

000 001 002 003 004 005 M4PQA: A COMPREHENSIVE QA DATASET FOR AI 006 RESEARCH WITH INSTANCE-LEVEL EVALUATION 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

The growing volume of academic papers has made it increasingly difficult for researchers to efficiently extract key information. While large language models (LLMs) based agents are capable of automating question answering (QA) workflows for scientific papers, there still lacks a comprehensive and realistic benchmark to evaluate their capabilities. Moreover, training an interactive agent for this task is hindered by the shortage of high-quality interaction trajectories. In this work, we propose M4PQA, a human-annotated comprehensive paper QA dataset in the field of artificial intelligence, with 13,948 papers and 1,246 questions, that encompasses multi-task, multi-modal and instance-level evaluation. Furthermore, we propose EXTRACTOR, an automated framework for instruction data synthesis. With three LLM-based agents, EXTRACTOR can perform example generation and trajectory collection without human intervention. Evaluations of multiple open-source and proprietary models show that most models underperform on M4PQA, demonstrating its quality. Extensive experiments confirm that EXTRACTOR consistently improves the multi-turn tool-use capability of small models, enabling them to achieve performance comparable to larger ones.

1 INTRODUCTION

With the explosion of artificial intelligence (AI) publications, researchers must spend a significant amount of time reading lengthy papers just to locate a highly specific piece of information, which is both tedious and inefficient. The advent of large language models (LLMs), especially their remarkable reasoning and planning capabilities (Ahn et al., 2024; Guo et al., 2025; Huang et al., 2024; Wang et al., 2023b), has made it possible to automate the workflow of precise retrieval and question answering (QA) for academic papers (He et al., 2025; Othman, 2025; Skarlinski et al., 2024). Despite recent advances, there remains a notable absence of a comprehensive and realistic benchmark, which covers diverse question types and multi-modal abilities. And training an interactive QA agent that focuses on such task is difficult due to the scarcity of high-quality domain-specific trajectories.

Previous QA datasets on scientific papers usually focus on one narrow question type, such as querying technical details about a single paper (Dasigi et al., 2021; Lee et al., 2023; Pramanick et al., 2025; Singh et al., 2024), questions spanning across multiple documents following a rule-constructed two-hop pattern (Li et al., 2024), or aiming at the common paper retrieval requirements (Ajith et al., 2024; He et al., 2025). Accordingly, the evaluation function is usually tailored for one restricted type and lacks generalization to others. For example, M3SciQA (Li et al., 2024) designed one LLM-based prompt for long-form string evaluation with the reference answer, which is highly empirical and only serves its specific question type. On the other hand, most benchmark owners overly pre-process raw papers, and merely provide the cleaned text format for uniform input. This common practice deviates from realistic scenarios, where real-world users may query other hyper-textual elements (illustrated in the bottom part of Figure 1) embedded in the raw PDF documents, such as figures, tables, formula, metadata, or even different combinations of them.

While tackling QA on academic papers, trivial methods (e.g. provide titles and abstracts alongside the question (Dasigi et al., 2021; Singh et al., 2024)) will easily fail due to context limitation, as the scaling of papers augment from a single paper to the entire conference volume. More advanced approaches adopt the popular RAG framework (Borgeaud et al., 2022; Guu et al., 2020; Izacard et al., 2022), but are not applicable in questions that require multi-turn reasoning over various chunked

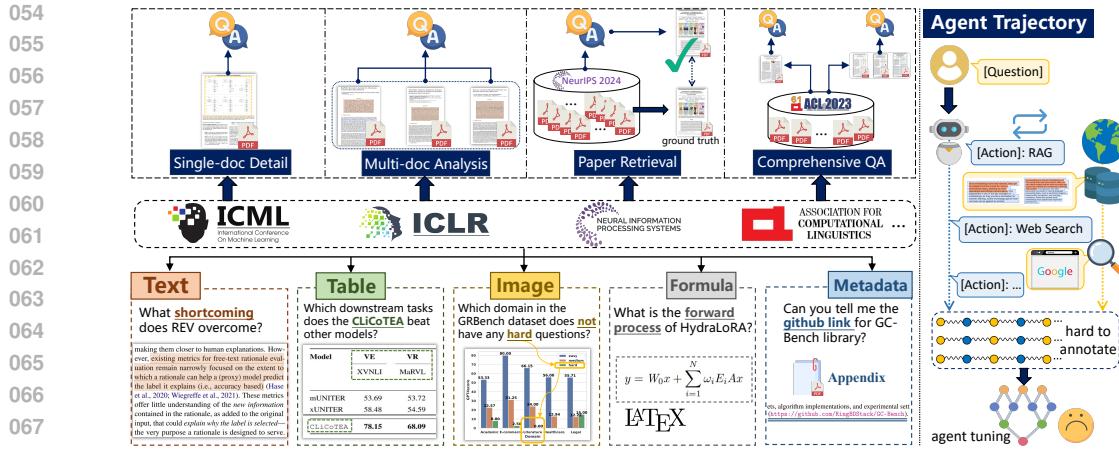


Figure 1: Left: An overview of the four question types and five element categories in our M4PQA dataset. Right: An illustration of the bottleneck in multi-turn tool-use trajectory collection.

Meanwhile, interactive QA agents, which can predict executable retrievals or function-calling actions and interact with the outer environment for external knowledge, exhibit significant potential in handling long-context multi-hop scenarios, making it a good choice for scientific QA under realistic, complicated and universal settings (He et al., 2025; Nakano et al., 2022; Schick et al., 2023). Unfortunately, manually annotating task-specific trajectories of interactions with the environment is both time-consuming and expensive, requiring domain expertise, while simple data generation with LLMs can't faithfully synthesize $(action, observation)$ sequences with internal coherence and dependencies. As a result, the paucity of high-quality trajectory prevents the post-training of an effective QA agent.

To resolve the aforementioned bottlenecks, we propose a human-annotated **Multi-Modal Multi-Task Multi-Paper Question Answering** dataset, M4PQA, which encompasses 1,246 examples and 13,948 papers in the domain of artificial intelligence, aiming at evaluating an agent's research capabilities in realistic scenarios. As illustrated in Figure 1, our dataset contains 4 different question types and 5 different element categories, with 19 parameterized Python functions to support customized evaluation. Furthermore, to advocate agentic model post-training, we propose a multi-agent framework, EXTRACTOR, for instruction data synthesis, which includes an explorer that generates natural language QA pairs based on contexts from papers, a tracker that rewrites QA pairs into properly formatted examples, and an actor that interacts with the environment to collect trajectories.

We evaluate a wide range of open-source and proprietary LLMs on different baselines. Performances show that, though given several external information sources, LLMs struggle on our M4PQA dataset, with the best model scoring only 44.14% overall, indicating that existing workflows are still under-developed. With the proposed EXTRACTOR framework, we fine-tune models of different sizes from the Qwen2.5 family (Qwen et al., 2025). Results show that, with just 4,000 interaction trajectories, fine-tuned 7B model achieves a performance comparable to untrained 14B model. Extensive experiments demonstrate that, the accuracy raises consistently as data scales up, highlighting the scalability of our framework.

To summarize, our contributions are threefold:

- We propose M4PQA, a human-annotated multi-modal multi-task multi-paper QA dataset with function-based instance-specific evaluations. To the best of our knowledge, M4PQA is the first dataset that encompasses multiple question types, also the first to bring function-based evaluation into QA domain, enabling convenient and systematic assessment of research capabilities.
- We introduce EXTRACTOR, a document-based framework aiming at the synthesis of QA examples, interaction trajectories and instruction data, serving as an empirical method for improving the agent's multi-turn tool-using ability without the involvement of manual annotation.

- 108
 109
 110
 111
 112
- We evaluate various LLMs and different QA baselines on our M4PQA dataset, demonstrating the quality of our dataset, and indicating the insufficiency of current methods. Extensive experiments on instruction tuning reveal that, small models significantly benefit from our synthetic instruction data, validating the effectiveness of our proposed EXTRACTOR framework.
- 113
 114

2 THE M4PQA DATASET

115
 116 In this section, we introduce the task definition, the evaluation metrics, the construction and the
 117 statistics of our M4PQA dataset.

2.1 TASK DEFINITION

120 To more effectively evaluate existing models and methods across a broader range of tasks, rather
 121 than limiting assessment to individual tasks, we carefully analyze real-world AI research scenarios,
 122 and systematically design the following four question types in M4PQA to cover them up:
 123

124 Table 1: Examples of different question types from our M4PQA dataset.
 125

Type	Question	Answer Format
single	Which downstream tasks does the CLiCoTEA outperform other models in terms of zero-shot performance on the IGLUE benchmark?	Your answer should be a Python list of strings, every string is the abbreviation of a downstream task type mentioned in the paper.
multiple	According to this survey, what're the three most recent decoder-only LLMs for NL2Code? How many programming languages do their training datasets each contain?	Your answer should be a Python dictionary of 3 key-value pairs, where each key is a string, the LLM, and each value is the number of programming languages.
retrieval	Which paper unifies reinforcement learning and imitation learning methods under a dual framework?	Your answer should be the exact title of the paper WITHOUT ANY OTHER EXPLANATION.
comprehensive	Among the text-to-SQL papers in ACL 2023, which one achieves the best testsuite accuracy on the SPIDER dataset? Tell me the paper title and corresponding test accuracy.	Your answer should be a Python list of length two, with the first one being the title string and the second one being a float, the accuracy rounded to 3 decimals.

138 **Single-doc Detail** Querying detailed information from a specific paper. Besides text, we also
 139 explore different textual and non-textual aspects including table, image, formula and metadata to
 140 cover all elements that may appear in a scientific paper. We showcase one example for each category
 141 in Figure 1. Notably, a question may belong to multiple categories, requiring diverse capabilities.
 142

143 **Multiple-doc Analysis** Posing questions across multiple papers. A simple idea for constructing
 144 multiple-doc questions is to merely combine several single-doc questions, but it overlooks the pos-
 145 sible relations between different papers, which are actually what researchers pay more attention to.
 146 To imitate the real scenes where researchers scan across several documents to find the answer to a
 147 question, we propose two paradigms: 1) compare same aspects of different papers, and 2) find subtle
 148 points that are not fully illustrated in one paper, and explore the details in the papers it cites.

149 **Paper Retrieval** Retrieving papers from a specific conference in a particular year, based on the
 150 description. Considering the search scale, while Skarlinski et al. (2024) argues that retrieval on a
 151 fixed corpus is not suitable as performance proxies for real scientific research tasks, we insist that
 152 a dataset cannot contain an infinite number of papers. Without limitation, the answer would be
 153 ambitious, making the evaluation unfair. Only retrieval on a fixed corpus can ensure the objectivity
 154 of the dataset. Among these questions, 240 are directly transformed from author-written questions
 155 in the LitSearch (Ajith et al., 2024) dataset with rule-based conversion.
 156

157 **Comprehensive QA** A combination of the three aforementioned question types. Specifically, a
 158 comprehensive QA question may combine a retrieval question with either a single question or a
 159 multiple question. As an integrated task, this combination is designed for scenarios in which the
 160 user cannot directly provide the paper or has forgotten the specific paper to which the question
 161 refers, but recalls certain key points, thereby enabling retrieval. The solution can be divided into two
 main stages: retrieving the paper based on its description, and answering the detailed question.

162 We also exhibit one example for each question type in Table 1. For brevity, in the following sections,
 163 we refer to the four question types as single, multiple, retrieval and comprehensive respectively. For
 164 retrieval and comprehensive questions, to ensure uniqueness of the retrieved paper, and to avoid
 165 ambiguity, we limit the scope of retrieval to be one of ACL2023, ICLR2024 and NeurIPS2024.
 166

167 **2.2 EVALUATION METHOD**
 168

169 As mentioned in Section 5, most previous QA datasets depend on linguistics metrics and LLMs
 170 for assessment, favoring semantic coherence over factual correctness, which holds little value under
 171 current circumstances. While in our M4PQA dataset, we mainly focus on judging the correctness
 172 of the answer as objective as possible. We notice that, though the answers to different questions
 173 vary, they share common features. For example, when answering questions related to quantitative
 174 comparison, we only care about the number itself, rather than whether LLMs form a complete
 175 sentence. In this case, the number is the “scoring point” of this question, which directly determines
 176 the quality of the answer. Inspired by the instruction following ability of LLMs, we adopt output
 177 reformatting by providing an answer format along with the question (as shown in Table 1), such as,
 178 “*Your answer should be a Python list of two floats, each rounded to 2 decimal places.*”. In this way,
 179 we guide LLMs to output the scoring points we primarily concern with, benefiting the following
 180 evaluation.

181 To evaluate scoring points of different kinds, we design 19 Python functions and complement them
 182 with optional keyword arguments (e.g. `ignore_order` for list comparison) to support example-
 183 specific assessment. For each evaluation, the final result will be either 0 or 1, representing wrong and
 184 right. Based on whether they utilize LLMs for semantic judgment or not, and their functionalities,
 185 these functions can be classified into two types and six subtypes as shown in Table 8. An evaluation
 186 function is subjective if it involves LLMs, and is objective if not. Specifically, for logical functions,
 187 which combine multiple functions in one evaluation, the evaluation is classified as subjective as long
 188 as there is one subjective function. For subjective functions, we select GPT-4o-mini-2024-07-18 as
 189 the backbone model for its relative stability. More details of the functions can be found in App. A.3.

190 **To further clarify the role and reliability of subjective evaluation, we highlight three points:** 1) While
 191 LLM-based judgment is necessary in certain cases, we design tailored prompts to support more fine-
 192 grained and targeted evaluation unlike previous datasets which mostly rely on a fixed prompt. e.g.,
 193 We design a specialized prompt to compare LaTeX formulas. 2) Existing studies also suggest that,
 194 for QA tasks, LLM-based evaluations are more aligned with human judgments than metrics such
 195 as accuracy or F1 (Wang et al., 2023a; Ho et al., 2025; Kamaloo et al., 2024). 3) Analysis on 66
 196 examples shows that LLM-based and human evaluations are largely consistent, with an agreement
 197 rate of approximately 83%.

198 **2.3 DATASET CONSTRUCTION**
 199

200 **Annotators** To ensure the professionalism, we employ 26 students with expertise in artificial intel-
 201 ligence. Their task is threefold: 1) read a paper they are interested in, 2) pose an answerable question
 202 based on the textual and non-textual content of the paper (and additional papers if needed) they read,
 203 in accordance with the aforementioned question types, 3) wrap the question, the evaluation function,
 204 and other necessary information into an example file, as presented in App. A.1. Example files are
 205 then sent into an automated inspection pipeline, and annotators are asked to rewrite unqualified ones.
 206

207 **Paper Collection** Due to the professional background of the annotators, all papers are selected
 208 from the field of artificial intelligence to ensure accurate comprehension of the content. Most papers
 209 utilized in our M4PQA dataset can be downloaded from arXiv (see App. 6 for more details). To
 210 facilitate reproduction, we assign an `uuid` for each used paper based on its title and its conference.
 211 We also generate a metadata file for each paper, containing the title, the abstract, the URL where the
 212 paper is downloaded, and other information. For further illustration, please refer to App. A.2.

213 **2.4 DATASET STATISTICS**
 214

215 **Example Classification** We classify the examples in the M4PQA dataset into four question types,
 five element categories and two evaluation types as discussed before. Table 2 shows that, the ex-

ample numbers of the four question types are relatively balanced, while approximately half of the examples involve at least one element other than text (we classify an example as text if and only if it doesn't include any other elements, and an example can belong to more than one categories). Regarding evaluation functions, Figure 2 shows that most of the evaluations are objective, meaning they do not require LLMs, which demonstrates the cost-effectiveness of our dataset.

Paper Usage To ensure the objectiveness of retrieval and comprehensive questions, we limit the retrieval scale to be one of ACL2023, ICLR2024 and NeurIPS2024. Besides including all papers from these three conferences in our collection, we also utilize another 707 papers in the examples, summing up a total of 13,948 papers. As shown in Table 2, in average, an example involve 1.63 papers, indicating the diversity of our dataset.

Table 2: Statistics of examples. For the last two statistics, we only consider single and multiple questions.

Statistics	Number
Question Type	
- single	351(28%)
- multiple	323(26%)
- retrieval	288(23%)
- comprehensive	284(23%)
Element Category	
- text	621(50%)
- table	213(17%)
- image	207(17%)
- formula	127(10%)
- metadata	122(10%)
Overall	1246(100%)
Avg. question length	34.84
Max. question length	118
Avg. # papers per example	1.63
Max. # papers per example	7

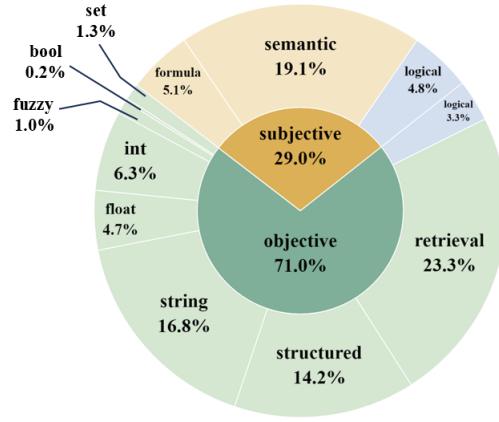


Figure 2: Distribution of different evaluation categories. ‘bool’, ‘int’, ‘string’, ‘fuzzy’, ‘structured’ stand for specific evaluation functions in ‘match’ subtype.

Comparison with Existing Datasets In Table 3, we compare M4PQA with existing scientific QA datasets. It is evident that M4PQA demonstrates several salient strengths: 1) **More question types**. M4PQA designs four different question types to systematically cover realistic research scenarios, 2) **More element types**. M4PQA contains a wider variety of elements, including table, image, formula and metadata, 3) **More precise evaluation**. M4PQA employs 19 parameterized functions, which can be classified into two types and six subtypes, facilitating customized evaluation.

Table 3: Comparison of our M4PQA dataset and existing scientific QA datasets.

Dataset	# QA	Evaluation Methods	Task types				Question based on				
			Sgl.	Multi.	Retr.	Comp.	Full Text	Table	Image	Form.	Meta.
ScholarlyRead (Saikh et al., 2020)	10K	BLEU, METEOR, ROUGE	✓	✗	✗	✗	✗	✗	✗	✗	✗
QASPER (Dasigi et al., 2021)	5,049	F1	✓	✗	✗	✗	✗	✗	✗	✗	✗
QASA (Lee et al., 2023)	1,798	Precision, Recall, F1, ROUGE	✓	✗	✗	✗	✓	✗	✗	✗	✗
SPIQA (Pramanick et al., 2025)	270K	METEOR, CIDEr, ROUGE, BERTScore, LLMLogScore	✓	✗	✗	✗	✓	✓	✓	✗	✗
PeerQA (Baumgärtner et al., 2025)	579	MRR, Recall, Rouge-L, AlignScore, Prometheus-2, ROUGE, BLEURT-20, BERTScore, LLM judge	✓	✗	✗	✗	✓	✗	✗	✓	✗
SciDQA (Singh et al., 2024)	2,937	✓	✓	✗	✗	✗	✓	✓	✓	✓	✗
M3SciQA (Li et al., 2024)	1,452	MRR, LLM judge	✗	✓	✗	✗	✓	✓	✓	✗	✗
AutoScholarQuery (He et al., 2025)	35K	Precision, Recall	✗	✓	✓	✗	✓	✓	✗	✗	✗
LitSearch (Ajith et al., 2024)	597	Recall	✗	✓	✓	✗	✓	✓	✗	✗	✗
LitQA2 (Skarlicki et al., 2024)	248	Precision, Accuracy	✗	✓	✗	✓	✓	✓	✗	✗	✗
M4PQA (Ours)	1,246	Instance-level Function	✓	✓	✓	✓	✓	✓	✓	✓	✓

3 EXTRACTOR FRAMEWORK FOR TRAJECTORY SYNTHESIS

In this section, we introduce our trajectory synthesis framework, EXTRACTOR, based on its three components: explorer, tracker and actor.

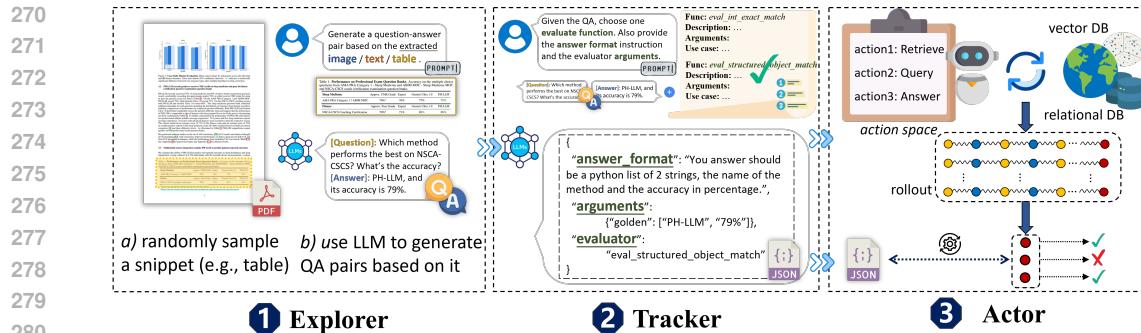


Figure 3: An overview of our EXTRACTOR framework, which consists of three stages to automatically extract QA pairs, formulate evaluation and answers, and filter valid agent trajectories.

3.1 OVERALL FRAMEWORK

To handle scientific QA, there are mainly three types of methods: 1) offering relevant information of the paper (e.g., title and abstract) alongside the question, 2) providing additional contexts via retrieval methods (e.g., RAG), and 3) equipping LLMs with supplementary tools, so that they can obtain sufficient information during multi-turn interactions. As discussed in Section 4.2, methods of the former two types significantly underperform the latter, even when supported by superior backbone models. Therefore, for the following fine-tuning, we apply Agentic Hybrid baseline (further illustrated in Section 4.1), whose environment includes a database and a vectorstore that produce execution or query results as observations when called by the agent with two predefined actions.

To mimic the real-world annotation and interaction scenarios, we split the synthesis process into three separate stages: 1) exploration stage, constructing a natural language question-answer pair with given context, 2) tracking stage, choosing suitable evaluation function and fill in the formatted example file, and 3) action stage, interacting with the outer environment to collect trajectories.

3.2 EXPLORER

Above all, we randomly download 10,000 papers in the artificial intelligence domain from arXiv, collect their metadata including titles and abstracts, and employ PyMuPDF (Artifex Software, 2023) and MinerU (Wang et al., 2024) to extract both textual and non-textual elements from the papers.

For the explorer, its goal is to generate rational question-answer pairs with sampled contexts. Based on different question types, we design three different modes: 1) For single type, we first randomly choose a paper and an element. Then, corresponding contexts are extracted according to the category of the element, and the explorer is expected to output a long-form question-answer pair. 2) Regarding retrieval type, instead of contexts, the explorer only receives the title and abstract as inputs, and is required to generate a question that indicates the paper. The corresponding answer is the title of that paper. 3) As for comprehensive type, we basically follow single type, while the only difference is that we provide the title and abstract along with the context, and ask the explorer to somehow elicit the paper that the question is about. To improve the quality of QA pairs, we adopt chain-of-thought (Wei et al., 2023) and hand-written category-based hint prompts.

3.3 TRACKER

Regarding the tracker, its purpose is to wrap the previously generated natural language QA pairs into example files in accordance with specific formats. As explorer settings for different question types vary, we employ different tracker settings: 1) With regard to single and comprehensive questions, we provide the tracker with the QA pair along with the information of the evaluation functions, including descriptions, parameters and use cases. The tracker is then asked to choose the suitable evaluation function, fill in the parameters and the answer format, and refine the question-answer pair accordingly. 2) In terms of retrieval questions, as we restrict the answer to be the exact title of the chosen paper, we simply fill in the example file with fixed evaluation function, parameters and

324 answer format. 3) As for multiple questions, the manual annotation consistently involves new papers
 325 outside our sampled collection, requiring real-time download and processing, which is incompatible
 326 with our explorer agent. For simplicity, we propose a rule-based combination of single examples: a)
 327 merging questions and answer formats with natural language templates, and b) combining evaluation
 328 functions with the logical function `evaluate_conjunction` (function details in App. A.3).

329 For more specific explorer and tracker prompts, please refer to App. E.
 330

331 3.4 ACTOR

332 As for the actor, it aims at interacting with the environment to collect trajectories for instruction
 333 construction. In the outer environment, we include a database and a vectorstore containing
 334 corresponding information of the papers. Following Zeng et al. (2023), we employ ReAct (Yao
 335 et al., 2023) framework with three actions to interact with the environment. For each synthetic
 336 example, we use LLM as an actor to produce an interaction trajectory in a message list manner
 337 ($u_0, a_0, \dots, u_i, a_i, \dots, u_r, a_n$), where u_i represents the user's instruction, or the observation from
 338 the environment, and a_i denotes the response from the actor, including a thought and an action.
 339

340 To avoid exceeding context length, we adopt the idea of sliding window and chunk the message
 341 list based on a window size of 5, generating multiple instruction data from one trajectory. During
 342 training, for each chunked list, we mask previous message history and train the last turn only.
 343

344 We also observe that, some errors appear frequently in the collected trajectories (e.g., attempts to
 345 utilize undefined parameters). To ensure data quality, we remove instruction data that ends with a
 346 wrong action. For other instruction data, we reserve previous wrong actions and corresponding error
 347 information in the message list to guarantee error correction capability and coherence of thoughts.
 348

349 4 EXPERIMENT

351 4.1 EXPERIMENT SETTINGS

353 **Baselines** To comprehensively assess the LLMs on M4PQA, we implement 8 baselines, including:

- 355 • **Trivial Baselines:** 1) Question Only baseline, only the question and the corresponding answer
 356 format are available, 2) Title-Abstract baseline, the titles and the abstracts of the corresponding
 357 papers are provided alongside, and 3) Full-Text with Cutoff baseline, raw textual contexts
 358 extracted from the papers are given in limited length.
- 359 • **Retrieval Baselines:** 1) RAG baseline, the question is sent to the vectorstore to retrieve relevant
 360 chunks, and LLMs answer the question based on retrieved contexts, and 2) Text2SQL baseline,
 361 where LLMs first generate a SQL, then answer the question based on the query results.
- 362 • **Agentic Baselines:** We employ ReAct (Yao et al., 2023) framework with three actions: RE-
 363 TRIEVE, QUERY and ANSWER, corresponding to retrieving from the vectorstore, querying the
 364 database and generating the final answer. With this framework, we implement 1) Agentic RAG
 365 and 2) Agentic Text2SQL baseline that only interact with the vectorstore and the database, respec-
 366 tively. 3) Agentic Hybrid baseline with all actions. Details on actions can be found in App. B.

367 Note that for both base and fine-tuned models, all evaluations are performed on M4PQA to enable a
 368 clear and fair comparison.
 369

371 **LLMs and Hyper-Parameters** We evaluate various LLMs on M4PQA. For closed-source ones,
 372 we use GPT-4o-2024-08-06, o1-mini-2024-09-12, Claude-3.7-Sonnet-20250219 and Gemini-2.5-
 373 Pro-exp-03-25. Regarding open-source LLMs, we employ Qwen2.5-72B-Instruct (Qwen et al.,
 374 2025), Llama-3.3-70B-Instruct (Hugging Face Team, 2023), and DeepSeek-R1 (Guo et al., 2025).
 375 As for hyper-parameters, the temperature is set to 0.7 and top_p is fixed to 0.95. Specifically,
 376 for reasoning models, the temperature is set to 0.6. The maximum retrieved tokens in each turn
 377 and the cutoff for full-text input are both limited to 5K. The threshold of interaction turns is 20 and
 the window size for the message history is 5. For closed-source models, we directly call their API

378 services, while for open-source ones, we deploy them on NVIDIA A800 Tensor Core clusters using
 379 vLLM¹ (Kwon et al., 2023).
 380

381 **Instruction Tuning** For instruction tuning, we choose the Qwen2.5 family (Qwen et al., 2025)
 382 as base models. For all three agents in our EXTRACTOR framework, we employ Qwen2.5-32B-
 383 Instruct. While for the target model, unless otherwise specified, we utilize Qwen2.5-7B-Instruct
 384 as the backbone. As for the training framework, we employ LLaMA-Factory (Zheng et al., 2024).
 385 Regarding our synthetic instruction data, we transform them into standardized ShareGPT format
 386 following Vicuna (Chiang et al., 2023), and as mentioned before, we only compute the loss of the
 387 model’s last output during fine-tuning by setting `mask_history` as true. By default, we use a
 388 learning rate of 1×10^{-4} , apply AdamW optimizer (Loshchilov & Hutter, 2019) with a cosine
 389 learning scheduler and train for one epoch. The entire training process is conducted on two Ascend
 390 910B4 NPUs with 64GB of memory each.
 391

391 The detailed hyper-parameters used in LLaMA-Factory for instruction tuning are listed in Table 9.
 392

393 Table 4: Performance of different baselines on M4PQA.

395 Baseline	396 Question Type				397 Element Category					398 Evaluation		399 AVG
	399 sgl.	399 multi.	399 retr.	399 comp.	400 text	400 table	400 image	400 form.	400 meta.	401 obj.	401 subj.	
397 GPT-4o-2024-08-06												
398 Question Only	8.55	1.86	1.04	5.63	4.35	1.41	10.63	2.36	0.00	3.95	5.54	4.41
398 Title-Abstract	11.40	5.26	0.00	5.28	5.96	4.23	8.70	4.72	2.46	4.07	9.97	5.78
399 Full-Text w/ Cutoff	33.90	8.05	0.69	5.99	13.53	7.51	13.53	12.60	18.03	9.94	21.05	13.16
400 RAG	31.62	4.95	18.75	16.55	20.29	12.68	16.91	17.32	18.03	18.19	18.56	18.30
401 Text2SQL	21.08	6.81	7.64	17.25	14.01	8.92	12.08	16.54	14.75	11.41	18.28	13.40
402 Agentic RAG	34.19	8.36	15.63	29.58	21.36	18.78	26.57	22.83	24.59	21.36	24.10	22.15
402 Agentic Text2SQL	42.17	11.15	18.40	38.38	23.19	21.60	28.99	33.07	47.54	26.44	31.02	27.77
403 Agentic Hybrid	45.58	10.53	52.13	35.56	39.61	23.00	25.60	33.86	47.54	38.76	29.09	35.96
404 Qwen2.5-72B-Instruct												
405 Question Only	9.69	1.86	0.35	5.99	2.74	3.29	10.63	3.94	5.74	4.52	4.99	4.65
406 Title-Abstract	17.66	6.19	0.00	8.10	8.05	6.10	12.08	7.87	7.38	6.44	13.30	8.43
407 Full-Text w/ Cutoff	36.18	8.98	0.00	7.04	12.56	11.27	16.91	14.17	18.85	11.86	19.67	14.13
408 RAG	31.91	7.43	18.75	21.83	22.06	11.27	19.32	20.47	21.31	19.55	21.88	20.22
408 Text2SQL	22.22	4.02	11.11	13.38	13.85	8.45	15.46	10.24	11.48	12.43	14.13	12.92
409 Agentic RAG	32.76	9.60	15.63	30.28	22.06	15.96	25.12	25.98	18.85	21.02	25.21	22.23
410 Agentic Text2SQL	43.02	11.46	43.40	40.14	36.07	21.13	29.95	35.43	49.18	35.37	31.59	34.27
411 Agentic Hybrid	39.03	10.84	55.21	37.32	41.71	13.15	28.02	30.71	45.90	37.74	28.53	35.07

412 Table 5: Performance of Agentic Hybrid baseline with different backbone models on M4PQA.

415 Model	416 Question Type				417 Element Category					418 Evaluation		419 AVG
	419 sgl.	419 multi.	419 retr.	419 comp.	420 text	420 table	420 image	420 form.	420 meta.	421 obj.	421 subj.	
GPT-4o	45.58	10.53	52.13	35.56	39.61	23.00	25.60	33.86	47.54	38.76	29.09	35.96
o1-mini	37.04	12.07	45.14	24.65	35.43	14.55	22.22	22.83	36.07	31.07	26.04	29.61
Claude-3.7-Sonnet	45.30	15.17	58.68	27.46	43.96	22.07	24.64	27.56	44.26	39.32	29.64	36.52
Gemini-2.5-Pro	51.85	18.58	67.01	40.49	51.53	29.58	29.95	33.86	53.28	46.55	38.23	44.14
Qwen2.5-72B-Instruct	39.03	10.84	55.21	37.32	41.71	13.15	28.02	30.71	45.90	37.74	28.53	35.07
Llama-3.3-70B-Instruct	29.06	9.29	42.71	24.30	32.37	8.92	21.74	19.69	30.33	28.47	19.94	26.00
DeepSeek-R1	41.03	11.46	41.67	22.54	35.10	15.96	20.77	20.47	39.34	30.40	26.59	29.29

422 4.2 MAIN RESULTS

423 **Evaluation of Base Models** To figure out different baselines’ performance on the M4PQA dataset,
 424 we choose two widely used models, GPT-4o and Qwen2.5-72B-Instruct, as representatives of pro-
 425 prietary and open-source LLMs. Table 4 shows that: 1) **Trivial baselines perform poorly**. Under
 426 Question Only setting, LLMs can only answer 5% of the questions correctly, demonstrating the
 427 quality of our M4PQA dataset. 2) **Provided more information sources, LLMs produce better
 428 answers**. With just a glimpse into the database or the vectorstore, retrieval baselines elevate the
 429 430 431

431 ¹<https://docs.vllm.ai/en/latest/index.html>

overall accuracy by at least 8% compared to Question Only baseline. 3) **As the interaction turn increases, LLMs explore the backend environment better.** While both agentic baselines outperform their retrieval counterparts, Agentic Text2SQL baseline exhibits significantly greater improvement, indicating that for structured retrieval, more searches enable step-by-step problem-solving, while for unstructured retrieval regarding the vectorstore, a single query is sufficient for most circumstances.

While baselines such as Question Only baseline exhibit a relatively low performance, Agentic Hybrid baseline consistently outperforms the others, allowing for comparisons between different models. In Table 5, we can observe that: 1) **Proprietary models outperform open-source ones**, showing a stronger research capability, while some open-source models achieve performance comparable to closed-source ones. 2) **Reasoning models’ performance on this method is not satisfactory**, possibly due to the incompatibility between their fixed reasoning formats and our framework.

Table 6: Performance of models trained using EXTRACTOR and evaluated on M4PQA. ‘FT’ denotes fine-tuning.

Size	FT?	Question Type				Element Category					Evaluation		AVG
		sgl.	multi.	retr.	comp.	text	table	image	form.	meta.	obj.	subj.	
3B	✗	7.98	2.48	12.85	6.69	9.5	3.29	6.28	4.72	7.38	7.91	6.09	7.38
	✓	14.81	3.72	51.74	13.73	29.79	4.23	10.63	11.81	17.21	24.97	8.59	20.22
7B	✗	16.24	3.72	26.39	15.85	19.48	8.45	13.53	4.72	14.75	17.29	10.25	15.24
	✓	21.08	4.95	51.04	22.18	33.66	7.51	14.01	13.39	25.41	27.01	16.90	24.07
14B	✗	25.07	7.74	46.18	25.35	31.88	10.33	22.22	18.90	24.59	28.81	17.45	25.52
	✓	25.36	6.19	52.08	26.41	34.94	7.51	20.77	19.69	28.69	30.96	16.62	26.81
32B	✗	36.47	11.76	52.78	28.17	38.81	13.62	24.15	26.77	37.7	34.8	24.93	31.94

Evaluation of Fine-tuned Models We fine-tune three models, 3B, 7B and 14B, with instruction data extracted from the 4,000 trajectories. Table 6 shows that, all three exhibit improved performance after training. The observed reduction in the 14B model’s performance gain is considered reasonable and acceptable, because: 1) The actor agent in our EXTRACTOR framework in effect serves as a teacher agent. The selected teacher model Qwen2.5-32B-Instruct scores only 31.94% on M4PQA, which represents the upper performance bound achievable through distillation. 2) While this diminishing return has long been a meaningful and widely discussed research question beyond the scope of this paper, we can observe that with EXTRACTOR, small models produce significantly less errors in predicting actions. As shown in Table 7, 7B’s error action rate drops from 38.69% to 6.85%, and similar improvement is observed on 14B, with error action rate dropping from 31.63% to 6.64%, indicating the effectiveness of our framework.

4.3 ABLATION STUDY

Component Ablation To evaluate the effect of the two proposed components, sliding window and error removal, we fine-tune two additional models: (1) one without either component, which uses raw trajectories as training data and computes loss over all model outputs, and (2) another that applies sliding window but retains all error actions. As shown in Table 7, sliding window yields a more pronounced improvement in the overall score, and a drastic reduction is also observed in error action rate, defined as $\frac{\# \text{error actions}}{\# \text{actions}}$, demonstrating the value of error removal in improving the model’s ability to generate valid actions.

Table 7: Component Ablation.

Setting	Overall (%)	Error Rate(%)
base model	15.24	38.69
EXTRACTOR		
- w/o sliding window	20.47	26.25
- w/o error removal		
EXTRACTOR		
- w/o error removal	24.08	20.32
EXTRACTOR	24.07	6.85

Synthetic Data Scale We fine-tune another four models with more instruction data extracted from 1K, 2K, 4K and 10K trajectories. Figure 4 shows that, as the number of trajectory increase, the scores of all question types raise consistently, demonstrating the scalability of our method.

Due to page limit, other experimental results and analysis regarding M4PQA and EXTRACTOR are presented in App. C and App. D.

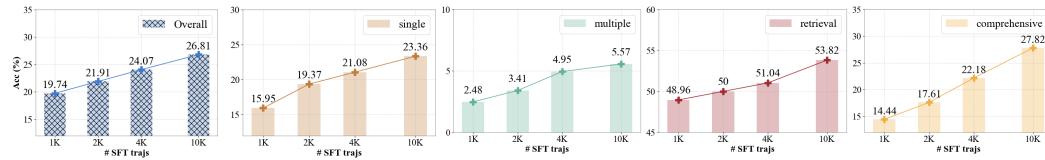


Figure 4: Performance changes with the increasing number of synthesized trajectories.

5 RELATED WORK

PDF-based Scientific QA Datasets Previous research has consistently focused on the development of high-quality scientific QA datasets. Some datasets emphasize the accurate retrieval of papers based on specific descriptions (Ajith et al., 2024; He et al., 2025), while others concentrate on extracting detailed information from the text (Baumgärtner et al., 2025; Dasigi et al., 2021; Lee et al., 2023; Jin et al., 2019; Saikh et al., 2020). Recent work advance this field by incorporating non-textual elements (Pramanick et al., 2025; Singh et al., 2024). Li et al. (2024) further extend this approach by introducing a paradigm for generating cross-document questions, while Skarlinski et al. (2024) pay more attention to the combination of paper retrieval and detailed QA. Our M4PQA dataset innovates in this field by encompassing various question types and element categories, while designing a function-based instance-level evaluation.

Instruction Tuning and Synthetic Data Instruction tuning serves as a useful tool for aligning LLMs with human instructions, but it requires corresponding outputs for specific instructions, thus heavily relying on high-quality training data. While manual annotation is an effective method, it is hard to scale up due to time and cost constraints. Wan et al. (2024), Wang et al. (2023c) and Chen et al. (2025) introduced different methods for crafting synthetic instruction data from scratch, while Zeng et al. (2023) proposed extracting data from interaction trajectories to leverage existing datasets. In this work, we introduce a multi-agent framework, EXTRACTOR, to automate both example generation and trajectory collection, facilitating instruction data synthesis.

6 CONCLUSION

In this work, we manually annotate a multi-modal multi-task multi-paper dataset (M4PQA) with instance-level evaluation, and a multi-agent framework (EXTRACTOR) for instruction data synthesis. Evaluations demonstrate the quality of our dataset, indicating the challenges current models face in scientific QA, while experiments on instruction tuning highlight the effectiveness of the framework. Future works include: 1) exploring other RL-based methods for further improvements, and 2) extend the PDF-based tasks to other knowledge intensive domains, including law and medicine.

REFERENCES

- Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models for mathematical reasoning: Progresses and challenges, 2024. URL <https://arxiv.org/abs/2402.00157>.
- Anirudh Ajith, Mengzhou Xia, Alexis Chevalier, Tanya Goyal, Danqi Chen, and Tianyu Gao. Lit-search: A retrieval benchmark for scientific literature search, 2024. URL <https://arxiv.org/abs/2407.18940>.
- Inc. Artifex Software. Pymupdf - a python binding for mupdf. <https://pymupdf.readthedocs.io/en/latest/>, 2023. Version 1.24.9, accessed on January 25, 2025.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL <https://arxiv.org/abs/2502.13923>.

- 540 Tim Baumgärtner, Ted Briscoe, and Iryna Gurevych. PeerQA: A scientific question answering
 541 dataset from peer reviews. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings*
 542 *of the 2025 Conference of the Nations of the Americas Chapter of the Association for Compu-*
 543 *tational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 508–544,
 544 Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-
 545 89176-189-6. doi: 10.18653/v1/2025.nacl-long.22. URL <https://aclanthology.org/2025.nacl-long.22/>.
- 546 Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
 547 lican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
 548 de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang,
 549 Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irv-
 550 ing, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Lau-
 551 rent Sifre. Improving language models by retrieving from trillions of tokens, 2022. URL
 552 <https://arxiv.org/abs/2112.04426>.
- 553 Mingyang Chen, Haoze Sun, Tianpeng Li, Fan Yang, Hao Liang, Keer Lu, Bin Cui, Wentao Zhang,
 554 Zenan Zhou, and Weipeng Chen. Facilitating multi-turn function calling for llms via compo-
 555 sitional instruction tuning, 2025. URL <https://arxiv.org/abs/2410.12952>.
- 556 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
 557 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
 558 open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL <https://lmsys.org/blog/2023-03-30-vicuna/>.
- 559 Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset
 560 of information-seeking questions and answers anchored in research papers, 2021. URL <https://arxiv.org/abs/2105.03011>.
- 561 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 562 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 563 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- 564 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
 565 augmented language model pre-training, 2020. URL <https://arxiv.org/abs/2002.08909>.
- 566 Yichen He, Guanhua Huang, Peiyuan Feng, Yuan Lin, Yuchen Zhang, Hang Li, and Weinan E. Pasa:
 567 An llm agent for comprehensive academic paper search, 2025. URL <https://arxiv.org/abs/2501.10120>.
- 568 Xanh Ho, Jiahao Huang, Florian Boudin, and Akiko Aizawa. Llm-as-a-judge: Reassessing the
 569 performance of llms in extractive qa, 2025. URL <https://arxiv.org/abs/2504.11972>.
- 570 Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
 571 Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey, 2024.
 572 URL <https://arxiv.org/abs/2402.02716>.
- 573 Hugging Face Team. Llama 3.3-70b-instruct model. <https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct>, 2023. Accessed: 2023-02-11.
- 574 Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
 575 Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
 576 with retrieval augmented language models, 2022. URL <https://arxiv.org/abs/2208.03299>.
- 577 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. PubMedQA: A
 578 dataset for biomedical research question answering. In Kentaro Inui, Jing Jiang, Vincent Ng, and
 579 Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-*
 580 *guage Processing and the 9th International Joint Conference on Natural Language Processing*
 581 (*EMNLP-IJCNLP*), pp. 2567–2577, Hong Kong, China, November 2019. Association for Com-
 582 putational Linguistics. doi: 10.18653/v1/D19-1259. URL <https://aclanthology.org/D19-1259/>.

- 594 Ehsan Kamalloo, Shivani Upadhyay, and Jimmy Lin. Towards robust qa evaluation via open llms.
 595 In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development*
 596 in *Information Retrieval, SIGIR '24*, pp. 2811–2816, New York, NY, USA, 2024. Association for
 597 Computing Machinery. ISBN 9798400704314. doi: 10.1145/3626772.3657675. URL <https://doi.org/10.1145/3626772.3657675>.
- 599 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 600 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 601 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating*
 602 *Systems Principles*, 2023.
- 603 Yoonjoo Lee, Kyungjae Lee, Sunghyun Park, Dasol Hwang, Jaehyeon Kim, Hong-In Lee, and
 604 Moontae Lee. QASA: advanced question answering on scientific articles. In Andreas Krause,
 605 Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
 606 (eds.), *International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,*
 607 *Hawaii, USA*, volume 202 of *Proceedings of Machine Learning Research*, pp. 19036–19052.
 608 PMLR, 2023. URL <https://proceedings.mlr.press/v202/lee23n.html>.
- 609 Chuhan Li, Ziyao Shangguan, Yilun Zhao, Deyuan Li, Yixin Liu, and Arman Cohan. M3scqa:
 610 A multi-modal multi-document scientific qa benchmark for evaluating foundation models, 2024.
 611 URL <https://arxiv.org/abs/2411.04075>.
- 612 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL <https://arxiv.org/abs/1711.05101>.
- 613 Hannes Mühleisen and Mark Raasveldt. *duckdb: DBI Package for the DuckDB Database*
 614 *Management System*, 2024. URL <https://r.duckdb.org/>. R package version 1.1.3.9017,
 615 <https://github.com/duckdb/duckdb-r>.
- 616 Reichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
 617 Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
 618 Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
 619 Browser-assisted question-answering with human feedback, 2022. URL <https://arxiv.org/abs/2112.09332>.
- 620 Azizi Othman. Manus ai: Capabilities, limitations, and market position, 03 2025.
- 621 Shraman Pramanick, Rama Chellappa, and Subhashini Venugopalan. Spiqa: A dataset for mul-
 622 timodal question answering on scientific papers, 2025. URL <https://arxiv.org/abs/2407.09413>.
- 623 Qwen, ;, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 624 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 625 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 626 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 627 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 628 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 629 URL <https://arxiv.org/abs/2412.15115>.
- 630 Tanik Saikh, Asif Ekbal, and Pushpak Bhattacharyya. ScholarlyRead: A new dataset for sci-
 631 entific article reading comprehension. In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache,
 632 Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Mae-
 633 gaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.),
 634 *Proceedings of the Twelfth Language Resources and Evaluation Conference*, pp. 5498–5504, Mar-
 635 seille, France, May 2020. European Language Resources Association. ISBN 979-10-95546-34-4.
 636 URL <https://aclanthology.org/2020.lrec-1.675/>.
- 637 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
 638 Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
 639 use tools, 2023. URL <https://arxiv.org/abs/2302.04761>.
- 640 Shruti Singh, Nandan Sarkar, and Arman Cohan. Scidqa: A deep reading comprehension dataset
 641 over scientific papers, 2024. URL <https://arxiv.org/abs/2411.05338>.

- 648 Michael D. Skarlinski, Sam Cox, Jon M. Laurent, James D. Braza, Michaela Hinks, Michael J.
 649 Hammerling, Manvitha Ponnnapati, Samuel G. Rodrigues, and Andrew D. White. Language agents
 650 achieve superhuman synthesis of scientific knowledge, 2024. URL <https://arxiv.org/abs/2409.13740>.
 651
- 652 Yuwei Wan, Yixuan Liu, Aswathy Ajith, Clara Grazian, Bram Hoex, Wenjie Zhang, Chunyu Kit,
 653 Tong Xie, and Ian Foster. Sciqag: A framework for auto-generated science question answering
 654 dataset with fine-grained evaluation, 2024. URL <https://arxiv.org/abs/2405.09939>.
 655
- 656 Bin Wang, Chao Xu, Xiaomeng Zhao, Linke Ouyang, Fan Wu, Zhiyuan Zhao, Rui Xu, Kaiwen Liu,
 657 Yuan Qu, Fukai Shang, Bo Zhang, Liqun Wei, Zhihao Sui, Wei Li, Botian Shi, Yu Qiao, Dahua
 658 Lin, and Conghui He. Mineru: An open-source solution for precise document content extraction,
 659 2024. URL <https://arxiv.org/abs/2409.18839>.
 660
- 661 Cunxiang Wang, Sirui Cheng, Qipeng Guo, Yuanhao Yue, Bowen Ding, Zhikun Xu, Yidong Wang,
 662 Xiangkun Hu, Zheng Zhang, and Yue Zhang. Evaluating open-QA evaluation. In *Thirty-seventh*
 663 *Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023a.
 664 URL <https://openreview.net/forum?id=UErNpveP6R>.
 665
- 666 Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang, Xi-
 667 angzhou Guo, Chengming Li, Xiaohai Xu, et al. Milvus: A purpose-built vector data manage-
 668 ment system. In *Proceedings of the 2021 International Conference on Management of Data*, pp.
 669 2614–2627, 2021.
- 670 Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
 671 Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
 672 models, 2023b. URL <https://arxiv.org/abs/2305.04091>.
 673
- 674 Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm:
 675 Deep self-attention distillation for task-agnostic compression of pre-trained transformers. In
 676 Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
 677 Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual Con-
 678 ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
 679 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html>.
 680
- 681 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
 682 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions,
 683 2023c. URL <https://arxiv.org/abs/2212.10560>.
 684
- 685 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
 686 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
 687 2023. URL <https://arxiv.org/abs/2201.11903>.
 688
- 689 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
 690 Cao. React: Synergizing reasoning and acting in language models. In *The Eleventh International*
 691 *Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenRe-
 692 view.net, 2023. URL https://openreview.net/forum?id=WE_v1uYUL-X.
 693
- 694 Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
 695 ning: Enabling generalized agent abilities for llms, 2023. URL <https://arxiv.org/abs/2310.12823>.
 696
- 697 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 698 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-
 699 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 700 3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguis-
 701 tics. URL <https://arxiv.org/abs/2403.13372>.

702 ETHICS STATEMENT
703704 To construct our M4PQA dataset, we use 13,948 papers in artificial intelligence domain. Most
705 papers utilized in our M4PQA dataset can be downloaded from arXiv². For some conference
706 papers unavailable on arXiv, we use OpenReview³ and ACL Anthology⁴ as supplements.
707 All three websites are licensed under the Creative Commons Attribution 4.0 International License
708 (CC BY 4.0), and we use the papers in accordance to their usage terms, with no private, sensitive,
709 or personally identifiable information used in this work.
710711 REPRODUCIBILITY STATEMENT
712713 To ensure the reproducibility of our work, we include the action information for agentic baselines
714 (App. B), synthesis prompts for ExTRACTOR framework (App. E), and other experiment settings
715 (App. C) in the Appendix. Furthermore, we release our dataset through an anonymous repository
716 available at <https://anonymous.4open.science/r/M4PQA/>. These resources allow other researchers
717 to verify our results and build upon our contributions.
718719 LLM USAGE STATEMENT
720721 In accordance with the ICLR 2026 policy on the use of Large Language Models (LLMs), we disclose
722 that LLMs were used exclusively as general-purpose writing aids, such as for polishing grammar and
723 improving readability. LLMs did not contribute to research ideation, experiment design, data analy-
724 sis, or result interpretation, and thus played no role that would qualify as authorship or substantive
725 contribution.
726727 A M4PQA DATASET
728729 A.1 EXAMPLE FORMAT
730731 Each data instance in M4PQA is represented as a JSON dictionary containing the following fields:
732

- 733
- `uuid`: Globally unique `uuid` of the current task example.
 - `question`: The user’s question about the given papers.
 - `answer_format`: The requirements for the output format of LLMs, e.g., “a Python list of text
736 strings” or “a single float number”, so that LLMs can form their answer accordingly and we can
737 evaluate the answer conveniently.
 - `tags`: A list of tags denoting different question types, element categories and evaluation types.
739 Feasible tags include [“single”, “multiple”, “retrieval”, “text”, “image”, “table”, “formula”,
740 “metadata”, “subjective”, “objective”], corresponding to question types, modal categories in
741 Section 2.1 and evaluation types in Section 2.2.
 - `anchor_pdf`: A list of PDF `uids` that are directly related to or explicitly mentioned in the
743 question, provided in single and multiple questions.
 - `reference_pdf`: A list of PDF `uids` that may or may not help answer the question, only
745 provided in multiple questions.
 - `conference`: A list of conference name followed by year, provided in retrieval and compre-
748 hensive questions.
 - `evaluator`: A dictionary containing 2 fields, `eval_func` and `eval_kwargs`, which defines
750 how to evaluate the model outputs. Concretely,
 - the “`eval_func`” field defines the name of our customized Python function (or metric)
752 which is used to compare the predicted result and the expected ground truth;

754 ²<https://info.arxiv.org/help/api/index.html>755 ³<https://docs.openreview.net/reference/api-v2>4<https://aclanthology.org/>

- the “`eval_kwarg`s” field defines the arguments for the corresponding evaluation function, which usually contain the gold or reference answer and other optional parameters.

Table 8: The checklist of the 19 used evaluation functions, including their genres, categories, names, and descriptions.

Genre	Category	Function	Description
objective	match	eval_bool_exact_match	Evaluate the output against the answer using exact boolean match.
		eval_float_exact_match	Evaluate the output against the answer using exact float match with variable precision or tolerance.
		eval_int_exact_match	Evaluate the output against the answer using exact integer match.
		eval_string_exact_match	Evaluate the output against the answer using exact string match.
		eval_string_fuzzy_match	Evaluate the output against the answer using fuzzy match provided by FuzzyWuzzy.
		eval_structured_object_exact_match	Evaluate the output against the answer recursively by parsing them both as Python-style lists or dictionaries.
	set	eval_element_included	Evaluate whether the output is included in the answer list.
		eval_element_list_included	Evaluate whether each element in the output list is included in the answer list.
		eval_element_list_overlap	Evaluate whether the output list overlaps with the answer list.
	retrieval	eval_paper_relevance_with_reference_answer	Evaluate whether the retrieved paper is the same as the reference answer.
subjective	semantic	eval_reference_answer_with_llm	Evaluate the output against the reference answer using LLMs.
		eval_candidate_reference_answer_with_llm	Evaluate whether the output matches any candidate reference answer.
		eval_scoring_points_with_llm	Evaluate whether the scoring points are all mentioned in the output using LLMs.
		eval_partial_scoring_points_with_llm	Evaluate whether the scoring points are partially mentioned in the output using LLMs.
		eval_reference_answer_and_scoring_points_with_llm	Evaluate whether the reference answer and other scoring points are all mentioned in the output using LLMs.
	formula	eval_complex_math_formula_with_llm	Evaluate the mathematical equivalence between the output and the answer formatted in Latex using LLMs.
		eval_conjunction	Evaluate the conjunction of multiple evaluation functions. The output passes the evaluation if and only if all the elements in the output pass the corresponding sub-evaluations.
logical	eval_disjunction		Evaluate the disjunction of multiple evaluation functions. The output passes the evaluation if and only if at least one of the element in the output passes the corresponding sub-evaluation.
	eval_negation		Evaluate the negation of an evaluation function. The output passes the evaluation if and only if it doesn't pass the original evaluation function.

A.2 METADATA FORMAT

The metadata of each paper is organized in a structured JSON format, capturing key bibliographic and content-related attributes, as shown below:

- **uuid**: A universally unique identifier (UUID) assigned to this specific data sample.
 - **title**: The full title of the academic paper.

- `conference_full`: The complete official name of the conference where the paper was published or presented. For example, “Annual Meeting of the Association for Computational Linguistics”.
- `conference`: The standardized or abbreviated name of the conference, commonly used in citations or file naming. Examples include “ACL”, “NeurIPS”.
- `year`: The year in which the paper was published or presented at the conference.
- `volume`: The volume information of the conference proceedings or journal in which the paper appears, if applicable. For example, “NeurIPS 2023 poster”.
- `bibtex`: A string containing the full BibTeX citation entry for the paper.
- `authors`: An ordered list of the authors who contributed to the paper.
- `pdf_url`: A direct URL linking to the downloadable PDF file of the paper. The link should point to an actual PDF file and therefore must end with “.pdf”.
- `pdf_path`: The local file system path where the PDF is saved. The file should be renamed using the UUID to ensure consistent and collision-free naming.
- `num_pages`: An integer value indicating the total number of pages in the PDF document.
- `abstract`: The abstract of the paper, which is a concise summary of the research objectives, methodology, key findings, and implications.
- `tldr`: “Too Long; Didn’t Read” summary — a brief, high-level summary of the paper’s main contribution, typically one to two sentences.
- `tags`: A list of keywords or topic tags associated with the paper.

A.3 EVALUATION FUNCTION

In Table 8, we list the detailed names and descriptions of all 19 evaluation functions.

Here we present three representative cases corresponding to three distinct categories of evaluation functions: objective functions, subjective functions, and logical functions.

```

839 {
840     "example": {
841         "eval_func": "eval_string_exact_match",
842         "eval_kwargs": {
843             "gold": "Italian",
844             "lowercase": true
845         }
846     }
847 }
```

Listing 1: Objective Function Case

In case (Listing 1), the evaluation function compares the predicted answer with the gold answer “Italian”, ignoring case sensitivity due to the “lowercase” parameter being set to true. This means “italian”, “ITALIAN”, or “ItAliAn” would all match “Italian”.

```

852 {
853     "example": {
854         "eval_func": "eval_reference_answer_with_llm",
855         "eval_kwargs": {
856             "reference_answer": "Artificial intelligence is a branch of
857             ↪ computer science focused on building systems that can
858             ↪ perform tasks that typically require human
859             ↪ intelligence.",
860             "question": "What is artificial intelligence?"
861         }
862     }
863 }
```

Listing 2: Subjective Function Case

864 In case (Listing 2), the evaluation checks if the predicted answer conveys the same meaning as
 865 the reference answer about artificial intelligence, in response to the question “What is artificial
 866 intelligence?”.
 867

868 The prompt used for conducting the subjective evaluation above is presented as an example among
 869 several possible formulations within this evaluation category, and is shown below.

870 Subjective Function Prompt Example

871 You are an intelligent judgement system who is expert in determining whether a predicted answer matches
 872 the reference answer in terms of semantic meaning and intent, based on the input question. You will be
 873 given the raw question, the reference answer, and the predicted answer. And you need to provide the final
 874 decision with the following format:

875 ````txt
 876 True/False
 877 ````

878 Notice that:

1. Remember to wrap the final judgement with triple backticks.
2. The final decision string must exactly be “True” or “False” without any extra character or punctuation. Any other text will be considered as incorrect.
3. The structure and format of the predicted answer do not matter. We only care about the semantic content, compared to the reference answer. Minor differences in grammar, structure, or formatting should be ignored if the core meaning is preserved.

883 Now, let’s start!

884
 885 [Question]: {question}
 886 [Reference Answer]: {reference_answer}
 887 [Predicted Answer]: {predicted_answer}

888 Let’s think step-by-step, and then provide the final judgement.

```
890 {  

891     "example": {  

892         "eval_func": "eval_disjunction",  

893         "eval_kwargs": {  

894             "eval_func_list": [  

895                 "eval_string_exact_match",  

896                 "eval_reference_answer_with_llm"  

897             ],  

898             "eval_kwargs_list": [  

899                 {  

900                     "gold": "role-oriented routing",  

901                     "lowercase": true  

902                 },  

903                 {  

904                     "reference_answer": "It routes messages, requests,  

905                         ↪ or tasks based on the roles or  

906                         ↪ responsibilities of the recipients, rather  

907                         ↪ than simply by their identity or static  

908                         ↪ attributes.",  

909                     "question": "What's the most important idea of  

910                         ↪ role-oriented routing?"  

911                 }  

912             ]  

913         }  

914     }  

915 }
```

913 Listing 3: Logical Function Case

915 In case (Listing 3), the disjunction evaluation function checks if at least one of the specified eval-
 916 uation functions returns a positive result. The first function, “eval_string_exact_match”, verifies
 917 whether the predicted answer matches the gold standard “role-oriented routing” in a case-insensitive
 manner. The second function, “eval_reference_answer_with_llm”, evaluates whether the predicted

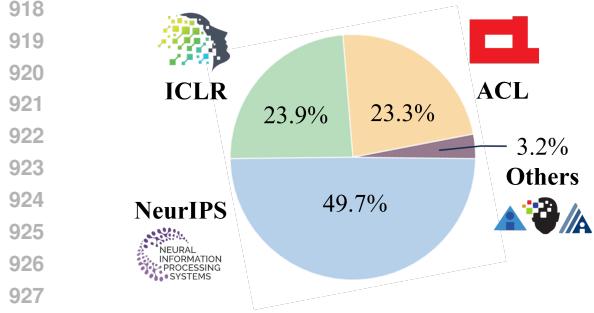


Figure 5: Conference distribution of the papers used.

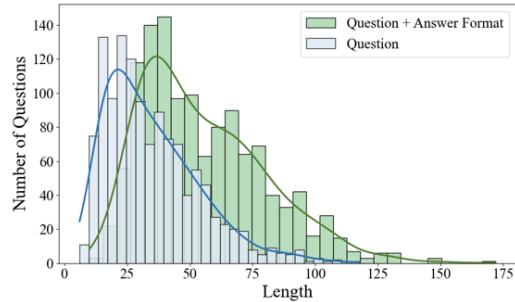


Figure 6: Distribution of question and answer format lengths (in tokens) by count.

answer sufficiently addresses the question about the most important idea of role-oriented routing, as described in the provided reference answer. If either condition is satisfied, the evaluation returns 1.0; otherwise, it returns 0.0.

A.4 ADDITIONAL DATASET STATISTICS

Here we include another two statistics on paper volume in Figure 5 and question lengths in Figure 6.

B AGENTIC BASELINE

In this section, we present detailed information of the actions implemented in the agentic baselines. Each action can be called in a Python-style manner, e.g., `Retrieve(query="Is there any work about the topic structured RAG?", limit=4)`

```

946 {
947     "action_type": "Retrieve",
948     "description": "Given a query text, retrieve relevant context from
949     ↪ the Milvus vectorstore.",
950     "observation": "The observation space is the retrieved top-ranked
951     ↪ entries from the Milvus vectorstore based on queries.",
952     "parameters": {
953         "query": {
954             "type": "str",
955             "required": true,
956             "description": "The query text will be encoded and used to
957             ↪ search for relevant context. You can rephrase the
958             ↪ original user question to obtain a more clear and
959             ↪ structured query requirement."
960         },
961         "limit": {
962             "type": "int",
963             "required": false,
964             "default": 5,
965             "description": "The number of top-ranked context to
966             ↪ retrieve. Please set it to a positive integer to limit
967             ↪ the number of returned results. Extremely large limit
968             ↪ values may be truncated."
969         }
970     },
971     "use_cases": [
972         {
973             "example": {
974                 "query": "Is there any work about the topic structured
975                 ↪ RAG?"
976             },
977             "explanation": "Retrieve top 5 pieces about a certain topic."
978         }
979     ]
980 }

```

```

972     },
973     {
974         "example": {
975             "query": "What's the learning rate for training the
976             ↪ ResNet model?",
977             "limit": 4
978         },
979         "explanation": "Retrieve detailed information about the
980             ↪ learning rate for training the ResNet model. The top 4
981             ↪ most relevant entries will be returned based on the
982             ↪ query."
983     }
984 },
985 "action_type": "Query",
986 "description": "Generate an SQL query to retrieve the desired
987     ↪ information from the DuckDB database. Please refer to the
988     ↪ concrete database schema to produce a valid and executable
989     ↪ SQL.",
990 "observation": "The observation space is the execution result of the
991     ↪ SQL query. You do not need to worry about the actual
992     ↪ execution, we will perform it for you. If the SQL failed to
993     ↪ execute, we will return the error message. Extremely long SQL
994     ↪ output will be truncated.",
995 "parameters": {
996     "sql": {
997         "type": "str",
998         "required": true,
999         "description": "The concrete DuckDB SQL query to execute and
1000             ↪ retrieve results."
1001     }
1002 },
1003 "use_cases": [
1004     {
1005         "example": {
1006             "sql": "SELECT abstract FROM metadata WHERE paper_id =
1007                 ↪ '12345678';"
1008         },
1009         "explanation": "Get the abstract of the paper with paper_id
1010             ↪ '12345678' from the metadata table in the DuckDB
1011             ↪ database."
1012     },
1013     {
1014         "example": {
1015             "sql": "SELECT pages.page_number FROM images JOIN pages
1016                 ↪ JOIN metadata ON images.ref_page_id =
1017                 ↪ pages.page_id AND pages.ref_paper_id =
1018                 ↪ metadata.paper_id WHERE metadata.paper_id =
1019                 ↪ '12345678' AND images.image_caption LIKE '%Figure
1020                 ↪ 3%';"
1021         },
1022         "explanation": "Find which page in the paper with paper_id
1023             ↪ '12345678' contains Figure 3."
1024     }
1025 ],
1026 },
1027 "action_type": "Answer",
1028 "description": "When you take this action, the retrieved results
1029             ↪ suffice to answer the user question. PLEASE STRICTLY ADHERE TO
1030             ↪ THE ANSWER FORMAT FOR THE CURRENT QUESTION.",
1031 "observation": "There is no observation for this terminal action,
1032             ↪ since it indicates the completion of the task and end of the
1033             ↪ interaction."

```

```

1026     "parameters": {
1027         "answer": {
1028             "type": "Any",
1029             "required": true,
1030             "description": "The final answer to the user question."
1031         }
1032     },
1033     "use_case": [
1034         {
1035             "example": {
1036                 "answer": 42
1037             },
1038             "explanation": "The final answer is 42."
1039         },
1040         {
1041             "example": {
1042                 "answer": ["Results", "Discussion"]
1043             },
1044             "explanation": "The final answer is a list of strings:
1045             ↳ ['Results', 'Discussion']."
1046         }
1047     ]
1048 }

```

Listing 4: Detailed Action Format

C SUPPLEMENTARY EXPERIMENTS AND SETTINGS

C.1 DETAILED HYPER-PARAMETERS FOR INSTRUCTION TUNING

Table 9: Hyper-parameters for Instruction Tuning.

Hyper-Parameter	Default Value
Finetuning Type	LoRA
LoRA Target	all
LoRA Rank	16
LoRA Alpha	16
LoRA Dropout	0.05
Cutoff Length	4,096
Mask History	true
Gradient Accumulation Steps	16
Learning Rate	1×10^{-4}
Train Epochs	1.0
Learning Rate Scheduler	Cosine
Warmup Ratio	0.1

C.2 PREPROCESSING

Besides collecting papers and metadata illustrated in Section 2.3, we parse the papers with PyMuPDF (Artifex Software, 2023) and MinerU (Wang et al., 2024), and populate relevant information into the relational database DuckDB (Mühleisen & Raasveldt, 2024). Additionally, we segment raw documents into chunks of 512 tokens, encode the chunks with all-MiniLM-L6-v2 (Wang et al., 2020), and insert the vectors into the vectorstore Milvus (Wang et al., 2021).

1080 C.3 ABLATION ON VLMS
10811082 To further investigate whether direct access to visual information improves performance, we imple-
1083 ment an additional action, “View”, for the Agentic Hybrid baseline.

```

1084 {
1085     "action_type": "View",
1086     "description": "You can retrieve the visual information of the paper
1087         ↪ by taking this action. Please provide the paper id, the page
1088         ↪ number, and the optional bounding box.",
1089     "observation": "The observation space is the image that you want to
1090         ↪ view. We will show you the image according to your parameters.
1091         ↪ The error message will be shown if there is any problem with
1092         ↪ the image retrieval.",
1093     "parameters": {
1094         "paper_id": {
1095             "type": "str",
1096             "required": true,
1097             "description": "The paper id to retrieve the image."
1098         },
1099         "page_number": {
1100             "type": "int",
1101             "required": true,
1102             "description": "The page number (starting from 1) of the
1103                 ↪ paper to retrieve the image."
1104     },
1105         "bounding_box": {
1106             "type": "List[float]",
1107             "required": false,
1108             "default": [],
1109             "description": "The bounding box of the image to retrieve.
1110                 ↪ The format is [x_min, y_min, delta_x, delta_y]. The
1111                 ↪ complete page will be retrieved if not provided."
1112     },
1113     "use_cases": [
1114         {
1115             "example": {
1116                 "paper_id": "12345678",
1117                 "page_number": 3,
1118                 "bounding_box": []
1119             },
1120             "explanation": "Retrieve the image of the third page of the
1121                 ↪ paper with id 12345678."
1122         },
1123         {
1124             "example": {
1125                 "paper_id": "12345678",
1126                 "page_number": 5,
1127                 "bounding_box": [
1128                     51.1,
1129                     204.3,
1130                     333.0,
1131                     13.8
1132                 ]
1133             },
1134             "explanation": "Retrieve the image of the fifth page of the
1135                 ↪ paper with id 12345678, with a bounding box of [51.1,
1136                 ↪ 204.3, 384.1, 218.1]."
1137         }
1138     ]
1139 }
1140 }
```

Listing 5: Details for “View” action.

1134 Through this action, LLMs can **access the image content encoded in base64 format** by specifying
 1135 the paper ID, page number, and the bounding box of the relevant region.
 1136

1137 Table 10: Performance of Agentic Hybrid with “View” action on M4PQA dataset.
 1138

Size	“View”?	text	table	image	form.	meta.	Avg
32B	✗	31.88	10.33	17.87	18.90	21.31	24.24
	✓	31.56	8.92	20.77	15.75	25.41	24.56
72B	✗	36.55	15.96	23.67	20.47	36.88	30.34
	✓	36.55	15.96	24.64	22.83	36.07	30.78

1146 We conduct experiments with Qwen2.5-VL family (Bai et al., 2025) as backbone model. Table 10
 1147 shows that, with direct access to images, the performance on visual questions improves, though
 1148 further methods for enhancement remain to be explored.
 1149

1150 C.4 FINE-TUNING BASED ON M4PQA

1152 To examine the relative effectiveness of synthetic data compared to manually annotated data, we
 1153 fine-tune another model with examples directly from the M4PQA dataset. Due to the unquantifi-
 1154 able nature of manually annotated trajectories, we continue to use Qwen2.5-32B-Instruct as teacher
 1155 model for trajectory generation.
 1156

1157 Table 11: Comparison between models fine-tuned on examples directly from the M4PQA dataset
 1158 and examples generated by the EXTRACTOR.

Dataset	Count	sgl.	multi.	retr.	comp.	Avg
-	-	16.24	3.72	26.39	15.85	15.24
M4PQA	400	15.67	4.95	48.26	13.73	19.98
EXTRACTOR	1000	15.95	2.48	48.96	14.44	19.74

1165 Table 11 indicates that, model fine-tuned on 400 examples from M4PQA achieves performance
 1166 comparable to that trained on 1,000 automated generated examples. It is worth noticing that while
 1167 manual examples seem to be more effective, they come at a higher cost. It takes 20 minutes for a
 1168 human to generate an example and only 20 seconds for EXTRACTOR.
 1169

1170 C.5 HUMAN STUDY

1172 To provide a reference for the difficulty of the M4PQA dataset, we recruit 3 students with expertise
 1173 in artificial intelligence to answer 98 questions sampled from our M4PQA dataset. They are strictly
 1174 prohibited from using any form of LLM and are only allowed to search the internet. Each question
 1175 has a time limit of 20 minutes.
 1176

1177 Table 12: Performance of human experts on M4PQA dataset.

Question Type				Element Category					Evaluation		Avg
sgl.	multi.	retr.	comp.	text	table	image	form.	meta.	obj.	subj.	
64.29	54.00	52.17	56.82	53.12	56.07	67.05	50.00	55.00	58.52	52.58	56.63

1183 Results in table 12 show that M4PQA is a highly challenging dataset, even human experts are only
 1184 able to achieve a relatively high score within the time limit, rather than a perfect one. **Meanwhile,**
 1185 **all three participants report difficulty in identifying the correct papers, particularly when multiple**
 1186 **sources are involved, and two additionally note challenges in understanding domain-specific termi-**
 1187 **nology.**

1188 C.6 STATISTICS ON TIME & COST
11891190 **Evaluation** Here we provide an empirical estimate: evaluating all 1,246 examples takes approx-
1191 imately 35 minutes and costs \$0.056. This process can be further accelerated using simple par-
1192 allelization techniques if needed.1193 **Agentic Baselines** In Table 13 we list the time and cost per example for two models and three
1194 agentic baselines for reference.1197 Table 13: Statistics of the number of interaction(s), accumulated prompt / completion token(s), time
1198 consumption, and LLM cost per sample with different models and agentic methods on M4PQA.

Model	RAG Method	# Turn(s)	# Prompt Token(s)	# Completion Token(s)	Time (s)	Cost (\$)
Qwen2.5-72B-instruct	Agentic RAG	7.53	39870	658	58	-
	Agentic Text2SQL	6.45	42991	790	70	-
	Agentic Hybrid	5.95	62533	767	62	-
GPT-4o	Agentic RAG	4.59	13231	365	13	0.0367
	Agentic Text2SQL	7.26	32957	815	22	0.0905
	Agentic Hybrid	5.08	35909	566	18	0.0954

1208 **Example Synthesis** Though we have discussed in App. C.4 that LLM-based methods are far more
1209 efficient than manual annotation, we still believe that a rough cost analysis would be helpful to offer
1210 an empirical reference for future work.1212 Table 14: Average time and cost for synthesizing an example. The time and cost for “multiple”
1213 question type is estimated by directly doubling that of “single”.

	Time (s)	Cost (\$)
sgl.	18.6	0.041
multi.	37.2	0.082
retr.	5.2	0.002
comp.	18.5	0.039

1221 The results for each question type are computed by averaging the time and cost of generating 10
1222 examples with GPT-4.1-mini. A back-of-the-envelope calculation indicates that it costs roughly
1223 \$160 and 22 hours to produce 4,000 examples (1,000 per question type). Given the complexity of
1224 the tasks, this is reasonably efficient compared with human annotation, and can be further improved
1225 by using open-source models or parallelization.1227 D SUPPLEMENTARY ANALYSIS
12281229 D.1 ERROR ANALYSIS ON GPT-4O
12301232 To further illustrate the bottleneck of our M4PQA dataset, we randomly sample 60 examples (15 for
1233 each question type) where GPT-4o + Agentic Hybrid produces incorrect answers. Through manual
1234 analysis, we identify the following five root causes that ultimately lead to mistakes:

- 1235
1. **Lack of Context:** The agent fails to use the given tools to find relevant snippets.
 2. **Over Confidence:** The agent chooses to generate the answer too early.
 3. **Missing Paper:** For questions that involve multiple papers, the agent fails to realize/find other
1239 papers.
 4. **Textual Reasoning:** The agent successfully retrieves the key snippet but fails to understand it.
 5. **Visual Reasoning:** The agent fails to retrieve/understand paratextual information.

Table 15: Error Analysis of Agentic Hybrid baseline with GPT-4o as backbone.

Category	sgl.	multi.	retr.	comp.	Total
Lack of Context	5	3	9	6	23
Over Confidence	3	2	5	3	13
Textual Reasoning	2	1	1	5	9
Missing Paper	0	8	0	0	8
Visual Reasoning	5	1	0	1	7

The analysis shows that the dominant cause differs across question types, while generally, current models still exhibit limitations in **long-term planning and multi-modal reasoning**, suggesting the need for new methods that better balance planning and acting.

D.2 ERROR ANALYSIS ON FINE-TUNED 7B

Similarly, we conduct an error analysis on fine-tuned Qwen2.5-7B-Instruct. Besides the aforementioned five causes, we identify another reason that ultimately leads to failures:

6. Repetition: The agent consistently predicts the same action.

Table 16: Error Analysis of Agentic Hybrid baseline with fine-tuned 7B as backbone.

Category	sgl.	multi.	retr.	comp.	Total
Lack of Context	4	4	9	3	20
Textual Reasoning	6	2	3	2	13
Over Confidence	2	3	2	3	10
Repetition	1	3	1	4	9
Visual Reasoning	2	1	0	3	6
Missing Paper	0	2	0	0	2

The analysis indicates that fine-tuned models still exhibit limitations in **textual retrieval and comprehension**, highlighting areas for future improvement.

D.3 IMPROVEMENT ANALYSIS ON 7B

We further investigate which aspects of small models are improved by EXTRACTOR. We sample 10 examples for each question type where fine-tuned Qwen2.5-7B-Instruct outperform untrained baseline, totaling 40 examples. For each example, we examine the source of improvement and categorize it into one of three main contributing factors:

- 1. Better Retrieval Strategy:** The model develops a clearer understanding of the overall retrieval process and the specific actions required at each step, allowing it to **plan more effectively** and identify useful intermediate steps.
- 2. Better Retrieval Behavior:** The model interacts more accurately with the environment, correctly interpreting schemas and providing appropriate tool parameters.
- 3. Better Understanding and Reasoning:** The model demonstrates deeper comprehension of the question and context, producing more coherent and reliable reasoning.

The analysis shows that the dominant contributor varies across question types. While improved retrieval behavior is not always the primary factor, **reductions in tool usage errors are consistently observed**, enhancing both retrieval behavior and strategy as the model learns to use tools more effectively. This finding aligns with the component ablation in Section 4.3 and reinforces the claim that **our training framework enhances the model’s ability to generate valid actions**.

1296

Table 17: Improvement Analysis of Fine-Tuned 7B.

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Category	sgl.	multi.	retr.	comp.	Total
Strategy	4	7	1	1	13
Behavior	3	1	4	6	14
Understanding	3	2	5	3	13

E SYNTHESIS PROMPT

E.1 EXPLORER PROMPT

Here we showcase prompt templates of explorers discussed in Section 3.2.

Explorer Prompt for Single and Comprehensive question types

You are an intelligent annotation system who is expert in posing questions.

{description}

Your output should be in the following format:

[Thought]: Your thought process.

```txt

[Question]: Your question here.

[Answer]: Your answer here.

```

Notice that:

- Remember to wrap your output (except [Thought]) with triple backticks.

- Don't include the answer in the question or in the reasoning steps.

- Your question should be as objective as possible.

- Your answer should be concise and clear.

{hint}

Let's think step-by-step, and then provide the final question and answer.

{context}

Here, {description} stands for the description of the task, {hint} includes additional hints, and {context} represents the corresponding context for question generation.

For example, for single question type and table element category, the description is “*You will be given an AI research paper, and your task is to generate a question based on the content of the table in HTML format and the caption of the table.*”, the hint prompt is “*- Try not to include the word ‘table’ in your question.*”, and the context prompt is:

Context Prompt for Single type, Table category

The caption of the table is as follows:

```txt

{caption}

The content of the table is as follows:

```html

{content}

where the caption and the content are the raw text caption and the table content in HTML format respectively.

Explorer Prompt for Retrieval question type

You are an intelligent annotation system who is expert in posing questions. You need to pose a question based on the title and abstract of a paper, where the answer to the question should be the title of the paper. That is to say, you need to describe the contribution or the feature of the paper in the question, so that the respondents can identify the paper. Don't include the title itself in the question. Now let's start!

1350 [Title]: {title}
 1351 [Abstract]: {abstract}
 1352
 1353 Your output should be in the following format:
 1354
 1355 Your thought process.
 1356 ```txt
 1357 Your question here.
 1358
 1359 Note that, you should wrap your output with triple backticks.
 1360

1361 For retrieval question type, we use the different explorer prompt shown above, and for multiple
 1362 question type, there is no need of an explorer, as we simply combine two single questions.
 1363

1364 E.2 TRACKER PROMPT

1365 Here we present prompt templates of trackers discussed in Section 3.3.
 1366

1367 Tracker Prompt for Single and Comprehensive question types

1368 You are an intelligent annotation system who is expert in reviewing questions.
 1369

1370 You will be given a question and an answer. You should adjust the question and the answer, adapting them
 1371 to the evaluator's requirements. The descriptions, parameters and use cases of the evaluators are provided
 1372 below:
 1373

1374 _____
 1375 {evaluator}
 1376

1377 Note that:
 1378

- If you want the predicted answer list to be exactly same with the gold answer list, use `eval_structured_object_exact_match`, don't use `eval_element_list_included`.
- If your evaluation involves list matching, and the order doesn't matter, set `ignore_order` to `true`. If the order matters, set `ignore_order` to `false`.
- If you are sure that the answer is unique, there aren't other equivalent answers, and any rephrase will change the semantic meaning of the answer, you can use `eval_string_exact_match`. Otherwise, you should use `eval_reference_answer_with_llm`. Generally, we recommend using `eval_reference_answer_with_llm` for subjective questions, and `eval_string_exact_match` for single-word answers.

1386 _____
 1387 Your output should be in the following format:
 1388 [thought]: Your thought process.
 1389

1390 [question]: Modified question.
 1391 [evaluator]: The evaluator you choose.
 1392 [answer_format]: The format that the respondent should follow in order to pass the evaluator. e.g. "Your
 1393 answer should be a single python list containing two strings, the first element of the list is the abbreviation
 1394 of the baseline, the second element of the list is the full name of this baseline, e.g.['abbr','full']".
 1395 [answer]: Modified answer.
 1396 [tag]: A single `subjective` or `objective` without explanation. Whether the evaluator involves LLM. `sub-
 1397 jective` if it involves LLM, otherwise `objective`.
 1398

1399 Note that:
 1400

- Remember to wrap your output (except thought) with triple backticks.
- DON'T INCLUDE ANSWERS, HINTS OR KEY POINTS IN [question] OR [answer_format] IN ANY FORM, ESPECIALLY WHEN YOU TRY TO ILLUSTRATE [answer_format] BY GIVING EXAMPLES.
- [answer_format] will be provided to the respondent along with the [question]. [question] and [answer_format] together form the who question that will be presented to the respondent. [question] focuses on the question itself, [answer_format] focuses on the format of the answer.

- 1404
 1405 - You should present [evaluator] in JSON format, as given in the use cases. And your [answer] should be
 1406 able to pass the evaluator.
 1407 - You can modify the question and answer based on the evaluator's requirements, but don't change the
 1408 original meaning of the question and answer.
 1409 - When the question involves percentage, and the percentage is an exact value, not an approximate
 1410 value, try to use `eval_float_exact_match` or `eval_int_exact_match`, while indicating the decimal places in
 [answer_format].

1411 Here're the original question and answer:
 1412 ```txt
 1413 [question]: {question}
 1414 [answer]: {answer}
 1415 ```

1416 Let's think step-by-step, and then provide the final arguments.
 1417

1418 Here, {evaluator} contains the detailed information of the 19 evaluation functions, and
 1419 {question} and {answer} stand for the question-answer pair generated by the explorer. The
 1420 evaluator prompt is in the following format:

1421 Tracker Prompt for Single and Comprehensive question types
 1422

```
1423 ## {function}
1424
1425 ### Description
1426 {description}
1427
1428 ### Parameters
1429 {parameters}
1430
1431 ### Use Case(s)
1432 {use_case}
```

1432 which contains the name, the description, the parameters and the use cases of the functions.
 1433

1434 F LIMITATIONS AND BROADER IMPACTS

1435 Although precise question answering datasets M4PQA for academic papers can enhance research
 1436 efficiency, this work still has certain limitations: 1) As large language models incorporate more aca-
 1437 demic papers during pre-training, some questions can be answered solely based on their parametric
 1438 knowledge; 2) The current dataset is limited to English-language papers in the field of artificial
 1439 intelligence, and its coverage remains to be improved; 3) While most questions can be evaluated
 1440 using objective scoring functions, long-form answers inevitably rely on large model-based evalua-
 1441 tion, which may affect the consistency and stability of the evaluation results as the continual training
 1442 and update of these LLMs. For broader social impact, as LLM-based agents become increasingly
 1443 robust and practical through more refined agent-level finetuning, their improved question-answering
 1444 capabilities can help researchers save significant time on literature review and detail retrieval, avoid
 1445 reinventing the wheel, and even assist in building personalized knowledge bases of academic pa-
 1446 pers.
 1447

1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457