
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

M4PQA: A COMPREHENSIVE QA DATASET FOR AI
RESEARCH WITH INSTANCE-LEVEL EVALUATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The growing volume of academic papers has made it increasingly difficult for
researchers to efficiently extract key information. While large language mod-
els (LLMs) based agents are capable of automating question answering (QA)
workflows for scientific papers, there still lacks a comprehensive and realistic
benchmark to evaluate their capabilities. Moreover, training an interactive agent
for this task is hindered by the shortage of high-quality interaction trajectories.
In this work, we propose M4PQA, a human-annotated comprehensive paper QA
dataset in the field of artificial intelligence, with 13,948 papers and 1,246 ques-
tions, that encompasses multi-task, multi-modal and instance-level evaluation.
Furthermore, we propose EXTRACTOR, an automated framework for instruction
data synthesis. With three LLM-based agents, EXTRACTOR can perform exam-
ple generation and trajectory collection without human intervention. Evaluations
of multiple open-source and proprietary models show that most models underper-
form on M4PQA, demonstrating its quality. Extensive experiments confirm that
EXTRACTOR consistently improves the multi-turn tool-use capability of small
models, enabling them to achieve performance comparable to larger ones.

1 INTRODUCTION

With the explosion of artificial intelligence (AI) publications, researchers must spend a significant
amount of time reading lengthy papers just to locate a highly specific piece of information, which
is both tedious and inefficient. The advent of large language models (LLMs), especially their re-
markable reasoning and planning capabilities (Ahn et al., 2024; Guo et al., 2025; Huang et al., 2024;
Wang et al., 2023b), has made it possible to automate the workflow of precise retrieval and question
answering (QA) for academic papers (He et al., 2025; Othman, 2025; Skarlinski et al., 2024). De-
spite recent advances, there remains a notable absence of a comprehensive and realistic benchmark,
which covers diverse question types and multi-modal abilities. And training an interactive QA agent
that focuses on such task is difficult due to the scarcity of high-quality domain-specific trajectories.

Previous QA datasets on scientific papers usually focus on one narrow question type, such as query-
ing technical details about a single paper (Dasigi et al., 2021; Lee et al., 2023; Pramanick et al., 2025;
Singh et al., 2024), questions spanning across multiple documents following a rule-constructed two-
hop pattern (Li et al., 2024), or aiming at the common paper retrieval requirements (Ajith et al.,
2024; He et al., 2025). Accordingly, the evaluation function is usually tailored for one restricted
type and lacks generalization to others. For example, M3SciQA (Li et al., 2024) designed one
LLM-based prompt for long-form string evaluation with the reference answer, which is highly em-
pirical and only serves its specific question type. On the other hand, most benchmark owners overly
pre-process raw papers, and merely provide the cleaned text format for uniform input. This common
practice deviates from realistic scenarios, where real-world users may query other hyper-textual el-
ements (illustrated in the bottom part of Figure 1) embedded in the raw PDF documents, such as
figures, tables, formula, metadata, or even different combinations of them.

While tackling QA on academic papers, trivial methods (e.g. provide titles and abstracts alongside
the question (Dasigi et al., 2021; Singh et al., 2024)) will easily fail due to context limitation, as
the scaling of papers augment from a single paper to the entire conference volume. More advanced
approaches adopt the popular RAG framework (Borgeaud et al., 2022; Guu et al., 2020; Izacard et al.,
2022), but are not applicable in questions that require multi-turn reasoning over various chunked

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Agent Trajectory

[Question]

…

What shortcoming
does REV overcome?

Text Table
Which downstream tasks
does the CLiCoTEA beat
other models?

Image Formula

What is the forward
process of HydraLoRA?

Metadata
Can you tell me the
github link for GC-
Bench library?

Appendix

Which domain in the
GRBench dataset does not
have any hard questions?

Single-doc Detail Multi-doc Analysis Paper Retrieval Comprehensive QA

…
…

NeurIPS 2024

ground truth
…

[Action]: RAG

[Action]: Web Search

[Action]: …

hard to
annotate

agent tuning

Figure 1: Left: An overview of the four question types and five element categories in our M4PQA
dataset. Right: An illustration of the bottleneck in multi-turn tool-use trajectory collection.

snippets. Meanwhile, interactive QA agents, which can predict executable retrievals or function-
calling actions and interact with the outer environment for external knowledge, exhibit significant
potential in handling long-context multi-hop scenarios, making it a good choice for scientific QA
under realistic, complicated and universal settings (He et al., 2025; Nakano et al., 2022; Schick
et al., 2023). Unfortunately, manually annotating task-specific trajectories of interactions with the
environment is both time-consuming and expensive, requiring domain expertise, while simple data
generation with LLMs can’t faithfully synthesize (action, observation) sequences with internal
coherence and dependencies. As a result, the paucity of high-quality trajectory prevents the post-
training of an effective QA agent.

To resolve the aforementioned bottlenecks, we propose a human-annotated Multi-Modal Multi-Task
Multi-Paper Question Answering dataset, M4PQA, which encompasses 1,246 examples and 13,948
papers in the domain of artificial intelligence, aiming at evaluating an agent’s research capabilities
in realistic scenarios. As illustrated in Figure 1, our dataset contains 4 different question types
and 5 different element categories, with 19 parameterized Python functions to support customized
evaluation. Furthermore, to advocate agentic model post-training, we propose a multi-agent frame-
work, EXTRACTOR, for instruction data synthesis, which includes an explorer that generates natural
language QA pairs based on contexts from papers, a tracker that rewrites QA pairs into properly for-
matted examples, and an actor that interacts with the environment to collect trajectories.

We evaluate a wide range of open-source and proprietary LLMs on different baselines. Performances
show that, though given several external information sources, LLMs struggle on our M4PQA dataset,
with the best model scoring only 44.14% overall, indicating that existing workflows are still under-
developed. With the proposed EXTRACTOR framework, we fine-tune models of different sizes
from the Qwen2.5 family (Qwen et al., 2025). Results show that, with just 4,000 interaction trajec-
tories, fine-tuned 7B model achieves a performance comparable to untrained 14B model. Extensive
experiments demonstrate that, the accuracy raises consistently as data scales up, highlighting the
scalability of our framework.

To summarize, our contributions are threefold:

• We propose M4PQA, a human-annotated multi-modal multi-task multi-paper QA dataset with
function-based instance-specific evaluations. To the best of our knowledge, M4PQA is the first
dataset that encompasses multiple question types, also the first to bring function-based evalua-
tion into QA domain, enabling convenient and systematic assessment of research capabilities.

• We introduce EXTRACTOR, a document-based framework aiming at the synthesis of QA exam-
ples, interaction trajectories and instruction data, serving as an empirical method for improving
the agent’s multi-turn tool-using ability without the involvement of manual annotation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We evaluate various LLMs and different QA baselines on our M4PQA dataset, demonstrating
the quality of our dataset, and indicating the insufficiency of current methods. Extensive exper-
iments on instruction tuning reveal that, small models significantly benefit from our synthetic
instruction data, validating the effectiveness of our proposed EXTRACTOR framework.

2 THE M4PQA DATASET

In this section, we introduce the task definition, the evaluation metrics, the construction and the
statistics of our M4PQA dataset.

2.1 TASK DEFINITION

To more effectively evaluate existing models and methods across a broader range of tasks, rather
than limiting assessment to individual tasks, we carefully analyze real-world AI research scenarios,
and systematically design the following four question types in M4PQA to cover them up:

Table 1: Examples of different question types from our M4PQA dataset.

Type Question Answer Format

single
Which downstream tasks does the CLiCoTEA out-
perform other models in terms of zero-shot perfor-
mance on the IGLUE benchmark?

Your answer should be a Python list of strings, ev-
ery string is the abbreviation of a downstream task
type mentioned in the paper.

multiple

According to this survey, what’re the three most re-
cent decoder-only LLMs for NL2Code? How many
programming languages do their training datasets
each contain?

Your answer should be a Python dictionary of 3
key-value pairs, where each key is a string, the
LLM, and each value is the number of program-
ming languages.

retrieval Which paper unifies reinforcement learning and imi-
tation learning methods under a dual framework?

Your answer should be the exact title of the paper
WITHOUT ANY OTHER EXPLANATION.

comprehensive

Among the text-to-SQL papers in ACL 2023, which
one achieves the best testsuite accuracy on the SPI-
DER dataset? Tell me the paper title and correspond-
ing test accuracy.

Your answer should be a Python list of length two,
with the first one being the title string and the sec-
ond one being a float, the accuracy rounded to 3
decimals.

Single-doc Detail Querying detailed information from a specific paper. Besides text, we also
explore different textual and non-textual aspects including table, image, formula and metadata to
cover all elements that may appear in a scientific paper. We showcase one example for each category
in Figure 1. Notably, a question may belong to multiple categories, requiring diverse capabilities.

Multiple-doc Analysis Posing questions across multiple papers. A simple idea for constructing
multiple-doc questions is to merely combine several single-doc questions, but it overlooks the pos-
sible relations between different papers, which are actually what researchers pay more attention to.
To imitate the real scenes where researchers scan across several documents to find the answer to a
question, we propose two paradigms: 1) compare same aspects of different papers, and 2) find subtle
points that are not fully illustrated in one paper, and explore the details in the papers it cites.

Paper Retrieval Retrieving papers from a specific conference in a particular year, based on the
description. Considering the search scale, while Skarlinski et al. (2024) argues that retrieval on a
fixed corpus is not suitable as performance proxies for real scientific research tasks, we insist that
a dataset cannot contain an infinite number of papers. Without limitation, the answer would be
ambitious, making the evaluation unfair. Only retrieval on a fixed corpus can ensure the objectivity
of the dataset. Among these questions, 240 are directly transformed from author-written questions
in the LitSearch (Ajith et al., 2024) dataset with rule-based conversion.

Comprehensive QA A combination of the three aforementioned question types. Specifically, a
comprehensive QA question may combine a retrieval question with either a single question or a
multiple question. As an integrated task, this combination is designed for scenarios in which the
user cannot directly provide the paper or has forgotten the specific paper to which the question
refers, but recalls certain key points, thereby enabling retrieval. The solution can be divided into two
main stages: retrieving the paper based on its description, and answering the detailed question.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We also exhibit one example for each question type in Table 1. For brevity, in the following sections,
we refer to the four question types as single, multiple, retrieval and comprehensive respectively. For
retrieval and comprehensive questions, to ensure uniqueness of the retrieved paper, and to avoid
ambiguity, we limit the scope of retrieval to be one of ACL2023, ICLR2024 and NeurIPS2024.

2.2 EVALUATION METHOD

As mentioned in Section 5, most previous QA datasets depend on linguistics metrics and LLMs
for assessment, favoring semantic coherence over factual correctness, which holds little value under
current circumstances. While in our M4PQA dataset, we mainly focus on judging the correctness
of the answer as objective as possible. We notice that, though the answers to different questions
vary, they share common features. For example, when answering questions related to quantitative
comparison, we only care about the number itself, rather than whether LLMs form a complete
sentence. In this case, the number is the “scoring point” of this question, which directly determines
the quality of the answer. Inspired by the instruction following ability of LLMs, we adopt output
reformatting by providing an answer format along with the question (as shown in Table 1), such as,
“Your answer should be a Python list of two floats, each rounded to 2 decimal places.”. In this way,
we guide LLMs to output the scoring points we primarily concern with, benefiting the following
evaluation.

To evaluate scoring points of different kinds, we design 19 Python functions and complement them
with optional keyword arguments (e.g. ignore order for list comparison) to support example-
specific assessment. For each evaluation, the final result will be either 0 or 1, representing wrong and
right. Based on whether they utilize LLMs for semantic judgment or not, and their functionalities,
these functions can be classified into two types and six subtypes as shown in Table 8. An evaluation
function is subjective if it involves LLMs, and is objective if not. Specifically, for logical functions,
which combine multiple functions in one evaluation, the evaluation is classified as subjective as long
as there is one subjective function. For subjective functions, we select GPT-4o-mini-2024-07-18 as
the backbone model for its relative stability. More details of the functions can be found in App. A.3.

To further clarify the role and reliability of subjective evaluation, we highlight three points: 1) While
LLM-based judgment is necessary in certain cases, we design tailored prompts to support more fine-
grained and targeted evaluation unlike previous datasets which mostly rely on a fixed prompt. e.g.,
We design a specialized prompt to compare LaTeX formulas. 2) Existing studies also suggest that,
for QA tasks, LLM-based evaluations are more aligned with human judgments than metrics such
as accuracy or F1 (Wang et al., 2023a; Ho et al., 2025; Kamalloo et al., 2024). 3) Analysis on 66
examples shows that LLM-based and human evaluations are largely consistent, with an agreement
rate of approximately 83%.

2.3 DATASET CONSTRUCTION

Annotators To ensure the professionalism, we employ 26 students with expertise in artificial intel-
ligence. Their task is threefold: 1) read a paper they are interested in, 2) pose an answerable question
based on the textual and non-textual content of the paper (and additional papers if needed) they read,
in accordance with the aforementioned question types, 3) wrap the question, the evaluation function,
and other necessary information into an example file, as presented in App. A.1. Example files are
then sent into an automated inspection pipeline, and annotators are asked to rewrite unqualified ones.

Paper Collection Due to the professional background of the annotators, all papers are selected
from the field of artificial intelligence to ensure accurate comprehension of the content. Most papers
utilized in our M4PQA dataset can be downloaded from arXiv (see App. 6 for more details). To
facilitate reproduction, we assign an uuid for each used paper based on its title and its conference.
We also generate a metadata file for each paper, containing the title, the abstract, the URL where the
paper is downloaded, and other information. For further illustration, please refer to App. A.2.

2.4 DATASET STATISTICS

Example Classification We classify the examples in the M4PQA dataset into four question types,
five element categories and two evaluation types as discussed before. Table 2 shows that, the ex-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ample numbers of the four question types are relatively balanced, while approximately half of the
examples involve at least one element other than text (we classify an example as text if and only
if it doesn’t include any other elements, and an example can belong to more than one categories).
Regarding evaluation functions, Figure 2 shows that most of the evaluations are objective, meaning
they do not require LLMs, which demonstrates the cost-effectiveness of our dataset.

Paper Usage To ensure the objectiveness of retrieval and comprehensive questions, we limit the
retrieval scale to be one of ACL2023, ICLR2024 and NeurIPS2024. Besides including all papers
from these three conferences in our collection, we also utilize another 707 papers in the examples,
summing up a total of 13,948 papers. As shown in Table 2, in average, an example involve 1.63
papers, indicating the diversity of our dataset.

Table 2: Statistics of examples. For the
last two statistics, we only consider sin-
gle and multiple questions.

Statistics Number
Question Type
- single 351(28%)
- multiple 323(26%)
- retrieval 288(23%)
- comprehensive 284(23%)
Element Category
- text 621(50%)
- table 213(17%)
- image 207(17%)
- formula 127(10%)
- metadata 122(10%)
Overall 1246(100%)
Avg. question length 34.84
Max. question length 118
Avg. # papers per example 1.63
Max. # papers per example 7

Figure 2: Distribution of different evaluation cate-
gories. ‘bool’, ‘int’, ‘string’, ‘fuzzy’, ‘structured’ stand
for specific evaluation functions in ‘match’ subtype.

Comparison with Existing Datasets In Table 3, we compare M4PQA with existing scientific QA
datasets. It is evident that M4PQA demonstrates several salient strengths: 1) More question types.
M4PQA designs four different question types to systematically cover realistic research scenarios, 2)
More element types. M4PQA contains a wider variety of elements, including table, image, formula
and metadata, 3) More precise evaluation. M4PQA employs 19 parameterized functions, which
can be classified into two types and six subtypes, facilitating customized evaluation.

Table 3: Comparison of our M4PQA dataset and existing scientific QA datasets.

Dataset # QA Evaluation Methods
Task types Question based on

Sgl. Multi. Retr. Comp. Full Text Table Image Form. Meta.

ScholarlyRead (Saikh et al., 2020) 10K BLEU, METEOR, ROUGE ! % % % % % % % %

QASPER (Dasigi et al., 2021) 5,049 F1 ! % % % % % % % %

QASA (Lee et al., 2023) 1,798 Precision, Recall, F1, ROUGE ! % % % ! % % % %

SPIQA (Pramanick et al., 2025) 270K METEOR, CIDEr, ROUGE,
BERTScore, LLMLogScore ! % % % ! ! ! % %

PeerQA (Baumgärtner et al., 2025) 579
MRR, Recall, Rouge-L,

AlignScore, Prometheus-2 ! % % % ! % % ! %

SciDQA (Singh et al., 2024) 2,937
ROUGE, BLEURT-20,

BERTScore, LLM judge ! ! % % ! ! ! ! %

M3SciQA (Li et al., 2024) 1,452 MRR, LLM judge % ! % % ! ! ! % %

AutoScholarQuery (He et al., 2025) 35K Precision, Recall % % ! % ! % % % %

LitSearch (Ajith et al., 2024) 597 Recall % % ! % ! % % % %

LitQA2 (Skarlinski et al., 2024) 248 Precision, Accuracy % % % ! ! % % % %

M4PQA (Ours) 1,246 Instance-level Function ! ! ! ! ! ! ! ! !

3 EXTRACTOR FRAMEWORK FOR TRAJECTORY SYNTHESIS

In this section, we introduce our trajectory synthesis framework, EXTRACTOR, based on its three
components: explorer, tracker and actor.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: An overview of our EXTRACTOR framework, which consists of three stages to automati-
cally extract QA pairs, formulate evaluation and answers, and filter valid agent trajectories.

3.1 OVERALL FRAMEWORK

To handle scientific QA, there are mainly three types of methods: 1) offering relevant information
of the paper (e.g., title and abstract) alongside the question, 2) providing additional contexts via
retrieval methods (e.g., RAG), and 3) equipping LLMs with supplementary tools, so that they can
obtain sufficient information during multi-turn interactions. As discussed in Section 4.2, methods of
the former two types significantly underperform the latter, even when supported by superior back-
bone models. Therefore, for the following fine-tuning, we apply Agentic Hybrid baseline (further
illustrated in Section 4.1), whose environment includes a database and a vectorstore that produce
execution or query results as observations when called by the agent with two predefined actions.

To mimic the real-world annotation and interaction scenarios, we split the synthesis process into
three separate stages: 1) exploration stage, constructing a natural language question-answer pair
with given context, 2) tracking stage, choosing suitable evaluation function and fill in the formatted
example file, and 3) action stage, interacting with the outer environment to collect trajectories.

3.2 EXPLORER

Above all, we randomly download 10,000 papers in the artificial intelligence domain from arXiv,
collect their metadata including titles and abstracts, and employ PyMuPDF (Artifex Software, 2023)
and MinerU (Wang et al., 2024) to extract both textual and non-textual elements from the papers.

For the explorer, its goal is to generate rational question-answer pairs with sampled contexts. Based
on different question types, we design three different modes: 1) For single type, we first randomly
choose a paper and an element. Then, corresponding contexts are extracted according to the category
of the element, and the explorer is expected to output a long-form question-answer pair. 2) Regarding
retrieval type, instead of contexts, the explorer only receives the title and abstract as inputs, and is
required to generate a question that indicates the paper. The corresponding answer is the title of
that paper. 3) As for comprehensive type, we basically follow single type, while the only difference
is that we provide the title and abstract along with the context, and ask the explorer to somehow
elicit the paper that the question is about. To improve the quality of QA pairs, we adopt chain-of-
thought (Wei et al., 2023) and hand-written category-based hint prompts.

3.3 TRACKER

Regarding the tracker, its purpose is to wrap the previously generated natural language QA pairs into
example files in accordance with specific formats. As explorer settings for different question types
vary, we employ different tracker settings: 1) With regard to single and comprehensive questions,
we provide the tracker with the QA pair along with the information of the evaluation functions,
including descriptions, parameters and use cases. The tracker is then asked to choose the suitable
evaluation function, fill in the parameters and the answer format, and refine the question-answer
pair accordingly. 2) In terms of retrieval questions, as we restrict the answer to be the exact title of
the chosen paper, we simply fill in the example file with fixed evaluation function, parameters and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

answer format. 3) As for multiple questions, the manual annotation consistently involves new papers
outside our sampled collection, requiring real-time download and processing, which is incompatible
with our explorer agent. For simplicity, we propose a rule-based combination of single examples: a)
merging questions and answer formats with natural language templates, and b) combining evaluation
functions with the logical function evaluate conjunction (function details in App. A.3).

For more specific explorer and tracker prompts, please refer to App. E.

3.4 ACTOR

As for the actor, it aims at interacting with the environment to collect trajectories for instruc-
tion construction. In the outer environment, we include a database and a vectorstore containing
corresponding information of the papers. Following Zeng et al. (2023), we employ ReAct (Yao
et al., 2023) framework with three actions to interact with the environment. For each synthetic
example, we use LLM as an actor to produce an interaction trajectory in a message list manner
(u0, a0, . . . , ui, ai, . . . , un, an), where ui represents the user’s instruction, or the observation from
the environment, and ai denotes the response from the actor, including a thought and an action.

To avoid exceeding context length, we adopt the idea of sliding window and chunk the message
list based on a window size of 5, generating multiple instruction data from one trajectory. During
training, for each chunked list, we mask previous message history and train the last turn only.

We also observe that, some errors appear frequently in the collected trajectories (e.g., attempts to
utilize undefined parameters). To ensure data quality, we remove instruction data that ends with a
wrong action. For other instruction data, we reserve previous wrong actions and corresponding error
information in the message list to guarantee error correction capability and coherence of thoughts.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Baselines To comprehensively assess the LLMs on M4PQA, we implement 8 baselines, including:

• Trivial Baselines: 1) Question Only baseline, only the question and the corresponding answer
format are available, 2) Title-Abstract baseline, the titles and the abstracts of the correspond-
ing papers are provided alongside, and 3) Full-Text with Cutoff baseline, raw textual contexts
extracted from the papers are given in limited length.

• Retrieval Baselines: 1) RAG baseline, the question is sent to the vectorstore to retrieve relevant
chunks, and LLMs answer the question based on retrieved contexts, and 2) Text2SQL baseline,
where LLMs first generate a SQL, then answer the question based on the query results.

• Agentic Baselines: We employ ReAct (Yao et al., 2023) framework with three actions: RE-
TRIEVE, QUERY and ANSWER, corresponding to retrieving from the vectorstore, querying the
database and generating the final answer. With this framework, we implement 1) Agentic RAG
and 2) Agentic Text2SQL baseline that only interact with the vectorstore and the database, respec-
tively. 3) Agentic Hybrid baseline with all actions. Details on actions can be found in App. B.

Note that for both base and fine-tuned models, all evaluations are performed on M4PQA to enable a
clear and fair comparison.

LLMs and Hyper-Parameters We evaluate various LLMs on M4PQA. For closed-source ones,
we use GPT-4o-2024-08-06, o1-mini-2024-09-12, Claude-3.7-Sonnet-20250219 and Gemini-2.5-
Pro-exp-03-25. Regarding open-source LLMs, we employ Qwen2.5-72B-Instruct (Qwen et al.,
2025), Llama-3.3-70B-Instruct (Hugging Face Team, 2023), and DeepSeek-R1 (Guo et al., 2025).
As for hyper-parameters, the temperature is set to 0.7 and top p is fixed to 0.95. Specifically,
for reasoning models, the temperature is set to 0.6. The maximum retrieved tokens in each turn
and the cutoff for full-text input are both limited to 5K. The threshold of interaction turns is 20 and
the window size for the message history is 5. For closed-source models, we directly call their API

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

serviecs, while for open-source ones, we deploy them on NVIDIA A800 Tensor Core clusters using
vLLM 1 (Kwon et al., 2023).

Instruction Tuning For instrucion tuning, we choose the Qwen2.5 family (Qwen et al., 2025)
as base models. For all three agents in our EXTRACTOR framework, we employ Qwen2.5-32B-
Instruct. While for the target model, unless otherwise specified, we utilize Qwen2.5-7B-Instruct
as the backbone. As for the training framework, we employ LLaMA-Factory (Zheng et al., 2024).
Regarding our synthetic instruction data, we transform them into standardized ShareGPT foramt
following Vicuna (Chiang et al., 2023), and as mentioned before, we only compute the loss of the
model’s last output during fine-tuning by setting mask history as true. By default, we use a
learning rate of 1 × 10−4, apply AdamW optimizer (Loshchilov & Hutter, 2019) with a cosine
learning scheduler and train for one epoch. The entire training process is conducted on two Ascend
910B4 NPUs with 64GB of memory each.

The detailed hyper-parameters used in LLaMA-Factory for instruction tuning are listed in Table 9.

Table 4: Performance of different baselines on M4PQA.

Baseline
Question Type Element Category Evaluation

AVG
sgl. multi. retr. comp. text table image form. meta. obj. subj.

GPT-4o-2024-08-06

Question Only 8.55 1.86 1.04 5.63 4.35 1.41 10.63 2.36 0.00 3.95 5.54 4.41
Title-Abstract 11.40 5.26 0.00 5.28 5.96 4.23 8.70 4.72 2.46 4.07 9.97 5.78
Full-Text w/ Cutoff 33.90 8.05 0.69 5.99 13.53 7.51 13.53 12.60 18.03 9.94 21.05 13.16

RAG 31.62 4.95 18.75 16.55 20.29 12.68 16.91 17.32 18.03 18.19 18.56 18.30
Text2SQL 21.08 6.81 7.64 17.25 14.01 8.92 12.08 16.54 14.75 11.41 18.28 13.40

Agentic RAG 34.19 8.36 15.63 29.58 21.36 18.78 26.57 22.83 24.59 21.36 24.10 22.15
Agentic Text2SQL 42.17 11.15 18.40 38.38 23.19 21.60 28.99 33.07 47.54 26.44 31.02 27.77
Agentic Hybrid 45.58 10.53 52.13 35.56 39.61 23.00 25.60 33.86 47.54 38.76 29.09 35.96

Qwen2.5-72B-Instruct

Question Only 9.69 1.86 0.35 5.99 2.74 3.29 10.63 3.94 5.74 4.52 4.99 4.65
Title-Abstract 17.66 6.19 0.00 8.10 8.05 6.10 12.08 7.87 7.38 6.44 13.30 8.43
Full-Text w/ Cutoff 36.18 8.98 0.00 7.04 12.56 11.27 16.91 14.17 18.85 11.86 19.67 14.13

RAG 31.91 7.43 18.75 21.83 22.06 11.27 19.32 20.47 21.31 19.55 21.88 20.22
Text2SQL 22.22 4.02 11.11 13.38 13.85 8.45 15.46 10.24 11.48 12.43 14.13 12.92

Agentic RAG 32.76 9.60 15.63 30.28 22.06 15.96 25.12 25.98 18.85 21.02 25.21 22.23
Agentic Text2SQL 43.02 11.46 43.40 40.14 36.07 21.13 29.95 35.43 49.18 35.37 31.59 34.27
Agentic Hybrid 39.03 10.84 55.21 37.32 41.71 13.15 28.02 30.71 45.90 37.74 28.53 35.07

Table 5: Performance of Agentic Hybrid baseline with different backbone models on M4PQA.

Model
Question Type Element Category Evaluation

AVG
sgl. multi. retr. comp. text table image form. meta. obj. subj.

GPT-4o 45.58 10.53 52.13 35.56 39.61 23.00 25.60 33.86 47.54 38.76 29.09 35.96
o1-mini 37.04 12.07 45.14 24.65 35.43 14.55 22.22 22.83 36.07 31.07 26.04 29.61
Claude-3.7-Sonnet 45.30 15.17 58.68 27.46 43.96 22.07 24.64 27.56 44.26 39.32 29.64 36.52
Gemini-2.5-Pro 51.85 18.58 67.01 40.49 51.53 29.58 29.95 33.86 53.28 46.55 38.23 44.14
Qwen2.5-72B-Instruct 39.03 10.84 55.21 37.32 41.71 13.15 28.02 30.71 45.90 37.74 28.53 35.07
Llama-3.3-70B-Instruct 29.06 9.29 42.71 24.30 32.37 8.92 21.74 19.69 30.33 28.47 19.94 26.00
DeepSeek-R1 41.03 11.46 41.67 22.54 35.10 15.96 20.77 20.47 39.34 30.40 26.59 29.29

4.2 MAIN RESULTS

Evaluation of Base Models To figure out different baselines’ performance on the M4PQA dataset,
we choose two widely used models, GPT-4o and Qwen2.5-72B-Instruct, as representatives of pro-
prietary and open-source LLMs. Table 4 shows that: 1) Trivial baselines perform poorly. Under
Question Only setting, LLMs can only answer 5% of the questions correctly, demonstrating the
quality of our M4PQA dataset. 2) Provided more information sources, LLMs produce better
answers. With just a glimpse into the database or the vectorstore, retrieval baselines elevate the

1https://docs.vllm.ai/en/latest/index.html

8

https://docs.vllm.ai/en/latest/index.html

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

overall accuracy by at least 8% compared to Question Only baseline. 3) As the interaction turn in-
creases, LLMs explore the backend environment better. While both agentic baselines outperform
their retrieval counterparts, Agentic Text2SQL baseline exhibits significantly greater improvement,
indicating that for structured retrieval, more searches enable step-by-step problem-solving, while for
unstructured retrieval regarding the vectorstore, a single query is sufficient for most circumstances.

While baselines such as Question Only baseline exhibit a relatively low performance, Agentic Hy-
brid baseline consistently outperforms the others, allowing for comparisons between different mod-
els. In Table 5, we can observe that: 1) Proprietary models outperform open-source ones, show-
ing a stronger research capability, while some open-source models achieve performance comparable
to closed-source ones. 2) Reasoning models’ performance on this method is not satisfactory,
possibly due to the incompatibility between their fixed reasoning formats and our framework.

Table 6: Performance of models trained using EXTRACTOR and evaluated on M4PQA. “FT” de-
notes fine-tuning.

Size FT?
Question Type Element Category Evaluation

AVG
sgl. multi. retr. comp. text table image form. meta. obj. subj.

3B % 7.98 2.48 12.85 6.69 9.5 3.29 6.28 4.72 7.38 7.91 6.09 7.38
! 14.81 3.72 51.74 13.73 29.79 4.23 10.63 11.81 17.21 24.97 8.59 20.22

7B % 16.24 3.72 26.39 15.85 19.48 8.45 13.53 4.72 14.75 17.29 10.25 15.24
! 21.08 4.95 51.04 22.18 33.66 7.51 14.01 13.39 25.41 27.01 16.90 24.07

14B % 25.07 7.74 46.18 25.35 31.88 10.33 22.22 18.90 24.59 28.81 17.45 25.52
! 25.36 6.19 52.08 26.41 34.94 7.51 20.77 19.69 28.69 30.96 16.62 26.81

32B % 36.47 11.76 52.78 28.17 38.81 13.62 24.15 26.77 37.7 34.8 24.93 31.94

Evaluation of Fine-tuned Models We fine-tune three models, 3B, 7B and 14B, with instruction
data extracted from the 4,000 trajectories. Table 6 shows that, all three exhibit improved perfor-
mance after training. The observed reduction in the 14B model’s performance gain is considered
reasonable and acceptable, because: 1) The actor agent in our EXTRACTOR framework in effect
serves as a teacher agent. The selected teacher model Qwen2.5-32B-Instruct scores only 31.94% on
M4PQA, which represents the upper performance bound achievable through distillation. 2) While
this diminishing return has long been a meaningful and widely discussed research question beyond
the scope of this paper, we can observe that with EXTRACTOR, small models produce significantly
less errors in predicting actions. As shown in Table 7, 7B’s error action rate drops from 38.69% to
6.85%, and similar improvement is observed on 14B, with error action rate dropping from 31.63%
to 6.64%, indicating the effectiveness of our framework.

4.3 ABLATION STUDY

Table 7: Component Ablation.

Setting Overall
(%)

Error
Rate(%)

base model 15.24 38.69

EXTRACTOR
- w/o sliding window
- w/o error removal

20.47 26.25

EXTRACTOR
- w/o error removal 24.08 20.32

EXTRACTOR 24.07 6.85

Component Ablation To evaluate the effect of the two proposed
components, sliding window and error removal, we fine-tune two
additional models: (1) one without either component, which uses
raw trajectories as training data and computes loss over all model
outputs, and (2) another that applies sliding window but retains all
error actions. As shown in Table 7, sliding window yields a more
pronounced improvement in the overall score, and a drastic reduc-
tion is also observed in error action rate, defined as # error actions

actions ,
demonstrating the value of error removal in improving the model’s
ability to generate valid actions.

Synthetic Data Scale We fine-tune another four models with more instruction data extracted from
1K, 2K, 4K and 10K trajectories. Figure 4 shows that, as the number of trajectory increase, the
scores of all question types raise consistently, demonstrating the scalability of our method.

Due to page limit, other experimental results and analysis regarding M4PQA and EXTRACTOR are
presented in App. C and App. D.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 4: Performance changes with the increasing number of synthesized trajectories.

5 RELATED WORK

PDF-based Scientific QA Datasets Previous research has consistently focused on the develop-
ment of high-quality scientific QA datasets. Some datasets emphasize the accurate retrieval of pa-
pers based on specific descriptions (Ajith et al., 2024; He et al., 2025), while others concentrate
on extracting detailed information from the text (Baumgärtner et al., 2025; Dasigi et al., 2021; Lee
et al., 2023; Jin et al., 2019; Saikh et al., 2020). Recent work advance this field by incorporating
non-textual elements (Pramanick et al., 2025; Singh et al., 2024). Li et al. (2024) further extend
this approach by introducing a paradigm for generating cross-document questions, while Skarlinski
et al. (2024) pay more attention to the combination of paper retrieval and detailed QA. Our M4PQA
dataset innovates in this field by encompassing various question types and element categories, while
designing a function-based instance-level evaluation.

Instruction Tuning and Synthetic Data Instruction tuning serves as a useful tool for aligning
LLMs with human instructions, but it requires corresponding outputs for specific instructions, thus
heavily relying on high-quality training data. While manual annotation is an effective method, it
is hard to scale up due to time and cost constraints. Wan et al. (2024), Wang et al. (2023c) and
Chen et al. (2025) introduced different methods for crafting synthetic instruction data from scratch,
while Zeng et al. (2023) proposed extracting data from interaction trajectories to leverage existing
datasets. In this work, we introduce a multi-agent framework, EXTRACTOR, to automate both
example generation and trajectory collection, facilitating instruction data synthesis.

6 CONCLUSION

In this work, we manually annotate a multi-modal multi-task multi-paper dataset (M4PQA) with
instance-level evaluation, and a multi-agent framework (EXTRACTOR) for instruction data synthe-
sis. Evaluations demonstrate the quality of our dataset, indicating the challenges current models face
in scientific QA, while experiments on instruction tuning highlight the effectiveness of the frame-
work. Future works include: 1) exploring other RL-based methods for further improvements, and
2) extend the PDF-based tasks to other knowledge intensive domains, including law and medicine.

REFERENCES

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges, 2024. URL https://arxiv.org/
abs/2402.00157.

Anirudh Ajith, Mengzhou Xia, Alexis Chevalier, Tanya Goyal, Danqi Chen, and Tianyu Gao. Lit-
search: A retrieval benchmark for scientific literature search, 2024. URL https://arxiv.
org/abs/2407.18940.

Inc. Artifex Software. Pymupdf - a python binding for mupdf. https://pymupdf.
readthedocs.io/en/latest/, 2023. Version 1.24.9, accessed on January 25, 2025.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
URL https://arxiv.org/abs/2502.13923.

10

https://arxiv.org/abs/2402.00157
https://arxiv.org/abs/2402.00157
https://arxiv.org/abs/2407.18940
https://arxiv.org/abs/2407.18940
https://pymupdf.readthedocs.io/en/latest/
https://pymupdf.readthedocs.io/en/latest/
https://arxiv.org/abs/2502.13923

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tim Baumgärtner, Ted Briscoe, and Iryna Gurevych. PeerQA: A scientific question answering
dataset from peer reviews. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings
of the 2025 Conference of the Nations of the Americas Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 508–544,
Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-
89176-189-6. doi: 10.18653/v1/2025.naacl-long.22. URL https://aclanthology.org/
2025.naacl-long.22/.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
lican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang,
Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irv-
ing, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Lau-
rent Sifre. Improving language models by retrieving from trillions of tokens, 2022. URL
https://arxiv.org/abs/2112.04426.

Mingyang Chen, Haoze Sun, Tianpeng Li, Fan Yang, Hao Liang, Keer Lu, Bin Cui, Wentao Zhang,
Zenan Zhou, and Weipeng Chen. Facilitating multi-turn function calling for llms via composi-
tional instruction tuning, 2025. URL https://arxiv.org/abs/2410.12952.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers, 2021. URL https:
//arxiv.org/abs/2105.03011.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training, 2020. URL https://arxiv.org/abs/2002.
08909.

Yichen He, Guanhua Huang, Peiyuan Feng, Yuan Lin, Yuchen Zhang, Hang Li, and Weinan E. Pasa:
An llm agent for comprehensive academic paper search, 2025. URL https://arxiv.org/
abs/2501.10120.

Xanh Ho, Jiahao Huang, Florian Boudin, and Akiko Aizawa. Llm-as-a-judge: Reassessing the
performance of llms in extractive qa, 2025. URL https://arxiv.org/abs/2504.11972.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey, 2024.
URL https://arxiv.org/abs/2402.02716.

Hugging Face Team. Llama 3.3-70b-instruct model. https://huggingface.co/
meta-llama/Llama-3.3-70B-Instruct, 2023. Accessed: 2023-02-11.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models, 2022. URL https://arxiv.org/abs/2208.
03299.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. PubMedQA: A
dataset for biomedical research question answering. In Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 2567–2577, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1259. URL https://aclanthology.org/
D19-1259/.

11

https://aclanthology.org/2025.naacl-long.22/
https://aclanthology.org/2025.naacl-long.22/
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2410.12952
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2105.03011
https://arxiv.org/abs/2105.03011
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2501.10120
https://arxiv.org/abs/2501.10120
https://arxiv.org/abs/2504.11972
https://arxiv.org/abs/2402.02716
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://arxiv.org/abs/2208.03299
https://arxiv.org/abs/2208.03299
https://aclanthology.org/D19-1259/
https://aclanthology.org/D19-1259/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ehsan Kamalloo, Shivani Upadhyay, and Jimmy Lin. Towards robust qa evaluation via open llms.
In Proceedings of the 47th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’24, pp. 2811–2816, New York, NY, USA, 2024. Association for
Computing Machinery. ISBN 9798400704314. doi: 10.1145/3626772.3657675. URL https:
//doi.org/10.1145/3626772.3657675.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Yoonjoo Lee, Kyungjae Lee, Sunghyun Park, Dasol Hwang, Jaehyeon Kim, Hong-In Lee, and
Moontae Lee. QASA: advanced question answering on scientific articles. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pp. 19036–19052.
PMLR, 2023. URL https://proceedings.mlr.press/v202/lee23n.html.

Chuhan Li, Ziyao Shangguan, Yilun Zhao, Deyuan Li, Yixin Liu, and Arman Cohan. M3sciqa:
A multi-modal multi-document scientific qa benchmark for evaluating foundation models, 2024.
URL https://arxiv.org/abs/2411.04075.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Hannes Mühleisen and Mark Raasveldt. duckdb: DBI Package for the DuckDB Database Man-
agement System, 2024. URL https://r.duckdb.org/. R package version 1.1.3.9017,
https://github.com/duckdb/duckdb-r.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback, 2022. URL https://arxiv.
org/abs/2112.09332.

Azizi Othman. Manus ai: Capabilities, limitations, and market position, 03 2025.

Shraman Pramanick, Rama Chellappa, and Subhashini Venugopalan. Spiqa: A dataset for mul-
timodal question answering on scientific papers, 2025. URL https://arxiv.org/abs/
2407.09413.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Tanik Saikh, Asif Ekbal, and Pushpak Bhattacharyya. ScholarlyRead: A new dataset for scien-
tific article reading comprehension. In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache,
Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Mae-
gaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.),
Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 5498–5504, Mar-
seille, France, May 2020. European Language Resources Association. ISBN 979-10-95546-34-4.
URL https://aclanthology.org/2020.lrec-1.675/.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools, 2023. URL https://arxiv.org/abs/2302.04761.

Shruti Singh, Nandan Sarkar, and Arman Cohan. Scidqa: A deep reading comprehension dataset
over scientific papers, 2024. URL https://arxiv.org/abs/2411.05338.

12

https://doi.org/10.1145/3626772.3657675
https://doi.org/10.1145/3626772.3657675
https://proceedings.mlr.press/v202/lee23n.html
https://arxiv.org/abs/2411.04075
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://r.duckdb.org/
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2407.09413
https://arxiv.org/abs/2407.09413
https://arxiv.org/abs/2412.15115
https://aclanthology.org/2020.lrec-1.675/
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2411.05338

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Michael D. Skarlinski, Sam Cox, Jon M. Laurent, James D. Braza, Michaela Hinks, Michael J.
Hammerling, Manvitha Ponnapati, Samuel G. Rodriques, and Andrew D. White. Language agents
achieve superhuman synthesis of scientific knowledge, 2024. URL https://arxiv.org/
abs/2409.13740.

Yuwei Wan, Yixuan Liu, Aswathy Ajith, Clara Grazian, Bram Hoex, Wenjie Zhang, Chunyu Kit,
Tong Xie, and Ian Foster. Sciqag: A framework for auto-generated science question answering
dataset with fine-grained evaluation, 2024. URL https://arxiv.org/abs/2405.09939.

Bin Wang, Chao Xu, Xiaomeng Zhao, Linke Ouyang, Fan Wu, Zhiyuan Zhao, Rui Xu, Kaiwen Liu,
Yuan Qu, Fukai Shang, Bo Zhang, Liqun Wei, Zhihao Sui, Wei Li, Botian Shi, Yu Qiao, Dahua
Lin, and Conghui He. Mineru: An open-source solution for precise document content extraction,
2024. URL https://arxiv.org/abs/2409.18839.

Cunxiang Wang, Sirui Cheng, Qipeng Guo, Yuanhao Yue, Bowen Ding, Zhikun Xu, Yidong Wang,
Xiangkun Hu, Zheng Zhang, and Yue Zhang. Evaluating open-QA evaluation. In Thirty-seventh
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023a.
URL https://openreview.net/forum?id=UErNpveP6R.

Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang, Xi-
angzhou Guo, Chengming Li, Xiaohai Xu, et al. Milvus: A purpose-built vector data manage-
ment system. In Proceedings of the 2021 International Conference on Management of Data, pp.
2614–2627, 2021.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models, 2023b. URL https://arxiv.org/abs/2305.04091.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm:
Deep self-attention distillation for task-agnostic compression of pre-trained transformers. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions,
2023c. URL https://arxiv.org/abs/2212.10560.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL https://openreview.net/forum?id=WE_vluYUL-X.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
ing: Enabling generalized agent abilities for llms, 2023. URL https://arxiv.org/abs/
2310.12823.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

13

https://arxiv.org/abs/2409.13740
https://arxiv.org/abs/2409.13740
https://arxiv.org/abs/2405.09939
https://arxiv.org/abs/2409.18839
https://openreview.net/forum?id=UErNpveP6R
https://arxiv.org/abs/2305.04091
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2201.11903
https://openreview.net/forum?id=WE_vluYUL-X
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2310.12823
http://arxiv.org/abs/2403.13372

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

To construct our M4PQA dataset, we use 13,948 papers in artificial intelligence domain. Most
papers utilized in our M4PQA dataset can be downloaded from arXiv 2. For some conference
papers unavailable on arXiv, we use OpenReview 3 and ACL Anthology 4 as supplements.
All three websites are licensed under the Creative Commons Attribution 4.0 International License
(CC BY 4.0), and we use the papers in accordance to their usage terms, with no private, sensitive,
or personally identifiable information used in this work.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we include the action information for agentic baselines
(App. B), synthesis prompts for EXTRACTOR framework (App. E), and other experiment settings
(App. C) in the Appendix. Furthermore, we release our dataset through an anonymous repository
available at https://anonymous.4open.science/r/M4PQA/. These resources allow other researchers
to verify our results and build upon our contributions.

LLM USAGE STATEMENT

In accordance with the ICLR 2026 policy on the use of Large Language Models (LLMs), we disclose
that LLMs were used exclusively as general-purpose writing aids, such as for polishing grammar and
improving readability. LLMs did not contribute to research ideation, experiment design, data analy-
sis, or result interpretation, and thus played no role that would qualify as authorship or substantive
contribution.

A M4PQA DATASET

A.1 EXAMPLE FORMAT

Each data instance in M4PQA is represented as a JSON dictionary containing the following fields:

• uuid: Globally unique uuid of the current task example.

• question: The user’s question about the given papers.

• answer format: The requirements for the output format of LLMs, e.g., “a Python list of text
strings” or “a single float number”, so that LLMs can form their answer accordingly and we can
evaluate the answer conveniently.

• tags: A list of tags denoting different question types, element categories and evaluation types.
Feasible tags include [“single”, “multiple”, “retrieval”, “text”, “image”, “table”, “formula”,
“metadata”, “subjective”, “objective”], corresponding to question types, modal categories in
Section 2.1 and evaluation types in Section 2.2.

• anchor pdf: A list of PDF uuids that are directly related to or explicitly mentioned in the
question, provided in single and multiple questions.

• reference pdf: A list of PDF uuids that may or may not help answer the question, only
provided in multiple questions.

• conference: A list of conference name followed by year, provided in retrieval and compre-
hensive questions.

• evaluator: A dictionary containing 2 fields, eval func and eval kwargs, which defines
how to evaluate the model outputs. Concretely,

– the “eval func” field defines the name of our customized Python function (or metric)
which is used to compare the predicted result and the expected ground truth;

2https://info.arxiv.org/help/api/index.html
3https://docs.openreview.net/reference/api-v2
4https://aclanthology.org/

14

https://anonymous.4open.science/r/M4PQA/
https://info.arxiv.org/help/api/index.html
https://docs.openreview.net/reference/api-v2
https://aclanthology.org/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

– the “eval kwargs” field defines the arguments for the corresponding evaluation function,
which usually contain the gold or reference answer and other optional parameters.

Table 8: The checklist of the 19 used evaluation functions, including their genres, categories, names,
and descriptions.

Genre Category Function Description

objective

match

eval bool exact match Evaluate the output against the answer using ex-
act boolean match.

eval float exact match
Evaluate the output against the answer using ex-
act float match with variable precision or toler-
ance.

eval int exact match Evaluate the output against the answer using ex-
act integer match.

eval string exact match Evaluate the output against the answer using ex-
act string match.

eval string fuzzy match Evaluate the output against the answer using
fuzzy match provided by FuzzyWuzzy.

eval structured object
exact match

Evaluate the output against the answer recur-
sively by parsing them both as Python-style lists
or dictionaries.

set

eval element included Evaluate whether the output is included in the an-
swer list.

eval element list included Evaluate whether each element in the output list
is included in the answer list.

eval element list overlap Evaluate whether the output list overlaps with the
answer list.

retrieval eval paper relevance with
reference answer

Evaluate whether the retrieved paper is the same
as the reference answer.

subjective
semantic

eval reference answer
with llm

Evaluate the output against the reference answer
using LLMs.

eval candidate reference
answer with llm

Evaluate whether the output matches any candi-
date reference answer.

eval scoring points with
llm

Evaluate whether the scoring points are all men-
tioned in the output using LLMs.

eval partial scoring points
with llm

Evaluate whether the scoring points are partially
mentioned in the output using LLMs.

eval reference answer and
scoring points with llm

Evaluate whether the reference answer and other
scoring points are all mentioned in the output us-
ing LLMs.

formula eval complex math form
ula with llm

Evaluate the mathematical equivalence between
the output and the answer formatted in Latex us-
ing LLMs.

logical

eval conjunction

Evaluate the conjunction of multiple evaluation
functions. The output passes the evaluation if and
only if all the elements in the output pass the cor-
responding sub-evaluations.

eval disjunction

Evaluate the disjunction of multiple evaluation
functions. The output passes the evaluation if and
only if at least one of the element in the output
passes the corresponding sub-evaluation.

eval negation
Evaluate the negation of an evaluation function.
The output passes the evaluation if and only if it
doesn’t pass the original evaluation function.

A.2 METADATA FORMAT

The metadata of each paper is organized in a structured JSON format, capturing key bibliographic
and content-related attributes, as shown below:

• uuid: A universally unique identifier (UUID) assigned to this specific data sample.
• title: The full title of the academic paper.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• conference full: The complete official name of the conference where the paper was pub-
lished or presented. For example, “Annual Meeting of the Association for Computational Lin-
guistics”.

• conference: The standardized or abbreviated name of the conference, commonly used in
citations or file naming. Examples include “ACL”, “NeurIPS”.

• year: The year in which the paper was published or presented at the conference.
• volume: The volume information of the conference proceedings or journal in which the paper

appears, if applicable. For example, “NeurIPS 2023 poster”.
• bibtex: A string containing the full BibTeX citation entry for the paper.
• authors: An ordered list of the authors who contributed to the paper.
• pdf url: A direct URL linking to the downloadable PDF file of the paper. The link should

point to an actual PDF file and therefore must end with “.pdf”.
• pdf path: The local file system path where the PDF is saved. The file should be renamed

using the UUID to ensure consistent and collision-free naming.
• num pages: An integer value indicating the total number of pages in the PDF document.
• abstract: The abstract of the paper, which is a concise summary of the research objectives,

methodology, key findings, and implications.
• tldr: “Too Long; Didn’t Read” summary — a brief, high-level summary of the paper’s main

contribution, typically one to two sentences.
• tags: A list of keywords or topic tags associated with the paper.

A.3 EVALUATION FUNCTION

In Table 8, we list the detailed names and descriptions of all 19 evaluation functions.

Here we present three representative cases corresponding to three distinct categories of evaluation
functions: objective functions, subjective functions, and logical functions.

{
"example": {

"eval_func": "eval_string_exact_match",
"eval_kwargs": {

"gold": "Italian",
"lowercase": true

}
}

}

Listing 1: Objective Function Case

In case (Listing 1), the evaluation function compares the predicted answer with the gold answer
“Italian”, ignoring case sensitivity due to the “lowercase” parameter being set to true. This means
“italian”, “ITALIAN”, or “ItAliAn” would all match “Italian”.

{
"example": {

"eval_func": "eval_reference_answer_with_llm",
"eval_kwargs": {

"reference_answer": "Artificial intelligence is a branch of
↪→ computer science focused on building systems that can
↪→ perform tasks that typically require human
↪→ intelligence.",

"question": "What is artificial intelligence?"
}

}
}

Listing 2: Subjective Function Case

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In case (Listing 2), the evaluation checks if the predicted answer conveys the same meaning as
the reference answer about artificial intelligence, in response to the question “What is artificial
intelligence?”.

The prompt used for conducting the subjective evaluation above is presented as an example among
several possible formulations within this evaluation category, and is shown below.

Subjective Function Prompt Example

You are an intelligent judgement system who is expert in determining whether a predicted answer matches
the reference answer in terms of semantic meaning and intent, based on the input question. You will be
given the raw question, the reference answer, and the predicted answer. And you need to provide the final
decision with the following format:
```txt
True/False
```
Notice that:
1. Remember to wrap the final judgement with triple backticks.
2. The final decision string must exactly be “True” or “False” without any extra character or punctuation.
Any other text will be considered as incorrect.
3. The structure and format of the predicted answer do not matter. We only care about the semantic content,
compared to the reference answer. Minor differences in grammar, structure, or formatting should be ignored
if the core meaning is preserved.
Now, let’s start!

[Question]: {question}
[Reference Answer]: {reference answer}
[Predicted Answer]: {predicted answer}

Let’s think step-by-step, and then provide the final judgement.

{
"example": {

"eval_func": "eval_disjunction",
"eval_kwargs": {

"eval_func_list": [
"eval_string_exact_match",
"eval_reference_answer_with_llm"

],
"eval_kwargs_list": [

{
"gold": "role-oriented routing",
"lowercase": true

},
{

"reference_answer": "It routes messages, requests,
↪→ or tasks based on the roles or
↪→ responsibilities of the recipients, rather
↪→ than simply by their identity or static
↪→ attributes.",

"question": "What’s the most important idea of
↪→ role-oriented routing?"

}
]

}
}

}

Listing 3: Logical Function Case

In case (Listing 3), the disjunction evaluation function checks if at least one of the specified eval-
uation functions returns a positive result. The first function, “eval string exact match”, verifies
whether the predicted answer matches the gold standard “role-oriented routing” in a case-insensitive
manner. The second function, “eval reference answer with llm”, evaluates whether the predicted

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 5: Conference distribution of the pa-
pers used.

Figure 6: Distribution of question and answer
format lengths (in tokens) by count.

answer sufficiently addresses the question about the most important idea of role-oriented routing,
as described in the provided reference answer. If either condition is satisfied, the evaluation returns
1.0; otherwise, it returns 0.0.

A.4 ADDITIONAL DATASET STATISTICS

Here we include another two statistics on paper volume in Figure 5 and question lengths in Figure 6.

B AGENTIC BASELINE

In this section, we present detailed information of the actions implemented in the agentic baselines.
Each action can be called in a Python-style manner, e.g., Retrieve(query="Is there any
work about the topic structured RAG?", limit=4)

{
"action_type": "Retrieve",
"description": "Given a query text, retrieve relevant context from

↪→ the Milvus vectorstore.",
"observation": "The observation space is the retrieved top-ranked

↪→ entries from the Milvus vectorstore based on queries.",
"parameters": {

"query": {
"type": "str",
"required": true,
"description": "The query text will be encoded and used to

↪→ search for relevant context. You can rephrase the
↪→ original user question to obtain a more clear and
↪→ structured query requirement."

},
"limit": {

"type": "int",
"required": false,
"default": 5,
"description": "The number of top-ranked context to

↪→ retrieve. Please set it to a positive integer to limit
↪→ the number of returned results. Extremely large limit
↪→ values may be truncated."

}
},
"use_cases": [

{
"example": {

"query": "Is there any work about the topic structured
↪→ RAG?"

},
"explanation": "Retrieve top 5 pieces about a certain topic."

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

},
{

"example": {
"query": "What’s the learning rate for training the

↪→ ResNet model?",
"limit": 4

},
"explanation": "Retrieve detailed information about the

↪→ learning rate for training the ResNet model. The top 4
↪→ most relevant entries will be returned based on the
↪→ query."

}
]

},
{

"action_type": "Query",
"description": "Generate an SQL query to retrieve the desired

↪→ information from the DuckDB database. Please refer to the
↪→ concrete database schema to produce a valid and executable
↪→ SQL.",

"observation": "The observation space is the execution result of the
↪→ SQL query. You do not need to worry about the actual
↪→ execution, we will perform it for you. If the SQL failed to
↪→ execute, we will return the error message. Extremely long SQL
↪→ output will be truncated.",

"parameters": {
"sql": {

"type": "str",
"required": true,
"description": "The concrete DuckDB SQL query to execute and

↪→ retrieve results."
}

},
"use_cases": [

{
"example": {

"sql": "SELECT abstract FROM metadata WHERE paper_id =
↪→ ’12345678’;"

},
"explanation": "Get the abstract of the paper with paper_id

↪→ ’12345678’ from the metadata table in the DuckDB
↪→ database."

},
{

"example": {
"sql": "SELECT pages.page_number FROM images JOIN pages

↪→ JOIN metadata ON images.ref_page_id =
↪→ pages.page_id AND pages.ref_paper_id =
↪→ metadata.paper_id WHERE metadata.paper_id =
↪→ ’12345678’ AND images.image_caption LIKE ’%Figure
↪→ 3%’;"

},
"explanation": "Find which page in the paper with paper_id

↪→ ’12345678’ contains Figure 3."
}

]
},
{

"action_type": "Answer",
"description": "When you take this action, the retrieved results

↪→ suffice to answer the user question. PLEASE STRICTLY ADHERE TO
↪→ THE ANSWER FORMAT FOR THE CURRENT QUESTION.",

"observation": "There is no observation for this terminal action,
↪→ since it indicates the completion of the task and end of the
↪→ interaction.",

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

"parameters": {
"answer": {

"type": "Any",
"required": true,
"description": "The final answer to the user question."

}
},
"use_case": [

{
"example": {

"answer": 42
},
"explanation": "The final answer is 42."

},
{

"example": {
"answer": ["Results", "Discussion"]

},
"explanation": "The final answer is a list of strings:

↪→ [’Results’, ’Discussion’]."
}

]

}

Listing 4: Detailed Action Format

C SUPPLEMENTARY EXPERIMENTS AND SETTINGS

C.1 DETAILED HYPER-PARAMETERS FOR INSTRUCTION TUNING

Table 9: Hyper-parameters for Instruction Tuning.

Hyper-Parameter Default Value
Finetuning Type LoRA
LoRA Target all
LoRA Rank 16
LoRA Alpha 16
LoRA Dropout 0.05

Cutoff Length 4,096
Mask History true

Gradient Accumulation Steps 16
Learning Rate 1× 10−4

Train Epochs 1.0
Learning Rate Scheduler Cosine
Warmup Ratio 0.1

C.2 PREPROCESSING

Besides collecting papers and metadata illustrated in Section 2.3, we parse the papers with
PyMuPDF (Artifex Software, 2023) and MinerU (Wang et al., 2024), and populate rele-
vant information into the relational database DuckDB (Mühleisen & Raasveldt, 2024). Ad-
ditionally, we segment raw documents into chunks of 512 tokens, encode the chunks with
all-MiniLM-L6-v2 (Wang et al., 2020), and insert the vectors into the vectorstore Milvus (Wang
et al., 2021).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.3 ABLATION ON VLMS

To further investigate whether direct access to visual information improves performance, we imple-
ment an additional action, “View”, for the Agentic Hybrid baseline.

{
"action_type": "View",
"description": "You can retrieve the visual information of the paper

↪→ by taking this action. Please provide the paper id, the page
↪→ number, and the optional bounding box.",

"observation": "The observation space is the image that you want to
↪→ view. We will show you the image according to your parameters.
↪→ The error message will be shown if there is any problem with
↪→ the image retrieval.",

"parameters": {
"paper_id": {

"type": "str",
"required": true,
"description": "The paper id to retrieve the image."

},
"page_number": {

"type": "int",
"required": true,
"description": "The page number (starting from 1) of the

↪→ paper to retrieve the image."
},
"bounding_box": {

"type": "List[float]",
"required": false,
"default": [],
"description": "The bounding box of the image to retrieve.

↪→ The format is [x_min, y_min, delta_x, delta_y]. The
↪→ complete page will be retrieved if not provided."

}
},
"use_cases": [

{
"example": {

"paper_id": "12345678",
"page_number": 3,
"bounding_box": []

},
"explanation": "Retrieve the image of the third page of the

↪→ paper with id 12345678."
},
{

"example": {
"paper_id": "12345678",
"page_number": 5,
"bounding_box": [

51.1,
204.3,
333.0,
13.8

]
},
"explanation": "Retrieve the image of the fifth page of the

↪→ paper with id 12345678, with a bounding box of [51.1,
↪→ 204.3, 384.1, 218.1]."

}
]

}

Listing 5: Details for “View” action.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Through this action, LLMs can access the image content encoded in base64 format by specifying
the paper ID, page number, and the bounding box of the relevant region.

Table 10: Performance of Agentic Hybrid with “View” action on M4PQA dataset.

Size “View”? text table image form. meta. AVG

32B % 31.88 10.33 17.87 18.90 21.31 24.24
! 31.56 8.92 20.77 15.75 25.41 24.56

72B % 36.55 15.96 23.67 20.47 36.88 30.34
! 36.55 15.96 24.64 22.83 36.07 30.78

We conduct experiments with Qwen2.5-VL family (Bai et al., 2025) as backbone model. Table 10
shows that, with direct access to images, the performance on visual questions improves, though
further methods for enhancement remain to be explored.

C.4 FINE-TUNING BASED ON M4PQA

To examine the relative effectiveness of synthetic data compared to manually annotated data, we
fine-tune another model with examples directly from the M4PQA dataset. Due to the unquantifi-
able nature of manually annotated trajectories, we continue to use Qwen2.5-32B-Instruct as teacher
model for trajectory generation.

Table 11: Comparison between models fine-tuned on examples directly from the M4PQA dataset
and examples generated by the EXTRACTOR.

Dataset Count sgl. multi. retr. comp. AVG
- - 16.24 3.72 26.39 15.85 15.24

M4PQA 400 15.67 4.95 48.26 13.73 19.98
EXTRACTOR 1000 15.95 2.48 48.96 14.44 19.74

Table 11 indicates that, model fine-tuned on 400 examples from M4PQA achieves performance
comparable to that trained on 1,000 automated generated examples. It is worth noticing that while
manual examples seem to be more effective, they come at a higher cost. It takes 20 minutes for a
human to generate an example and only 20 seconds for EXTRACTOR.

C.5 HUMAN STUDY

To provide a reference for the difficulty of the M4PQA dataset, we recruit 3 students with expertise
in artificial intelligence to answer 98 questions sampled from our M4PQA dataset. They are strictly
prohibited from using any form of LLM and are only allowed to search the internet. Each question
has a time limit of 20 minutes.

Table 12: Performance of human experts on M4PQA dataset.

Question Type Element Category Evaluation
AVG

sgl. multi. retr. comp. text table image form. meta. obj. subj.
64.29 54.00 52.17 56.82 53.12 56.07 67.05 50.00 55.00 58.52 52.58 56.63

Results in table 12 show that M4PQA is a highly challenging dataset, even human experts are only
able to achieve a relatively high score within the time limit, rather than a perfect one. Meanwhile,
all three participants report difficulty in identifying the correct papers, particularly when multiple
sources are involved, and two additionally note challenges in understanding domain-specific termi-
nology.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.6 STATISTCS ON TIME & COST

Evaluation Here we provide an empirical estimate: evaluating all 1,246 examples takes approx-
imately 35 minutes and costs $0.056. This process can be further accelerated using simple paral-
lelization techniques if needed.

Agentic Baselines In Table 13 we list the time and cost per example for two models and three
agentic baselines for reference.

Table 13: Statistics of the number of interaction(s), accumulated prompt / completion token(s), time
consumption, and LLM cost per sample with different models and agentic methods on M4PQA.

Model RAG Method # Turn(s) # Prompt
Token(s)

Completion
Token(s) Time (s) Cost ($)

Qwen2.5-72B-instruct
Agentic RAG 7.53 39870 658 58 -

Agentic Text2SQL 6.45 42991 790 70 -
Agentic Hybrid 5.95 62533 767 62 -

GPT-4o
Agentic RAG 4.59 13231 365 13 0.0367

Agentic Text2SQL 7.26 32957 815 22 0.0905
Agentic Hybrid 5.08 35909 566 18 0.0954

Example Synthesis Though we have discussed in App. C.4 that LLM-based methods are far more
efficient than manual annotation, we still believe that a rough cost analysis would be helpful to offer
an empirical reference for future work.

Table 14: Average time and cost for synthesizing an example. The time and cost for “multiple”
question type is estimated by directly doubling that of “single”.

Time (s) Cost ($)
sgl. 18.6 0.041

multi. 37.2 0.082
retr. 5.2 0.002

comp. 18.5 0.039

The results for each question type are computed by averaging the time and cost of generating 10
examples with GPT-4.1-mini. A back-of-the-envelope calculation indicates that it costs roughly
$160 and 22 hours to produce 4,000 examples (1,000 per question type). Given the complexity of
the tasks, this is reasonably efficient compared with human annotation, and can be further improved
by using open-source models or parallelization.

D SUPPLEMENTARY ANALYSIS

D.1 ERROR ANALYSIS ON GPT-4O

To further illustrate the bottleneck of our M4PQA dataset, we randomly sample 60 examples (15 for
each question type) where GPT-4o + Agentic Hybrid produces incorrect answers. Through manual
analysis, we identify the following five root causes that ultimately lead to mistakes:

1. Lack of Context: The agent fails to use the given tools to find relevant snippets.

2. Over Confidence: The agent chooses to generate the answer too early.

3. Missing Paper: For questions that involve multiple papers, the agent fails to realize/find other
papers.

4. Textual Reasoning: The agent successfully retrieves the key snippet but fails to understand it.

5. Visual Reasoning: The agent fails to retrieve/understand paratextual information.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 15: Error Analysis of Agentic Hybrid baseline with GPT-4o as backbone.

Category sgl. multi. retr. comp. Total
Lack of Context 5 3 9 6 23
Over Confidence 3 2 5 3 13

Textual Reasoning 2 1 1 5 9
Missing Paper 0 8 0 0 8

Visual Reasoning 5 1 0 1 7

The analysis shows that the dominant cause differs across question types, while generally, current
models still exhibit limitations in long-term planning and multi-modal reasoning, suggesting the
need for new methods that better balance planning and acting.

D.2 ERROR ANALYSIS ON FINE-TUNED 7B

Similarly, we conduct an error analysis on fine-tuned Qwen2.5-7B-Instruct. Besides the aforemen-
tioned five causes, we identify another reason that ultimately leads to failures:

6. Repetition: The agent consistently predicts the same action.

Table 16: Error Analysis of Agentic Hybrid baseline with fine-tuned 7B as backbone.

Category sgl. multi. retr. comp. Total
Lack of Context 4 4 9 3 20

Textual Reasoning 6 2 3 2 13
Over Confidence 2 3 2 3 10

Repetition 1 3 1 4 9
Visual Reasoning 2 1 0 3 6

Missing Paper 0 2 0 0 2

The analysis indicates that fine-tuned models still exhibit limitations in textual retrieval and com-
prehension, highlighting areas for future improvement.

D.3 IMPROVEMENT ANALYSIS ON 7B

We further investigate which aspects of small models are improved by EXTRACTOR. We sample
10 examples for each question type where fine-tuned Qwen2.5-7B-Instruct outperform untrained
baseline, totaling 40 examples. For each example, we examine the source of improvement and
categorize it into one of three main contributing factors:

1. Better Retrieval Strategy: The model develops a clearer understanding of the overall retrieval
process and the specific actions required at each step, allowing it to plan more effectively and
identify useful intermediate steps.

2. Better Retrieval Behavior: The model interacts more accurately with the environment, cor-
rectly interpreting schemas and providing appropriate tool parameters.

3. Better Understanding and Reasoning: The model demonstrates deeper comprehension of the
question and context, producing more coherent and reliable reasoning.

The analysis shows that the dominant contributor varies across question types. While improved
retrieval behavior is not always the primary factor, reductions in tool usage errors are consistently
observed, enhancing both retrieval behavior and strategy as the model learns to use tools more
effectively. This finding aligns with the component ablation in Section 4.3 and reinforces the claim
that our training framework enhances the model’s ability to generate valid actions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 17: Improvement Analysis of Fine-Tuned 7B.

Category sgl. multi. retr. comp. Total
Strategy 4 7 1 1 13
Behavior 3 1 4 6 14

Understanding 3 2 5 3 13

E SYNTHESIS PROMPT

E.1 EXPLORER PROMPT

Here we showcase prompt templates of explorers discussed in Section 3.2.

Explorer Prompt for Single and Comprehensive question types

You are an intelligent annotation system who is expert in posing questions.
{description}
Your output should be in the following format:
[Thought]: Your thought process.
```txt
[Question]: Your question here.
[Answer]: Your answer here.
```
Notice that:
- Remember to wrap your output (except [Thought]) with triple backticks.
- Don’t include the answer in the question or in the reasoning steps.
- Your question should be as objective as possible.
- Your answer should be concise and clear.
{hint}
Let’s think step-by-step, and then provide the final question and answer.
{context}

Here, {description} stands for the description of the task, {hint} includes additional hints,
and {context} represents the corresponding context for question generation.

For example, for single question type and table element category, the description is “You will be
given an AI research paper, and your task is to generate a question based on the content of the table
in HTML format and the caption of the table.”, the hint prompt is “- Try not to include the word
‘table’ in your question.”, and the context prompt is:

Context Prompt for Single type, Table category

The caption of the table is as follows:
```txt
{caption}
```
The content of the table is as follows:
```html
{content}
```

where the caption and the content are the raw text caption and the table content in HTML format
respectively.

Explorer Prompt for Retrival question type

You are an intelligent annotation system who is expert in posing questions. You need to pose a question
based on the title and abstract of a paper, where the answer to the question should be the title of the paper.
That is to say, you need to describte the contribution or the feature of the paper in the question, so that the
respondents can identify the paper. Don’t include the title itself in the question. Now let’s start!

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

[Title]: {title}
[Abstract]: {abstract}

Your output should be in the following format:

Your thought process.
```txt
Your question here.
```

Note that, you should wrap your output with triple backticks.

For retrieval question type, we use the different explorer prompt shown above, and for multiple
question type, there is no need of an explorer, as we simply combine two single questions.

E.2 TRACKER PROMPT

Here we present prompt templates of trackers discussed in Section 3.3.

Tracker Prompt for Single and Comprehensive question types

You are an intelligent annotation system who is expert in reviewing questions.

You will be given a question and an answer. You should adjust the question and the answer, adapting them
to the evaluator’s requirements. The descriptions, parameters and use cases of the evaluators are provided
below:

————————————————————

{evaluator}

Note that:
- If you want the predicted answer list to be exactly same with the gold answer list, use
`eval structured object exact match`, don’t use `eval element list included`.
- If your evaluation involves list matching, and the order doesn’t matter, set `ignore order` to `true`. If the
order matters, set `ignore order` to `false`.
- If you are sure that the answer is unique, there aren’t other equivalent answers, and any rephrase will
change the semantic meaning of the answer, you can use `eval string exact match`. Otherwise, you should
use `eval reference answer with llm`. Generally, we recommend using `eval reference answer with llm`
for subjective questions, and `eval string exact match` for single-word answers.

————————————————————

Your output should be in the following format:
[thought]: Your thought process.
```txt
[question]: Modified question.
[evaluator]: The evaluator you choose.
[answer format]: The format that the respondent should follow in order to pass the evaluator. e.g. ”Your
answer should be a single python list containing two strings, the first element of the list is the abbreviation
of the baseline, the second element of the list is the full name of this baseline, e.g.[”abbr”,”full”].”.
[answer]: Modified answer.
[tag]: A single `subjective` or `objective` without explanation. Whether the evaluator involves LLM. `sub-
jective` if it involves LLM, otherwise `objective`.
```

Note that:
- Remember to wrap your output (except thought) with triple backticks.
- DON’T INCLUDE ANSWERS, HINTS OR KEY POINTS IN [question] OR [answer format] IN ANY
FORM, ESPECIALLY WHEN YOU TRY TO ILLUSTRATE [answer format] BY GIVING EXAMPLES.
- [answer format] will be provided to the respondent along with the [question]. [question] and [an-
swer format] together form the who question that will be presented to the respondent. [question] focuses
on the question itself, [answer format] focuses on the format of the answer.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

- You should present [evaluator] in JSON format, as given in the use cases. And your [answer] should be
able to pass the evaluator.
- You can modify the question and answer based on the evaluator’s requirements, but don’t change the
original meaning of the question and answer.
- When the question involves percentage, and the percentage is an exact value, not an approximate
value, try to use `eval float exact match` or `eval int exact match`, while indicating the decimal places in
[answer format].

Here’re the original question and answer:
```txt
[question]: {question}
[answer]: {answer}
```

Let’s think step-by-step, and then provide the final arguments.

Here, {evaluator} contains the detailed information of the 19 evaluation functions, and
{question} and {answer} stand for the question-answer pair generated by the explorer. The
evaluator prompt is in the following format:

Tracker Prompt for Single and Comprehensive question types

{function}

Description
{description}

Parameters
{parameters}

Use Case(s)
{use case}

which contains the name, the description, the parameters and the use cases of the functions.

F LIMITATIONS AND BROADER IMPACTS

Although precise question answering datasets M4PQA for academic papers can enhance research
efficiency, this work still has certain limitations: 1) As large language models incorporate more aca-
demic papers during pre-training, some questions can be answered solely based on their parametric
knowledge; 2) The current dataset is limited to English-language papers in the field of artificial
intelligence, and its coverage remains to be improved; 3) While most questions can be evaluated
using objective scoring functions, long-form answers inevitably rely on large model-based evalua-
tion, which may affect the consistency and stability of the evaluation results as the continual training
and update of these LLMs. For broader social impact, as LLM-based agents become increasingly
robust and practical through more refined agent-level finetuning, their improved question-answering
capabilities can help researchers save significant time on literature review and detail retrieval, avoid
reinventing the wheel, and even assist in building personalized knowledge bases of academic pa-
pers.

27

	Introduction
	The M4PQA Dataset
	Task Definition
	Evaluation Method
	Dataset Construction
	Dataset Statistics

	ExTrActor Framework for Trajectory Synthesis
	Overall Framework
	Explorer
	Tracker
	Actor

	Experiment
	Experiment Settings
	Main Results
	Ablation Study

	Related Work
	Conclusion
	M4PQA Dataset
	Example Format
	Metadata Format
	Evaluation Function
	Additional Dataset Statistics

	Agentic Baseline
	Supplementary Experiments and Settings
	Detailed Hyper-parameters for Instruction Tuning
	Preprocessing
	Ablation on VLMs
	Fine-tuning based on M4PQA
	Human Study
	Statistcs on Time & Cost

	Supplementary Analysis
	Error Analysis on GPT-4o
	Error Analysis on Fine-tuned 7B
	hLImprovement Analysis on 7B

	Synthesis Prompt
	Explorer Prompt
	Tracker Prompt

	Limitations and Broader Impacts

