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Abstract001

Label scarcity remains a significant challenge002
in speech emotion recognition (SER), often003
limiting the effectiveness of training models004
from scratch. Furthermore, speaker variabil-005
ity in acoustic representations hinders the gen-006
eralization of emotion recognition systems.007
Prior research has demonstrated that mitigating008
speaker-related information can improve perfor-009
mance in SER tasks. In this work, we propose010
an efficient method to learn speaker-invariant011
representations by suppressing speaker identity012
from a pre-trained model (Wav2Vec2.0). Our013
approach enhances the robustness of emotion014
classification while addressing the limitations015
of limited labeled data and inter-speaker vari-016
ability.017

1 Introduction018

Speech Emotion Recognition (SER) has long faced019

challenges due to the scarcity of labeled data.020

Despite continuous efforts to construct emotion-021

labeled speech datasets, obtaining accurate emo-022

tion annotations remains costly and labor-intensive.023

Consequently, SER systems often suffer from lim-024

ited training resources, making it difficult to gener-025

alize across speakers and contexts.026

Speech signals inherently carry multiple types027

of information beyond linguistic content, including028

speaker-specific characteristics, emotional expres-029

sions, and social cues. This diversity complicates030

the extraction of emotion-related features, as the un-031

derlying representations are often entangled with032

speaker identity. Among these confounding fac-033

tors, *speaker variability*—i.e., inter-speaker dif-034

ferences in emotional expression—has been shown035

to significantly hinder the generalization perfor-036

mance of SER models(Li et al., 2021).037

Recent advances in self-supervised learning038

(SSL) have led to significant improvements in039

a wide range of speech processing tasks(Wang040

and Yang, 2025). SSL-based models such as Hu- 041

BERT(Hsu et al., 2021) and Wav2Vec 2.0(Ando 042

and Zhang, 2005) are pre-trained on large-scale 043

unlabeled corpora, and are capable of learning rich 044

acoustic and linguistic representations. These mod- 045

els have demonstrated strong transferability and 046

effectiveness, even with limited downstream data. 047

However, directly applying such pre-trained 048

models to SER remains suboptimal. The learned 049

representations often encode speaker-specific fea- 050

tures, resulting in degraded performance on unseen 051

speakers. When there is a distributional shift in 052

speaker identities between the training and testing 053

sets, models tend to overfit to speaker character- 054

istics rather than generalizing to emotion-related 055

cues. 056

To address this limitation, several stud- 057

ies have employed *Gradient Reversal Layers 058

(GRL)*(Ganin et al., 2016) in conjunction with 059

domain-adversarial training to encourage the learn- 060

ing of speaker-invariant representations. For exam- 061

ple, prior work utilized GRL-based architectures 062

involving 1D convolutional layers, recurrent net- 063

works, and pooling mechanisms. While effective 064

to some extent, these approaches often lack the 065

representational power and generalization ability 066

provided by modern pre-trained models. 067

In this paper, we propose a novel SER frame- 068

work that integrates pre-trained speech models 069

(e.g., Wav2Vec 2.0) with a speaker identification 070

model (ECAPA-TDNN)(Desplanques et al., 2020), 071

to suppress speaker-specific information through 072

domain-adversarial learning. Specifically, we ap- 073

ply a GRL-based training strategy to encourage 074

the pre-trained encoder to produce representations 075

that are informative for emotion classification but 076

invariant to speaker identity. 077

We conduct extensive experiments on the IEMO- 078

CAP benchmark dataset, a widely used SER cor- 079

pus with limited labeled data. Our results demon- 080

strate that even with small-scale data, leveraging 081
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pre-trained models and speaker-adversarial train-082

ing yields significant improvements in speaker-083

independent emotion recognition.084

**The main contributions of this paper are as085

follows:**086

1. Our approach adapts an existing pre-trained087

speech model to be speaker-invariant by eliminat-088

ing residual speaker characteristics. 2. We empiri-089

cally demonstrate the benefits of learning speaker-090

invariant representations on SER performance, par-091

ticularly in low-resource settings.092

The rest of the paper is organized as follows.093

Section 2 discusses related work. Section 3 pro-094

vides a detailed description of the proposed frame-095

work. Section 4 presents the experimental setup096

and results. Finally, Section 6 concludes the paper.097

2 Related works098

Self-supervised learning (SSL) has significantly ad-099

vanced speech processing by enabling the learning100

of powerful representations from large-scale un-101

labeled data. Most SSL methods fall into three102

categories: contrastive learning using InfoNCE103

loss (van den Oord et al., 2019; Rivière et al., 2020),104

masked token classification, and reconstruction-105

based approaches such as predicting future frames106

or reconstructing masked inputs. Representative107

models like HuBERT and Wav2Vec 2.0 belong to108

the second and first categories respectively, and109

have been shown to effectively capture both acous-110

tic and linguistic information. These models have111

become essential backbones for various down-112

stream tasks, including speech emotion recogni-113

tion.114

In the context of SER, one of the major chal-115

lenges is speaker variability, where individual dif-116

ferences in emotional expression reduce model gen-117

eralizability. Early approaches combined CNN and118

LSTM architectures (Khan and Kwon, 2021; Mus-119

taqeem and Kwon, 2019), followed by attention-120

based models that improved performance by focus-121

ing on emotionally salient segments. More recently,122

self-supervised models have shown state-of-the-art123

performance on SER benchmarks such as IEMO-124

CAP (Tripathi et al., 2019), demonstrating their125

effectiveness in low-resource emotional modeling.126

To further improve generalization, several works127

have explored feature normalization and domain128

adversarial learning. Approaches such as confusion129

loss (Nagrani et al., 2017) and gradient reversal lay-130

ers (GRL) (Li et al., 2021) aim to reduce reliance131

on domain-specific or speaker-specific cues. While 132

these methods improve robustness, they often as- 133

sume that confusing the domain classifier guaran- 134

tees domain-invariant features—an assumption that 135

does not always hold(Ganin et al., 2016). 136

Our work is motivated by these findings. We 137

adopt a speaker-adversarial training strategy that 138

builds upon GRL, but further introduces an entropy- 139

based loss to encourage true speaker-invariant 140

representations. Additionally, unlike prior work 141

that applies adversarial training on shallow net- 142

works, we apply our approach to pre-trained self- 143

supervised encoders, which significantly boosts the 144

representation power for emotion classification. 145

3 Method 146

This section introduces our proposed three-stage 147

training pipeline for learning emotion representa- 148

tions that are robust to speaker-specific variations. 149

The framework consists of three main stages: (1) 150

speaker classifier pretraining, (2) adversarial fine- 151

tuning of a pre-trained speech encoder, and (3) 152

emotion classifier training with the frozen, speaker- 153

invariant encoder. 154

We denote an input utterance as x ∈ RT , where 155

T is the number of waveform samples in a 16kHz 156

mono audio. Each input x is associated with a 157

speaker label y(spk) ∈ {1, . . . , N} and an emotion 158

label y(emo) ∈ {1, . . . , C}, where N is the number 159

of unique speakers and C is the number of emotion 160

classes. 161

Given the raw waveform x, the pre-trained en- 162

coder fθ extracts hidden representations: 163

h = fθ(x) ∈ RL×D, 164

where L is the number of time steps after feature 165

extraction and D is the feature dimension (e.g., 166

D = 768 for Wav2Vec2.0 Base). These hidden fea- 167

tures are then used in subsequent stages for speaker- 168

adversarial training and emotion classification. 169

3.1 Stage 1: Speaker Classifier Pretraining 170

In the first stage, we train a speaker classifi- 171

cation model independently to extract speaker- 172

discriminative representations. We use the ECAPA- 173

TDNN model for this purpose, which is widely 174

adopted in speaker verification tasks due to its abil- 175

ity to extract robust speaker embeddings. 176

Because ECAPA-TDNN expects 80- 177

dimensional mel-spectrogram inputs, we add 178

a projection layer that maps the base model’s 179
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Figure 1: An overview of the proposed three-stage training pipeline for speaker-invariant speech emotion recognition.
In Stage 1, a speaker classifier is trained on the target dataset to effectively distinguish speaker identity. In Stage
2, a pre-trained speech encoder is fine-tuned with only the top two layers unfrozen, using adversarial training to
suppress speaker-related information. The pink arrow denotes the Gradient Reversal Layer (GRL), which inverts
gradients from the fixed speaker classifier. In Stage 3, the output representations from the fine-tuned encoder are
used to train an emotion classifier.

768-dimensional output down to 80 dimensions.180

The model is trained on 16 kHz mono waveforms181

using the Additive Angular Margin Softmax182

(AAM-Softmax) loss, and we continue training183

until it reaches approximately 70% accuracy on184

the IEMOCAP training split to ensure sufficient185

speaker classification performance. This trained186

speaker classifier is then used only in the next stage187

for adversarial training and is discarded afterward.188

3.2 Stage 2: Adversarial Fine-tuning of the189

Speech Encoder190

In this stage, we fine-tune a pre-trained speech191

encoder—specifically, Wav2Vec 2.0—to learn rep-192

resentations that are invariant to speaker identity193

while preserving its original self-supervised learn-194

ing objectives. To this end, we introduce a Gra-195

dient Reversal Layer (GRL) between the encoder 196

and the fixed speaker classifier, forming a domain- 197

adversarial learning setup. 198

The encoder output is passed through two 199

branches: one through the GRL into the speaker 200

classifier to compute an adversarial loss, and the 201

other used internally by the encoder to compute 202

its original self-supervised objectives. Unlike prior 203

work that replaces the encoder’s training loss dur- 204

ing fine-tuning, we retain both the contrastive loss 205

and the diversity loss from the original Wav2Vec 206

2.0 pre-training to maintain representational rich- 207

ness. 208

The total loss for this stage is given by: 209

Lspeech = Lcontrastive + λdiv · Ldiversity 210

+ λadv · Ladv (1) 211
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Here, Lcontrastive is the InfoNCE-based con-212

trastive loss used in Wav2Vec 2.0, and Ldiversity213

encourages codebook usage diversity in quantized214

representations. The term Ladv denotes the ad-215

versarial speaker classification loss and is defined216

as:217

Ladv = −
∑
i

CE(Cspk(GRL(hi)), y
(spk)
i ) (2)218

where hi is the latent representation of the i-th219

utterance obtained from the encoder, and Cspk is220

the fixed speaker classifier trained in Stage 1. The221

coefficients λdiv and λadv control the strength of the222

diversity and adversarial terms, respectively. After223

training, the encoder is frozen for the next stage.224

3.3 Stage 3: Emotion Classifier Training225

In the final stage, we train an emotion classifier226

on top of the speaker-invariant encoder obtained227

from Stage 2. The encoder is frozen during this228

phase, and only the parameters of the classifier are229

updated.230

The emotion classifier is implemented as a231

lightweight 1D convolutional network designed to232

process the temporal output representations from233

the pre-trained speech encoder. The input to the234

classifier is a sequence of hidden representations235

with 768 channels, corresponding to the encoder236

output.237

The classifier consists of two convolutional238

blocks. Each block contains a 1D convolutional239

layer with kernel size 3 and padding 1, followed by240

a ReLU activation and a max-pooling layer with241

kernel size 2 to reduce the temporal resolution by242

half. The first convolution maps the input from243

768 to 128 channels, while the second convolution244

reduces it further from 128 to 4 channels, corre-245

sponding to the number of emotion classes. The246

resulting output is aggregated and used to predict247

emotion labels via cross-entropy loss.248

Lemo =
∑
i

CE(Cemo(hi), y
(emo)
i ) (3)249

where Cemo is the classifier and y(emo)
i is the emo-250

tion label for the i-th utterance.251

This final step ensures that the learned features252

are not only invariant to speaker identity but also ef-253

fective for the downstream task of speech emotion254

recognition.255

4 Experiments 256

4.1 Dataset 257

We conduct our experiments using the IEMOCAP 258

dataset, a widely adopted benchmark for speech 259

emotion recognition. 260

IEMOCAP Dataset We evaluate our proposed 261

method on the IEMOCAP dataset, a widely used 262

benchmark for speech emotion recognition. The 263

IEMOCAP corpus consists of approximately 12 264

hours of audiovisual recordings collected from 10 265

professional actors (5 male and 5 female), orga- 266

nized into five sessions. Each session includes a 267

dyadic interaction between one male and one fe- 268

male speaker, engaging in both scripted and im- 269

provised dialogues. This structure provides a wide 270

variety of emotionally expressive speech, making 271

it well-suited for emotion recognition research. 272

In this work, we focus exclusively on the audio 273

modality. We use the categorical emotion anno- 274

tations provided with the dataset and follow the 275

standard protocol by selecting the four most com- 276

monly used emotion classes: angry, happy, sad, 277

and neutral. Each dialogue is segmented into ut- 278

terances, where a single utterance typically corre- 279

sponds to a single sentence. After filtering for the 280

selected emotion classes, the dataset contains a to- 281

tal of approximately 39,397 labeled utterances. We 282

then split these utterances into training and test sets 283

using an 80:20 ratio to ensure robust evaluation. 284

To improve model generalization and robustness, 285

we apply speed perturbation as a data augmenta- 286

tion strategy. Specifically, we generate additional 287

training samples by resampling each utterance at 288

speed factors of 0.8, 0.9, 1.1, and 1.2, in addition to 289

the original speed (1.0). This technique effectively 290

increases the size of the training set by a factor 291

of five, while preserving the temporal and spectral 292

structure necessary for emotion recognition (Ko 293

et al., 2015). 294

4.2 Experimental Setup 295

Stage 1. The ECAPA-TDNN model was fine- 296

tuned for speaker classification using the Addi- 297

tive Angular Margin Softmax (AAM-Softmax) loss. 298

The model was trained for 50 epochs using a co- 299

sine learning rate scheduler. This classifier was 300

subsequently fixed and used in Stage 2 to gener- 301

ate the adversarial signal for suppressing speaker 302

information. 303
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Table 1: Comparison of weighted accuracy (WA) on IEMOCAP using different models and training strategies.

Model Model Size Params Speaker-Invariant WA (%)

Vanilla (Baseline) Base 95M ✗ 66.3
+ GRL Base 95M ✓ 57.7
+ GRL + Contrastive + Diversity (Ours) Base 95M ✓ 68.4

Table1. Weighted accuracy (WA) comparison on the IEMOCAP dataset (4-class classification). All models use Wav2Vec 2.0
Base as the pre-trained encoder. “GRL” denotes the use of a Gradient Reversal Layer with a fixed speaker classifier. “Contrastive”
and “Diversity” refer to the original self-supervised learning objectives of Wav2Vec2.0, which are preserved during fine-tuning
to maintain representational capacity. The “Vanilla” model serves as the baseline and is trained with only a cross-entropy loss.

Stage 2. In the second stage, we fine-tuned the304

Wav2Vec 2.0 Base model using a composite objec-305

tive comprising the original contrastive loss, diver-306

sity loss, and an adversarial speaker classification307

loss applied via a Gradient Reversal Layer (GRL).308

The adversarial classifier was the ECAPA-TDNN309

model trained in Stage 1. The weight for the ad-310

versarial loss was set empirically to λadv = 0.9,311

while the weight for the diversity loss was set to312

λdiv = 0.01 which is used as de-fault setting in the313

wav2vec2.0 config. This stage was trained for 50314

epochs with an initial learning rate of 1 × 10−4,315

which was halved every 10 epochs. Early stopping316

is used with patience 50 steps.317

Stage 3. The final stage involved training an emo-318

tion classifier on top of the frozen encoder obtained319

from Stage 2. A simple feed-forward network was320

used for classification, and it was trained for 10321

epochs using a fixed learning rate of 1 × 10−4.322

Only the classifier parameters were updated during323

this stage; the encoder remained frozen.324

All experiments were implemented using Py-325

Torch and conducted on a single NVIDIA RTX326

4090 GPU. We utilized pre-trained models for327

both the speech encoder and the speaker classi-328

fier: the Wav2Vec 2.0 Base model, pre-trained on329

Librispeech, and ECAPA-TDNN, pre-trained on330

the VoxCeleb dataset. The Adam optimizer was331

employed for all training stages. A batch size of332

4 was used, and to enable effective training with333

limited GPU memory, we applied gradient accumu-334

lation with 32 steps, resulting in an effective batch335

size of 128. Early stopping was not used during336

training.337

5 Results 338

5.1 Main Evaluation on IEMOCAP 339

Table 1 reports the weighted accuracy (WA) ob- 340

tained on the IEMOCAP 4-class setup.1 The 341

vanilla Wav2Vec 2.0 encoder—kept frozen and fol- 342

lowed by a task-specific classifier—yields a base- 343

line of 66.3% WA. After applying our three-stage 344

pipeline, the speaker-invariant encoder achieves 345

68.4% WA, an absolute gain of 2.1% percentage 346

points. Because both systems share the same model 347

size (95 M parameters) and differ only in the fine- 348

tuning strategy, we attribute the gain to explicitly 349

suppressing speaker cues via adversarial learning 350

and the diversity constraint. 351

5.2 Zero-shot and One-shot Generalisation 352

Table 1 (Section 7) summarises the encoder’s trans- 353

ferability for zero-shot or one-shot condition: 354

• Zero-shot (classifier only): our speaker- 355

invariant encoder attains 56.63% WA, more 356

than double the vanilla baseline (25.85%). 357

This confirms that disentangling speaker in- 358

formation leads to representations that are in- 359

herently more emotion-focused. 360

• One-shot: With a single training for the emo- 361

tion classifier, performance rises to 58.88%, 362

indicating strong few-shot adaptability. 363

5.3 Impact of Adversarial Components 364

An ablation in Table 1 further shows that including 365

both the contrastive and diversity losses during 366

adversarial fine-tuning contributes an additional 367

about 10 percentage-point gain over using the GRL 368

alone. 369

Notably, fine-tuning with the GRL alone leads 370

to a drop in performance (57.7% WA), since the 371

1All results are averaged over five speaker-independent
folds, following the standard protocol.
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encoder is updated only in the opposite direction372

of the speaker classifier without preserving its orig-373

inal self-supervised objectives. This suggests that374

retaining the self-supervised objectives helps pre-375

serve the encoder’s representational richness while376

still eliminating speaker-specific information.377

5.4 Discussion378

Overall, the results validate our central hypothe-379

sis: speaker variability is a dominant confounder380

in SER, and explicitly neutralising it yields more381

robust, transferable emotion features. Notably, the382

improvements are achieved without enlarging the383

network or relying on extra emotion labels, high-384

lighting the practicality of the proposed pipeline385

for low-resource scenarios.386

6 Conclusion387

We introduced a three-stage adversarial training388

framework for learning speaker-invariant represen-389

tations in speech emotion recognition (SER). By390

leveraging a fixed ECAPA-TDNN speaker classi-391

fier and applying gradient reversal to a pre-trained392

Wav2Vec2.0 encoder, our method effectively sup-393

presses speaker-specific information while preserv-394

ing emotion-discriminative features.395

Empirical results on the IEMOCAP benchmark396

demonstrated that our speaker-invariant representa-397

tions significantly improve both in-domain perfor-398

mance and zero-shot generalization. Specifically,399

we observed over 30% improvement in zero-shot400

weighted accuracy when comparing the speaker-401

invariant encoder to a vanilla Wav2Vec2.0 encoder402

with only a trained classifier. These findings con-403

firm that speaker variability is a major limiting404

factor in SER, and that explicitly removing speaker405

cues leads to more robust, transferable emotion406

features.407

Importantly, our framework operates without408

the need for large-scale emotion annotations or409

task-specific architecture changes. Once the en-410

coder is adversarially fine-tuned, it can be applied411

to new tasks such as emotion classification, with412

minimal data and without further encoder updates.413

This opens a promising direction toward build-414

ing general-purpose, speaker-agnostic acoustic en-415

coders for a wide range of paralinguistic tasks.416

In future work, we plan to evaluate our speaker-417

invariant encoder on tasks beyond emotion recog-418

nition, such as intent detection or conversational419

analysis, and to investigate the trade-offs be-420

Table 2: Comparison of Weighted Accuracy of the Pro-
posed Method under Zero-Shot and One-Shot Settings

Encoder Tuning Strategy WA (%)

Zero-shot
Wav2Vec2.0 (Vanilla) None 25.85
Wav2Vec2.0
(Speaker-Invariant)

Adversarial
(GRL) 56.63

One-shot
Wav2Vec2.0
(Speaker-Invariant) Adversarial (GRL) 58.88

tween speaker suppression and retention of speaker- 421

dependent emotional nuance. We also aim to 422

extend our approach to multilingual and code- 423

switched speech, where speaker and language cues 424

are often entangled. 425

Limitations 426

While our approach demonstrates the effective- 427

ness of speaker-invariant representations for speech 428

emotion recognition, there are several limitations 429

to be acknowledged. 430

First, our experiments were conducted solely on 431

the IEMOCAP dataset, which is relatively small 432

and limited to acted emotional expressions in En- 433

glish. As such, the generalizability of our method 434

to more diverse, spontaneous, and multilingual 435

emotion corpora remains to be verified. 436

Second, although we demonstrated that suppress- 437

ing speaker information improves zero-shot perfor- 438

mance, we did not explicitly measure the trade-off 439

between speaker invariance and potential loss of 440

paralinguistic cues (e.g., speaker identity, person- 441

ality) that may contribute to emotion perception in 442

natural scenarios. 443

Third, we focused on emotion classification as 444

the target downstream task. It remains an open 445

question whether the learned speaker-invariant en- 446

coder also benefits other paralinguistic tasks such 447

as sentiment analysis, intent detection, or speaker 448

trait recognition. 449

Finally, while our method improves performance 450

without requiring large-scale emotion labels, it still 451

depends on a speaker-labeled dataset to train the 452

adversarial speaker classifier. Exploring unsuper- 453

vised or weakly supervised alternatives for speaker 454

disentanglement would be a valuable future direc- 455

tion. 456
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7 Ablation457

Interestingly, the speaker-invariant encoder sig-458

nificantly outperforms the vanilla Wav2Vec2.0459

model in the zero-shot setting, achieving 56.63%460

weighted accuracy compared to only 25.85%. This461

substantial improvement suggests that removing462

speaker-specific information from the representa-463

tion leads to more generalizable emotion features,464

even when the encoder is not explicitly fine-tuned465

for emotion recognition.466

Note that in the zero-shot setting the vanilla467

Wav2Vec2.0 baseline has never seen any IEMO-468

CAP data, whereas our “speaker-invariant” en-469

coder, although not trained for emotion classifi-470

cation, has been adversarially trained on IEMO-471

CAP speakers during stage (2). This exposure to472

IEMOCAP speaker distributions naturally helps the473

encoder learn more robust representations, which474

partly explains the performance gap in the zero-475

shot evaluation.476

Moreover, in the one-shot setting—where the477

emotion classifier is trained exactly once on the full478

IEMOCAP training dataset—the speaker-invariant479

encoder further improves performance to 58.88%480

WA. This demonstrates its strong adaptability under481

minimal supervision. These findings highlight the482

benefit of adversarial speaker disentanglement not483

only for in-domain emotion classification, but also484

for low-resource and unseen-domain scenarios.485

References486

Shahin Amiriparian, Filip Packań, Maurice Gerczuk,487
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