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Abstract
Kronecker-sparse (KS) matrices—whose supports
are Kronecker products of identity and all-ones
blocks—underpin the structure of Butterfly and
Monarch matrices and offer the promise of more
efficient models. However, existing GPU ker-
nels for KS matrix multiplication suffer from
high data movement costs, with up to 50 % of
time spent on memory-bound tensor permuta-
tions. We propose a fused, output-stationary
GPU kernel that eliminates these overheads, re-
ducing global memory traffic threefold. Across
600 KS patterns, our kernel achieves in FP32 a
median speedup of ×1.4 and lowers energy con-
sumption by 15 %. A simple heuristic based
on KS pattern parameters predicts when our
method outperforms existing ones. We release
all code1 at github.com/PascalCarrivain/ksmm, in-
cluding a PyTorch-compatible KSLinear layer,
and demonstrate in FP32 end-to-end latency re-
ductions of up to 22 % in ViT-S/16 and 16 % in
GPT-2 medium.

1. Introduction
Matrix multiplications dominate the time and energy bud-
gets of modern-day networks involving large linear layers.
For instance, a single forward of a Vision Transformer (ViT-
H/14) spends ∼60% of its runtime in linear layers (Ap-
pendix E.7). Using structured sparse factors in place of
dense weights—either learned from scratch or introduced
after training—offers a compelling way to reduce mem-
ory usage and inference FLOPs (Dao et al., 2019; 2020;
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Claude Bernard Lyon 1, LIP, UMR 5668, 69342, Lyon cedex
07, France 2Institute of Mathematics, EPFL, Lausanne, Switzer-
land 3valeo.ai, Paris, France 4Huawei Lagrange Mathematics and
Computing Research Center, Paris, France 5Toulouse School of
Economics, Toulouse, France. Correspondence to: Antoine Gonon
<antoine.gonon@epfl.ch>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1Also integrated into the signal-processing oriented package
lazylinop (Appendix D.1).

2022a;b). Among the many structures explored, the Butter-
fly/Monarch family has gained traction in both vision and
language models (Dao et al., 2019; 2022b; Fu et al., 2023).
Its building blocks are matrices whose support is a Kro-
necker product of identities and all-ones blocks. We call
them Kronecker-sparse (KS) matrices (Definition 2.1),
and denote by (a, b, c, d) the pattern of a KS matrix K with
support Ia⊗1b×c⊗Id, where ⊗ is the Kronecker product,
In is the n×n identity matrix, and 1b×c is matrix of size
b × c full of ones. Factorizing a dense matrix W into KS
matrices K1 · · ·KL can reduce inference cost, as the se-
quential matrix-vector multiplications x 7→ K1 · · ·KLx
can be more efficient than computing the dense multiplica-
tion x 7→Wx. The canonical example is the fast Fourier
transform (FFT): the N × N discrete Fourier transform
(DFT) matrix can be factored into L = log2(N) KS factors
of size N×N , with at mostO(N) nonzero entries per factor
(Dao et al., 2019). This reduces the overall cost of comput-
ing the DFT from O(N2) (via naive multiplication with
the original matrix W) toO(N log2 N) (through sequential
multiplication with the KS factors Kℓ); see Figure 1.

W = × × ×

K1 K2 K3 K4

Figure 1. FFT as a fast Kronecker-sparse transform. The
dense DFT matrix W can be factored as W = K1 · · ·KL (up
to a column permutation), where each KS factor Kℓ has sup-
port I2ℓ−1 ⊗ 12×2 ⊗ I2L−ℓ . This factorization underlies the
O(N logN) efficiency of the FFT algorithm.

Scope of This Work: Focus on Inference. This work fo-
cuses on efficiently computing Y = XK⊤, where K ∈
RM×N is a fixed Kronecker-sparse matrix and X ∈ RB×N

is a dense matrix representing a batch of inputs. We assume
K can be fully preprocessed offline, but inputs and outputs
must follow a fixed, dense layout—PyTorch’s default in
our case—which cannot be altered. This reflects standard
inference scenarios, where models are already trained and
deployed, and data arrives in a prescribed format. Optimiz-
ing this phase is essential, as inference accounts for over
90 % of large-scale ML costs (HPCwire, 2019; Barr, 2019).
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Cost of Memory Operations. The fastest current
GPU implementations for Kronecker-sparse multiplica-
tion—namely, Monarch’s implementation (Dao et al.,
2022b), which we refer to as BMM (as it relies on batched
general matrix multiplication), and the block-sparse format
method (BSR)—follow a shared strategy: (i) permute the in-
put to ensure that specific elements are stored contiguously
in memory; (ii) invoke a high-performance multiplication
routine, such as a general matrix multiplication (GEMM);
and (iii) apply an inverse permutation to restore the output
to its original layout.

However, our profiling (in Section 3 below) reveals that
these two permutations—before and after the multiplica-
tion—along with the associated memory reads and writes,
can account for up to 50 % of the total runtime (Figure 4).
Notably, we find that the overhead from these data move-
ment operations increases with the ratio h(b, c) = b+c

bc , a
simple expression that we motivate analytically and validate
empirically across 600 KS patterns in this paper.

Contributions. We show that the data movement costs
caused by the two permutations are not unavoidable. By in-
troducing a new output-stationary tiling scheme for KS ma-
trix multiplication, we fuse the three GPU kernels—permute,
GEMM, and inverse permute—into a single kernel, elimi-
nating two global memory passes. Our main contributions
are as follows:

(i) Time & Energy Benchmark. We introduce the first
large-scale public benchmark of KS matrix multiplica-
tion on GPU, spanning 6 orders of magnitude in matrix
sizes, several sparsity levels, and supporting both single
(FP32) and half (FP16) floating-point formats. Our re-
sults confirm that the proportion of the runtime spent at
memory rewritings grows with h(b, c) = b+c

bc .

(ii) Single-Kernel Implementation. We propose an output-
stationary tiling that reduces the cost of memory opera-
tions. We release publicly our kernel implementation in
CUDA and OpenCL, plus a drop-in KSLinear layer
for PyTorch. Our kernel achieves a median speedup of
×1.4, and a median energy reduction of 15% in FP32.

(iii) Design Heuristic. For a KS pattern (a, b, c, d), we em-
pirically show that the ratio h(b, c) = b+c

bc predicts la-
tency, while d × h(b, c) predicts energy, giving practi-
tioners a one-line rule for pattern selection.

(iv) End-to-End Impact. We demonstrate that injecting KS
sparsity in linear layers of Transformers such as ViT-
S/16 in vision and GPT-2 medium in language cuts wall-
clock inference in FP32 by 22% and 16% respectively,
compared to the original dense implementation.

Outline. Section 2 formalizes KS matrices and reviews
existing GPU algorithms on PyTorch. Section 3 quantifies

the time they spend on memory permutations. Section 4
presents the fused kernel and its analysis. Section 5 bench-
marks time and energy. Section 6 demonstrates network-
level gains. Section 7 concludes with open directions.

2. Kronecker-Sparse Matrices in a Nutshell
A Kronecker-sparse (KS) matrix imposes constraints on
the locations of its nonzero entries (i.e., its support), but
places no restrictions on the values of those entries. The
support is defined by a Kronecker product of three simple
matrices—identity, all-ones, and identity—which forms the
common structural core of the Butterfly, Monarch, Kalei-
doscope, and related layers (Dao et al., 2019; 2022a;b; Lin
et al., 2021; Fu et al., 2023).

Definition 2.1 (KS pattern and matrix). A KS pattern is an
integer 4-tuple π = (a, b, c, d). Its corresponding support
is Sπ = Ia ⊗ 1b×c ⊗ Id (see Figure 2). A matrix K ∈
Rabd×acd is π-Kronecker-sparse if supp(K) ⊆ supp(Sπ),
where supp(·) is the set of matrix indices corresponding to
nonzero entries. We write K ∈ Kπ .

Figure 2. A π-Kronecker-sparse matrix with π = (a, b, c, d) is a
block-diagonal matrix with a blocks, where each block itself is a
block matrix composed by b× c diagonal matrices of size d× d.
The colored cells correspond to the nonzeros. We color the cells
with different colors to indicate that the corresponding weights are
free to take different values.

The mask Sπ has shape abd×acd and abcd nonzeros, so
the density (of nonzero entries) is 1/(ad). Increasing either
a or d makes the factor sparser. See Appendix B for:

• a discussion on where KS fits in the wider sparsity land-
scape, with in particular Table 4 showing how popular
structured layers in neural networks map to concrete KS
patterns;

• links between KS matrix multiplication, sparse 3D convo-
lutions, and sparse-tensor compilers;

• a brief overview of techniques with provable guarantees
for approximating a dense matrix W by a KS product
K1 · · ·KL. Note that this approximation problem lies
outside the scope of this paper—we assume a fixed KS
matrix K is given and focus on efficient multiplication
with dense input batches X; see Section 1.
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2.1. Previous PyTorch GPU Implementations for KS

The fastest publicly available PyTorch implementations op-
timized for the KS structure follow the three-step procedure
described in Algorithm 1: (1) permute the inputs; (2) apply
a high-performance GEMM routine to K̃, a pre-permuted,
block-diagonal version of K; (3) permute the output back
to its original layout.

Algorithm 1 Permutation-based KS matmul

Require: KS pattern π = (a, b, c, d), inputs X∈RB×acd,
permutation matrices P,Q (as in Appendix C.1)
pre-permuted KS matrix K̃ := P⊤KQ⊤

Ensure: outputs Y := XK⊤ ∈ RB×abd

1: X̃← XQ⊤ {permute columns}
2: Ỹ ← X̃ K̃⊤ {matrix multiply}
3: Y ← ỸP⊤ {permute columns back}

Any pair of permutation matrices P and Q in Algo-
rithm 1 yields the correct KS matrix multiplication re-
sult. Indeed, any permutation matrices P and Q satisfy
PP⊤ = Q⊤Q = I, so this ensures that the multiplica-
tion of a batch of inputs X ∈ RB×acd with a KS factor
K ∈ Rabd×acd is equal to:

Y = XK⊤ = XQ⊤︸ ︷︷ ︸
:=X̃

QK⊤P︸ ︷︷ ︸
:=K̃⊤

P⊤ = X̃K̃⊤P⊤.

Existing implementations use a specific pair of permuta-
tions (P,Q) to achieve high efficiency. These are chosen
so that the permuted matrix K̃ := P⊤KQ⊤ becomes block-
diagonal with dense sub-blocks (details in Appendix C.1),
enabling fast parallel multiplication in Step (2) using stan-
dard routines on each dense sub-block.

The main differences between existing implementations
of Algorithm 1 lie in how they perform Step (2): ei-
ther via batched GEMM (BMM) (Dao et al., 2022b) or
block-sparse multiplication (BSR, for Block Compressed
Sparse Row); see Table 1. We will also compare these to
a direct tensor contraction baseline tailored to KS struc-
ture—EINSUM—inspired by Dao et al. (2022b). Implemen-
tation details are provided in Appendix A.

Table 1. Two PyTorch realizations of Algorithm 1.
BMM BSR

K̃ storage (ad, b, c) tensor (abd, acd) in BSR
Permute Q (line 1) torch.reshape
Multiply step (line 2) torch.bmm linear
Permute P (line 3) torch.reshape

The convenience of reducing the problem to a matrix mul-
tiplication with the block-diagonal matrix K̃ comes at a

cost: it requires two full-tensor permutations in Steps (1)
and (3), which we find to consume a non-negligible portion
of the runtime (Section 3). To address this, we introduce a
new mathematically equivalent algorithm that avoids these
permutations entirely (Section 4).

2.2. Reminder on Memory-Layout

PyTorch uses row-major storage for tensors. Placing the
batch dimension first (batch-size-first2) ensures that each
sample is stored contiguously in memory; placing it last
(batch-size-last) instead makes the features contiguous. The
historical default in most machine learning pipelines (in-
cluding PyTorch) is batch-size-first. While the primary
focus of this paper is to compare kernel implementations,
we also study the effect of memory layout and find that
batch-size-last performs better for KS matrices. To support
both conventions, we provide a PyTorch KSLinear layer
compatible with both layouts.

3. Cost of the Permutations in Baseline
Implementations

As we show in Section 5, BMM is the fastest among exist-
ing implementations of KS matrix multiplication. It im-
plements Algorithm 1 directly, with two explicit permuta-
tions—lines 1 and 3—that move data between global mem-
ory and registers before and after the multiplication with the
block-diagonal matrix K̃. Figure 3 (left) illustrates the data
flow in this baseline.

In this section, we empirically demonstrate that these two
permutations can account for up to 50 % of the total runtime,
motivating the design of a new tiling strategy that avoids
this overhead (Section 4).

3.1. Why Data Transfers Matter

GPU memory management plays a critical role in perfor-
mance optimization. Memory on a GPU is organized hier-
archically: global memory is large but slow, registers are
small but fast, and shared memory sits in between (NVIDIA,
2024, Section 2.3). By default, data resides in global mem-
ory. When a kernel is executed, each GPU thread typi-
cally loads data from global memory into registers, per-
forms register-level computations, and writes results back
to global memory (Figure 3). Because memory access often
becomes a performance bottleneck, minimizing data move-
ment between global memory, shared memory, and registers
is essential for an efficient implementation (NVIDIA, 2024,
Section 5.3).

2We name the two memory layouts batch-size-first and batch-
size-last, by analogy with PyTorch’s channels-last optimization,
which moves the channels dimension to the end for convolutions.
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Kronecker Kronecker

Figure 3. Data flow in BMM (three global passes) (Dao et al., 2022b) versus our fused KERNEL (one pass).

3.2. Cost of Data Transfers in Baseline Implementations

We focus on BMM as we will find out it is the fastest existing
baseline. To isolate the cost of the memory rewriting op-
erations corresponding to the permutations in Algorithm 1
(lines 1 and 3), we compare the runtime of BMM with a
modified version in which these permutations are simply re-
moved. Figure 4 (y-axis) shows that across 600 KS patterns,
permutations consume up to 45 % of the time3, and the share
grows with h(b, c) = b+c

bc ; we provide more explanation
about this ratio in Section 4.
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Figure 4. Share of runtime spent only on permutations in BMM

(FP32, BSF layout). Each box aggregates patterns with the same
h(b, c) = b+c

bc
.

Take-Away: Reducing the cost of memory transfers is
a promising direction for improving the performance of
Kronecker-sparse matrix multiplication. This is the main
objective of our new implementation, described in the fol-
lowing section.

3Regardless of the memory layout convention, batch-size-first
or batch-size-last as shown in Appendix E.3.

4. Novel Tiling for KS Multiplication with
Reduced Memory Transfers

Baseline implementations call three separate GPU ker-
nels (PERMUTE-GEMM-PERMUTE); every call round-trips
through global memory (Figure 3, left).

A naive approach to prevent such back and forths would
be to directly try to merge these three different kernels into
a single one. However, this is not as straightforward as
it seems since a thread can only access data processed by
other threads in the same block (no communication/synchro-
nization across thread blocks). Thus, if a thread is assigned
tiles (submatrices) on which to apply the three operations
PERMUTE-MULTIPLY-PERMUTE, its workload cannot de-
pend on the results obtained by a thread in another block.
This requires rearranging the tiles assigned to each thread to
ensure both efficiency and that no thread waits for the result
of another thread in another block.

To this end, we introduce in Section 4.1 a novel, mathemat-
ically equivalent reformulation of the permutation-based
algorithm (Algorithm 1), formalized in Algorithm 2. This
reformulation leads to a new tiling strategy that enables us
to implement the multiplication in a single GPU kernel, as
described in Section 4.2. We then perform an analytical
comparison of memory operations between our implemen-
tation and existing baselines (Section 4.3), and derive a
heuristic that predicts when our kernel is expected to re-
duce the cost of the permutation-related memory operations
of Algorithm 1. We validate this prediction empirically in
Section 5.

4.1. New Tiling Strategy

We introduce a new tiling strategy for KS matrix multipli-
cation, to reduce input/output (I/O) transfers between the
different memory levels. Tiling consists of partitioning the
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acd   abdK
K

B   acd B   abd

Figure 5. Illustration of Algorithm 2 for sparsity pattern π = (2, 3, 2, 3) and batch-size B = 8. The rows and columns (row1,col1) are
associated with (i, j) = (0, 1) in the “for” loop of Algorithm 2, whereas (row2,col2) is associated with (i, j) = (1, 1).

matrices into smaller submatrices called tiles, which are
processed in parallel, with the final result obtained by ac-
cumulating intermediate results from each tile (NVIDIA,
2024; 2023a). Our strategy arises from a mathematically
equivalent reformulation of Algorithm 1, formalized as Al-
gorithm 2, which we now explain.

Algorithm 2 New mathematically equivalent tiling of Algo-
rithm 1 (no global memory permutations), see Figure 5.

Require: pattern π = (a, b, c, d), inputs X∈RB×acd,
KS factor K ∈ Kπ

Ensure: output Y := XK⊤ ∈ RB×abd

1: Y ← 0 {in global memory}
2: for i = 0 to a− 1, j = 0 to d− 1 in parallel do
3: row← {iMa + j + kd : 0≤k < b}
4: col← {iNa + j + ℓd : 0≤ℓ < c}
5: Y[:,row]← Y[:,row]+X[:,col]K⊤[col,row]
6: end for

Why Algorithm 2 is Mathematically Equivalent to Al-
gorithm 1? Given a KS pattern π = (a, b, c, d), the
corresponding support Sπ := Ia ⊗ 1b×c ⊗ Id has shape
abd× acd. We partition its row indices as J0, abd− 1K :=
{0, . . . , abd− 1} =

⋃a−1
i=0

⋃d−1
j=0 rowi,j where:

rowi,j :=

{
i
M

a
+ j + kd : 0≤k < b

}
. (1)

Due to the structure of Sπ , all b rows in each rowi,j share
the same support, which we denote coli,j :

coli,j :=

{
i
N

a
+ j + ℓd : 0≤ℓ < c

}
. (2)

The family {coli,j}(i,j) forms a partition of the column
indices J0, acd− 1K. This means the matrix multiplication
Y = XK⊤, when restricted to the rows in rowi,j , can be
expressed as:

Y[:,rowi,j ] = X (K⊤[:,rowi,j ])

= X[:,coli,j ]K
⊤[coli,j ,rowi,j ],

(3)

where M[:, J ] denotes matrix M restricted to columns J ,
and M[I, J ] denotes the submatrix of M with rows I and
columns J . By grouping rows that share the same support,
the full KS matrix multiplication reduces to a set of smaller,
independent dense multiplications—one per rowi,j—that
can be processed in parallel. This is illustrated in Figure 5.
Hence, Algorithm 2 is mathematically equivalent to Algo-
rithm 1.

4.2. New Kernel Implementation

We now introduce our fused implementation of Algorithm 2,
denoted KERNEL in the remainder. A compact pseudocode
sketch is given in Algorithm 3.

KERNEL versus the permutation-based baseline. While
both Algorithms 1 and 2 ultimately compute the same set
of dense sub-products—one per tile rowi,j—they differ
in how they reach them, and hence in their natural GPU
implementations:

• Algorithm 1. This baseline performs two explicit permu-
tations of X and Y to map the entries of X[:,coli,j ] and
Y[:,rowi,j ]—whose columns are spaced by d— to contigu-
ous regions in the permuted tensors X̃ and Ỹ. This enables
the use of standard dense GEMM kernels, which require
contiguity in global memory. In practice, this strategy is
implemented in BMM via two additional PERMUTE kernels,
which rewrite each tile contiguously in global memory.

• Algorithm 2. This variant avoids global permutations
altogether. It computes each dense sub-product directly,
even when the corresponding rows and columns in rowi,j

and coli,j are not contiguous in global memory. Our fused
implementation KERNEL follows this approach: each thread
block directly loads X[:,coli,j ] and K⊤[coli,j ,rowi,j ]
from global to shared memory, performs the multiplication,
and writes the result into Y[:,rowi,j ], thus bypassing the
two extra permutation passes.
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Thread-block tiling. We assign to each thread block a
single dense sub-product X[:,coli,j ] ·K⊤[coli,j ,rowi,j ].
We make threads within a block:

(i) cooperatively load the two tiles from global memory
to shared memory,

(ii) move their assigned subtiles to registers,

(iii) perform multiply-and-accumulate operations,

(iv) store intermediate results to shared memory, and

(v) write cooperatively the final output tile back to global
memory.

Standard CUDA optimizations such as double buffering,
vectorized memory access, and warp-level parallelism are
applied (see Appendix D.3 for implementation details).

Read/write efficiency. Replacing two permutation ker-
nels with direct memory access leads to different tradeoffs
depending on the layout:

• KS matrix tiles. As in BMM, the factor K is preprocessed
and stored so that every tile K⊤[coli,j ,rowi,j ] is already
contiguous in global memory. This setup cost is paid once
and amortized across inference runs with different inputs
X, so we exclude it from our analysis (Section 1).

• Input/output tiles. Contiguity of memory access now
depends on the tensor layout. In the feature-major layout
(batch-size-last in row-major), each column of X[:,coli,j ]
and Y[:,rowi,j ] is stored contiguously in global memory,
enabling efficient coalesced access within columns. In this
setting, KERNEL benefits from both eliminating permuta-
tions and maintaining memory locality.

In contrast, under the batch-major layout (batch-size-first in
row-major), entries within the same column of X[:,coli,j ]
or Y[:,rowi,j ] are not contiguous in global memory, as
the indices in coli,j and rowi,j are spaced by d. This
leads to strided, non-coalesced access patterns. While
KERNEL still avoids the overhead of explicit permutations,
this benefit has to be weighted against more fragmented
memory access.

In summary, KERNEL eliminates two global-memory round
trips compared to permutation-based implementations. It is
often faster in the batch-size-last layout, where it benefits
from both avoiding explicit permutations and preserving
coalesced memory access. In the batch-size-first layout,
this advantage must be weighed against the cost of non-
coalesced memory access due to strided reads and writes;
nevertheless, KERNEL remains competitive, and even outper-
forms baselines in several cases, as observed in Section 5.

Algorithm 3 Sketch of the fused output-stationary kernel
(one tile (rowi,j , coli,j) assigned to each thread block).

Require: pattern π = (a, b, c, d), inputs X∈RB×acd,
KS factor K ∈ Kπ

Ensure: output Y := XK⊤ ∈ RB×abd

1: identify (i, j) tile assigned to current thread block
2: compute row, col as in Algorithm 2
3: global→ shared: load X[:,col], K⊤[col,row]
4: for stride=0 to c−1 by size-subtile do
5: identify subtile assigned to current thread
6: shared→registers: load subtiles of X[:,col] and

K[row,col]
7: Multiply and accumulate into registers
8: Prefetch next subtile in parallel (double buffering)
9: registers→global: store Y[:,row]

4.3. How Much Traffic Does the Fuse Save?

Against Specialized Baselines. Recall #nz = abcd is the
number of nonzeros of a KS matrix with pattern (a, b, c, d),
B is the batch size, and N = acd, M = abd are the input
and output dimensions. Specialised baselines call three ker-
nels (PERMUTE-GEMM-PERMUTE). The first PERMUTE
involves 2BN global memory operations (read X ∈ RB×N

once, write its permuted version X̃ once). The GEMM
involves BN +BM global memory operations (read once
the permuted inputs X̃ , write once the permuted outputs Ỹ ).
The last PERMUTE involves 2BM global memory opera-
tions of the input and output tensors (read Ỹ once, write Y
once). The total number of global reads and writes on the
input and output tensors is 3B(N +M). Our kernel moves
each entry exactly once, saving the extra 2B(N+M) global
reads/writes of the two permutations. The ratio of wasted
global memory traffic to useful multiplies is therefore twice

B(N +M)

B#nz
=

b+ c

bc
= h(b, c), (4)

which yields the heuristic that correlated with the time spent
on permutations in Figure 4. Since our new kernel precisely
reduces the cost of the permutations, we expect better gains
for patterns with large h(b, c), which is indeed what we
observe in Section 5.

Against Generic Baselines. Generic dense/CSR PyTorch
baselines, which ignore the KS structure, are noted DENSE
and SPARSE. Compared with DENSE, we skip all zero entries
of K, avoiding unnecessary computations. Compared with
SPARSE, we match the number of global reads and writes but
enjoy better coalescing thanks to knowing the KS support.

Take-Away: The fused, output-stationary KERNEL reduces
global reads and writes of the input and output tensors by up
to a factor three, directly translating into the speedups and
energy cuts in practice, as we now report the next section.
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Table 2. Across the 600 patterns, how often is an algorithm faster and by how much (median speedup in parentheses), in FP32.
Comparison Win rate Median× faster

min{KERNEL, BMM, EINSUM, BSR} < min{DENSE, SPARSE} 98.1% ×6.5
BMM < min{EINSUM, BSR, DENSE, SPARSE} 90.0% ×1.36
KERNEL < min{BMM, EINSUM, BSR, DENSE, SPARSE} 85.5% ×1.39

5. Benchmark: 600 KS patterns, Time &
Energy

We now quantify the benefit of KERNEL over the fastest
public baselines—BMM, BSR, and EINSUM—on a single
Nvidia A100 (40 GB) for time and on a single Nvidia V100
(32 GB) for energy4.

Benchmarked KS Patterns. We explore patterns of the
form π = (a, b, c, d), sweeping over the space α × β ×
β×α, with α = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128}
and β = {48, 64, 96, 128, 192, 256, 384, 512, 768, 1024}. We
constrain the shapes by enforcing b = c, b = 4c, or c =
4b, which reflect common configurations in Transformer
architectures.5 This results in over 600 distinct KS matrix
configurations, with sizes ranging from 102 × 102 up to
131072× 131072—spanning six orders of magnitude and
broadly covering6 the hidden dimensions found in vision
and language Transformers. The input batch size is fixed
to B = 128 × 196 = 25 088, corresponding to a batch of
128 sequences with a context length of 196 tokens, which
is a typical value encountered in Transformer inference.7

All results below take, for every implementation, the most
efficient (in time or energy) of batch-size-first and batch-
size-last layouts; the full split is in Appendix E.6.

Covered Sparsity Levels. The 600 KS patterns selected for
this benchmark are skewed toward high sparsity: the median
sparsity is 97.9%, and 75% of the patterns have sparsity
≥91.7%. Additional details on the sparsity distribution are
provided in Appendix E.2.

4pyJoules is not yet compatible with Nvidia A100 GPUs so
we benchmarked the energy consumption on V100 GPUs. Note
that we observed the same relative time efficiency ranking on the
two GPUs.

5Recall that for a KS pattern (a, b, c, d), the input and output
dimensions of the matrix are given by N = acd and M = abd.
When b = c, we have N = M , yielding a square matrix
suitable for weight matrices in the self-attention block. When
b = 4c (resp. c = 4b), the output dimension becomes M = 4N
(resp. M = N/4), matching the shape of up-projection (resp.
down-projection) layers typically found in feed-forward blocks.

6The largest LLaMA 3 model (405B) includes FFN layers with
matrices up to 53 248× 53 248.

7e.g., in ViT with a patch size of 16× 16 for image resolution
of 224× 224

5.1. Time: KERNEL Wins on 85 % of Patterns in FP32

Table 2 highlights three key findings: (i) KS-aware imple-
mentations (KERNEL, BMM, EINSUM, BSR) are more than
×6 faster than generic baselines that ignore the KS struc-
ture (DENSE, SPARSE); (ii) among existing methods, BMM
is the fastest baseline (excluding our new KERNEL from
the comparison); (iii) our fused, output-stationary KERNEL
surpasses all baselines on 85 % of the benchmarked grid in
FP32, achieving a median speedup of ×1.4.

Because the benchmark grid includes many highly sparse
KS patterns, we also compare performance at fixed spar-
sity levels in Appendix E.2. This analysis confirms that
KERNEL provides consistent speedups across all sparsity
regimes—not just in the extremely sparse or dense cases.

5.2. What Drives the Speedup? Mostly the Heuristic
h(b, c) = b+c

bc

To understand what drives the speedup achieved by KER-
NEL, we perform a multiple linear regression8 in log-log
scale using two predictors: the density9 1

ad and the heuristic
h(b, c) = b+c

bc . Before fitting the regression, we verified that
the two predictors—density and the heuristic h(b, c)—are
only weakly correlated across the 600 KS patterns (Pear-
son correlation: –0.28). This low correlation ensures that
the regression is not affected by multicollinearity, and both
predictors can be interpreted as contributing distinct infor-
mation to the model.

Letting speedup := min time(BMM,BSR,EINSUM)
time(KERNEL) , the regression

yields:

log(speedup) ≈ 1.69− 0.031 log(density) + 0.325 log(h).

This model achieves an adjusted R2 of 0.697 and passes the
Jarque–Bera normality test10 on residuals (p = 0.12). Both
predictors are statistically significant (p < 0.001).

Notably, h(b, c) is approximately ×10 more influential than
density in explaining the speedup. To further isolate the
impact of the heuristic h(b, c) from sparsity, we fix the
sparsity and examine how the speedup varies with h(b, c).

8We excluded fully dense patterns from this regression, i.e.,
those with density = 1.

9We chose density over sparsity here, as it gave better regres-
sion results.

10We were able to pass the normality test in log-log scale, but
not in linear-linear or log-linear settings.
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Figure 6. Comparison of kernel in terms of (a) times speed up factor and (b) energy consumption, relative to min(BMM, EINSUM, BSR),
on all the 600 KS patterns in FP32. For each implementation, we take the minimum time/energy spent between the batch-size-first and
batch-size-last memory layouts. We regroup patterns by their value of h(b, c) = b+c

bc
for(a) and d× h(b, c) for (b).

For each sparsity bin in Appendix E.2, we observe a strong
and consistent correlation in log-log scale (between 0.76
and 0.91), confirming that h(b, c) is a reliable predictor of
performance regardless of sparsity; see Appendix E.2 for
details.

In conclusion, maximizing h(b, c) is a simple and effective
design principle for selecting KS patterns that benefit from
KERNEL’s speedup over prior baselines (see Figure 6a). In
contrast, density has only a weak and inconsistent influence
once h is controlled for.

5.3. Energy: 15 % Median Saving in FP32, Predicted by
d× h(b, c)

Because each column gathered by a permutation is spaced
by d, the distance travelled by memory requests grows with
d, and d×h(b, c) is a good proxy for the proportion of energy
spent on memory operations. Figure 6b matches theory: the
higher that proxy, the more expensive the rewrites and the
larger the energy saving of KERNEL. Overall, KERNEL
reduces energy consumption compared to existing baselines
on 72 % of the patterns, achieving a median saving of 15 %
in FP32.

5.4. Additional Remarks

BSF vs. BSL. Switching baselines to batch-size-last (BSL)
does not change the runtime of BMM11 However, KER-
NEL gains a stable ×2 when switching from batch-size-first

11Note that BMM remains the best baselines compared to EIN-
SUM, BSR both in BSF and BSL layouts (Appendix E.6 for details).

(BSF) to batch-size-last, thanks to fully coalesced writes as
we saw in Section 4.2; full numbers are in Appendix E.6.

Impact of Size. Speedups increase with matrix size M ×
N = abd× acd (Figure 12); our largest test case (131k ×
131k) already exceeds Llama 3-405B’s hidden layers.

Portability. All results above use CUDA. For broader hard-
ware support, we also provide an OpenCL version, enabling
benchmarks on non-NVIDIA devices like AMD GPUs and
CPUs.

5.5. Take-Away

Exploiting the KS structure is essential: ×6 vs. dense/CSR
generic baselines. Removing the two permutations gives in
float-precision an additional ×1.4 in time and 15% energy
reduction. The simple rule “maximise h(b, c)” predicts
where the fused kernel shines; sparsity alone does not.

6. Broader Impact: End-to-End Gains on ViT
and GPT Models

Industry reports estimate that inference accounts for over
90 % of the total cost of machine learning at scale (HPCwire,
2019; Barr, 2019). To test whether the layer-wise speedups
of KERNEL from Section 5 translate into application-level
gains, we inject KS sparsity into a Vision Transformer
(Dosovitskiy et al., 2020) and a GPT-style language model
(Radford et al., 2019), and measure inference time.

Target Architecture. Fully connected (FC) layers are
natural candidates for KS-based acceleration. In our

8
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experiments, we simply replace the standard PyTorch
Linear module with our publicly available KSLinear
module.12 Transformer architectures such as ViT and GPT
offer a suitable testbed, as they contain numerous FC lay-
ers—accounting for 30–60% of total inference time de-
pending on model size (Appendix E.7).13 We evaluate our
method on ViT-S/16 (21M parameters) and GPT-2 Medium
(345M), which both fit comfortably on a single GPU.

Setup. Following the protocol of Dao et al. (2022b), we
replace specific weight matrices of linear layers in ViT and
GPT with a product of two KS factors, using patterns de-
tailed in the appendices. All other components of the Trans-
former forward pass use the default PyTorch kernels in the
default batch-size-first layout. Complete setup details are
provided in Appendix E.8.

Results. Table 3 shows that the fused kernel reduces end-to-
end latency by 22 % on ViT-S/16 in FP32, corresponding
to a ×1.28 speedup over the original dense implementation.
For comparison, the best public baseline achieves an 11 %
reduction (×1.12 speedup). On GPT-2 Medium, the fused
kernel yields a 16 % latency reduction (×1.19 speedup),
while the best baseline achieves 12 % (×1.14 speedup). Ad-
ditional experimental results are provided in Appendix E.8.

Table 3. Latency ratio versus the dense baseline
(fully-connected). Lower is better.

Sparsity level time(BMM)
time(DENSE)

time(KERNEL)
time(DENSE)

ViT-S/16 57.1 % 0.89 0.78
GPT-2 Medium 24.8 % 0.88 0.84

Discussion. In our experiments, inference in ViT and GPT
models is run using the batch-size-first layout. However,
as discussed in Section 5.4, switching to batch-size-last
can yield up to a ×2 speedup within KS layers. Extending
batch-size-last support to other core components of neural
network inference—such as activation functions, softmax,
and LayerNorm—could unlock additional gains, provided
these operations can be implemented with similar efficiency
in batch-size-last. Assessing the end-to-end impact of batch-
size-last on full-model performance remains an open engi-
neering challenge.

Take-Away: Replacing dense weights by KS factors and
using the new KERNEL speedups the end-to-end inference of
Transformers in FP32, suggesting that the proposed tiling
strategy can bring practical benefits in real-world settings.

12Available at github.com/PascalCarrivain/ksmm.
13See Appendix E.8 for why applying KS sparsity to convolu-

tional networks poses additional challenges.

7. Conclusion and Discussion
We revisited GPU multiplication with Kronecker-sparse
(KS) matrices, identified that permutation overheads dom-
inate existing kernels, and proposed an output-stationary
tiling strategy that fuses both permutations with the GEMM
into a single CUDA/OpenCL kernel. Across 600 KS pat-
terns, our kernel is ×1.4 faster (median, FP32) than the
best public baseline and reduces energy consumption by
15 %. When integrated into ViT and GPT models, it yields
practical inference-time speedups in FP32.

7.1. Key Take-Aways

Fused Tiling Strategy. Our output-stationary tiling reduces
memory traffic by fusing both permutations with the GEMM
in a single kernel.

Simple Design Rule. A one-line heuristic h(b, c) = b+c
bc

helps identify patterns well-suited for this kernel.

We release a KSLinear PyTorch module supporting
backend selection and both batch-size-first and batch-size-
last memory layouts, and which can be used in place of
standard PyTorch linear layers.

7.2. Limitations and Next Steps

(i) Gains obtained in FP32 are not as large in FP16/FP8
where tensor cores become available (see Appendix E.9
for the analysis of FP16). This calls for further inves-
tigations: is it our kernel that can be further improved,
or the other implementations that have been particularly
optimized in these regimes?

(ii) Batch-size-last layout outperforms batch-size-first in our
KERNEL (Figure 14), but PyTorch defaults to BSF. Using
BSL in BSF pipelines requires costly transpositions that
may offset the gains. Our KSLinear layer supports
both: BSF for drop-in use, and BSL for higher perfor-
mance when compatible. More broadly, the benefits of
BSL raise an open question: how does batch dimension
placement affect neural network efficiency in general?

(iii) An interesting direction is to extend end-to-end latency
experiments to larger models than those in Section 6, and
to study the trade-off between inference gains and accu-
racy when training/finetuning with KSLinear layers.

(iv) Cache behavior was not analyzed in depth; future work
may reveal strengths or limitations of our tiling strategy
and suggest further improvements.

(v) Speedups depend on batch size, KS pattern, and a few
kernel hyperparameters (e.g., thread count, tile shape).
Tuning is setup-specific and tedious, so we provide pre-
sets for the 600 patterns we benchmarked and leave
general tuning strategies to future work.

(vi) Beyond NVIDIA hardware, the OpenCL port opens the
door to studies on AMD GPUs and other platforms.

9
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Appendices
Lay summary. Today’s AI models are costly to run because they spend most of their time and energy multiplying huge
tables of numbers. One way to speed this up is to use tables with lots of zeros, since multiplying by zero does nothing and
can be skipped. If we know where the zeros are in advance, we can organize the work to skip them efficiently—but how we
skip them matters.

In this work, we focus on a promising zero pattern that has been widely studied. We show that, even with this pattern, the
fastest current Graphical Processing Unit (GPU) methods waste up to half their time just shuffling numbers around before
doing the real calculations. While this shuffling is meant to help (to reorganize the table in big chunks that can be skipped),
our work reveals that it is unnecessary, and we propose a faster workaround.

By keeping the table data in place and changing how the GPU handles the work, we skip the zeros without extra shuffling.
Our method runs up to 40% faster and uses 15% less energy across 600 test cases. We provide open-source code for both
GPUs and CPUs, plus a one-line rule of thumb to tell when it helps. Plugged into large AI models like Transformers, it cuts
total running time by up to 22%, paving the way for faster, cheaper AI.

A. Existing GPU Implementations of Kronecker-Sparse Matrix Multiplication
This section describes the existing GPU implementations for KS matrix multiplication on PyTorch. All source code is
available in the forward pass of the KSLinear module we release at github.com/PascalCarrivain/ksmm.

A.1. Specialized Baselines

BMM (batched GEMM). The implementation released with the “Monarch” layers of Dao et al. (2022b)14 permutes the
weight matrix once offline and stores K̃∈Rad×b×c as a dense float/half tensor of shape (ad, b, c). Given a batch of
inputs X∈RB×acd, the forward pass executes Algorithm 1 with fast tensor reshapes for the input and output permutations,
and with the fast routine torch.bmm for the multiplication with K̃:

1) reshape X so that multiplying by Q⊤ is a view;
2) perform the batched GEMM torch.bmm;
3) reshape the result so that multiplying by P⊤ is a view.

A concise PyTorch version follows (layout batch-size-first; swap first/last dimensions for batch-size-last), where we denote
by K bmm the 4D PyTorch tensor storing K̃ and by T bsf the batch-size-first PyTorch tensor corresponding to a matrix T:

1 def kronecker_bmm(X_bsf, K_bmm):
2 batch_size = X_bsf.shape[0]
3 X_perm = (
4 X_bsf.view(batch_size, a, c, d)
5 .transpose(-1, -2)
6 .reshape(batch_size, a * d, c)
7 .contiguous()
8 .transpose(0, 1)
9 )

10 Y_perm = torch.empty(batch_size, a * d, b).transpose(0, 1)
11 Y_perm = torch.bmm(X_perm, K_bmm.transpose(-1, -2))
12 Y_bsf = (
13 Y_perm.transpose(0, 1)
14 .reshape(batch_size, a, d, b)
15 .transpose(-1, -2)
16 .reshape(batch_size, a * b * d)
17 )
18 return

BSR (block-sparse GEMM). The same algebraic steps apply, but K̃ is stored once for all in Block-compressed Sparse Row
format as a tensor K bsr, and Step (2) calls torch.sparse.mm:

1 def kronecker_bsr(X_bsf, K_bsr):

14The original release supported only π=(a, b, c, d) with a=1 or d=1; we extended it to the general case.
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2 batch_size = X_bsf.shape[0]
3 X_perm = (
4 X_bsf.view(batch_size, a, c, d)
5 .transpose(-1, -2)
6 .reshape(batch_size, a * c * d)
7 )
8 Y_perm = torch.nn.functional.linear(
9 X_perm, K_bsr

10 )
11 Y_bsf = (
12 Y_perm.view(batch_size, a, d, b)
13 .transpose(-1, -2)
14 .reshape(batch_size, a * b * d)
15 )
16 return Y_bsf

EINSUM (tensor contraction). Following the public prototype in the Monarch repository (Dao et al., 2022b), the abcd
nonzeros of K are packed in Keinsum∈Ra×b×c×d. After reshaping the input X ∈ RB×acd to Xeinsum ∈ RB×a×c×d and the
output Y ∈ RB×abd to Yeinsum ∈ RB×a×b×d, the contraction (Yeinsum):,a,b,d =

∑
c(Xeinsum):,a,c,d (Keinsum)a,b,c,d is issued

via einops.einsum:

1 def kronecker_einsum(X_bsf, K_einsum):
2 X_perm = einops.rearrange(X_bsf, "... (a c d) -> ... a c d", a=a, c=c, d=d)
3 Y_perm = einops.einsum(X_perm, K_einsum, "... a c d, a b c d -> ... a b d")
4 Y_bsf = einops.rearrange(Y_perm, "... a b d-> ... (a b d)")
5 return Y_bsf

The second line of this code does at the same time all the matrix multiplications Y[:,row]← X[:,col]K⊤[col,row] for
all the pairs (row,col) in Algorithm 2.

Other KS implementations The “Monarch” batched-GEMM code already covered above (BMM) is the maintained reference
for Butterfly/Monarch layers of Dao et al. (2019; 2022b). We could not compile the original Butterfly Transform kernels
(Dao et al., 2019; Vahid et al., 2020) on recent CUDA; an in-house re-implementation turned out much slower than other
baselines and is therefore omitted from the benchmark.

A.2. Generic Baselines

DENSE. All MN entries of K are stored (even zero entries) and the forward pass calls
torch.nn.functional.linear. With batch-size-first layout this is the PyTorch default; in batch-size-last
we select torch.matmul after an internal benchmark of alternatives.

SPARSE. Only the abcd non-zeros are kept (CSR format) and the same linear/matmul entry point is used. This baseline
uses the sparsity but not its specific Kronecker structure.

A.3. Prior Empirical Reports on the Efficiency of Existing KS Matrix Multiplication Algorithms

Dao et al. (2022b) reported a ×2 training speedup on image classification and language-modeling tasks by replacing dense
layers with products of two KS factors.

Fu et al. (2023) measured a speedup exceeding ×2 at inference for FFT-based layers X 7→W−1
(
K ⊙WX

)
, where K

is dense, ⊙ is element-wise multiplication, and W is the DFT matrix in dimension ≥ 4096. These gains are relevant
to KS matrices since the fast implementation of the DFT (the FFT) is equivalent to a sequential multiplication with
Kronecker-sparse matrices (see Figure 1).

Our study complements the above by isolating the most elementary operation in these different pipelines: the multiplication
by a single KS factor X 7→ KX. We benchmark more than 600 distinct KS patterns spanning six orders of magnitude in
matrix shapes, comparing existing GPU baselines on PyTorch.
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B. Connections to Other Sparsity Schemes
B.1. Kronecker-Sparsity in the Wider Sparsity Landscape

Which sparsity patterns studied in prior work are instances of Kronecker-structured designs?

Table 4 shows that several sparsity patterns previously proposed for neural network compression can be expressed as special
cases of KS patterns, illustrating the broad applicability of the framework studied in this paper.

Table 4. KS patterns used in prior work to replace dense layers in neural networks. For a product K1. . .KL we list (aℓ, bℓ, cℓ, dℓ)1≤ℓ≤L.

MATRIX SIZE KRONECKER PATTERNS

DENSE M ×N (1,M,N, 1)
LOW-RANK M ×N (1,M, r, 1), (1, r,N, 1)
SQUARE DYADIC (DAO ET AL., 2019; VAHID ET AL., 2020) 2L × 2L (2ℓ−1, 2, 2, 2L−ℓ)Lℓ=1

KALEIDOSCOPE (DAO ET AL., 2022B) 2L × 2L (2ℓ−1, 2, 2, 2L−ℓ)Lℓ=1 ∪ (2L−ℓ, 2, 2, 2ℓ−1)Lℓ=1

BLOCK BUTTERFLY (DAO ET AL., 2022A) 2Lt× 2Lt (2ℓ−1, 2t, 2t, 2L−ℓ)Lℓ=1

MONARCH (DAO ET AL., 2022B; FU ET AL., 2023) M ×N (1,M/p,min(M,N)/p, p), (p,min(M,N)/p,N/p, 1)
DEFORMABLE BUTTERFLY (LIN ET AL., 2021) a1b1d1 × aLcLdL (aℓ, bℓ, cℓ, dℓ)

L
ℓ=1 WITH aℓcℓdℓ = aℓ+1bℓ+1dℓ+1 .

How does the Kronecker-sparsity pattern compare to other forms (unstructured or structured) of sparsity and when is each
preferable?

Structured patterns–Kronecker, block, channel-wise, ...–tend to win on latency and energy as the prior knowledge of the
sparsity pattern enables the design of more efficient algorithms for inference on GPU. Beyond implementation, structured
sparsity gives stronger theoretical guarantees. For example, the associated function space is closed and a minimizer of
the loss is guaranteed to exist, unlike in the unstructured case where solutions may diverge toward non-attaining infima
(Theorem 4.2 in (Le et al., 2023)). That said, more specific performance comparisons ultimately depend on the particular
task, hardware, model, and sparsity structure considered.

B.2. Dense→KS Conversion (Out of Scope in this Paper)

How can one convert a dense layer to a Kronecker-sparse one and what is its computational cost?

Given a dense matrix W (e.g., a weight matrix obtained from training), one can learn factors K1 · · ·KL such that
W ≈ K1 · · ·KL (in Frobenius norm) using a quasi-optimal butterfly factorization algorithm (with provable error guarantees)
that has a roughly O(MN) time complexity for the factorization of a matrix of size M ×N (Le et al., 2024; Zheng et al.,
2023; Le et al., 2022). This factorization algorithm is implemented in the lazylinop package (see Appendix D.1 for
details about this package). In particular, it is shown that this factorization algorithm is more accurate and efficient than
alternating least squares (Lin et al., 2021) or gradient descent (Dao et al., 2019). In our work, we focus on pure inference
mode where the KS matrix K is given and fixed. The cost of a potential upstream conversion is therefore ignored in our
study.

B.3. Analogy with Sparse 3D Convolutions

An interesting analogy can be drawn between the positioning of our new implementation relative to existing GPU-based KS
matrix multiplication algorithms, and how recent works on sparse 3D convolutions (Tang et al., 2023; Spconv Contributors,
2022; Yan et al., 2018) relate to TorchSparse (Tang et al., 2022).

TorchSparse (Tang et al., 2022) performs sparse 3D convolutions in three stages: GATHER-MATMUL-SCATTER. The works
(Tang et al., 2023; Spconv Contributors, 2022; Yan et al., 2018) improved performance by overlapping memory transfers
with computation. Similarly, for the sparse problem we tackle, our new dataflow strategy implementing Algorithm 2 leads
to a comparable improvement: input/output permutations and matrix multiplication can now be fused into a single kernel
(Figure 3, right), enhancing efficiency.

That said, the analogy seems to stop there. The underlying structures of the two problems are quite different, and it does not
seem that there is a straightforward way to adapt the tiling strategy from Tang et al. (2023) to the nested Kronecker layout
we study.
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B.4. Relation to Sparse-Tensor Compilers

State-of-the-art sparse-tensor compilers, e.g., SparseTIR (Ye et al., 2023) or Fractal (Guan et al., 2024), are primarily
designed for conventional sparse formats such as CSR or BSR, combined with regular block tilings. KS matrices, by
contrast, exhibit a nested sparsity pattern: a block-diagonal layout with b× c sub-blocks, each refined internally by a d× d
identity structure. Representing such a hierarchy would require support for an outer block-sparse format with an inner
identity pattern—capabilities that current compilers do not offer natively.

Furthermore, while our Algorithm 2 uses standard tiling strategies when possible, it sometimes favors non-contiguous tile
shapes along certain axes to reduce memory transfers and improve efficiency. This form of layout flexibility is not yet
supported by existing sparse compilers, to the best of our knowledge.

Until compiler infrastructure evolves to support nested sparsity and more flexible tiling schemes, hand-optimized kernels
seems to remain an effective solution for running KS workloads.

C. Perfect-Shuffle Permutations Used in Algorithm 1
In practice, existing implementations of Algorithm 1 select the permutation matrices

P :=
(
Ia ⊗Pb,d

)
, Q := Ia ⊗Pc,d, (5)

where Pp,q is the (p, q) perfect-shuffle permutation matrix. This appendix reviews perfect-shuffle permutations and shows
why the choice in (5) produces the permuted matrix

K̃ := P⊤KQ⊤

that is block-diagonal with dense sub-blocks—specifically, ad diagonal dense blocks of size b×c. Because each block can be
multiplied with highly optimized dense routines, Step (2) of Algorithm 1 becomes fast, motivating the use of these particular
permutations.

C.1. Perfect-Shuffle Permutations: Definition

The following definition and properties follow the presentation in (Van Loan, 2000).
Definition C.1 ((p, q) perfect-shuffle permutation matrix (Van Loan, 2000)). Let p, q ∈ N and set r = pq. The (p, q)
perfect-shuffle permutation matrix Pp,q is the r × r permutation obtained by reshaping a length-r vector into a p× q matrix
in row-major order and then reading it column-wise. Equivalently,

Pp,q :=


Ir[R0, :]
Ir[R1, :]

...
Ir[Rq−1, :]

 (6)

where Ri := {i+ qj | j ∈ J0, p− 1K} for i ∈ J0, q − 1K and Ir[Ri, :] ∈ {0, 1}p×r is the restriction of the identity matrix Ir
to the rows indexed in Ri.

Because the sets R0, . . . , Rq−1 partition {0, . . . , r − 1}, Pp,q is a (row) permutation of Ir, and in particular is itself a
permutation matrix.

C.2. Block-Diagonalizing a KS Matrix with Perfect-Shuffle Permutations

We now show that K̃ as defined in Algorithm 1
K̃ := P⊤KQ⊤

is block-diagonal when P,Q are chosen as perfect-shuffle permutations as in (5) and K is a KS matrix with pattern
π = (a, b, c, d). Consider the KS pattern π̃ = (ad, b, c, 1), whose support Sπ̃ = Iad ⊗ 1b×c corresponds to ad dense
diagonal blocks of size b× c. It suffices to establish

Sπ =
(
Ia ⊗Pb,d

)︸ ︷︷ ︸
:=P

Sπ̃

(
Ia ⊗Pc,d

)⊤︸ ︷︷ ︸
:=Q

= PSπ̃ Q. (7)
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Because permutation matrices are orthogonal, P⊤SπQ
⊤ = Sπ̃ . For any compatible matrices A,B,C we have

supp(ABC) ⊆ supp
(
supp(A) supp(B) supp(C)

)
,

where supp(·) is the binary support mask. Since supp(P) = P and supp(Q) = Q,

supp
(
P⊤KQ⊤) ⊆ supp

(
Sπ̃

)
= Iad ⊗ 1b×c,

which is the support of a block-diagonal matrix with ad dense b× c blocks, proving the claim.

Proof of (7). A key identity from (Van Loan, 2000) states that for all positive integers b, c, d,

Pb,d
⊤ (

1b×c ⊗ Id
)
Pc,d = Id ⊗ 1b×c.

Because Sπ = Ia ⊗ 1b×c ⊗ Id, we obtain

Sπ = Ia ⊗
(
Pb,d (Id ⊗ 1b×c)Pc,d

⊤).
Using (AB)⊗ (CD) = (A⊗C)(B⊗D) for any matrices A,B,C,D of compatible sizes, we factor:

Sπ = Ia ⊗
(
Pb,d(Id ⊗ 1b×c)Pc,d

⊤
)

= (Ia ⊗Pb,d)
(
Ia ⊗

(
(Id ⊗ 1b×c)Pc,d

⊤
))

= (Ia ⊗Pb,d)(Ia ⊗ Id ⊗ 1b×c)(Ia ⊗Pc,d
⊤)

= (Ia ⊗Pb,d)(Iad ⊗ 1b×c)(Ia ⊗Pc,d
⊤).

which is exactly (7).

Algorithmic Implications. Because K̃ is block-diagonal, Step (2) of Algorithm 1 can leverage optimized dense kernels
on each sub-block. Both BMM and BSR follow this strategy, as summarized in Table 1. The cost, however, is two full-
tensor permutations (Steps 1 and 3), which we measure to be a non-negligible share of runtime. Section 4 introduces a
mathematically equivalent approach that eliminates these permutations altogether.

D. Software Integration and Implementation Details of the Fused KS Kernel
This appendix complements Section 4 with practical information about the released software, the lazylinop integration,
and the design choices that guided our CUDA kernel.

D.1. Integration with lazylinop

We provide two complementary entry points for working with Kronecker-sparse matrix multiplications (KSMM), each
designed for a specific audience and purpose.

• The GitHub repository ksmm is targeted at the machine learning community. It includes all CUDA/OpenCL source
code, benchmarks, and a plug-and-play PyTorch module, KSLinear, that can replace standard Linear layers in
neural networks.

• Separately, we are also integrated our fast matrix factorization routines into the lazylinop ecosystem, a package
more oriented toward signal processing and fast linear transforms. These two entry points are intended to remain
independent moving forward.

lazylinop15 is a Python library that supports delayed execution: it builds an operator expression graph lazily and
only evaluates it when a final result is requested (delayed evaluation paradigm). One of its key features with respect to

15https://faustgrp.gitlabpages.inria.fr/lazylinop/index.html
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Kronecker-sparsity is the ability to approximate a dense matrix W into a fast transform, i.e., a product of structured KS
factors:

W ≈ K1· · ·KL

This results in fast-transform approximations that might be more efficient in time and energy, especially on parallel hardware.

CUDA and OpenCL backends enable efficient evaluation of these factor chains K1· · ·KLX in a batch-size-last layout
(batch dimension last). The Butterfly module of lazylinop supports execution on both CPUs and NVIDIA/AMD GPUs.
The documentation is available at https://faustgrp.gitlabpages.inria.fr/lazylinop/index.html and the low-level source code is
available at https://gitlab.inria.fr/faustgrp/lazylinop.

The current lazylinop package offers the following features for Butterfly and Kronecker-sparse operators:

1) Butterfly factorization (products of KS matrices) (Le et al., 2024). Given a dense matrix W, lazylinop
approximates it as W ≈ K1· · ·KL using a quasi-optimal factorization algorithm that achieves the theoretical error
bounds of Le et al., all in O(MN) time for an M ×N matrix.

2) Compatibility with PyTorch tensors (in progress). PyTorch tensor inputs and outputs will soon be supported directly
within lazylinop, streamlining integration into PyTorch-based workflows.

D.2. Why an Output-Stationary Dataflow?

Like CUTLASS dense kernels (NVIDIA, 2023a) and recent sparse 3-D-convolution kernels (Tang et al., 2023; Spconv
Contributors, 2022; Yan et al., 2018), our fused KS kernel is output-stationary. Two considerations motivate this choice:

1) Weight-stationary seems to offer little reuse. In a KS pattern (a, b, c, d), when the parameter a is large, the matrix is
partitioned into a submatrices that act on disjoint regions (Figure 2). Thus, weights are not reused across multiple
input/output regions, limiting the benefits of keeping them stationary.

2) Input-stationary seems harder to parallelize. Due to the non-contiguous memory accesses involved (Figure 3), read and
write operations on inputs/outputs come at a higher cost, so it is preferable to keep one of them stationary to reduce these
costs. Both costs are largely driven by the parameter d of KS patterns (a, b, c, d), as it determines the distance between
consecutive data elements that should be loaded together when considering one of the dense subproblems (Section 4.1).
Since their reuse costs are similar, we had to consider other factors. Input-stationarity poses parallelization challenges
as different thread blocks cannot accumulate into the same output coefficient (no possible synchronization) (NVIDIA,
2023a). In contrast, output-stationarity avoids this issue, hence our choice.

D.3. Kernel-Level Optimizations

Our implementation follows standard high-performance GPU practices:

• Vectorization. Wherever possible we use float4 and half2 loads/stores to coalesce memory traffic (NVIDIA, 2023b;
2024; 2023a; Boehm, 2022).

• Double buffering. Each thread block overlaps computation on the current tile with prefetching of the next tile into shared
memory (Li et al., 2019; NVIDIA, 2023b).

• Structured epilogue. Partial results are first written to shared memory and then flushed to global memory in a contiguous
pattern, avoiding scattered global writes (NVIDIA, 2023a).

Kernel launch parameters (block size, tile shape, vector width) are auto-tuned per pattern π = (a, b, c, d) and per GPU
architecture, mirroring the tuning strategy of CUTLASS.

E. Experiments
E.1. Details on the Experiments

The pytorch package version is 2.2 and pytorch-cuda is 12.1.
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Matrix Sizes. In all our experiments with matrices, we set the batch size to B = 25088 (196 tokens × 128 sequences), a
standard choice for ViTs as it corresponds to the standard number of tokens per sequence (196) multiplied by the standard
number of sequences in a batch of inputs (128). When dealing with a batch of images in neural networks, we choose the
standard choice of batch size B = 128.

Matrix Entries. The nonzero entries of any Kronecker-sparse matrix K ∈ Rabd×acd with sparsity pattern (a, b, c, d) are
drawn i.i.d. uniformly in [− 1√

c
, 1√

c
], corresponding to the initialization used for training in Dao et al. (2022b). The entries

of the inputs X are drawn i.i.d. according to a standard normal distribution N (0, 1).

Benchmarking Time Execution. All the experiments measuring time execution of a Kronecker-sparse matrix multiplication
algorithm (Tables 2, 5, 6, 9 and 10, Figures 4, 6a, 9, 10 and 12 to 18) are performed on a NVIDIA A100-PCIE-40GB
GPU associated with an Intel(R) Xeon(R) Silver 4215R CPU @ 3.20GHz with 377G of memory. The full benchmark took
approximately 3 days in an isolated environment, ensuring that no other processes were running concurrently.

Measurements are done using the PyTorch tool torch.utils.benchmark.Timer. The medians are computed on at
least 10 measurements of 10 runs. In 94.2% of the cases, we have an interquartile range (IQR) that is at least 100 times
smaller than the median (resp. 98% for 50 times smaller, and 99.7% for 10 times smaller).

Benchmarking Energy Consumption. Measurements of the energy consumption (Figure 6b) is done on a NVIDIA Tesla
V100-PCIE-16GB GPU associated with an Intel(R) Xeon(R) Silver 4215R CPU @ 3.20GHz with 754G of memory. The full
benchmark took approximately 1.5 days in an isolated environment. Measurements are made using the pyJoules software
toolkit. The medians are computed on 10 measurements of at least 16 runs. In 96% of the cases, the IQR is at least 10 times
smaller than the median, and 5 times smaller in all the cases.

Kronecker-Sparsity Patterns Benchmarked for Time Measurements (Section 5). The considered patterns are generated
by the Python code written in Figure 7. In all the cases, we only consider patterns (a, b, c, d) with b = c or b = 4c or c = 4b
to have an input size N and an output size M such that N = M or N = 4M or M = 4N . We make this choice because
fully-connected layers in Transformers usually satisfy these dimension constraints.

The first “for” loop in Figure 7 (line 21 to 24) generates a wide range of patterns (a, b, c, d) with a = 1, as this represents
the simplest scenario. Indeed, the case a > 1 simply corresponds to repeating a times the case a = 1 in parallel.

The second “for” loop in Figure 7 (line 26 to 30) generates patterns with a > 1 offering fewer choices for d to keep the
benchmark concise in terms of execution time. This loop also imposes additional conditions on b and c (line 28 of the code)
that we now explain. Many graphs are plotted based on the ratio (b+ c)/bc, as introduced in Equation (4). Because of that,
our goal was to include as many distinct ratios (b + c)/bc as possible while keeping the benchmark brief. We excluded
certain (b, c) values because they resulted in a ratio that was very close to one already in the benchmark and were more
computationally intensive.

Patterns Benchmarked for Energy Measurements (Section 5). For the energy measurements, the goal is to have diverse
sparsity patterns (a, b, c, d) corresponding to many different ratios d(b + c)/bc to observe the trend in Figure 6b, while
keeping the benchmark as short as possible. We chose to consider the cartesian product of

1 a_list = [1, 4, 16, 32, 64]
2 b_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
3 c_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
4 d_list = [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64]

by skipping as in Figure 7 all the patterns with

1 (b,c) in [(1024 , 256) , (256 , 1024) , (128 , 512) , (512 , 128) , (64 , 256) , (256 ,
64)]

and also all the patterns such that

1 b != c and b != 4 * c and c != 4 * b

for the same reasons as explained above for time measurements.

Details on boxplots. In all boxplots (Figures 4, 6a to 6b, 10 and 12 to 18), the orange line corresponds to the median, the
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1 import itertools
2

3 batch_size = 25_088
4 size_limit = 2_147_483_647
5

6 a_list = [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128]
7 b_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
8 c_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
9 d_list1 = [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128]

10 d_list2 = [4, 16, 64]
11

12 def get_patterns_benchmark():
13 patterns_list = []
14

15 def add_pattern(a, b, c, d):
16 if batch_size * a * c * d <= size_limit and \
17 batch_size * a * b * d <= size_limit and \
18 a * b * c * d <= size_limit:
19 patterns_list.append((a, b, c, d))
20

21 for b, c, d in itertools.product(b_list, c_list, d_list1):
22 a = 1
23 if (b == c or b == 4 * c or c == 4 * b):
24 add_pattern(a, b, c, d)
25

26 for a, b, c, d in itertools.product(a_list, b_list, c_list, d_list2):
27 if a != 1 and \
28 (b, c) not in [(1024, 256), (256, 1024), (128, 512), (512, 128), (64, 256),

(256, 64)] and \
29 (b == c or b == 4 * c or c == 4 * b):
30 add_pattern(a, b, c, d)
31

32 return patterns_list

Figure 7. Python code to generate the patterns benchmarked for the execution time in the numerical experiments of Section 5.

boxes to the first and third quartile and the whiskers to the 5th and the 95th percentile. Outliers are not represented on the
graph.

E.2. Performance Across Sparsity Levels (Section 5)

Figure 8 illustrates the distribution of sparsity levels across the 600 KS patterns used in our benchmark. A clear skew
toward highly sparse patterns is observed: the median sparsity is 97.9%, and 75% of all patterns have a sparsity of at least
91.7%. As a result, any aggregated statistic computed over the full set of 600 patterns—such as the medians reported in
Table 2—tends to be dominated by these very sparse cases.

To assess whether our findings hold across the entire sparsity spectrum, we complement the overall results in Table 2 with
a stratified analysis by sparsity level. Table 5 reports the performance of KERNEL compared to three existing KS-aware
baselines—BMM, EINSUM, and BSR—within six sparsity bins. These bins were defined by equally spaced quantiles in
log-sparsity scale, to reflect the long-tailed distribution of sparsity levels.

Table 5 confirms that our fused KERNEL consistently outperforms the baselines in each of the different sparsity regimes.
Furthermore, within each bin, we compute the correlation between the speedup of KERNEL and the heuristic h(b, c) = b+c

bc .
In all six bins, we observe strong positive correlations (ranging from 0.76 to 0.91 in log-log scale), indicating that h(b, c)
remains a strong predictor of performance independently of sparsity. This supports the conclusion that our kernel’s speedup
is driven primarily by the structural pattern captured by h(b, c), rather than by the density of nonzero entries.

We also provide a visual counterpart in Figure 9, which extends the analysis of Figure 6a by showing the variation in speedup
as a function of h(b, c) at fixed sparsity levels, rather than aggregated bins. This further illustrates the dominant role of the
heuristic in explaining performance gains.
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Figure 8. Boxplot and histogram of the sparsity levels covered by the 600 KS patterns of our benchmark in Section 5.

Table 5. Win rate and median speed-up of KERNEL vs min{BMM, EINSUM, BSR} across sparsity bins, in FP32. The correlation is between
log(speedup) and log(h) within each bin, where h(b, c) = b+c

bc
.

Sparsity bin Win rate Median× faster Number of patterns Corr(log-log)

99.48–99.93% 100.0% 1.84 102 0.91
98.96–99.48% 93.1% 1.41 101 0.82
97.92–98.96% 79.6% 1.38 108 0.83
95.83–97.92% 81.5% 1.41 92 0.80
87.49–95.83% 89.5% 1.30 114 0.80
49.99–87.49% 86.0% 1.23 86 0.76

E.3. Measuring the Cost of the Permutation Steps in BMM (Section 3)

Protocol. The BMM baseline follows Algorithm 1, which for a pattern (a, b, c, d) performs two global permutations (lines 1
and 3) plus one matrix multiplication with the permuted factor K̃. Because K̃ itself has pattern (ad, b, c, 1), we isolate the
permutation overhead by timing:

1. ∆t: the full BMM kernel on the original pattern (a, b, c, d);
2. ∆t̃: the same kernel restricted to the multiplication step only, i.e., BMM executed on (ad, b, c, 1).

The share of runtime devoted to the two permutations is

∆t−∆t̃

∆t
.

Results. Figure 10 shows the distribution of memory transfer overheads at a fixed batch size of 25088. The patterns included
in this plot are of the form (1, b, c, d) with b, c ∈ {48, 64, 96, 128, 192, 256, 384, 512, 768, 1024} such that b = c, b = 4c,
or c = 4b, and d ∈ {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128}.

In the batch-size-first layout (Figure 10a, reproduced from Figure 4), the overhead of BMM due to the two global permutations
in Algorithm 1 increases with the ratio h(b, c) = b+c

bc , reaching up to 50 %.

The same trend is observed in the batch-size-last layout (Figure 10b).

E.4. Details on min time(KERNEL, BMM, BSR, EINSUM) vs. min time(DENSE, SPARSE) (Section 5.4)

Figure 12 shows that the speedup factor of implementations specialized to the Kronecker-sparsity (KERNEL, BMM, BSR,
EINSUM) over the generic DENSE and SPARSE implementations increases with the matrix size M ×N . Figure 11 describes
the distribution in sizes (the product MN ) over the benchmark: most of the values of MN are in between 4.2 × 106

(first quartile) and 6.0× 108 (third quartile). We recall that the output and input dimensions are M = abd and N = acd,
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Figure 9. Speedup factor of KERNEL compared to baselines (BMM, BSR, EINSUM) vs. the heuristic h(b, c) = b+c
bc

, when fixing the sparsity
level at a given value, in FP32. Each subplot corresponds to different sparsity bins involved in Table 5.
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(a) Batch-size-first (same as Figure 4).
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(b) Batch-size-last.

Figure 10. Estimated share of runtime devoted to the permutation steps in the BMM baseline for many patterns π = (a, b, c, d), in FP32.
Patterns are grouped by the value of h(b, c) = b+c

bc
and the distribution within each group is shown as a boxplot.

respectively, for a Kronecker-sparse matrix with pattern π = (a, b, c, d).
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Figure 11. Distribution of matrix sizes in the benchmark.

E.5. Details on time(BMM) vs. min time(BSR, EINSUM) (Section 5.4)

Figure 13 shows that for a sufficient large matrix size M ×N , we always have time(BMM) < min time(BSR, EINSUM), i.e.,
the BMM implementation is the most efficient among all baseline implementations (BMM, EINSUM, BSR).
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Figure 12. Speedup factor of min time(KERNEL, BMM, BSR, EIN-
SUM) compared to min time(DENSE, SPARSE) as a function of the
matrix size M ×N .
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Figure 13. Speedup factor of time(BMM) compared to min
time(EINSUM, BSR) as a function of the matrix size M ×N .

E.6. Details on the Impact of the Memory Layout (Section 5.4)

Figure 14a shows how the memory layout (batch-size-first vs. batch-size-last) impacts the runtime of each implementation.
In particular, it shows that KERNEL achieves a median speedup of approximately ×2 when switching from batch-size-first to
batch-size-last.

kernel bmm einsum bsr dense sparse

1

10

0.3

0.4
0.5
0.6
0.7
0.8
0.9

2

3

4
5
6
7
8
9

20

Ti
m

e 
ba

tc
h-

siz
e-

fir
st

 / 
Ti

m
e 

ba
tc

h-
siz

e-
la

st

(a) float-precision.
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Figure 14. Boxplots of the ratio time of batch-size-first
time of batch-size-last , in FP32.
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Table 6 reports the percentage of KS patterns for which KERNEL outperforms all baseline implementations, in either the
batch-size-first or batch-size-last memory layout. Even when all implementations are restricted to the batch-size-first layout,
KERNEL still improves over all baselines on 20% of the tested patterns, despite relying on some non-contiguous memory
accesses (Section 4.2).

Table 6 also confirms that among existing baselines (excluding the new KERNEL), BMM is the fastest across both layouts,
outperforming EINSUM, BSR, DENSE, and SPARSE.

Table 6. Percentage out of 600 patterns (a, b, c, d) where algo1 is faster than the algo2 (denoted by time(algo1) < time(algo2)),
and the median acceleration factor in such cases (that is, the median ratio time of algo2

time of algo1 for a given memory layout), in FP32.

Batch-size-first Batch-size-last
Comparison Win rate Median× faster Win rate Median× faster

min{KERNEL, BMM, EINSUM, BSR} < min{DENSE, SPARSE} 97.61% ×18.50 98.09% ×6.53
BMM < min{EINSUM, BSR, DENSE, SPARSE} 94.1% ×1.44 89.47% ×1.66
KERNEL < min{BMM, EINSUM, BSR, DENSE, SPARSE} 20.41% ×1.26 85.49% ×1.39

E.7. Time Spent in Linear Layers in Vision Transformers (Section 6)

This section provides a numerical lower bound estimate of the time spent in fully-connected layers within Vision Transformers
(ViTs).

Results. Table 7 shows the proportion of computation time dedicated solely to the linear layers in the feed-forward network
(FFN) modules across various ViT architectures. This proportion ranges from 31% to 53% in half-precision and from 46%
to 61% in float-precision. The fraction increases with model size, indicating that a significant part of ViT inference is spent
in fully-connected layers. Note that our measurement excludes the linear layers in the multi-head attention modules, so
these values represent a lower bound on the actual time spent in all linear layers of the Transformer.

Table 7. Median execution times (ms) for the forward pass in various ViTs, and for an MLP composed solely of the linear layers from
the feed-forward network modules of the ViTs. The table also reports the proportion of the latter over the former. FP16 corresponds to
half-precision, and FP32 to float-precision.

ARCHITECTURE FP16 (S) FP32 (S)

COMPLETE LINEAR IN FFNS COMPLETE LINEAR IN FFNS

VIT-S/16 0.014 0.0046 (31%) 0.090 0.04 (46%)
VIT-B/16 0.036 0.015 (42%) 0.30 0.16 (54%)
VIT-L/16 0.11 0.050 (46%) 1.0 0.58 (58%)
VIT-H/14 0.31 0.16 (53%) 2.6 1.6 (61%)

Details on the Estimation. A Transformer architecture consists of a sequence of blocks, each containing a multi-head
attention module and a feed-forward network module. The feed-forward network (FFN) is a two-layer MLP (without biases)
with an intermediate non-linear activation. Table 7 reports the cumulative execution time of all linear layers in the FFNs,
computed sequentially. This is then compared with the total forward pass time of the full ViT model. Since we do not
include linear layers from the attention modules, the reported ratios represent only a lower bound on the total time spent in
linear operations.

Experimental Settings. The ViT-S/16 architecture follows (Zhai et al., 2022), while ViT-B/16, ViT-L/16, and ViT-H/14
follow (Dosovitskiy et al., 2020). Input images are of size 224 × 224. For float-precision, we use the PyTorch ViT
implementations of Wang (2024b). For half-precision, the Transformer uses FlashAttention (Dao et al., 2022c) to compute
scaled dot-product attention, as in (Wang, 2024a). The FFN-only MLPs are implemented using torch.nn.Sequential
and torch.nn.Linear. All experiments were run on a single NVIDIA A100-40GB GPU paired with an AMD EPYC
7742 64-Core Processor. Execution times were measured using torch.utils.benchmark.Timer, with a batch size
of 128.
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E.8. Details on End-to-End Transformers Inference Acceleration (Section 6)

Why Do We Focus More on Transformers Rather Than, e.g., Convolutional Neural Networks? In Section 6, we argued
that injecting KS in linear layers is straightforward—making architectures like Transformers a natural fit.

By contrast, applying KS to convolutional neural networks is more challenging. There are at least two ways to inject
Kronecker sparsity in convolutional layers, none of which we found convincing enough to be considered in this paper.

The first approach—replacing the convolution kernel with a Kronecker-sparse matrix—is limited by the small size of typical
convolution kernels (e.g., 7×7), leaving little room for meaningful gains.

The second approach—recasting convolutions as matrix multiplications with butterfly-structured weights, as in (Lin et al.,
2021)—introduces significant overhead in the form of input/output folding and unfolding operations. In our view, this makes
the approach impractical for efficient inference.

For these reasons, we focus on fully connected layers, where KS integration is both simple and impactful.

Selected Kronecker-Sparse Patterns for ViT-S/16. In our ViT-S/16 experiments, we replace the dense weight matrices
in all fully-connected layers—namely, the projection matrices in the self-attention blocks and the linear layers in the
feed-forward network blocks—with products of two Kronecker-sparse matrices K1K2, where each Ki follows a specific
sparsity pattern πi as defined in Definition 2.1. The patterns used are:

• (π1,π2) = ((1, 192, 48, 2), (2, 48, 192, 1)) for square matrices of size N ×N (projections in self-attention blocks),

• (1, 768, 192, 2), (6, 64, 64, 1) for 4N ×N matrices (UP projection matrices),

• (6, 64, 256, 1), (1, 128, 128, 3) for N × 4N matrices (DOWN projection matrices).

These patterns were selected based on two criteria: (i) the total number of nonzero entries across both KS factors is at least
75 % of the original dense matrix size (a1b1c1d1 + a2b2c2d2 ≥ 0.75MN ), ensuring sufficient layer expressivity to raise
hope that it could yield competitive task accuracy compared to the dense implementation, if it were fine-tuned or trained
from scratch on a given task; (ii) the patterns yield a high value of the heuristic h(b, c) = b+c

bc , which favors the performance
of our fused KERNEL implementation.

Additional Results for ViT-S/16. Table 8 presents the latency reduction achieved by replacing standard Linear layers
with Kronecker-sparse layers using our fused KERNEL implementation, as compared to the BMM baseline. These results,
measured on an Nvidia A100 40GB GPU, confirm that the gains observed at the layer level carry over to larger functional
blocks in the model.

Table 8. Acceleration of submodules of a ViT-S/16 using Kronecker-sparse matrices, in FP32.
time(BMM)

time(fully-connected)
time(KERNEL)

time(fully-connected)

Linear N ×N 0.82 0.50
Linear N ×N + bias 0.97 0.66
Linear 4N ×N 0.80 0.78
Linear 4N ×N + bias 0.93 0.90
Linear N × 4N 0.91 0.58
Linear N × 4N + bias 0.94 0.61
FFN (2×Linear+GELU+LN) 0.91 0.77
MHA (QKV + proj) 0.87 0.79
Transformer block 0.90 0.78

ViT-S/16 full 0.89 0.78

Selected Kronecker-Sparse Patterns for GPT-2 Medium. For GPT-2 Medium, we inject Kronecker sparsity into the
down-projection linear layer within the feed-forward block. The layer in question has dimensions 1024× 4096 (hidden size
d = 1024). The applied KS patterns are:

π1 = (1, 64, 256, 16), π2 = (64, 64, 64, 1),
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yielding the factorization W = K1K2. These patterns are selected following the same rationale as for ViT-S/16: they
are expressive enough (nonzero density above 75 %) and yield high values of the heuristic h(b, c), which predicts good
performance with KERNEL.

Inference Setup. Inference is conducted in PyTorch using the batch-size-first memory layout (batch-size-first), which is the
framework’s default. All operations aside from the KS layers use standard PyTorch kernels. For ViT-S/16, we use an Nvidia
A100 GPU with a batch of 128 image token sequences, each containing 196 tokens. For GPT-2 Medium, we use an Nvidia
RTX6000 GPU under similar batch settings.

E.9. Benchmark Results in Half-Precision

We now reproduce the benchmark from Section 5 in half-precision. The half-precision equivalents of our key float-precision
results—Tables 2 and 6, Figure 6a, Figure 10, Figure 12, Figure 13, and Figure 14a—are respectively shown in Tables 9
and 10, Figure 18, Figure 17, Figure 15, Figure 16, and Figure 14b.

As in the FP32 benchmark, Figure 18 reports results only for patterns where at least one KS-aware method (KERNEL, BMM,
EINSUM, BSR) is faster than the generic baselines (DENSE, SPARSE). This filters out roughly 14.3% of the patterns and
retains 85.7% of the benchmarked grid in half-precision (see Table 9).

Overall, KERNEL shows fewer speedups compared to the FP32 setting, raising two possible interpretations: either existing
baselines have been better optimized for half-precision and benefit more from tensor cores, or there remains untapped room
for optimization in our kernel for half-precision.

1) Figure 15 and Table 10 confirm that, as in FP32, the implementations tailored to KS matrices (KERNEL, BMM, EINSUM,
BSR) still largely outperform the generic baselines (DENSE, SPARSE).

2) Figure 16 and Table 10 show that among the existing KS-aware implementations (BMM, EINSUM, BSR), BMM remains
the fastest when the matrix size is sufficiently large, regardless of the memory layout.

3) Figure 17 highlights that in half-precision, the relative cost of the permutation steps in BMM grows even larger than in
float-precision—ranging from 40 % to 80 %, compared to 10 % to 50 % in float-precision—further motivating efforts to
eliminate these costly memory operations.

4) Figure 18 shows that the new KERNEL can still yield up to ×2 speedups, but only for KS patterns where a large portion
of the runtime is spent on permutations—those with high values of the heuristic h(b, c) = b+c

bc ≥ 0.02. This contrasts
with the FP32 case, where improvements already appear from h(b, c) ≥ 0.004 (see Figure 6a). Consequently, KERNEL
improves over existing methods on 38 % of the patterns in half-precision (Table 9), compared to 85 % in float-precision
(Table 2).

5) Table 10 shows that the current KERNEL remains competitive in batch-size-last under half-precision, but falls behind in
batch-size-first. This shows that memory layout plays a key role in making Kronecker sparsity efficient on GPUs, and
suggests further study on how layout affects other neural network operations.

These findings suggest that while KERNEL remains competitive in half-precision, its performance gains are currently more
limited. This highlights potential for further optimization, particularly to better leverage half-precision hardware features
such as tensor cores.
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Figure 15. Speedup factor of min time(KERNEL, BMM, BSR, EIN-
SUM) compared to min time(DENSE, SPARSE) vs. the matrix size
M ×N . Experiments are carried in half-precision.
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Figure 16. Speedup factor of time(BMM) compared to min
time(EINSUM, BSR) vs. the matrix size M × N . Experiments
are carried in half-precision.

Table 9. Percentage out of 600 patterns (a, b, c, d) where algo1 is faster than the algo2 in half-precision (denoted by time(algo1) <
time(algo2)), and the median acceleration factor in such cases (that is, the median ratio time of algo2

time of algo1 ). For each implementation, we take
the minimum time between the batch-size-first and the batch-size-last memory layout. Experiments are carried in half-precision.

min time


KERNEL

BMM
EINSUM

BSR

 < min time
(

DENSE
SPARSE

)
time(BMM) < min time


EINSUM

BSR
DENSE
SPARSE

 time(KERNEL) < min time


BMM

EINSUM
BSR

DENSE
SPARSE


85.7% (×8.14) 80.7% (×1.52) 37.8% (×1.51)

Table 10. Across 600 patterns, this table reports how often each algorithm is the fastest, along with the corresponding median speedup,
under each memory layout (batch-size-first and batch-size-last) in FP16.

Batch-size-first Batch-size-last
Comparison Win rate Median× faster Win rate Median× faster

min{KERNEL, BMM, EINSUM, BSR} < min{DENSE, SPARSE} 83.18% ×6.31 85.34% ×8.14
BMM < min{EINSUM, BSR, DENSE, SPARSE} 82.25% ×1.54 79.48% ×2.65
KERNEL < min{BMM, EINSUM, BSR, DENSE, SPARSE} 0.0% - 41.78% ×1.56
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Figure 17. Estimated relative time spent on memory rewritings in BMM for the multiplication with K ∈ Kπ , for several π = (a, b, c, d).
We regroup patterns by their value of (b+ c)/(bc), and plot a boxplot to summarize the corresponding measurements. Experiments are
carried in half-precision.
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Figure 18. Speedup factor of KERNEL compared to min(BMM, EINSUM, BSR) in half-precision. For each implementation, we take the
minimum time between the batch-size-first and the batch-size-last memory layout. We regroup the (a, b, c, d) patterns by their value of
(b+ c)/(bc), and use a boxplot to summarize the corresponding measurements. Experiments are carried in half-precision.
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