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Abstract

Label scarcity remains a significant challenge
in speech emotion recognition (SER), often
limiting the effectiveness of training models
from scratch. Furthermore, speaker variabil-
ity in acoustic representations hinders the gen-
eralization of emotion recognition systems.
Prior research has demonstrated that mitigating
speaker-related information can improve perfor-
mance in SER tasks. In this work, we propose
an efficient method to learn speaker-invariant
representations by suppressing speaker identity
from a pre-trained model (Wav2Vec2.0). Our
approach enhances the robustness of emotion
classification while addressing the limitations
of limited labeled data and inter-speaker vari-
ability.

1 Introduction

Speech Emotion Recognition (SER) has long faced
challenges due to the scarcity of labeled data.
Despite continuous efforts to construct emotion-
labeled speech datasets, obtaining accurate emo-
tion annotations remains costly and labor-intensive.
Consequently, SER systems often suffer from lim-
ited training resources, making it difficult to gener-
alize across speakers and contexts.

Speech signals inherently carry multiple types
of information beyond linguistic content, including
speaker-specific characteristics, emotional expres-
sions, and social cues. This diversity complicates
the extraction of emotion-related features, as the un-
derlying representations are often entangled with
speaker identity. Among these confounding fac-
tors, *speaker variability*—i.e., inter-speaker dif-
ferences in emotional expression—has been shown
to significantly hinder the generalization perfor-
mance of SER models(Li et al., 2021).

Recent advances in self-supervised learning
(SSL) have led to significant improvements in
a wide range of speech processing tasks(Wang

and Yang, 2025). SSL-based models such as Hu-
BERT(Hsu et al., 2021) and Wav2Vec 2.0(Ando
and Zhang, 2005) are pre-trained on large-scale
unlabeled corpora, and are capable of learning rich
acoustic and linguistic representations. These mod-
els have demonstrated strong transferability and
effectiveness, even with limited downstream data.

However, directly applying such pre-trained
models to SER remains suboptimal. The learned
representations often encode speaker-specific fea-
tures, resulting in degraded performance on unseen
speakers. When there is a distributional shift in
speaker identities between the training and testing
sets, models tend to overfit to speaker character-
istics rather than generalizing to emotion-related
cues.

To address this limitation, several stud-
ies have employed *Gradient Reversal Layers
(GRL)*(Ganin et al., 2016) in conjunction with
domain-adversarial training to encourage the learn-
ing of speaker-invariant representations. For exam-
ple, prior work utilized GRL-based architectures
involving 1D convolutional layers, recurrent net-
works, and pooling mechanisms. While effective
to some extent, these approaches often lack the
representational power and generalization ability
provided by modern pre-trained models.

In this paper, we propose a novel SER frame-
work that integrates pre-trained speech models
(e.g., Wav2Vec 2.0) with a speaker identification
model (ECAPA-TDNN)(Desplanques et al., 2020),
to suppress speaker-specific information through
domain-adversarial learning. Specifically, we ap-
ply a GRL-based training strategy to encourage
the pre-trained encoder to produce representations
that are informative for emotion classification but
invariant to speaker identity.

We conduct extensive experiments on the [IEMO-
CAP benchmark dataset, a widely used SER cor-
pus with limited labeled data. Our results demon-
strate that even with small-scale data, leveraging



pre-trained models and speaker-adversarial train-
ing yields significant improvements in speaker-
independent emotion recognition.

**The main contributions of this paper are as
follows:**

1. Our approach adapts an existing pre-trained
speech model to be speaker-invariant by eliminat-
ing residual speaker characteristics. 2. We empiri-
cally demonstrate the benefits of learning speaker-
invariant representations on SER performance, par-
ticularly in low-resource settings.

The rest of the paper is organized as follows.
Section 2 discusses related work. Section 3 pro-
vides a detailed description of the proposed frame-
work. Section 4 presents the experimental setup
and results. Finally, Section 6 concludes the paper.

2 Related works

Self-supervised learning (SSL) has significantly ad-
vanced speech processing by enabling the learning
of powerful representations from large-scale un-
labeled data. Most SSL methods fall into three
categories: contrastive learning using InfoNCE
loss (van den Oord et al., 2019; Riviere et al., 2020),
masked token classification, and reconstruction-
based approaches such as predicting future frames
or reconstructing masked inputs. Representative
models like HUBERT and Wav2Vec 2.0 belong to
the second and first categories respectively, and
have been shown to effectively capture both acous-
tic and linguistic information. These models have
become essential backbones for various down-
stream tasks, including speech emotion recogni-
tion.

In the context of SER, one of the major chal-
lenges is speaker variability, where individual dif-
ferences in emotional expression reduce model gen-
eralizability. Early approaches combined CNN and
LSTM architectures (Khan and Kwon, 2021; Mus-
tageem and Kwon, 2019), followed by attention-
based models that improved performance by focus-
ing on emotionally salient segments. More recently,
self-supervised models have shown state-of-the-art
performance on SER benchmarks such as IEMO-
CAP (Tripathi et al., 2019), demonstrating their
effectiveness in low-resource emotional modeling.

To further improve generalization, several works
have explored feature normalization and domain
adversarial learning. Approaches such as confusion
loss (Nagrani et al., 2017) and gradient reversal lay-
ers (GRL) (Li et al., 2021) aim to reduce reliance

on domain-specific or speaker-specific cues. While
these methods improve robustness, they often as-
sume that confusing the domain classifier guaran-
tees domain-invariant features—an assumption that
does not always hold(Ganin et al., 2016).

Our work is motivated by these findings. We
adopt a speaker-adversarial training strategy that
builds upon GRL, but further introduces an entropy-
based loss to encourage true speaker-invariant
representations. Additionally, unlike prior work
that applies adversarial training on shallow net-
works, we apply our approach to pre-trained self-
supervised encoders, which significantly boosts the
representation power for emotion classification.

3 Method

This section introduces our proposed three-stage
training pipeline for learning emotion representa-
tions that are robust to speaker-specific variations.
The framework consists of three main stages: (1)
speaker classifier pretraining, (2) adversarial fine-
tuning of a pre-trained speech encoder, and (3)
emotion classifier training with the frozen, speaker-
invariant encoder.

We denote an input utterance as = € R”, where
T is the number of waveform samples in a 16kHz
mono audio. Each input x is associated with a
speaker label y*PX) € {1,... N} and an emotion
label (™) € {1,...,C}, where N is the number
of unique speakers and C' is the number of emotion
classes.

Given the raw waveform z, the pre-trained en-
coder fy extracts hidden representations:

h= fo(x) € RPP,

where L is the number of time steps after feature
extraction and D is the feature dimension (e.g.,
D = 768 for Wav2Vec2.0 Base). These hidden fea-
tures are then used in subsequent stages for speaker-
adversarial training and emotion classification.

3.1 Stage 1: Speaker Classifier Pretraining

In the first stage, we train a speaker classifi-
cation model independently to extract speaker-
discriminative representations. We use the ECAPA-
TDNN model for this purpose, which is widely
adopted in speaker verification tasks due to its abil-
ity to extract robust speaker embeddings.

Because = ECAPA-TDNN  expects  80-
dimensional mel-spectrogram inputs, we add
a projection layer that maps the base model’s
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Figure 1: An overview of the proposed three-stage training pipeline for speaker-invariant speech emotion recognition.
In Stage 1, a speaker classifier is trained on the target dataset to effectively distinguish speaker identity. In Stage
2, a pre-trained speech encoder is fine-tuned with only the top two layers unfrozen, using adversarial training to
suppress speaker-related information. The pink arrow denotes the Gradient Reversal Layer (GRL), which inverts
gradients from the fixed speaker classifier. In Stage 3, the output representations from the fine-tuned encoder are

used to train an emotion classifier.

768-dimensional output down to 80 dimensions.

The model is trained on 16 kHz mono waveforms
using the Additive Angular Margin Softmax
(AAM-Softmax) loss, and we continue training
until it reaches approximately 70% accuracy on
the IEMOCAP training split to ensure sufficient
speaker classification performance. This trained
speaker classifier is then used only in the next stage
for adversarial training and is discarded afterward.

3.2 Stage 2: Adversarial Fine-tuning of the
Speech Encoder

In this stage, we fine-tune a pre-trained speech
encoder—specifically, Wav2Vec 2.0—to learn rep-
resentations that are invariant to speaker identity
while preserving its original self-supervised learn-
ing objectives. To this end, we introduce a Gra-

dient Reversal Layer (GRL) between the encoder
and the fixed speaker classifier, forming a domain-
adversarial learning setup.

The encoder output is passed through two
branches: one through the GRL into the speaker
classifier to compute an adversarial loss, and the
other used internally by the encoder to compute
its original self-supervised objectives. Unlike prior
work that replaces the encoder’s training loss dur-
ing fine-tuning, we retain both the contrastive loss
and the diversity loss from the original Wav2Vec
2.0 pre-training to maintain representational rich-
ness.

The total loss for this stage is given by:

Espeech = /:'contrastive + )\div : Ediversity

+ )\adv : Eadv (1)



Here, Lcontrastive is the InfoNCE-based con-
trastive loss used in Wav2Vec 2.0, and Ldiversity
encourages codebook usage diversity in quantized
representations. The term Ladv denotes the ad-
versarial speaker classification loss and is defined
as:

Ladv = — Y CE(Cyx(GRL()), 4i™)  (2)

where h; is the latent representation of the i-th
utterance obtained from the encoder, and Cypy is
the fixed speaker classifier trained in Stage 1. The
coefficients Agiy and A,qy control the strength of the
diversity and adversarial terms, respectively. After
training, the encoder is frozen for the next stage.

3.3 Stage 3: Emotion Classifier Training

In the final stage, we train an emotion classifier
on top of the speaker-invariant encoder obtained
from Stage 2. The encoder is frozen during this
phase, and only the parameters of the classifier are
updated.

The emotion classifier is implemented as a
lightweight 1D convolutional network designed to
process the temporal output representations from
the pre-trained speech encoder. The input to the
classifier is a sequence of hidden representations
with 768 channels, corresponding to the encoder
output.

The classifier consists of two convolutional
blocks. Each block contains a 1D convolutional
layer with kernel size 3 and padding 1, followed by
a ReLU activation and a max-pooling layer with
kernel size 2 to reduce the temporal resolution by
half. The first convolution maps the input from
768 to 128 channels, while the second convolution
reduces it further from 128 to 4 channels, corre-
sponding to the number of emotion classes. The
resulting output is aggregated and used to predict
emotion labels via cross-entropy loss.

Lemo = Z CE(Cemo(h;), yz(emO)) 3)

where Cip, is the classifier and yz(-emo) is the emo-
tion label for the ¢-th utterance.
This final step ensures that the learned features
are not only invariant to speaker identity but also ef-
fective for the downstream task of speech emotion

recognition.

4 Experiments

4.1 Dataset

We conduct our experiments using the IEMOCAP
dataset, a widely adopted benchmark for speech
emotion recognition.

IEMOCAP Dataset We evaluate our proposed
method on the IEMOCAP dataset, a widely used
benchmark for speech emotion recognition. The
IEMOCAP corpus consists of approximately 12
hours of audiovisual recordings collected from 10
professional actors (5 male and 5 female), orga-
nized into five sessions. Each session includes a
dyadic interaction between one male and one fe-
male speaker, engaging in both scripted and im-
provised dialogues. This structure provides a wide
variety of emotionally expressive speech, making
it well-suited for emotion recognition research.

In this work, we focus exclusively on the audio
modality. We use the categorical emotion anno-
tations provided with the dataset and follow the
standard protocol by selecting the four most com-
monly used emotion classes: angry, happy, sad,
and neutral. Each dialogue is segmented into ut-
terances, where a single utterance typically corre-
sponds to a single sentence. After filtering for the
selected emotion classes, the dataset contains a to-
tal of approximately 39,397 labeled utterances. We
then split these utterances into training and test sets
using an 80:20 ratio to ensure robust evaluation.

To improve model generalization and robustness,
we apply speed perturbation as a data augmenta-
tion strategy. Specifically, we generate additional
training samples by resampling each utterance at
speed factors of 0.8, 0.9, 1.1, and 1.2, in addition to
the original speed (1.0). This technique effectively
increases the size of the training set by a factor
of five, while preserving the temporal and spectral
structure necessary for emotion recognition (Ko
et al., 2015).

4.2 Experimental Setup

Stage 1. The ECAPA-TDNN model was fine-
tuned for speaker classification using the Addi-
tive Angular Margin Softmax (AAM-Softmax) loss.
The model was trained for 50 epochs using a co-
sine learning rate scheduler. This classifier was
subsequently fixed and used in Stage 2 to gener-
ate the adversarial signal for suppressing speaker
information.



Table 1: Comparison of weighted accuracy (WA) on IEMOCAP using different models and training strategies.

Model Model Size Params Speaker-Invariant WA (%)
Vanilla (Baseline) Base 95M X 66.3
+ GRL Base 95M v 57.7
+ GRL + Contrastive + Diversity (Ours) Base 95M v 68.4

Tablel. Weighted accuracy (WA) comparison on the IEMOCAP dataset (4-class classification). All models use Wav2Vec 2.0
Base as the pre-trained encoder. “GRL” denotes the use of a Gradient Reversal Layer with a fixed speaker classifier. “Contrastive”
and “Diversity” refer to the original self-supervised learning objectives of Wav2Vec2.0, which are preserved during fine-tuning
to maintain representational capacity. The “Vanilla” model serves as the baseline and is trained with only a cross-entropy loss.

Stage 2. In the second stage, we fine-tuned the
Wav2Vec 2.0 Base model using a composite objec-
tive comprising the original contrastive loss, diver-
sity loss, and an adversarial speaker classification
loss applied via a Gradient Reversal Layer (GRL).
The adversarial classifier was the ECAPA-TDNN
model trained in Stage 1. The weight for the ad-
versarial loss was set empirically to Aygy = 0.9,
while the weight for the diversity loss was set to
Adiv = 0.01 which is used as de-fault setting in the
wav2vec2.0 config. This stage was trained for 50
epochs with an initial learning rate of 1 x 1074,
which was halved every 10 epochs. Early stopping
is used with patience 50 steps.

Stage 3. The final stage involved training an emo-
tion classifier on top of the frozen encoder obtained
from Stage 2. A simple feed-forward network was
used for classification, and it was trained for 10
epochs using a fixed learning rate of 1 x 1072,
Only the classifier parameters were updated during
this stage; the encoder remained frozen.

All experiments were implemented using Py-
Torch and conducted on a single NVIDIA RTX
4090 GPU. We utilized pre-trained models for
both the speech encoder and the speaker classi-
fier: the Wav2Vec 2.0 Base model, pre-trained on
Librispeech, and ECAPA-TDNN, pre-trained on
the VoxCeleb dataset. The Adam optimizer was
employed for all training stages. A batch size of
4 was used, and to enable effective training with
limited GPU memory, we applied gradient accumu-
lation with 32 steps, resulting in an effective batch
size of 128. Early stopping was not used during
training.

5 Results

5.1 Main Evaluation on IEMOCAP

Table 1 reports the weighted accuracy (WA) ob-
tained on the IEMOCAP 4-class setup.! The
vanilla Wav2Vec 2.0 encoder—kept frozen and fol-
lowed by a task-specific classifier—yields a base-
line of 66.3% WA. After applying our three-stage
pipeline, the speaker-invariant encoder achieves
68.4% WA, an absolute gain of 2.1% percentage
points. Because both systems share the same model
size (95 M parameters) and differ only in the fine-
tuning strategy, we attribute the gain to explicitly
suppressing speaker cues via adversarial learning
and the diversity constraint.

5.2 Zero-shot and One-shot Generalisation

Table 1 (Section 7) summarises the encoder’s trans-
ferability for zero-shot or one-shot condition:

» Zero-shot (classifier only): our speaker-
invariant encoder attains 56.63% WA, more
than double the vanilla baseline (25.85%).
This confirms that disentangling speaker in-
formation leads to representations that are in-
herently more emotion-focused.

* One-shot: With a single training for the emo-
tion classifier, performance rises to 58.88 %,
indicating strong few-shot adaptability.

5.3 Impact of Adversarial Components

An ablation in Table 1 further shows that including
both the contrastive and diversity losses during
adversarial fine-tuning contributes an additional
about 10 percentage-point gain over using the GRL
alone.

Notably, fine-tuning with the GRL alone leads
to a drop in performance (57.7% WA), since the

'All results are averaged over five speaker-independent
folds, following the standard protocol.



encoder is updated only in the opposite direction
of the speaker classifier without preserving its orig-
inal self-supervised objectives. This suggests that
retaining the self-supervised objectives helps pre-
serve the encoder’s representational richness while
still eliminating speaker-specific information.

5.4 Discussion

Overall, the results validate our central hypothe-
sis: speaker variability is a dominant confounder
in SER, and explicitly neutralising it yields more
robust, transferable emotion features. Notably, the
improvements are achieved without enlarging the
network or relying on extra emotion labels, high-
lighting the practicality of the proposed pipeline
for low-resource scenarios.

6 Conclusion

We introduced a three-stage adversarial training
framework for learning speaker-invariant represen-
tations in speech emotion recognition (SER). By
leveraging a fixed ECAPA-TDNN speaker classi-
fier and applying gradient reversal to a pre-trained
Wav2Vec2.0 encoder, our method effectively sup-
presses speaker-specific information while preserv-
ing emotion-discriminative features.

Empirical results on the IEMOCAP benchmark
demonstrated that our speaker-invariant representa-
tions significantly improve both in-domain perfor-
mance and zero-shot generalization. Specifically,
we observed over 30% improvement in zero-shot
weighted accuracy when comparing the speaker-
invariant encoder to a vanilla Wav2Vec2.0 encoder
with only a trained classifier. These findings con-
firm that speaker variability is a major limiting
factor in SER, and that explicitly removing speaker
cues leads to more robust, transferable emotion
features.

Importantly, our framework operates without
the need for large-scale emotion annotations or
task-specific architecture changes. Once the en-
coder is adversarially fine-tuned, it can be applied
to new tasks such as emotion classification, with
minimal data and without further encoder updates.
This opens a promising direction toward build-
ing general-purpose, speaker-agnostic acoustic en-
coders for a wide range of paralinguistic tasks.

In future work, we plan to evaluate our speaker-
invariant encoder on tasks beyond emotion recog-
nition, such as intent detection or conversational
analysis, and to investigate the trade-offs be-

Table 2: Comparison of Weighted Accuracy of the Pro-
posed Method under Zero-Shot and One-Shot Settings

Encoder Tuning Strategy WA (%)
Zero-shot

Wav2Vec2.0 (Vanilla) None 25.85
Wav2Vec2.0 Adversarial 56.63
(Speaker-Invariant) (GRL) ’
One-shot

Wav2Vec2.0 Adversarial (GRL) ~ 58.88

(Speaker-Invariant)

tween speaker suppression and retention of speaker-
dependent emotional nuance. We also aim to
extend our approach to multilingual and code-
switched speech, where speaker and language cues
are often entangled.

Limitations

While our approach demonstrates the effective-
ness of speaker-invariant representations for speech
emotion recognition, there are several limitations
to be acknowledged.

First, our experiments were conducted solely on
the IEMOCAP dataset, which is relatively small
and limited to acted emotional expressions in En-
glish. As such, the generalizability of our method
to more diverse, spontaneous, and multilingual
emotion corpora remains to be verified.

Second, although we demonstrated that suppress-
ing speaker information improves zero-shot perfor-
mance, we did not explicitly measure the trade-off
between speaker invariance and potential loss of
paralinguistic cues (e.g., speaker identity, person-
ality) that may contribute to emotion perception in
natural scenarios.

Third, we focused on emotion classification as
the target downstream task. It remains an open
question whether the learned speaker-invariant en-
coder also benefits other paralinguistic tasks such
as sentiment analysis, intent detection, or speaker
trait recognition.

Finally, while our method improves performance
without requiring large-scale emotion labels, it still
depends on a speaker-labeled dataset to train the
adversarial speaker classifier. Exploring unsuper-
vised or weakly supervised alternatives for speaker
disentanglement would be a valuable future direc-
tion.



7 Ablation

Interestingly, the speaker-invariant encoder sig-
nificantly outperforms the vanilla Wav2Vec2.0
model in the zero-shot setting, achieving 56.63%
weighted accuracy compared to only 25.85%. This
substantial improvement suggests that removing
speaker-specific information from the representa-
tion leads to more generalizable emotion features,
even when the encoder is not explicitly fine-tuned
for emotion recognition.

Note that in the zero-shot setting the vanilla
Wav2Vec2.0 baseline has never seen any IEMO-
CAP data, whereas our “speaker-invariant” en-
coder, although not trained for emotion classifi-
cation, has been adversarially trained on IEMO-
CAP speakers during stage (2). This exposure to
IEMOCAP speaker distributions naturally helps the
encoder learn more robust representations, which
partly explains the performance gap in the zero-
shot evaluation.

Moreover, in the one-shot setting—where the
emotion classifier is trained exactly once on the full
IEMOCAP training dataset—the speaker-invariant
encoder further improves performance to 58.88%
WA. This demonstrates its strong adaptability under
minimal supervision. These findings highlight the
benefit of adversarial speaker disentanglement not
only for in-domain emotion classification, but also
for low-resource and unseen-domain scenarios.
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