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Abstract

The debate around the interpretability of attention mechanisms is centered on
whether attention scores can be used as a proxy for the relative amounts of signal
carried by sub-components of data. We propose to study the interpretability of
attention in the context of set machine learning, where each data point is com-
posed of an unordered collection of instances with a global label. For classical
multiple-instance-learning problems and simple extensions, there is a well-defined
“importance” ground truth that can be leveraged to cast interpretation as a binary
classification problem, which we can quantitatively evaluate. By building syn-
thetic datasets over several data modalities, we perform a systematic assessment
of attention-based interpretations. We find that attention distributions are indeed
often reflective of the relative importance of individual instances, but that silent
failures happen where a model will have high classification performance but at-
tention patterns that do not align with expectations. Based on these observations,
we propose to use ensembling to minimize the risk of misleading attention-based
explanations.

1 Introduction

Attention mechanisms have become a popular tool in multiple areas of machine learning, in partic-
ular in natural language processing (NLP) where their introduction significantly increased perfor-
mance (Devlin et al., 2018). Attention-based models have also been successful in the context of com-
puter vision (Dosovitskiy et al., 2020) and have in particular been attractive in digital histopathology
applications (cancer diagnosis based on stained microscopy images) (Ilse et al., 2018; Redekop et al.,
2021; Lu et al., 2021; Tourniaire et al., 2021), where a patch-based approach is particularly well-
adapted to analyse the large whole-slide images (WSIs) with corrupting artefacts typically exploited
in this field.

Besides the performance gain provided by attention mechanisms in many applications, one of their
alluring aspects is the promise of interpretability: attention relies on a dynamically weighted av-
erage of representations of data subcomponents, and it feels natural that these weights should be
informative of the relative importance of these subcomponents for the final prediction. This poten-
tial interpretability is particularly attractive for biomedical applications, both in a clinical setting and
for research. Indeed, insights into automatic diagnostic tools is both a regulatory requirement (Selbst
and Powles, 2017) and a necessary safeguard to understand and diagnose failure modes for critical
decisions (Cluzeau et al., 2020). In a biomedical research context, attention-based interpretability
could lead to new breakthroughs in understanding the mechanisms that underlie diseases and help
find new targets for diagnosis and therapy.

While intuitively promising, there is still no clear understanding of the extent to which attention
distributions provide meaningful information about the amount of signal carried by data subcom-
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ponents. This has been the object of a debate within the context of NLP (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019), which started at a conceptual level but was then moved forward by
experimental assessments (Serrano and Smith, 2019; Vashishth et al., 2019). These studies found
imperfect and task-dependent agreement between attention and other importance attribution metrics,
but are limited by the constraints inherent to NLP: the difficulty of building robust ground truths and
evaluation metrics for token importance (Madsen et al., 2022).

Given the recent interest in using attention in the context of biomedical applications, we propose to
study the quality of attention-based explanations of instance importance in a simpler context, where
we can conceive synthetic tasks with a well-defined ground truth, therefore allowing more control
on the evaluation. Indeed, histopathological (and biomolecular) applications of attention can be
characterised as multiple-instance learning (MIL) problems or simple extensions thereof. The goal
of this work is to establish synthetic analogies for the MIL-like problems encountered in biomedical
applications, with well-defined instance-level importance labels, and to quantitatively assess the
quality of attention-based explanations, how frequently they are misleading, and potential solutions.

Our manuscript is organised as follows: we first introduce MIL as an abstract set classification
problem, as well as some multi-population extensions. We show how these problems permit a
quantitative assessment of instance importance attributions and why they map satisfyingly to some
biomedical problems. We then describe the synthetic datasets we constructed as analogies and the
attention-based models used to classify them, and conduct experiments to show to which extent
attention-based explanations can be trusted. Finally, we argue for an ensemble-based solution to
respond to the potential weaknesses of single-model explanations.

2 Importance attribution as a binary classification task

2.1 Multiple-instance learning and its extensions

2.1.1 Problem Formulation

Multiple-instance learning (MIL) is a classical weakly-supervised learning binary classification
problem (Maron and Lozano-Pérez, 1997; Dietterich et al., 1997; Oquab et al., 2015) in which
data points Xi are made of unordered collections of vectors Xi = {xi1, . . . , xiMi

}. The individual
vectors xim are referred to as “instances”, while the data points Xi are called bags of instances.
Each instance xim has a binary label yim ∈ {1, 0} (also referred to as positive and negative), which
is not available at training time, but defines the label Yi of the bag Xi as:

Yi = min

(
1,

Mi∑
m=1

yim

)
, (1)

which simply means that Yi is 1 if at least one of the yim is 1, and is 0 otherwise.

This is a formalization of classification problems used in multiple biomedical applications, such
as patient diagnosis from histopathology images. Images are typically processed as collections of
patches, of which only a few might contain clinically relevant regions. Another interesting medi-
cal application of MIL is the classification of tumors using single-cell molecular profiles. In this
case, samples are a mixture of healthy and cancerous cell profiles, but only patient-level labels are
available.

2.1.2 Multi-Population MIL

Inspired by the biological applications of MIL, especially in the context of cancer, we propose to
extend MIL to a multi-population setting with non-trivial interactions, which we can formalise as
logical problems.

Multi-population AND

• There are three instance populations with three instance labels: yim ∈ {0, 1, 2}.
• Bags have a binary label Yi given as “the set of {yim} contains 1 AND contains 2”. Namely,
Yi is 1 only if it contains population 1 and 2, but 0 if only one of the two is present.
Population 0 is irrelevant.
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This problem can model tumours where multiple cell communities can develop and support each
other’s growth by collaboration: the presence of both cellular communities accelerates disease pro-
gression and leads to worse prognosis (Tabassum and Polyak, 2015). In this case, population 0
would correspond to uninformative cells such as healthy cells in the tumour microenvironment while
populations 1 and 2 would represent two cancerous populations that can collaborate.

Multi-population XOR

• There are three instance populations with three instance labels: yim ∈ {0, 1, 2}.

• Bags have a binary label Yi given as “the set of {yim} contains 1 XOR contains 2”, i.e. Yi

is 1 only if it contains population 1 but not 2 or 2 but not 1. Population 0 is irrelevant.

This problem can model tumours where two cell communities can co-evolve but reduce their joint
fitness such as by increasing drug response when both are present (Miller et al., 1991).

2.2 Quantifying key instance attribution

The simple setting of MIL lends itself to quantifying the interpretability of importance distributions
over bags of instances such as those provided by attention. For standard MIL this is often called
key-instance attribution (Liu et al., 2012), which amounts to identifying positive instances inside
positive bags. When ground truth instance-level labels are known, this can be formulated as a
supervised binary classification problem. In this work, we train models with weak, bag-level labels
but want to evaluate the attention scores as a prediction score to identify positive label instances.

Of course, we cannot expect attention scores to be well calibrated and to allow their immediate
interpretation as a probability score for being ”important”. We therefore need to be careful with
some of the standard classification metrics based on discretising prediction scores, such as accuracy
or F1. What we require of our attention scores is that they discriminate well between positive and
negative instances for some threshold, which can be verified by inspecting the area under the receiver
operating characteristic curve (AUC-ROC) or the average precision score (AUC-PR). For the sake
of clarity, we will refer to the AUC of importance attribution as iAUC, so as not to confuse metrics
for the bag-level classification and those for evaluating attention-based explanations. As illustrated
in supplementary figures, bag with unbalanced proportion of instance types necessitate the use of
AUC-PR instead of AUC-ROC since the later can lead to inflated scores because of the accurate
prediciton of the majority class.

The multi-population extensions of MIL, i.e. AND and XOR don’t have canonically defined impor-
tances. We propose to extend the “key instance” label by assigning it to populations 1 and 2 for both
problems defined in section 2.1.2, while classifying population 0 as unimportant, since its presence
or absence does not impact the bag labels.

3 Methods

3.1 Attention-Based Deep MIL

Permutation-invariant models are best-suited to handle MIL tasks as they introduce an inductive bias
tailored to sets of instances where order does not matter. To this end, the Deep Sets architecture (Za-
heer et al., 2018) was designed to produce an independent latent representation of each instance,
which are then aggregated with a permutation invariant function such as the mean. The aggregated
latent representation is further processed to produce a bag label, as shown in fig. 1.

Attention-based aggregation is another permutation-invariant operation that dynamically performs
weighted averages using the attention scores. This was shown to improve performance and pro-
vide insights into the data through the assigned weights (Ilse et al., 2018). With attention-based
aggregation, a data point X = {x1, . . . , xM} is mapped to a prediction y as follows:

zi = ϕ(xi), Z =

M∑
m=1

amzm, y = ρ(Z), (2)
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where ϕ and ρ are approximated by neural networks and am is the attention scores of instance xm,
defined as:

am =
exp{w⊤ tanh[Vϕ(xm)⊤]}
M∑
j=1

exp{w⊤ tanh[Vϕ(xj)⊤]}
, (3)

and, V ∈ IRL×K and w ∈ IRL×1 are trainable parameters. Notice that as
M∑
j=1

am = 1, Eq. 3 defines

normalized discrete weights over the instances.

x1
x2

...
xM

ϕ

FeaturizerSet
input space

ϕ(x1)
ϕ(x2)...
ϕ(xM )

Set
embedded space

α

Aggregator Set
representation

ρ
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Figure 1: Deep-Sets-like permutation invariant networks map bags of instances xi to bags of latent
representations ϕ(xi) which are then aggregated as a set representation. This set representation is
processed by a classifier to obtain a prediction ρ. In all experiments in this paper, the aggregator α
is the attention mechanism described in eq. (2).

3.2 Synthetic Datasets

We generate synthetic datasets with well-defined ground truth instance labels using three data modal-
ities. These instance labels were kept hidden from the model at all times and only used to evaluate
the performance of the attention attribution.

The first type of datasets, referred to as Gaussian MIL, Gaussian AND or Gaussian XOR, was built
by sampling instances from normal distributions, N (µ, σ = 0.5) with µ ∈ R4. Populations 0, 1 and
2 correspond to three choices of µ: µ0 = (0, 0, 0, 0)⊤, µ1 = (1, 1, 1, 1)⊤ and µ2 = (−1, 1, 1, 1)⊤.

The second type of datasets trades 4-dimensional vectors for 28 × 28 pixels images of MNIST
handwritten digits and are referred to as MNIST MIL, MNIST AND or MNIST XOR. The bags defined
by first specifying the list of digits allowed in each population and then randomly sampling images
of the specified digits from the original MNIST dataset (LeCun and Cortes, 2005). Images of the
digit ”3” are given the instance label 1 in every problem while images of the digit ”9” have instance
label 2 in the XOR and AND cases. Any other digits are considered unimportant (label 0).

The last data modality mimics data produced by single-cell proteomics experiments. We used ex-
perimental single-cell mass-cytometry (CyTOF) measurements from breast cancer tumours (Wagner
et al., 2019) to produce pseudo-samples by randomly selecting epithelial cells. Each cell is charac-
terised by 27 protein abundance measurements from a panel of markers chosen for cell phenotyping.
The work that collected and published these data (Wagner et al., 2019) grouped cells into 9 super-
clusters of functionally and phenotypically distinct cells, including 7 clusters of luminal cells and
two clusters of basal cells (B1 and B2). Basal cells are indicative of more dangerous tumours, in
particular, super-cluster B2 was found to be strongly associated with triple-negative tumours (Elias,
2010). We therefore define the CyTOF MIL, CyTOF AND or CyTOF XOR with populations 0, 1,
and 2 respectively corresponding to luminal cells, B2 cells and B1 cells.

In all settings, we generate 1000 bags of 250 instances, which are drawn from bi- or trinomial
distributions of populations 0, 1 and 2. In the MIL setting, we use a binomial distribution with
equi-probable outcomes while in the multi-population settings we use a trinomial distribution where
population 0 has probability 0.4 and populations 1 and 2 have probability 0.3. The relatively small
size of the datasets is motivated by our intention to parallel the type of statistics typical of biomedical
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Figure 2: (a) Configuration with stable iAUC-ROC. (b) Configuration with significant fraction of
low iAUC-ROC. Both configurations were trained on the Gaussian MIL setting. The left Y-axis
refers to the histogram (in green), while the right Y-axis refers to the cumulative frequency plot
(orange line). The magenta line is a guide for the eye showing the 10% threshold used to define bad
configurations in table 1.

applications. While not described in this paper, we have confirmed that our results are quite robust to
changes in these parameters except for extreme cases (extremely low fractions of some population
or very small bags).

3.3 Interpretability Evaluation

As said earlier, we train models with bag-level labels but we are mostly interested in the attention
mechanism performance as instance importance discriminator. A fair assessment is only possible
with the correct metric, which is why we compared the well known AUC-ROC with the AUC-PR.
Both metrics are threshold-independent and result from a trade-off: for AUC-ROC, the True Positive
Rate (TPR, or Sensitivity or Recall) and False Positive Rate (FPR, or 1-Specificity) are considered
whereas for AUC-PR, the trade-off is between Precision and Recall. Precision is the fraction of
relevant instances among all instances retrieved by the model and Recall is the fraction of relevant
instances that actually were detected. As discussed in (Sofaer et al., 2019), the AUC-ROC is prone to
overestimation in cases where the proportion of positive instances is much smaller than of negative
ones because the TN count is then disproportionately large and pulls the FPR towards zero. In this
work, we validate the results from Sofaer et al. and justify the use of AUC-ROC with our carefully
generated synthetic datasets.

4 Results

The basis of our analysis is a hyperparameter search for each task and data modality. We perform
a grid search through possible configurations for our models and train each configuration with five
random initialisations. Models are then ranked and selected on the basis of their performance on a
validation set, and evaluated on a separate test set. More details on the hyperparameter search are
provided in appendix S.1.

4.1 Models with high accuracy can have poorly behaved attention

To reproduce the process of selecting models in a setting where instance-level importances are un-
known, we select five candidate model configurations from our hyperparameter search based on
their validation accuracy and evaluate the interpretability of their attention distributions. We train
100 repetitions of each of those top five configurations with different random seeds and evaluate
how well the attention scores separate negative from positive instances in bags with a positive label.
As we show in fig. 2, some configurations have narrow distributions of iAUC-ROC centred around
a reasonable value (0.95), meaning that all model realisations provide meaningful interpretations
through their attention distributions while others have a non-negligible fraction of outliers with a
very poor identification of important instances (iAUC-ROC around 0.4).
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Table 1: Evaluation of attention explanations performances. Multi-population problems tend to
have more bad configurations than MIL, which can still have poor explanations. In general, AND
problems also have an overall lower iAUC-ROC.

Data Problem Mean iAUC # bad config.

MIL 0.84 2/5
Gaussian AND 0.70 5/5

XOR 0.86 4/5

MIL 0.91 0/5
MNIST AND 0.69 5/5

XOR 0.91 1/5

XOR 0.91 1/5
CyTOF AND 0.76 3/5

XOR 0.84 2/5

(a) Instance Labels (b) Good Attention (c) Bad Attention

Figure 3: Low-dimensional projections of MIL data with showing attention scores for an example
of a ”good” and a ”bad” model, as well as the instance labels shown for reference.

This pattern repeats over all problems and data modalities we evaluated. We summarise the results
of our analysis in table 1, where we report the mean test iAUC-ROC across all configurations and
the number of “bad” configurations, defined as those having 10% or higher fraction of realisations
with an iAUC-ROC less than 0.65. Detailed results with all iAUC-ROC distributions are available
in supplement S.2.

To further illustrate the difference in behavior between “good” and “bad” models, we show low-
dimensional representations of one of our numerical datasets (Gaussian) in fig. 3, where the attention
distributions are visible. “Good” models have an essentially constant attention over unimportant
instances and show a sharp gradient on positive instances moving away from the class boundary,
while “bad” models essentially have uniform attention over much of the dataset, with the exception
of a small minority of the data for which the attention is higher but not as high as for “good” models.

4.2 Repetitions of the same model have little correlation between performance and
interpretability

The stochasticity of training multiple neural networks with the same hyperparameters leads to the
variability in the quality of the explanations provided by their attention maps. Of course, this
stochasticity also leads to variability in the validation and test performance of these models. It
is therefore natural to investigate whether, for a fixed configuration, there is a correlation between
the classification performance at the bag level and the quality of the attention-based explanations.
This analysis might provide a way to weed out problematic models at the validation stage.
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Figure 4: Relationship between validation accuracy and test iAUC-ROC for top configurations.
Models are binned by validation accuracy and iAUC-ROC and each bin displays the fraction of total
models per column (i.e. per accuracy bin). The total number of models in each column is reported
at the top.

For each problem and data modality, we use the top 5 configurations defined in section 4.1 to evaluate
how well validation-time classification performance discriminates between models with low and
high-quality explanations. As we show in fig. 4, high performance is not a good indicator of good
explanations, and the correlation between accuracy and iAUC-ROC exists but is rather mild. A more
detailed picture separated by problem and data modality is available in supplement S.4. In the case of
MIL problems on Gaussian data (supplementary figure S.19a), all models with the top configurations
reach a validation accuracy of 100% while having varying iAUC-ROC values. On more complex
problems, not all realisations reach perfect accuracies, and a limited amount of correlation can be
observed. Indeed, as shown in supplementary figure S.19e, it is often the case that only the models
with top validation accuracies reach the top values for the iAUC-ROC. Nevertheless, there is still
significant variability among the models with top validation accuracies so that filtering out models
with a poorer validation performance is not enough to avoid models with poor explanations.

We measure the Spearman correlation ρ between the validation-time accuracy of the 100 repetitions
of each top configurations for all our classification tasks and the iAUC-ROC score and report them
in table 2. For each problem, we further report the configurations with the highest and lowest spreads
of iAUC-ROC values (∆iAUC) between individual top-performing realisations. Namely, to compute
∆iAUC, we select the models in the highest decile of validation accuracy for each configuration and
measure the spread between their maximum and minimum iAUC-ROC values. This provides a way
of observing how specific configurations have a large variability of iAUC-ROC even when filtering
for models with high classification performance.

4.3 Ensembling improves explanation robustness

While the risk of poor explanations is real, most trained models with good performance achieve sat-
isfying interpretation-based explanation quality. We therefore propose to use ensembling to reduce
the risk of encountering poorly-performing single models. Two strategies are possible:

• Single-configuration ensembling, where a fixed hyperparameter set is chosen based on val-
idation performance and multiple realisations are trained with different random seeds.

• Multi-configuration ensembling, where we chose a number of high-performing models and
ensemble realisations of each hyperparameter choice.
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Data Problem Spearman ρ High ∆iAUC Low ∆iAUC

MIL 0.04± 0.07 0.56 0.04
Gaussian AND 0.53± 0.31 0.66 0.07

XOR 0.62± 0.17 0.77 0.27

MIL −0.01± 0.01 0.47 0.03
MNIST AND 0.12± 0.23 0.41 0.12

XOR 0.21± 0.15 0.16 0.03

MIL 0.14± 0.24 0.47 0.13
CyTOF AND 0.17± 0.15 0.56 0.32

XOR 0.23± 0.23 0.54 0.24

Table 2: Predictivity of classification performance for informative explanations. We report the
Spearman correlation between the validation accuracy and the iAUC as well as the highest and
lowest ∆iAUC found among the models.

Data Problem % bad configs.

N=1 N=20 (single) N=20 (mult.)

MIL 18.0 0.0 0.0
Gaussian AND 40.0 7.3 0.0

XOR 17.3 0.0 0.0

MIL 0.02 0.0 0.0
MNIST AND 21.0 0.0 0.0

XOR 4.0 0.0 0.0

MIL 2.3 0.0 0.0
CyTOF AND 16.7 6.7 2.7

XOR 6.7 0.0 0.0

Table 3: Impact of ensembling on the fraction of models with bad explanations. We compare three
situations: no ensembling (N=1), and ensembling 20 models with either single configuration ensem-
bling (N=20, single) or multi-configuration ensembling (N=20, mult.).

For both approaches, the ensembling is performed with the goal of obtaining more robust attention-
based explanations. More concretely, for each bag of instances, each model produces an atten-
tion distribution over the instances and we compute the average attention scores across models.
This yields a valid attention distribution for the ensemble in the sense that the averaged distribution
also sums to 1.

As we show in table 3, ensembling does improve the fraction of models with bad explanations (as
defined in section 4.1), and multi-configuration ensembling provides the best option for most cases.
The results we report for single-configuration ensembling are the average of the results obtained for
the top five configurations found for each problem through hyperparameter search. As we show in
more details in supplement S.6, this average hides the fact that single-configuration ensembling fails
badly for some configurations, while multi-configuration ensembling does not present this failure
mode.

4.4 AUC-ROC and AUC-PR are equivalent for balanced datasets

The results presented in appendix S.7 endorse the claim from Sofaer et al. that the AUC-ROC can be
misleading in situations where the proportion of positive instances is much smaller than of negative
ones. Indeed, the AUC-PR drops significantly with the proportion of positive instances while the
AUC-ROC remains indifferent to this change. They also show that, for balanced datasets such
as the ones we carefully generated, the AUC-ROC and AUC-PR outputs are in a comparable range.
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Interestingly, the AUC-PR was always slightly larger than the AUC-ROC when 50% of the instances
were positive and clearly smaller when the proportion drops.

4.5 Attention network hidden layer size does not influence explanation

The most influential part of the architecture on the attention weight interpretability was thought to
be the hidden layer size of the attention network. To inspect this idea, that exact parameter was
varied across ten different values. The Accuracy, the iAUC-ROC and the iAUC-PR were reported in
appendix S.8 for each hidden layer size. Only subtle variations of the iAUC metrics were observed,
and no value appears to have a clear advantage in terms of iAUC. Interestingly, for the Gaussian
MIL modality, the size leading to the highest iAUC scores is one. The curve appears a little more
staggered for MNIST MIL, but one can observe that increasing the attention network hidden size
does not improve the iAUC nor the Accuracy.

5 Discussion

Our experiments confirm that, most of the time, attention mechanisms provide meaningful informa-
tion about the relative importance of instances in set classification problems like MIL. Nevertheless,
silent failure modes exist where individual models can have good performance at the main weakly
supervised task but produce attention maps that are not aligned with the amount of signal carried
by data sub-components. This finding is somewhat worrying: with a bit of bad luck, a researcher
could train a good model with poor interpretability and generate new hypotheses based on nonsen-
sical explanations, which could lead to resource waste if they are the basis for experimental studies.
However, attention-based explanations should not altogether be discarded, but be considered with
care. As our ensembling experiments show, sporadically appearing bad-behaving models can be
mitigated, but not altogether avoided in a multi-model setup as silent failures seem to fall in the
minority. In some settings, however, ensembling by averaging attention scores does not improve
the failure rate. We suspect that this is due to poor agreement between the attention assignment of
different models, leading to poor ensemble performance, which could be improved by switching to
majority voting. If this is the case, we could avoid false positive labelling of important instances by
requiring a clear consensus between different models, which we hope to explore in future work. In
any case, some responsible downstream analysis and validation of patterns highlighted by attention
mechanisms is warranted when trying to discover new features in data, keeping in mind that there is
a small but non-zero probability that the patterns might be misleading.

6 Conclusion

We showed across a variety of set-classification tasks and data modalities that silent failure modes
exist for attention-based key instance attributions, where attention does not correlate with instance
importance. While ensembling multiple random initialisations of the same model and multiple
model architecture mitigates the issue, there often remains a probability that explanations based
on attention could be misleading, which can range from problematic for scientific discovery to dan-
gerous when using explanations to verify predictions in application settings. This should not be a
reason to abandon attention as a tool for identifying important sub-components of data for a given
model, but shows that downstream verification of potential patterns is necessary. We have hinted at
the fact that a more fine-grained approach to ensembling could help filter false positives and this is
definitely an interesting avenue for further research. Other important directions which we plan to
pursue is the identification of the features of tasks where silent failure is less common, as well as
understanding which aspects of model architecture impact the quality of importance attribution.

Acknowledgments and Disclosure of Funding

We thank the Systems Biology group at IBM Research Europe for useful discussions, as well as
Mattia Rigotti and Janis Born. This project was support by SNF grant No. 192128 and the H2020
grant ”iPC” (No. 826121).

9



References
Jean Marc Cluzeau, Xavier Henriquel, George Rebender, Guillaume Soudain, Luuk van Dijk,

Alexey Gronskiy, David Haber, Corentin Perret-Gentil, and Ruben Polak. 2020. Concepts of
Design Assurance for Neural Networks (CoDANN) - AI Roadmap. Technical Report. EASA.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. https://doi.org/10.48550/
ARXIV.1810.04805

Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Pérez. 1997. Solving the Multiple
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Supplementary material for ”Is Attention Interpretation? A Quantitative
Assessment On Sets”

S.1 Hyperparameter Searches

Parameter Values

Batch size 100
Epoch 500
Learning rate 0.005
Weight decay 0.0001
Loss function Cross-entropy
Optim. algorithm Adam
Hidden layer size 2, 4, 6, 8, 10
Attention size 1, 2, 4, 6, 8, 10
Featurizer depth 1, 2, 3
Classifier depth 1, 2, 3

Table S.1: Parameter grid for Gaussian data.

Parameter Values

Batch size 100
Epoch 500
Learning rate 0.005
Weight decay 0.0001
Loss function Cross-entropy
Optim. algorithm Adam
Hidden layer size 8, 16, 32, 64
Attention size 1, 2, 4, 6, 8, 10
Featurizer depth 1, 2
Classifier depth 1, 2

Table S.2: Parameter grid for MNIST data.

Parameter Values

Batch size 100
Epoch 500
Learning rate 0.005
Weight decay 0.0001
Loss function Cross-entropy
Optim. algorithm Adam
Hidden layer size 2, 4, 6, 8, 10
Attention size 1, 2, 4, 6, 8, 10
Featurizer depth 1, 2, 3
Classifier depth 1, 2, 3

Table S.3: Parameter grid for CyTOF data.

S.1



S.2 iAUC-ROC Distributions for Top Models

Models marked with an asterisk have a significant proportion of bad runs, i.e. 10% or more of them
achieved an iAUC below 0.65.
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Figure S.1: Gaussian MIL
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Figure S.2: Gaussian AND
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Figure S.3: Gaussian XOR
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Figure S.4: MNIST MIL
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Figure S.5: MNIST AND
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Figure S.6: MNIST XOR
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Figure S.7: CyTOF MIL
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Figure S.8: CyTOF AND
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Figure S.9: CyTOF XOR
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S.3 iAUC-PR Distributions for Top Models

Models marked with an asterisk have a significant proportion of bad runs, i.e. 10% or more of them
achieved an iAUC-PR below 0.65.
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Figure S.10: Gaussian MIL
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(e) Model 5

Figure S.11: Gaussian AND
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Figure S.12: Gaussian XOR
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Figure S.13: MNIST MIL
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Figure S.14: MNIST AND
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Figure S.15: MNIST XOR
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Figure S.16: CyTOF MIL

0.0 0.2 0.4 0.6 0.8 1.0
Test iAUC-PR

0

4

7

11

14

18

C
ou

nt

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on

(a) Model 1

0.0 0.2 0.4 0.6 0.8 1.0
Test iAUC-PR

0

5

10

15

20

25

C
ou

nt

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on

(b) Model 2

0.0 0.2 0.4 0.6 0.8 1.0
Test iAUC-PR

0

5

10

15

20

25

C
ou

nt

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on

(c) Model 3

0.0 0.2 0.4 0.6 0.8 1.0
Test iAUC-PR

0

2

5

7

9

12

C
ou

nt

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on

(d) Model 4

0.0 0.2 0.4 0.6 0.8 1.0
Test iAUC-PR

0

5

9

14

18

23

C
ou

nt

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on

(e) Model 5

Figure S.17: CyTOF AND
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Figure S.18: CyTOF XOR
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S.4 Correlations between iAUC-ROC and Accuracy
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Figure S.19: Relationship between validation accuracy and test iAUC-ROC for top configurations,
separated by problem and data modality. Models are binned by validation accuracy and iAUC-ROC
and each bin displays the fraction of total models per column (i.e. per accuracy bin). The total
number of models in each column is reported at the top.
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S.5 Correlations between iAUC-PR and Accuracy
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Figure S.20: Relationship between validation accuracy and test iAUC-PR for top configurations,
separated by problem and data modality. Models are binned by validation accuracy and iAUC-PR
and each bin displays the fraction of total models per column (i.e. per accuracy bin). The total
number of models in each column is reported at the top.
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S.6 Ensembling

Proportion of bad ensembles for single- and multi-configuration ensembles. Bad ensembles are
characterised by an iAUC of 0.65 or below. For each ensemble size, 30 different ensembles were
produced. In the single-configuration plots, the light grey lines show the results for the individual
configurations while the black line shows their average. In the multi-configuration case, the process
was repeated five times. The 95% confidence interval is indicated by the grey area.
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Figure S.21: Gaussian MIL
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(b) Multi-Configuration

Figure S.22: Gaussian AND
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(b) Multi-Configuration

Figure S.23: Gaussian XOR
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(b) Multi-Configuration

Figure S.24: MNIST MIL

2 4 6 8 10 12 14 16 18 20
Ensemble size

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on
 o

f b
ad

 e
ns

em
bl

es

(a) Single-Configuration

2 4 6 8 10 12 14 16 18 20
Ensemble size

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on
 o

f b
ad

 e
ns

em
bl

es
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Figure S.25: MNIST AND
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Figure S.26: MNIST XOR
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Figure S.27: CyTOF MIL
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Figure S.28: CyTOF AND
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Figure S.29: CyTOF XOR

S.7 Impact of instance proportion on metrics

Comparison of Accuracy, iAUC-ROC and iAUC-PR metrics for unbalanced bags in terms of nega-
tive to positive proportions. The 95% confidence interval is indicated by the light area.

Parameter Values

Batch size 100
Epoch 1000
Learning rate 0.005
Weight decay 0.0001
Loss function Cross-entropy
Optim. algorithm Adam
Featurizer layers 4, 8, 8
Attention layers 8, 8, 1
Classifier layers 8, 2

Table S.4: Parameters used to investigate the
impact of instance proportion with Gaussian
data.

Parameter Values

Batch size 100
Epoch 1000
Learning rate 0.02
Weight decay 0.0001
Loss function Cross-entropy
Optim. algorithm Adam
Featurizer layers 1, 8, 8
Attention layers 8, 8, 1
Classifier layers 8, 2

Table S.5: Parameters used to investigate the
impact of instance proportion with MNIST
data.
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Figure S.30: Gaussian MIL
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Figure S.31: MNIST MIL
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S.8 Impact of attention network architecture on metrics

Comparison of Accuracy, iAUC-ROC and iAUC-PR metrics different sizes of attention network
hidden layer. The 95% confidence interval is indicated by the light area.

Parameter Values

Batch size 100
Epoch 1000
Learning rate 0.005
Weight decay 0.0001
Loss function Cross-entropy
Optim. algorithm Adam
Featurizer layers 4, 8, 8
Attention layers 8, *, 1
Classifier layers 8, 2

Table S.6: Parameters used to investigate the
impact of the attention network hidden layer
size with Gaussian data. The star indicates
the element which was varied.

Parameter Values

Batch size 100
Epoch 1000
Learning rate 0.02
Weight decay 0.0001
Loss function Cross-entropy
Optim. algorithm Adam
Featurizer layers 1, 8, 8
Attention layers 8, *, 1
Classifier layers 8, 2

Table S.7: Parameters used to investigate the
impact of the attention network hidden layer
size with MNIST data. The star indicates the
element which was varied.
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Figure S.32: Gaussian MIL
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Figure S.33: MNIST MIL
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