setup, and training details are provided in both the main paper
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A THE USE OF LARGE LANGUAGE MODELS

We used Large Language Models (LLMs) solely for polishing the writing in this paper. LLMs did
not play a direct role in the research ideation or development of the methodologies. We ensure that
all scientific ideas, methods, and experiments are independently conceived and implemented by us
without relying on LLMs.

B METHOD DETAILS

B.1 DETAILED EXPERIMENTAL DETAILS OF ATTENTION IMPLEMENTATION

Attention Implementation As described in Section 3.2, we build a reference-based in-context
learning paradigm on top of a standard I2V generation model and design an in-context attention
mask to enable the model to effectively generate visual effects while preventing content leak-
age. However, in practice, we observe that although the original 3D full-attention mechanism in
CogVideoX supports the incorporation of contextual information, it incurs substantial computa-
tional overhead during optimization, which is further exacerbated by the introduction of the attention
mask. To address this issue, we reformulate the original 3D full-attention architecture into an equiva-
lent implementation by decomposing the long-sequence self-attention into multiple cross-attentions
while keeping the pretrained parameters unchanged. By precisely controlling the information flow
across these cross-attention modules, we significantly accelerate both optimization and inference
while effectively mitigating content leakage.

B.2 TRAINING DETAILS

Multi-Resolution Generation. During training, since the resolution of the training video and the
reference video may differ, we efficiently utilize paired video data by padding the reference video to
match the resolution of the training video before passing it through the VAE encoder. The inference
stage follows a similar procedure.

Efficient One-Shot Effect Adaptation. For a single sample, we first apply slight adjustments such
as sharpness, shear, translation, and rotation in random combinations of three image transformations.
Additionally, the video frames are randomly flipped horizontally with a 50% probability to generate
paired data. The hyperparameters used in the training phase are the same as those in the multi-
resolution training stage.

B.3 INFERENCE DETAILS

During inference, given the first frame and an effects video, VFXMaster seamlessly imitates the
effects from the reference video to the generated video. To accommodate practical usage scenarios,
we design a captioning template that first generates an effect-specific caption from the effects video
as shown in Fig. 14. Then, based on the reference effects video and the generated caption, we
produce an effect-aware description for the first-frame image as shown in Fig. 13, which serves as
the input condition for I2V generation.

B.4 ABLATION DETAILS

We conducted an ablation study on the in-context attention mask and the reference prompt. Ablating
the in-context attention mask leads to the leakage of irrelevant visual elements from the reference
data, which demonstrates its effectiveness in controlling information flow. Removing the reference
prompt degrades both the content and dynamic patterns of the generated effects, confirming its role
in enhancing the effect information. The visualization results of the ablation study are presented in
Fig. 12.
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C DATASETS AND METRIC

C.1 DATASETS

In our experiments, we employ a dataset comprising 10k high-quality VFX videos across 200 effect
categories, covering diverse types such as character transformation, environment alteration, and
style transition. Additionally, we provide fine-grained captions for all 10k videos. Unlike existing
works (e.g., Omini-Effect and VFX Creator), which mainly rely on category-level effects and short
descriptions (typically only a few words), our dataset adopts a fine-grained captioning template that
delivers comprehensive annotations for each video, including subject characteristics, environmental
context, video style, and the effect progression.

C.2 METRIC

To comprehensively evaluate the quality of generated videos from a visual effects perspective, we
propose a new metric, the VFX-Comprehensive Assessment Score (VFX-Cons.), which evaluates
effects across three dimensions: Effect Occurrence Score (EOS), Effect Fidelity Score (EFS), and
Content Leakage Score (CLS). Details as shown in Fig. 15 and Fig. 16.

• EOS assesses whether visual effects occur in the generated video. This includes checking
whether the subject undergoes transformations or local deformations, whether facial fea-
tures exhibit dramatic changes, whether the background shows surreal or dreamlike transi-
tions, and whether overall visual attributes are altered. The outcome is a binary judgment
(True/False).

• EFS, the core dimension of the metric, evaluates the consistency of visual effect presen-
tation between the generated video and the reference video. It considers aspects such as
subject and background transformation patterns, changes in lighting and shadows, color
variations, and motion dynamics. This dimension primarily focuses on overall effect and
atmosphere rather than fine-grained generative details and also outputs a binary result
(True/False).

• CLS builds upon EOS and EFS and determines whether irrelevant content from the refer-
ence video is mistakenly distorted or leaked into the generated video, also yielding a binary
decision (True/False).

It is important to note that these three dimensions follow a progressive dependency: if EOS indicates
that no effect occurs, subsequent evaluations are skipped, and CLS is only meaningful when EFS is
True. A high CLS score when no effects occur may simply reflect hallucinations rather than genuine
effect quality.

The final VFX-Cons. score is obtained by averaging the three dimensions, as shown below:

VFX-Cons. =
EOS + EFS + CLS

3
. (1)

Furthermore, the VLM is required to provide a concise rationale alongside each decision.

D EXPERIMENT RESULT DETAILS

To evaluate the generalization capability of our method on out-of-domain (OOD) effects, we con-
ducted extensive experiments on our manually constructed VFX dataset, and the detailed results are
presented in Table 4.

E MORE QUALITATIVE RESULTS

We further provide additional visual effect generation results. In-domain results are illustrated in
Fig. 5, Fig. 6, Fig. 7, Fig. 8 and Fig. 9. Out-of-domain results are illustrated in Fig. 10 and Fig. 11.
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Figure 5: Examples of the “Invisible” and “Soul Jump” visual effects using VFXMaster.
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Figure 6: Examples of the “Freezing” and “Blazing” visual effects using VFXMaster.
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Figure 7: Examples of the “Agent Reveal” and “Butterfly” visual effects using VFXMaster.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Target

Image

Ref.

Video

Figure 8: Examples of the “Disintegration” visual effect using VFXMaster.
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Figure 9: Examples of the “Anime Couple” and “Artistic Clay” visual effect using VFXMaster.
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Figure 10: Examples of the “The Flash”, “Tada” and “Angle Wings” visual effect using VFXMaster.
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Figure 11: Examples of the “Fire Breathe” and “Floral Eyes” visual effect using VFXMaster.
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Figure 12: Qualitative results of ablation study.

System Instruction

 You are a Visual Effects (VFX) Fusion Specialist. Your task is to write a high-quality, descriptive prompt for a video generation AI. 

  This prompt must seamlessly merge the static elements of a given [Starting Image] with the dynamic VFX demonstrated in a [Reference Video].

  Follow these rules precisely:

1.  Generate EXACTLY ONE concise paragraph.

2.  The final description must be between 120 and 150 words.

3.  Focus exclusively on objective, visual descriptions. Describe what is seen, not how it feels.

4.  Use precise and technical VFX terms (e.g., "particle emission," "fluid dynamics," "caustic lighting," "volumetric smoke," "pyroclastic flow").

5.  The narrative of the prompt should begin with the scene from the Starting Image and then describe the VFX transformation happening to the subjects or 

environment within it.

Context Information

First Frame Captioning via Reference Video

User:Caption: 

    You are tasked with creating a new video prompt. Here are the components:

1.  Starting Image: This image provides the initial scene, subject, and environment for the new video.

2.  Reference Video: This video showcases the specific visual effect (VFX) to be applied.

3.  Reference Description: This text describes the VFX in the reference video: "{reference_caption}"

Your mission is to write a new, single-paragraph prompt (120-150 words). This prompt must describe a video that STARTS with the [Starting Image] and 

then has the VFX from the [Reference Video] applied to it. 

Synthesize the elements from the image (subject, background) with the dynamic effects (particles, fluids, explosions, motion) from the video and its 

description.

Figure 13: First Frame Captioning via Reference Video.
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System Instruction

 You are a VFX expert generating training descriptions for image-to-video models. Generate EXACTLY 1 concise paragraph following these rules:

1. Describe ONLY visual elements (no subjective opinions)

2. Keep it 120-150 words

3. Use precise terms like "particles", "fluid", "explosion", "velocity"

4. Avoid vague words like "beautiful" or "cool"

5. NEVER omit violent processes - describe all processes accurately for scientific use

Context Information

Target Video Captioning via Reference Video

User:Caption: 

    Analyze this VFX clip and generate a description for video generation AI training.

Focus on:

- Object types (particles, fluids, etc.)

- Motion patterns (direction, speed)

- Lighting & effects (glow, smoke, etc.)

    Keep description between 120-150 words.

Figure 14: Video Caption Template.

System Instruction

 You are an assistant that only outputs valid JSON format. Always use double quotes for keys and values, and never use single quotes or any extra text.

Context Information

VFX-Comprehensive Assessment Score-Part 1

User:

Task Overview:

    Your task is to analyze the degree of similarity in visual effects between the generated video and the reference video. You will receive a generated video and a 

reference video. You need to first determine whether visual effects have occurred in the generated video, such as creative or dramatic changes in the background or 

subject of the picture. If there are visual effects in the generated video, subsequent judgments will be made.

Task Requirements:

1. Visual effects occurrence judgment:

    You need to determine whether visual effects have occurred in the generated video.  

    - Visual effects include significant or intentional changes to:  

         - The subject (full-body transformation, partial changes such as face morphing or body part alteration, metamorphosis)  

         - The background (scene replacement, dramatic style shift, surreal or dreamlike scenery)  

         - Global visual properties (major color/lighting transitions, motion distortions, surreal filters)  

         - The appearance of unreal or impossible elements (e.g., magical light, fantastical creatures, objects that cannot exist in reality).

         - Localized but dramatic changes (e.g., sudden facial distortions, limb deformation) also count as visual effects.

    - If such visual effects occur, give True. Otherwise, give False and skip all subsequent judgments.  

    - Minor or unintentional variations (e.g., small changes in brightness, slight texture differences, or natural noise) should not be considered as VFX.  

2. Visual effects comparison:  

    You need to determine whether the visual effects of the generated video are consistent with those of the reference video.  

     The comparison should focus on the overall presentation of the special effects, including:  

   - Transformations of the subject (e.g., character transformation, metamorphosis, body morphing)  

   - Background changes (e.g., scene shifts, environment alterations)  

   - Light and shadow effects (e.g., light source movement, shadow depth)  

   - Color changes (e.g., overall tone, saturation, atmosphere)  

   - Motion patterns (e.g., smoothness, direction, style of movement)  

     Your judgment should be based on whether the overall effect and atmosphere are similar, not on minor or overly specific details.  

   - Slight differences (e.g., a person transforms into a monkey vs. an ape, or red vs. orange glow) should still be considered consistent if the transformation 

     effect and overall visual impression are similar.  

   - Only when the generated video produces a fundamentally different effect (e.g., reference shows a bright magical transformation while generated 

      shows a dark horror-style distortion) should you give False.

    You need to provide a brief explanation of the judgment, highlighting the main aspects of similarity or difference.

3. Content leakage: 

    You need to determine whether features in the reference video that are not related to the visual effect are incorrectly modified or distorted in the generated 

video.  

   - Examples of content leakage: the background architecture being altered when the effect only targets the subject, or the subject’s original identity 

      features being lost when the effect is only a background change.  

   - Changes that are part of the intended special effect (e.g., transformation of the subject, background style shift, or other visual effect-driven alterations) 

      should not be considered leakage.  

   - Minor differences that do not affect the main non-effect content (e.g., small color shade differences in clothing, slight texture variation in the 

      environment) should also be ignored.  

     You need to provide a brief explanation of the judgment.  

     If there is no content leakage, give the judgment True; otherwise, False.

Figure 15: VFX-Comprehensive Assessment Score-Part 1.
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System Instruction

 You are an assistant that only outputs valid JSON format. Always use double quotes for keys and values, and never use single quotes or any extra text.

Context Information

VFX-Comprehensive Assessment Score-Part 2

User:

Expected Output Format:

   If there are no visual effects in the generated video: (Not in the expected output)

Special Notes:

- If no visual effects occur in the generated video, skip all subsequent decisions and output only JSON without any extra commentary or symbols.

- When judging, fully consider the visual effects in both the generated video and the reference video. Use stepwise reasoning if necessary.

- The explanation should be concise but comprehensive, highlighting only the key factors that influenced your choice.

- Focus strictly on visual effects (e.g., transformations, metamorphosis, sudden facial feature changes, surreal or impossible objects/events, background 

     replacement, dramatic color/lighting changes, motion distortions). Ignore irrelevant details.

- Do not judge based on overly fine-grained differences (e.g., monkey vs. ape, red vs. orange). Focus on overall similarity and consistency of the effect rather 

     than minor variations.

- Prioritize alignment on high-level categories and overall effect quality over strict pixel-level or object-level matches.

- Your output must strictly follow the required JSON format.

{

  "Visual_effects_occur" : "< Judgment >"

}

If there are visual effects in the generated video: (Not in the expected output)

{

"Visual_effects_occur" : "< Judgment >",

"Visual_effects_category_determination" : 

{

   "Generate_Video_Visual_Effects_Category ":" < Visual Effects Category >",

   "Reference_Video_Visual_Effects_Category ":" < Visual Effects Category >",

   "Visual_Effects_Category_Judgment" : "< Judgment >"

  },

"Visual_Effects" :

{

   "Judgment" : "< Judgment >",

   "Explanation" : "< Reason >",

  },

"Content_leakage" :< Judgment >,

"Explanation" : "< Reason >"

}

Figure 16: VFX-Comprehensive Assessment Score-Part 2.
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Table 4: Detailed results in Table 2. Ours(one-shot) refers to the method enhanced by one-shot
adaptation based on Ours.

Metrics Methods Acid Air Angry Mode Aquarium Atomic Balloon Buddy Clothes Rain Colors Rain Cotton Fast Sprint

FVD↓

Ours 1589 2208 1753 2123 2112 1832 2454 1297 2171 1968 2554
Ours(one-shot) 1532 2186 1657 1600 2249 1809 2445 1178 2126 1831 2496
w/o attn mask 2534 3341 3004 2956 3460 2739 3593 2843 3060 4238 3378
w/o ref prompt 1851 2409 2093 2208 2560 2192 2464 1637 2571 2258 2948

Ours (2k) 2035 3034 2264 2594 2992 2559 3373 1920 2633 3753 2958
Ours (4k) 1950 2541 2101 2591 2261 2259 2909 1660 2677 2671 2495
Ours (6k) 1702 2226 2114 2446 2211 1985 2529 1951 2451 2017 2191

Dynamic
Degree ↑

Ours 0.6 0.8 0.0 1.0 0.6 0.2 1.0 1.0 0.6 1.0 1.0
Ours(one-shot) 0.6 0.8 0.4 1.0 0.6 0.4 1.0 1.0 0.6 1.0 1.0
w/o attn mask 0.6 1.0 0.6 0.8 0.8 0.8 1.0 1.0 0.2 0.4 1.0
w/o ref prompt 0.6 0.8 0.0 0.4 0.6 0.2 1.0 1.0 0.4 0.8 1.0

Ours (2k) 0.4 0.2 0.0 0.8 0.6 0.2 0.6 1.0 0.2 0.4 1.0
Ours (4k) 0.4 0.6 0.0 0.8 0.6 0.4 0.6 1.0 0.2 0.4 1.0
Ours (6k) 0.6 0.8 0.0 1.0 0.6 0.2 0.8 1.0 0.6 0.8 1.0

EOS↑

Ours 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ours(one-shot) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
w/o attn mask 0.40 1.00 1.00 1.00 1.00 0.80 0.60 0.60 0.80 1.00 1.00
w/o ref prompt 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ours (2k) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ours (4k) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ours (6k) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

EFS↑

Ours 0.0 0.6 0.2 0.6 0.8 0.6 0.0 0.6 0.6 0.8 0.4
Ours(one-shot) 0.2 0.6 0.6 0.8 1.0 1.0 0.6 1.0 0.8 0.8 0.4
w/o attn mask 0.0 0.2 0.0 0.0 0.4 0.2 0.0 0.0 0.2 0.2 0.0
w/o ref prompt 0.0 0.6 0.2 0.4 0.8 0.6 0.0 0.2 0.6 0.6 0.4

Ours (2k) 0.0 0.2 0.2 0.6 0.8 0.6 0.0 0.2 0.6 0.4 0.4
Ours (4k) 0.0 0.4 0.2 0.4 0.8 0.6 0.0 0.4 0.8 0.6 0.4
Ours (6k) 0.0 0.6 0.2 0.4 0.8 0.6 0.0 0.4 0.6 0.8 0.4

CLS↑

Ours 0.8 1.0 0.8 0.8 0.8 0.8 0.8 0.8 1.0 1.0 0.4
Ours(one-shot) 0.8 1.0 1.0 1.0 1.0 1.0 0.8 0.6 1.0 1.0 0.6
w/o attn mask 0.2 0.4 0.0 0.2 0.4 0.2 0.0 0.0 0.4 0.2 0.0
w/o ref prompt 0.8 1.0 0.6 0.8 0.8 0.8 0.8 0.8 1.0 0.8 0.4

Ours (2k) 0.8 1.0 0.8 0.8 0.8 0.8 0.8 0.6 1.0 1.0 0.4
Ours (4k) 0.8 1.0 0.8 0.8 0.8 0.8 0.8 0.8 1.0 1.0 0.4
Ours (6k) 0.8 1.0 0.8 0.8 0.8 0.8 0.8 0.8 1.0 1.0 0.4

Metrics Methods Hair Flight Illustration BOOM Mask Pizza Shadow Spirit Animal To Monkey Avg.

FVD↓

Ours 2449 2960 1588 2442 3101 1898 1927 2664 1963 2153
Ours(one-shot) 2602 2384 1330 2366 3003 1841 1895 2513 1889 2047
w/o attn mask 4554 4158 3140 3754 4650 2967 3123 3601 4242 3467
w/o ref prompt 3571 3163 1921 3047 3498 2266 2214 2664 2132 2483

Ours (2k) 3837 3730 2374 3457 4521 2496 2379 3407 2440 2938
Ours (4k) 3859 2860 1904 3031 4368 2173 2068 2935 2126 2572
Ours (6k) 2528 2935 1872 3081 3736 2171 2011 2807 2037 2350

Dynamic
Degree ↑

Ours 1.0 1.0 0.6 1.0 1.0 1.0 0.4 1.0 1.0 0.79
Ours(one-shot) 1.0 1.0 0.6 1.0 1.0 1.0 0.8 1.0 1.0 0.84
w/o attn mask 1.0 1.0 0.6 1.0 1.0 1.0 0.4 1.0 1.0 0.81
w/o ref prompt 1.0 1.0 0.6 1.0 1.0 1.0 0.4 1.0 1.0 0.74

Ours (2k) 0.8 1.0 0.2 0.4 1.0 0.8 0.4 1.0 1.0 0.60
Ours (4k) 0.8 1.0 0.4 0.4 1.0 0.8 0.4 1.0 1.0 0.64
Ours (6k) 0.8 1.0 0.4 0.6 1.0 1.0 0.4 1.0 1.0 0.70

EOS↑

Ours 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ours(one-shot) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
w/o attn mask 0.80 1.00 1.00 1.00 1.00 1.00 0.80 1.00 1.00 0.89
w/o ref prompt 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ours (2k) 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00 1.00 0.97
Ours (4k) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
Ours (6k) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

EFS↑

Ours 0.8 0.6 0.0 0.2 0.0 1.0 0.4 0.8 0.4 0.47
Ours(one-shot) 1.0 0.6 0.6 0.4 0.2 1.0 1.0 0.8 0.6 0.70
w/o attn mask 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.4 0.0 0.11
w/o ref prompt 0.8 0.6 0.0 0.0 0.0 1.0 0.2 0.8 0.2 0.40

Ours (2k) 0.4 0.4 0.0 0.0 0.0 0.8 0.4 0.6 0.2 0.34
Ours (4k) 0.8 0.4 0.2 0.0 0.0 0.8 0.4 0.6 0.2 0.40
Ours (6k) 0.8 0.6 0.0 0.0 0.0 0.6 0.6 0.8 0.2 0.42

CLS↑

Ours 0.6 1.0 1.0 0.4 0.4 1.0 1.0 0.8 0.6 0.79
Ours(one-shot) 0.8 1.0 0.8 0.6 0.4 1.0 1.0 1.0 1.0 0.87
w/o attn mask 0.2 0.6 0.4 0.0 0.0 0.8 0.4 0.0 0.4 0.24
w/o ref prompt 0.6 1.0 0.8 0.4 0.4 1.0 0.8 1.0 0.6 0.76

Ours (2k) 0.6 1.0 1.0 0.4 0.4 1.0 1.0 0.6 0.6 0.77
Ours (4k) 0.6 1.0 0.6 0.4 0.4 1.0 1.0 0.8 0.4 0.76
Ours (6k) 0.6 1.0 0.8 0.4 0.4 1.0 1.0 1.0 0.6 0.79
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