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Abstract

The initial state distribution in reinforcement learning (RL) is often treated as a technical
detail, overshadowed by the focus on policy optimization and value function approxi-
mation. This paper challenges this perspective by providing a rigorous analysis and
intuition of how the initial state distribution affects the objective function of RL. We
derive performance difference lemmas that quantify how changes in the initial distri-
bution propagate through the learning objective, revealing bounds that scale with 1

1−γ
in the infinite horizon setting and (T + 1) in the finite horizon case, where γ is the
discount factor and T is the horizon length. These lemmas and an illustrative exam-
ple, demonstrate that seemingly minor changes in where an agent begins can lead to
dramatically different outcomes—even when following the same policy. These results
have immediate implications for practical RL deployments where the training and test-
ing distributions often differ, and provide an alternate theoretical perspective for recent
advances in reverse curriculum learning and local planning algorithms.

1 Introduction

Reinforcement learning (RL) provides a powerful framework for an agent learning through trial
and error in sequential interactions with an unknown environment to maximize rewards (Foster &
Rakhlin, 2023; Szepesvári, 2025). This interaction is formalized using the language of Markov de-
cision processes (MDPs) which, among other things, specifies an initial state distribution (Bertsekas
& Shreve, 1978; Puterman, 1994; Hernandez-Lerma & Lasserre, 2012). In theory, the standard
optimality criterion in RL seeks policies that are optimal for all possible initial state distributions
simultaneously. In practice, however, this stringent criterion is rarely adopted; policies are usually
optimized for a fixed, predetermined initial state distribution.

When training RL agents, the assumption of a fixed initial state distribution is often too limiting
or simply undesirable (Florensa et al., 2017; Tavakoli et al., 2019; Ecoffet et al., 2021; Yin et al.,
2023; Mhammedi et al., 2024; Krishnamurthy et al., 2025). Consider training a robot to navigate
through a building. Standard reinforcement learning formulations assume the robot will always start
from the same distribution of locations—perhaps always at the main entrance. But what happens
when the robot is deployed and starts from the storage room, or the third floor, or anywhere else?
This seemingly straightforward scenario reveals a fundamental brittleness in many reinforcement
learning formulations, highlighting their vulnerability when faced with situations that differ from
the original training assumptions.

1.1 The Importance of Initial State Distribution

To understand why the initial state distribution matters, consider the following example:

Example 1.1 (The Bottleneck MDP). Consider an MDP whose state space has two regions con-
nected by a narrow bottleneck (see Figure 1). Region A contains small positive rewards, while
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Figure 1: Bottleneck MDP. The state space is partitioned into three parts: two regions A and B, and
a single bottleneck state connecting them. All the actions at the bottleneck state take the agent to a
state in A with probability 0.9.

Region B contains large positive rewards. The bottleneck is a single state that connects them, and
there’s a high probability (0.9) of “slipping back” when trying to cross from A to B. There are no
rewards in trying to cross the bottleneck.

Suppose there are two initial state distributions: ρA, supported on a subset of region A, and ρB ,
supported on a subset of region B. In the infinite horizon case, for a large enough discount factor,
the optimal policy for states in region A will attempt to cross over to region B. In the finite horizon
case, if the horizon is long enough, the policy will match the infinite horizon case. However, if the
horizon is short, the optimal policy under ρA will avoid crossing over to region B, because there are
no rewards in trying to cross the bottleneck. This example foreshadows our theoretical results: using
J(ρ, π∗) to denote the objective function for initial state distribution ρ and optimal policy π∗, the
performance difference J(ρA, π∗) − J(ρB , π

∗) can be very large; these quantities will be defined
formally in Section 2.

This example is not a pathological edge case—it reflects common structures in real-world problems:
navigation tasks have dangerous areas to avoid, and manipulation tasks have irreversible actions. In
each case, where you start can fundamentally change the problem.

1.2 Theoretical Gaps and Practical Implications

The seminal work of Kakade & Langford (2002) touched upon the importance of the initial state dis-
tribution, showing how policies could be improved while providing performance guarantees. Their
performance difference lemma, which we extend in this work, quantifies how changing the policy
affects performance. However, the dual question—how changing the initial distribution affects per-
formance—remained relatively unexplored. The importance of adapting initial state distributions
shows up in many sub-areas of RL.

Local Planning Environment Access Model. In the local planning environment access model,
the agent can start an episode at any state it has visited previously. This allows the agent to explore
faster (Ecoffet et al., 2021; Tavakoli et al., 2019; Yin et al., 2023). This framework and its variations
provably give better statistical guarantees (Mhammedi et al., 2024; Krishnamurthy et al., 2025).

Curriculum Learning and Automatic Reset Distributions. The curriculum learning literature
(Bengio et al., 2009; Florensa et al., 2017) implicitly recognizes that the choice of initial states
affects learning efficiency. (Florensa et al., 2017) focus on goal oriented tasks, or tasks with sparse
rewards by training a robot to start from increasingly distant start states. They study the problem of
finding the optimal start state distribution to maximize learning speed.

Offline RL. Offline-RL guarantees such as those in (Jiang & Xie, 2025) are stated using concen-
trability coefficients like Cπρ = supx,a

ψπ
ρ (x,a)

ψ
πd
ρd (x,a)

, where ψπρ is the discounted state-action occupancy
measure. Therefore, any change in initial state distributions shifts these coefficients and directly
affects the offline-RL performance bounds.
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2 Preliminaries and Notation

All spaces are assumed to be endowed with a σ-algebra such that they are standard Borel, i.e., there
exists a metric on the space which makes it a complete separable metric space in such a way that the
endowed σ-algebra is then the Borel σ-algebra with respect to the topology induced by the metric
(Preston, 2008). In particular, any countable space must be equipped with the discrete σ-algebra for
it to be standard Borel. For a space X, its Borel σ-algebra is denoted as B(X). Given two measurable
spaces (X,X ) and (Y,Y ), a map K : X × Y → [0, 1] is called a stochastic kernel from (X,X )
to (Y,Y )—or, briefly, from X to Y—if the map x 7→ K(x,B) is X -measurable for each B ∈ Y ,
and the map B 7→ K(x,B) is a probability measure on (Y,Y ) for each x ∈ X. We use M1(X) to
denote the set of probability measures on the space X. We will often use the (functional-analytic)
notation Pf instead of

∫
f dP to denote the integral of f with respect to the measure P. We refer the

reader to the book by Kallenberg (2021) for more details on probability theory.

A Markov decision process (Bertsekas & Shreve, 1978; Puterman, 1994; Hernandez-Lerma &
Lasserre, 2012) consists of the following: (i) a state space X and a finite action space A, (ii) a
stochastic kernel K : (X × A) × B(X) → [0, 1], which specifies that with probability K((x, a), B)
the state transitions to some state in B ∈ B(X) on taking action a ∈ A in state x ∈ X, (iii)
a measurable reward function r : X × A → [−rmax, rmax], for rmax > 0, and (iv) an initial state
distribution ρ ∈ M1(X).

The agent specifies a policy π = (πt)t≥0, where πt : ((X × A)t × X) × B(A) → [0, 1] is a
stochastic kernel, which specifies that at time step t ∈ {0, 1, . . .}, having observed the history
ht = (x0, a0, x1, a1, . . . , xt) ∈ (X × A)t × X, the agent chooses an action from the set A ∈ B(A)
with probability πt(ht, A). We denote the set of all policies by Π.

Let Ω be the infinite Cartesian product (X × A)N, and F be the product σ-algebra on it. Given
an MDP, with the notation as above, and a policy π ∈ Π, Ionescu-Tulcea theorem (Neveu, 1965;
Hernandez-Lerma & Lasserre, 2012) tells us that there exists a unique probability measure Pπρ on
(Ω,F ) such that we can define the random variables (Xt)t≥0 and (At)t≥0 using the projection
maps Ω ∋ ω = (x0, a0, x1, a1, . . .) 7→ Xt(ω) = xt ∈ X, and Ω ∋ ω = (x0, a0, x1, a1, . . .) 7→
At(ω) = at ∈ A, that satisfy the following transition rules:

Pπρ (X0 ∈ B) = ρ(B), ∀B ∈ B(X), Pπρ (At ∈ C |Ht) = πt(Ht, C), ∀C ∈ B(A), and

Pπρ (Xt+1 ∈ B |Ht, At) = K((Xt, At), B), ∀ B ∈ B(X),
where Ht = (X0, A0, . . . , Xt−1, At−1, Xt) is the history random variable. If ρ = δx, for x ∈ X, is
a Dirac measure, then we use the notation Pπx instead of the cumbersome Pπδx .

Infinite Horizon Setting In the setting of infinite horizon total discounted rewards, there is a
discount factor γ ∈ [0, 1), and the goal is to find a policy π ∈ Π that maximizes the expected sum
of discounted rewards J(ρ, π) = Pπρ [

∑∞
t=0 γ

tr(Xt, At)]. We have explicitly shown the dependence
of J on the initial state distribution ρ and the policy π; of course, J depends on other parameters
of the MDP, like the transition kernel K, but we keep that dependence implicit. A policy π∗ ∈ Π
satisfying

J(µ, π∗) = sup
π∈Π

J(µ, π), ∀µ ∈ M1(X), (1)

is said to be optimal. It is well known (Blackwell, 1965; Bertsekas & Shreve, 1978; Puterman, 1994)
that under this setting there exists a stationary policy that is optimal. A policy π ∈ Π is stationary if
there exists a stochastic kernel φ from X to A such that πt = φ. Value functions are defined as

V π(x) = J(δx, π), Qπ(x, a) = r(x, a) + γ

∫
X

V π(y)K((x, a),dy), ∀ (x, a) ∈ X× A.

Finite Horizon Setting In the setting of finite horizon total rewards, there is a horizon parameter
T ∈ N, and the goal is to find a policy π ∈ Π that maximizes the expected sum of total rewards
J(ρ, π) = Pπρ

[∑T
t=0 r(Xt, At)

]
. It should be clear from context whether J denotes the objective
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function for the infinite horizon or the finite horizon setting. A policy π∗ satisfying

J(µ, π∗) = sup
π∈Π

J(µ, π), ∀µ ∈ M1(X), (2)

is said to be optimal. It is well known (Bellman, 1957; Bertsekas & Shreve, 1978; Puterman, 1994)
that under this setting there exists a Markov policy that is optimal; a policy π ∈ Π is Markov if each
πt is a stochastic kernel from X to A. In the finite horizon setting, value functions are defined for
each time step t ∈ [T ] = {0, 1, . . . , T} as

V πt (x) = Pπρ

[
T∑
s=t

r(Xs, As)

∣∣∣∣∣ Xt = x

]
, Qπt (x, a) = Pπρ

[
T∑
s=t

r(Xs, As)

∣∣∣∣∣ Xt = x,At = a

]
.

3 Problem Dependent Bounds

We begin by highlighting that (1) and (2) define optimality in terms of all possible initial state
distributions. However, typical reinforcement learning problems optimize performance with respect
to a specific initial distribution. This is important because a policy π† that satisfies J(ρ, π†) =
supπ∈Π J(ρ, π) for a fixed ρ may not be optimal. This may not matter if during the test time the
initial state is sampled from ρ, but this is rarely the case.

3.1 Infinite Horizon Setting

To gain an understanding of how the initial state distribution affects the objective function, we ana-
lyze the difference J(ρ, π)− J(µ, π), keeping the policy π fixed but varying the initial distributions
ρ and µ. We aim to bound this difference in terms of the distance between ρ and µ, and some
property of the MDP. To this end, we define the state-action occupancy measure:

ψπρ (B, a) = (1− γ)

∞∑
t=0

γtPπρ (Xt ∈ B,At = a), ∀ (B, a) ∈ B(X)× A.

It is easy to show that ψπρ ∈ M1(X × A). Intuitively, ψπρ (B, a) can be viewed as the probability
that the agent occupies a state in B and takes action a from that state, where future occurrences are
discounted.

Lemma 3.1 (Performance difference lemma (infinite horizon)). Under the infinite horizon setting,
the performance difference J(ρ, π)− J(µ, π) for a fixed policy π can be expressed

(a) in terms of occupancy measures:

J(ρ, π)− J(µ, π) =
1

1− γ
(ψπρ − ψπµ)r,

where ψπρ − ψπµ is a signed measure, and (ψπρ − ψπµ)r denotes the integral of r with respect to
this signed measure, and

(b) as a function of the distance between ρ and µ:

J(ρ, π)− J(µ, π) ≤ rmax

1− γ
|ρ− µ|(X) = 2rmax

1− γ
dTV(ρ, µ),

where |ρ−µ| denotes the total variation measure of the signed measure ρ−µ, and dTV denotes
the total variation metric.

Proof. (a) We begin by writing the objective function J in terms of occupancy measure. Observe
that, for each n ≥ 0, the partial sum

∑n
t=0 γ

tr(Xt, At) is dominated by
∑n
t=0 γ

trmax, which in
turn converges to rmax

1−γ whose integral with respect to Pπρ is finite. We can now use Lebesgue’s
dominated convergence theorem to get

J(ρ, π) = Pπρ

[ ∞∑
t=0

γtr(Xt, At)

]
=

∞∑
t=0

γtPπρr(Xt, At).
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Now for each t ≥ 0, let Pπρ,t = Pπρ ◦ϕ−1
t denote the pushforward of the measure Pπρ with respect

to the projection map Ω ∋ ω = (x0, a0, x1, a1, . . .) 7→ ϕt(ω) = (xt, at) ∈ X × A. Note that
ϕt = (Xt, At). We can now write

Pπρr(Xt, At) =

∫
X×A

r(x, a)Pπρ,t(dx,da).

This notation allows us to write the state-action occupancy measure as

ψπρ = (1− γ)

∞∑
t=0

γtPπρ,t. (3)

Now write the infinite sum as
∞∑
t=0

γtPπρr(Xt, At) =

∞∑
t=0

γt
∫
X×A

r(x, a)Pπρ,t(dx, da).

We can now employ Fubini’s theorem to interchange the sum and the integral
∞∑
t=0

γt
∫
X×A

r(x, a)Pπρ,t(dx, da) =
∫
X×A

r(x, a)

∞∑
t=0

γtPπρ,t(dx,da).

Finally, use (3) to get

J(ρ, π) =
1

1− γ

∫
X×A

r(x, a)ψπρ (dx, da).

The difference calculation now follows directly:

J(ρ, π)− J(µ, π) =
1

1− γ

∫
X×A

r(x, a)(ψπρ − ψπµ)(dx, da) =
1

1− γ
(ψπρ − ψπµ)r.

(b) We begin by writing the objective function J as an expectation of the value function with respect
to the initial state distribution: J(ρ, π) = ρV π , which follows directly from their definitions.
We can therefore write

J(ρ, π)− J(µ, π) = ρV π − µV π = (ρ− µ)V π,

where the last expression denotes the integral of V π with respect to the signed measure ρ− µ.
Now note that V π is bounded because for all x ∈ X,

V π(x) = Pπx

[ ∞∑
t=0

γtr(Xt, At)

]
≤ Pπx

[ ∞∑
t=0

γtrmax

]
=

rmax

1− γ
.

This allows us to write

(ρ− µ)V π ≤ |ρ− µ||V π| ≤ rmax

1− γ
|ρ− µ|(X).

The first inequality above follows from the following argument: denote ν = ρ − µ, and let
ν = ν+ − ν− be the Jordan decomposition of the signed measure ν into positive measures ν+

and ν− that are mutually singular. Then

νV π ≤ |νV π| =
∣∣ν+V π − ν−V π

∣∣ ≤ ∣∣ν+V π∣∣+ ∣∣ν−V π∣∣ ≤ ν+ |V π|+ ν− |V π| = |ν| |V π| .

We finally need the standard result that |ρ−µ|(X) = 2dTV(ρ, µ). Suppose X = P ∪N is a Hahn
decomposition for ν, i.e., P ∩N = ∅, ν(E) ≥ 0 for all measurable E ⊆ P , and ν(F ) ≤ 0 for
all measurable F ⊆ N . Then using the fact that ν+(X) − ν−(X) = ν(X) = ρ(X) − µ(X) =
1− 1 = 0 at step ⋄, we get

dTV(ρ, µ) = sup
B∈B(X)

|ρ(B)− µ(B)| = |ρ(P )− µ(P )| = ν+(P ) + ν−(P )

= ν+(P ) = ν+(X)
⋄
=
ν+(X) + ν−(X)

2
=

1

2
|ν|(X).
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Interpreting our results Part (a) tells us that if the state-action occupancy measures for the two
initial state distributions are close, then we should expect the objective functions to also be close; in
MDPs with ergodic (Xt)t≥0, for example, this can happen if the mixing time is small because the
agent quickly “forgets” about the initial state.

Part (b) gives us an upper bound on the difference J(ρ, π) − J(µ, π) as a function of the distance
between ρ and µ. This inequality is tight. To see this, consider the case where the supports of ρ
and µ are disjoint. Then the total variation measure |ρ− µ| equals ρ+ µ, and thus |ρ− µ|(X) = 2.
This gives J(ρ, π)− J(µ, π) ≤ 2rmax

1−γ . This inequality is an equality if (i) the state space consists of
two disconnected components X = X+ ∪X− such that all the positive rewards are in X+ and all the
negative rewards are in X−, (ii) we let ρ be supported on X+ and µ be supported on X−, and (iii)
we let π be the policy that is optimal on X+ and is pessimal on X−. Then we can make the reward
function such that J(ρ, π) = rmax

1−γ and J(µ, π) = − rmax
1−γ .

On the other hand, the more ρ and µ put measure on the same parts of the state space, the smaller
the total variation measure |ρ − µ| and the total variation distance dTV(ρ, µ) will be, and thus the
smaller the difference J(ρ, π)− J(µ, π) will be.

Contrast this lemma with the classical performance difference lemma (Kakade & Langford, 2002;
Agarwal et al., 2022; Foster & Rakhlin, 2023), where the difference J(ρ, π) − J(ρ, η) keeps the
initial state distribution fixed and varies the policy, and is expressed as

J(ρ, π)− J(ρ, η) =
1

1− γ
ψπρA

η,

where Aη(x, a) = Qη(x, a)− V η(x) denotes the advantage function.

3.2 Finite Horizon Setting

The analysis for the finite horizon setting follows similarly as in the infinite horizon setting, except
the analysis here is simpler due to finite sums. We define the state-action occupancy measure as
follows:

ψπρ,t(B, a) = Pπρ (Xt ∈ B,At = a), ∀ (B, a) ∈ B(X)× A, t ∈ [T ],

ψπρ (B, a) =
1

T + 1

T∑
t=0

ψπρ,t(B, a), ∀ (B, a) ∈ B(X)× A.

Lemma 3.2 (Performance difference lemma (finite horizon)). Under the finite horizon setting, we
can write

(a) the difference in terms of occupancy measure:

J(ρ, π)− J(µ, π) = (T + 1)(ψπρ − ψπµ)r, and

(b) the difference expressed as an upper bound:

|J(ρ, π)− J(µ, π)| ≤ (T + 1)rmax|ρ− µ|(X) = 2(T + 1)rmaxdTV(ρ, µ).

Proof. (a) Just like in the infinite horizon case, we write the objective function J as an integral of
the reward function with respect to the occupancy measure, which then immediately gives us
the desired equation.

J(ρ, π) = Pπρ

[
T∑
t=0

r(Xt, At)

]
=

T∑
t=0

Pπρr(Xt, At) =

T∑
t=0

∫
X×A

r(x, a)Pπρ,t(dx, da)

=

∫
X×A

r(x, a)

T∑
t=0

Pπρ,t(dx, da) = (T + 1)

∫
X×A

r(x, a)ψπρ (dx, da) = (T + 1)ψπρ r.
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(b) Just like in the infinite horizon case, we begin by writing the objective function J as J(ρ, π) =
ρV π0 . This gives J(ρ, π)− J(µ, π) = (ρ− µ)V π0 . Now since V π0 (x) ≤ (T + 1)rmax, we get

(ρ− µ)V π0 ≤ |ρ− µ| |V π0 | ≤ (T + 1)rmax|ρ− µ|(X).

Here, the difference J(ρ, π) − J(µ, π) scales with with the horizon length T , while in the infinite
horizon case the difference scales with the effective horizon 1

1−γ .

4 Discussion and Conclusion

In this paper we focused on the effect of initial state distribution on the objective function for the
settings of infinite horizon with discounted rewards and finite horizon. We provided performance
difference lemmas that quantify the impact of changing the initial state distributions while keeping
the policy fixed. These lemmas contrast with the classical performance difference lemma that varies
the policy but keeps the distribution fixed. The analysis in this paper could provide RL researchers
with insights to design algorithms for robust policy learning under uncertain initial distributions and
adaptive schemes that adjust to different test-time distributions.

A natural next step is to extend our analysis to the average reward setting, which models long-term
behavior more faithfully than the discounted reward setting. Here the aim is to find a policy that
maximizes:

J(ρ, π) = lim
N→∞

1

N
Pπρ

[
N∑
t=0

r(Xt, At)

]
,

where the limit is replaced by either lim sup or lim inf if it does not exist (Arapostathis et al., 1993).

Another promising direction is to bound the difference J(ρ, π)−J(µ, π) in terms of the “hardness”
of the MDP, in the spirit of Maillard et al. (2014). One can quantify the hardness in several ways.
Given an initial state distribution ρ and a policy π, define

hρ(V
π) =

∫
X×A

[∫
X

(
V π(y)−

∫
X

V π(z)K((x, a),dz)

)2

K((x, a),dy)

] 1
2

ψπρ (dx, da),

and the worst-case analogue

h(V π) = sup
x∈X

[∫
X

(
V π(y)−

∫
X

V π(z)Kπ(x, dz)

)2

Kπ(x, dy)

] 1
2

,

where Kπ(x,B) =
∫
A
K((x, a), B)π(x,da), B ∈ B(X) defines a stochastic kernel from X to X.

Here hρ(V
π) measures the average (with respect to the occupancy measure) standard deviation of

the value of the next state. Intuitively speaking, hρ(V π) is large if, on average, the agent is uncertain
about the next state’s value, and thus the MDP is hard. As for h(V π), the quantity inside the square
brackets measures the variance of the value of the next state if the agent is in state x ∈ X and takes
action according to policy π. hρ models hardness using the average uncertainty, while h models the
hardness using the worst-case uncertainty.
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