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ABSTRACT

The Euclidean distance between differentiable wavelet scattering transform co-
efficients (known as paths) provides informative gradients for perceptual quality
assessment of deep inverse problems in computer vision, speech, and audio process-
ing. However, these transforms are computationally expensive when employed as
differentiable loss functions for stochastic gradient descent due to their numerous
paths, which significantly limits their use in neural network training. Against
this problem, we propose “Scattering transform with Random Paths for machine
Learning” (SCRAPL): a stochastic optimization scheme for efficient evaluation
of multivariable scattering transforms. We implement SCRAPL for the joint
time–frequency scattering transform (JTFS) which demodulates spectrotemporal
patterns at multiple scales and rates, allowing a fine characterization of intermittent
auditory textures. We apply SCRAPL to differentiable digital signal processing
(DDSP), specifically, unsupervised sound matching of a granular synthesizer and
the Roland TR-808 drum machine. We also propose an initialization heuristic
based on importance sampling, which adapts SCRAPL to the perceptual content of
the dataset, improving neural network convergence and evaluation performance.
We make our audio samples available and provide SCRAPL as a Python package.

1 INTRODUCTION

A scattering transform (ST) is a wavelet-based nonlinear operator which decomposes a high-resolution
input x into a collection Φx of low-resolution coefficients, known as paths (Mallat, 2012). Without
loss of generality, let us consider a two-layer multivariable ST of a time-domain signal x(t):

Φx(p, t,λ ) = ρ

((∣∣∣|Wx|⊛Ψp

∣∣∣⊛Ψ0

)
(t,λ )

)
. (1)

In the equation above, W is a wavelet transform; the vertical bars denote complex modulus; the circled
asterisk ⊛ denotes a multivariable convolution over time t and wavelet scale λ ; Ψ is a multivariable
wavelet filterbank which is indexed by path p; Ψ0, i.e., Ψp with p = 0 is a multivariable low-pass
filter; and ρ is a pointwise nonlinearity, e.g., path normalization and logarithmic transformation.

The design of the filterbank Ψ aims at a tradeoff between three properties: invariance to rigid
motion, stability to small deformations, and separation of sparse patterns (Mallat, 2016). In speech
and audio processing, examples of such Ψ include “plain” time ST (Andén & Mallat, 2014); joint
time–frequency scattering (JTFS) (Andén & Mallat, 2014); and spiral ST (Lostanlen & Mallat, 2016).
In computer vision, examples include “plain” 2-D ST (Bruna & Mallat, 2013); joint roto-translation
ST Sifre & Mallat (2013); and scalo-roto-translation ST (Oyallon et al., 2014).

The squared Euclidean distance between scattering coefficients, or ST distance for short, is:

dΦ(x, x̃) =
P−1

∑
p=0

T−1

∑
t=0

Λ−1

∑
λ=0

∣∣∣Φx(p, t,λ )−Φx̃(p, t,λ )
∣∣∣2, (2)

where P is the number of paths; T is the number of time samples; and Λ is the number of scales.
Behavioral studies suggest that ST distance is a good predictor of dissimilarity judgments between
isolated sounds, for suitably chosen Ψ and ρ (Patil et al., 2012; Lostanlen et al., 2021; Tian et al.,
2025). Relatedly, neurophysiology studies suggest that JTFS is a suitable idealized model of
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spectrotemporal receptive fields in the auditory cortex of humans (Norman-Haignere & McDermott,
2018) and nonhuman mammals (Kowalski et al., 1996). These findings motivate the use of JTFS as
part of a differentiable loss function for neural audio models (Vahidi et al., 2023).

As an illustration, let x be a fixed reference and x̃= Fx(w) be its reconstruction by an autoencoder
F with trainable weights w. Denoting the set of path indices by P = {0, . . . ,P−1} and the vector of
all time–frequency entries Φx(p, t,λ ) for each path p ∈P by φp(x), the ST loss function writes as:

L Φ
x (x̃) =

1
P

P−1

∑
p=0

L
φp
x (x̃) where ∀p ∈P, L

φp
x (x̃) = P

∥∥φp(x)−φp(x̃)
∥∥2
. (3)

Unfortunately, L Φ
x (x̃) and its gradient ∇L Φ

x (x̃) are expensive in memory and in operations.
Certainly, algorithmic refinements such as FFT-based filtering, multirate processing, and depth-first
search can reduce the cost of an ST path (Oyallon et al., 2018). Yet, the need to traverse all P paths
remains an obstacle to the applicability of multivariable ST for gradient-based learning at scale.

In this article, we aim to accelerate the training of an autoencoder F whose loss is ST distance
between reference and reconstruction, and so over a finite corpus X = {x0, . . . ,xN−1}. Formally:

w⋆ = argmin
w

1
N

N−1

∑
n=0

(
L Φ

xn ◦Fxn

)
(w). (4)

Given the decomposition in Equation 3, a naı̈ve idea would be to replace each term L Φ
xn in the equation

above by some per-path loss L
φp
xn , where the p’s would be drawn independently and uniformly at

random in the path set P . This is a crude form of stochastic approximation (Benveniste et al.,
2012) which is motivated by the tree-like structure of ST: neglecting the overhead of the first layer
(|Wx|), the computation of single-path gradient ∇L

φp
xn is roughly P times more efficient than that of

a full ST gradient ∇L Φ
xn . However, this speedup comes at the detriment of numerical precision: a

deterministic quantity has been replaced by an estimator whose variance may be impractically large.

“Scattering transform with Random Paths for machine Learning” (SCRAPL) is our proposed solution
to this problem. Acknowledging that each single-path gradient makes for an inexpensive but noisy
learning signal, we stabilize it via a combination of three stochastic optimization techniques. Our
contributions are:

1. Stochastic approximation of scattering transform: through uniform sampling of paths.
2. Path-wise adaptive moment estimation (P-Adam for short): an extension of the Adam

algorithm (Kingma & Ba, 2014) which accounts for the non-i.i.d. nature of ST paths.
3. Path-wise stochastic average gradient with acceleration (P-SAGA for short): a variant

of the SAGA algorithm (Defazio et al., 2014) which keeps a memory of previous gradient
values across all paths p.

4. θ -importance sampling supplies auxiliary information to the stochastic optimizer by
sampling paths p in proportion to the typical rate of change of the gradient in the optimization
landscape.

Our main empirical finding is that SCRAPL accomplishes a favorable tradeoff between goodness of
fit and computational efficiency on unsupervised sound matching, i.e., a nonlinear inverse problem in
which the forward operator implements an audio synthesizer. In the context of differentiable digital
signal processing (DDSP), the state-of-the-art perceptual loss function for this task is multiscale
spectral loss (MSS, Engel et al. (2020)). However, the gradient of MSS is uninformative when
input and reconstruction are misaligned or when the synthesizer controls involve spectrotemporal
modulations (Vahidi et al., 2023). Taking advantage from the stability guarantees of JTFS, SCRAPL
expands the class of synthesizers which can be effectively decoded via DDSP.

Figure 1 illustrates one of our experiments: unsupervised sound matching in a nondeterministic
granular synthesizer. On one hand, models based on MSS and other state-of-the-art perceptual losses
are computationally efficient but inaccurate. On the other hand, JTFS-based models are five times
more accurate but one hundred times more costly. SCRAPL is a new point on this Pareto front: it is
within a factor two of JTFS in terms of accuracy while being within a factor three of MSS in terms of
runtime, making it suitable for large-scale DDSP. Relatedly, SCRAPL is also more memory-efficient
than JTFS, thus reducing overhead between cores and allowing for a larger batch size.
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Figure 1: Mean average error (y-axis) versus computational cost (x-axis) of unsupervised sound
matching models for the granular synthesis task. Both axes are rescaled by the performance of a
supervised model with same number of parameters. Whiskers denote 95% CI, estimated over 20
random seeds. Due to computational limitations, JTFS-based sound matching is evaluated only once.

2 RELATED WORK

The guiding intuition behind SCRAPL is that natural signals and images exhibit strong correlations
across ST paths. This fact has been observed empirically since the onset of ST research (Bruna &
Mallat, 2013; Andén & Mallat, 2011) and aligns with earlier work on texture modeling based on
pairwise correlations between wavelet modulus coefficients (Portilla & Simoncelli, 2000).

Visual and auditory textures, understood as stationary random fields, play a key role in applied
ST research. ST features outperform short-term Fourier features (e.g., MSS) in their ability to
characterize intermittency in non-Gaussian textures (Muzy et al., 2015). Texture resynthesis by
gradient descent of ST loss has been applied to such diverse settings as computer music creation
(Lostanlen et al., 2019) and the study of the cosmic microwave background (Delouis et al., 2022).

The democratization of differentiable programming toolkits (e.g., TensorFlow, PyTorch, JAX) have
greatly advanced the flexibility of gradient backpropagation in “hybrid” scattering–neural networks
involving learnable and non-learnable modules. Angles & Mallat (2018) have built a hybrid scattering–
GAN model for image generation, in which ST distance plays the role of a discriminator.

To our knowledge, the closest prior work to SCRAPL is the pruned graph scattering transform (pGST)
of Ioannidis et al. (2020), a method which reduces the complexity of ST by pruning down the path
set P down to a proper subset P ′ ⊂P , based on a graph-spectrum-inspired criterion. Although
both pGST and SCRAPL share a similar overarching goal, let us point out that pGST is a feature
selection method: the cardinality of P ′ is typically ∼ 10% that of P and P ′ is kept fixed across
training examples and across epochs. In comparison, SCRAPL performs a more radical pruning,
down to a single path (cardP ′ = 1), while harnessing dedicated techniques in stochastic optimization
(P-Adam and P-SAGA) to reduce the variance of ST loss during gradient backpropagation.

3 METHODS

3.1 STOCHASTIC APPROXIMATION OF SCATTERING TRANSFORM LOSS GRADIENT

The proposition below, proven in Appendix A, shows that if paths are drawn uniformly at random,
the stochastic approximation in SCRAPL is unbiased: in other words, the expected value of the
stochastic gradient of per-path loss is equal to the gradient of full ST loss.

Proposition 3.1. Let Φ = (φp)
P−1
0 be a scattering transform with P paths. Given a signal or image x,

let Fx be an autoencoder operating on x and let L Φ
x be the associated ST reconstruction loss. Let

UP be the uniform distribution over P = {0, . . . ,P−1}. One has, for every weight vector w:

Ez∼UP

[
∇(L φz

x ◦Fx)(w)
]
=∇(L Φ

x ◦Fx)(w). (5)

3
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Although a uniform sampling of paths matches the intuition of approximating the ST gradient in
expectation, we will see that this may be suboptimal. The θ -importance sampling method, which
we will present in Section 3.4, does not satisfy the hypothesis of Proposition 3.1; yet, it consistently
outperforms uniform sampling as part of SCRAPL. The design of biased stochastic approximation
schemes is an active topic in machine learning research (Dieuleveut et al., 2023).

3.2 P -ADAM: PATH-WISE ADAPTIVE MOMENT ESTIMATION

The key idea behind the Adam optimizer is to smooth the successive realizations of the stochastic
gradient, here denoted by g, via autoregressive estimates of its first- and second-order element-wise
moments, denoted by m and v (Kingma & Ba, 2014). However, the smoothing technique in Adam is
ineffective for SCRAPL because the gradients of path-wise ST losses are not identically distributed.
Against this problem, we propose to maintain P estimates of path-wise moments (P-Adam):

mp← β
(k−τp)/P
1 mp +(1−β

(k−τp)/P
1 )g (6)

vp← β
(k−τp)/P
2 vp +(1−β

(k−τp)/P
2 )(g⊙g), (7)

where k is the current iteration number, τp is the iteration when path p was last drawn; β1 and β2 are
hyperparameters; and the circled dot denotes element-wise multiplication of vectors. The exponent
(k− τp)/P adapts the time constant of smoothing to the recency of the previous estimate.

The second step in P-Adam, following classical Adam, consists in bias correction and ratio of
debiased first-order moment to stable square root of debiased second-order moments:

gcurrent =

mp

1−β
k/P
1√

ε +
vp

1−β
k/P
2

, (8)

where we have adapted the original exponents of Adam (β k
1 , β k

2 ) to account for the number of paths.

3.3 P -SAGA: PATH-WISE STOCHASTIC AVERAGE GRADIENT WITH ACCELERATION

The stochastic average gradient (SAG) algorithm has the potential to accelerate stochastic gradient
descent in the context of the minimization of finite sums (Schmidt et al., 2017). Although this sum is
typically over training examples in neural network training, in SCRAPL, Equation 3 is a sum over
paths for a given example x. With this observation in mind, we propose P-SAGA, a path-wise
version of SAG with acceleration (SAGA, Defazio et al. (2014)). We maintain a memory of the
last P-Adam updates over each path, denoted by (ĝp)

P−1
0 ; and the set of paths previously visited,

denoted by Γ. Given a learning rate αk at iteration k, the P-SAGA update is:

w←w−αk

(
gcurrent− ĝp +

∑γ∈Γ ĝγ

max(1,cardΓ)

)
. (9)

Algorithm 1 in Appendix B summarizes SCRAPL with both P-Adam and P-SAGA enabled.

3.4 θ -IMPORTANCE SAMPLING

We now consider the important special case of differentiable digital signal processing (DDSP, see
Section 1), in which the autoencoder composes a non-learnable decoder with a learned encoder: i.e.,
Fx = (D◦Ex) (Engel et al., 2020). We assume both D and Ex to be differentiable with respect to
their inputs, but D is not necessarily deterministic. We denote by U the dimension of the parameter
space; i.e., the output space of Ex and input space of D.

A known drawback of DDSP is that the optimization landscape of spectral loss in parameter space
(i.e., of L Φ

x ◦D) may not coincide with that of P-loss (i.e., Euclidean distance to θ ) (Hayes et al.,
2024). Against this drawback, we propose a method named θ -importance sampling (θ -IS), which
constructs a categorical distribution π over the path space P . The key idea behind θ -IS is to introduce

4
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bias in the stochastic approximation of spectral loss so as to bring it closer to P-loss. For lack of
supervision, we are unable to construct the optimal distribution π but provide a heuristic of this form:

πp =
1
U

U−1

∑
u=0

Cu,p

∑
P−1
p=0 Cu,p′

, (10)

where, intuitively, Cu,p represents the importance of parameter dimension θu upon path p. We
rescale this importance relative to all paths and average uniformly across parameters u, yielding an
importance-weighted categorical distribution π over paths.

Let Ex,u(w) denote the uth coordinate of Ex(w). Given w, we measure the sensitivity of each ST
path p to the parameter control u around the input x in terms of the following partial derivative:

sx,u,p : w 7−→
∂
(
L

φp
x ◦D

)
∂θu

(
Ex,u(w)

)
(11)

To convert the sensitivity function sx,u,p into relative importance Cu,p, we multiply it by the transposed
gradient of Ex,u, yielding a vector field mapping neural network parameters to synth parameters. We
evaluate the gradient of this vector field at w, yielding a square matrix; compute its largest eigenvalue;
and repeat the process over a representative dataset X of unlabeled signals. Formally:

Cu,p = Ex∼X

[
λmax

(
∇w

(
sx,u,p(w)∇Ex,u(w)⊤

))]
, (12)

where λmax(M) is the largest eigenvalue of a square matrix M; ∇w is the gradient with respect to w.
In practice, we compute λmax(M) using a stochastic power iteration with deflation1 and the Hessian
vector product (HVP), which has the same asymptotic runtime complexity as a backpropagation step.

This measure is inspired by Schmidt et al. (2017), who propose a variant of the SAG algorithm
in which mini-batches are sampled non-uniformly; more precisely, in proportion to the Lipschitz
constant of the gradients. This heuristic relies on the argument that gradients which change quickly
should be regarded as more important than gradients which change slowly.

4 EXPERIMENTS

We apply SCRAPL to a differentiable implementation of the joint time–frequency scattering trans-
form (Muradeli et al., 2022). We conduct three unsupervised sound matching experiments under the
DDSP paradigm. The encoder, Ex, is a convolutional neural network which operates on a learnable
constant-Q transform (Cheuk et al., 2020).

To highlight the new kinds of perceptual quality assessment tasks SCRAPL enables, all three
experiments investigate nondeterministic decoders that introduce random time shifts into the resulting
reconstructed audio. While our experiments are for a discriminative and generative audio processing
task, it is important to emphasize that SCRAPL is a general algorithm for scattering transforms and
can be equally applied to deep inverse problems in other domains like computer vision.

4.1 JOINT TIME–FREQUENCY SCATTERING TRANSFORM (JTFS)

The joint time–frequency scattering transform (JTFS) is a nonlinear convolutional operator which
extracts spectrotemporal modulations over the constant-Q spectrogram (Andén et al., 2019). The
multivariable filter Ψp comprises two stages: temporal scattering, i.e., 1-D band-pass filtering with
Morlet wavelets over the time axis; and frequential scattering, i.e., idem over the log-frequency axis.
The center frequencies of band-pass filters for temporal scattering, called rates, are measured in Hertz.
The center frequencies for frequential scattering, called scales, are measured in cycles per octave.
Thus, in the case of JTFS, the path index p is a rate–scale multiindex.

4.2 GRANULAR SYNTH SOUND MATCHING

Granular synthesis is an example of a new class of synths that can be effectively sound matched with
SCRAPL and the JTFS, due to its inherently stochastic audio generation process with individual grains

1https://github.com/noahgolmant/pytorch-hessian-eigenthings
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being misaligned in time at the micro-level, but still being perceived as a single texture. It has been
extensively used in the production of electronic music since the late 1950s 2 and played a fundamental
role in the creation of contemporary music genres such as future bass. Our differentiable granular
synth produces textures of chirplet grains with random temporal positions, center frequencies, and
chirp rates, and has two parameters: density (θdensity) which controls how many grains are produced,
and slope (θslope) which controls their rate of frequency modulation.

We compare four MSS-based losses: linear, log + linear (Engel et al., 2020), random (Steinmetz
& Reiss, 2020), and a SOTA hyperparameter-tuned revisited MSS loss (Schwär & Müller, 2023).
Given their correlation with human perception (Kilgour et al., 2019; Tailleur et al., 2024), we also
include the Euclidean distance of MS-CLAP (Elizalde et al., 2023) and PANNs Wavegram Logmel
embeddings (Kong et al., 2020). In addition, we train with ordinary (i.e., full-tree) JTFS so as
to put the speed and accuracy of SCRAPL into context. Lastly, as an estimate of best achievable
performance with this neural network architecture, we run a supervised version of sound matching,
under the name of “parameter loss” or P-loss for short. See Appendix F for implementation details.

4.3 CHIRPLET SYNTH SOUND MATCHING

Similar to the unsupervised granular synth sound matching experiment, we evaluate our θ -importance
sampling initialization heuristic for SCRAPL on a differentiable chirplet synth (based on the imple-
mentation by Vahidi et al. (2023)) with two parameters: θAM which controls the rate of amplitude
modulation (Hz) and θFM which controls the rate of frequency modulation (oct/s). Since the paths
in the JTFS correspond to specific wavelet AM and FM center frequencies, given a chirplet synth
configuration with bounded θAM and θFM ranges, we know which paths of the JTFS should provide
the most informative gradients for the synth parameters. After computing our initialization heuristic,
we can analyze the resulting path probabilities and verify that the paths within the parameter ranges
of the synth have been assigned a probability greater than uniform.

We evaluate four different synth configurations:

1. Slow AM (θAM ∈ [1.0,2.0] Hz), slow FM (θFM ∈ [0.5,1.0] oct/s);

2. Slow AM (θAM ∈ [1.0,2.0] Hz), moderate FM (θFM ∈ [2.0,4.0] oct/s);

3. Fast AM (θAM ∈ [2.8,8.4] Hz), moderate FM (θFM ∈ [2.0,4.0] oct/s);

4. Fast AM (θAM ∈ [2.8,8.4] Hz), fast FM (θFM ∈ [4.0,12.0] oct/s).

We compare SCRAPL training runs using uniform sampling and θ -importance sampling calculated
from a single training batch of 32 examples. See Appendix F for implementation details.

4.4 ROLAND TR-808 SOUND MATCHING

As a real-world evaluation task, we sound match a DDSP implementation (Shier et al., 2024) of the
Roland TR-808 Drum Machine, a historically meaningful synthesizer for the creation of Detroit
techno, house, and hip-hop music3. Inharmonic transient sounds like percussion are a form of non-
stationary signal that the JTFS is well suited for perceptual quality assessment (Han et al., 2024) due
to its ability to extract spectrotemporal patterns at multiple scales and rates. Additionally, due to the
transient nature of drum sounds, they are highly sensitive to even a few milliseconds of misalignment,
thus further benefiting from the time invariance of JTFS.

We use a high fidelity, 100% analog dataset4 of 681 bass drum, snare, tom, and hi-hat one-shot
recordings of the TR-808 and repeat experiments 40 times on different train/validation/test splits and
random seeds. Since the transient of analog drum recordings is rarely perfectly aligned, and no two
analog TR-808 drum synths produce the same signal, we investigate both perfectly aligned sound
matching (labeled micro) and unaligned sound matching (labeled meso) by up to ±46 ms (±2048
samples at 44.1 kHz).

2https://www.iannis-xenakis.org/en/granular-synthesis/
3https://www.ethanhein.com/wp/2016/beatmaking-fundamentals/
4https://samplesfrommars.com/products/tr-808-samples
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Table 1: Evaluation results for the unsupervised granular synth sound matching task. Uncertainties
are 95% confidence intervals for 20 training runs using different random seeds. Due to computational
limitations, the JTFS method is only evaluated once.

Method θsynth L1 ‰ ↓ θdensity L1 ‰ ↓ θslope L1 ‰ ↓
JTFS 42.4 65.8 19.0
SCRAPL (no θ -IS) 73.8 ±13 70.4 ± 8.8 77.2 ±19
SCRAPL 65.7 ± 4.2 72.6 ± 6.3 58.7 ± 7.5
MSS Linear 370 ± 0.52 499 ± 0.84 241 ± 0.28
MSS Log + Linear 259 ± 1.7 277 ± 3.2 241 ± 0.42
MSS Revisited 311 ±19 376 ±40 246 ± 3.0
MSS Random 195 ± 4.2 149 ± 7.8 242 ± 1.0
MS-CLAP 166 ± 8.2 81.9 ± 9.0 250 ± 8.2
PANNs Wavegram-Logmel 159 ± 4.4 80.3 ± 4.2 238 ± 5.5

P-Loss 20.5 ± 0.20 24.7 ± 0.31 16.3 ± 0.31

We employ MSS and JTFS audio distance as evaluation metrics, as well as mean frame-by-frame
perceptual loudness and loudness-weighted perceptually-scaled spectral centroid and flatness for both
the transient and decay portions of reconstructed signals (eight metrics in total). Additional context
for these last six metrics can be found in Shier et al. (2024). See Appendix F for all implementation
details.

5 RESULTS

5.1 GRANULAR SYNTH SOUND MATCHING

We benchmark all loss function computational costs (see Appendix C, Table 5) and plot them in
Figure 1 against their evaluation accuracy (see Table 1) on θsynth L1 relative to supervised training.
We observe that SCRAPL comes within a factor of two of JTFS in terms of accuracy, and within a
factor of three of MSS in terms of runtime, striking a notable balance between the two. The significant
difference in runtime and convergence between JTFS and SCRAPL is further illustrated in Figure 2
where we plot validation accuracy against wall-clock time, instead of optimization steps. We also
note that MSS is unable to sound match the synth at all, and the SOTA embedding losses are only
able to optimize θdensity, albeit not as well as SCRAPL and JTFS. Validation accuracy curves for all
methods are provided in Figure 2.
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Figure 2: Left: JTFS vs. SCRAPL wall-clock training times on a single NVIDIA RTX A5000 GPU.
Shaded areas are 95% confidence intervals for 20 training runs using different random seeds. Due to
computational limitations, the JTFS method is only evaluated once. Right: Validation convergence
graphs for the unsupervised granular synth sound matching task. Shaded areas are 95% confidence
intervals for 20 training runs using different random seeds.

Table 2 summarizes the results of an ablation of SCRAPL and its P-Adam, P-SAGA, and θ -IS
optimization techniques for the granular synth sound matching task. There is a clear monotonic
improvement in accuracy and convergence time for each technique, as well as a reduction in variance
provided by P-SAGA, and θ -IS. It is also worth noting that SCRAPL without any extra stochastic
optimization techniques still outperforms all other non-JTFS methods in terms of accuracy, making
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Table 2: Ablation table for SCRAPL with test results and validation θsynth L1 total variation and
convergence steps for the unsupervised granular synth sound matching task. Convergence is defined
as θsynth L1 < 100 ‰. Uncertainties are 95% confidence intervals for 20 training runs using different
random seeds. Due to computational limitations, the JTFS method is only evaluated once.

Method P- P- θ -IS Test Validation
Adam SAGA θsynth L1 ‰ ↓ Total Var. ↓ Conv. Steps ↓

SCRAPL ✗ ✗ ✗ 99.7 ± 8.2 5.30± 0.25 10 906±1170
✓ ✗ ✗ 87.4 ±15 6.98± 0.25 8006± 697
✓ ✓ ✗ 73.8 ±13 3.46± 0.15 7296± 683
✓ ✓ ✓ 65.7 ± 4.2 3.27± 0.12 6014± 642

JTFS 42.4 5.66 1442
P-Loss 20.5 ± 0.20 1.83± 0.025 672± 23

Table 3: Evaluation results for SCRAPL with and without the θ -importance sampling initialization
heuristic on unsupervised sound matching of four different AM / FM chirplet synths. Uncertainties
are 95% confidence intervals for 20 training runs using different random seeds.

Sampling Method Synth Configuration θAM L1 ‰ ↓ θFM L1 ‰ ↓
θAM (Hz) θFM (oct/s)

Uniform 1.0−2.0 0.5−1.0 124 ±10 155 ±18
θ -IS 1.0−2.0 0.5−1.0 77.7 ± 6.7 78.4 ±11

Uniform 1.0−2.0 2.0−4.0 111 ±20 68.6 ±11
θ -IS 1.0−2.0 2.0−4.0 55.5 ± 4.1 44.4 ± 2.8

Uniform 2.8−8.4 2.0−4.0 122 ±22 238 ±21
Adaptive 2.8−8.4 2.0−4.0 54.9 ± 3.5 48.5 ± 4.7

Uniform 2.8−8.4 4.0−12.0 108 ±12 95.6 ±20
θ -IS 2.8−8.4 4.0−12.0 81.5 ±12 82.1 ±11

stochastic sampling of scattering transforms a viable alternative if the additional memory and
computational requirements of P-Adam, P-SAGA, and θ -IS are undesirable. Finally, from Table 1,
we see that θ -IS results in a better overall accuracy of θsynth than uniform sampling (despite θdensity
now being slightly worse), which is consistent with our hypothesis from Section 3.4 that θ -IS results
in more balanced convergence of all synth parameters. Validation accuracy curves for all ablations
are provided in Appendix C, Figure 3.

5.2 CHIRPLET SYNTH SOUND MATCHING

Table 3 summarizes the chirplet synth evaluation results, with Appendix D, Figure 4 showing
validation accuracy curves for uniform and θ -importance sampling on the four synth configurations.
θ -IS improves the prediction of θAM by 25–50% and of θFM by 15–80%, while reducing time to
convergence by 30–50%: see Appendix D, Table 6. Of course, these improvements are for synth
configurations that have been designed to showcase the benefit of nonuniform sampling of paths;
however, this overall trend remains true, albeit not as pronounced, for the granular synth (Table 2) and
real-world sound matching task (Table 4). Finally, we plot the path θ -IS probabilities in Appendix D,
Figure 5 and observe that indeed, a unique distribution is learned for each synth, and the greater than
uniform probabilities appear to roughly correspond to each configuration’s limited AM/FM range.

5.3 ROLAND TR-808 SOUND MATCHING

Table 4 and Appendix E, Tables 7, and 8 summarize the unsupervised Roland TR-808 synth sound
matching audio distance, transient, and decay perceptual similarity results. Overall, we observe that
JTFS dominates almost all metrics in both micro and meso environments, showcasing its suitability
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Table 4: Audio distance evaluation results for the unsupervised Roland TR-808 DDSP synth sound
matching task. Uncertainties are 95% confidence intervals for 40 training runs using different random
seeds and dataset splits. Due to computational limitations, the JTFS method is only trained and
evaluated for 4 random seeds.

Method MSS Log. + Linear ↓ JTFS ↓
Micro Meso Micro Meso

JTFS 617 ±46 622 ±45 490 ±28 523 ±17
SCRAPL
(no θ -IS) 862 ±36 944 ±48 1140 ±48 1250 ±51
SCRAPL 857 ±42 879 ±42 1050 ±50 1110 ±52
MSS Linear 611 ±15 724 ±37 779 ±31 1470 ±83
MSS Log + Linear 596 ±19 615 ±18 1260 ±58 1390 ±49
MSS Revisited 637 ±16 797 ±20 870 ±23 1250 ±27
MSS Random 682 ±25 700 ±26 1410 ±87 1500 ±59

for transient percussive sounds and temporal invariance. After JTFS, MSS tends to be best when
samples are perfectly aligned (micro), but performs worse in the unaligned (meso) setting and is
unable to match the transient, which is the most salient part of a drum hit. In contrast, SCRAPL shows
good sound matching performance in both micro and meso environments and is able to preserve the
transient even when audio is misaligned. However, SCRAPL fails to recover the less audible decay
portion of the signal. We hypothesize this is due to informative, low-frequency paths for the decay
being sparse and underrepresented in the categorical distribution over paths, even after accounting for
θ -IS. We provide listening samples at the accompanying website5 and encourage readers to evaluate
the results directly.

6 CONCLUSION

Differentiable similarity measures have the potential to enhance the perceptual quality of generative
models and deep inverse problem solvers. In spite of their mathematical guarantees and neurophysio-
logical plausibility, scattering transforms (ST) have not been able to realize this potential, for lack of
tractable optimization algorithms. To fill this gap, SCRAPL takes advantage of the tree-like structure
of ST to save computation at each backward pass. Our numerical simulations show the value of
SCRAPL for unsupervised sound matching, particularly when the synthesizer of interest is nondeter-
ministic. Although our ST architecture of choice is joint time–frequency scattering (JTFS), we stress
that SCRAPL is agnostic to the specifics of multivariable filterbank design: beyond wavelet scattering,
it extends to learnable scattering-like architectures (Lattner et al., 2019; Cotter & Kingsbury, 2019;
Gauthier et al., 2022). As a longer-term perspective, the success of our synthesis-informed importance
sampling heuristic highlights the opportunity to meta-learn the relative importance of each ST path
for the task at hand over the course of neural network training (Yamaguchi et al., 2023).

5Anonymous companion website: https://icewithfrosting.github.io/scrapl/

9

https://icewithfrosting.github.io/scrapl/


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Appendix F contains all hyperparameters and training details for each of the three experiments in
this paper. We also provide listening samples, anonymized source code, configuration files, and
instructions to reproduce our experiments at the anonymous companion website:
https://icewithfrosting.github.io/scrapl/
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A PROOF OF PROPOSITION 3.1

Let us write x̃= Fx(w). By linearity of the gradient, we may decompose ∇L Φ
x (x̃) over paths:

∇L Φ
x (x̃) =

1
P

P−1

∑
p=0

∇L
φp
x (x̃). (13)

Let us denote the Jacobian of Fx at w by JFx(w). For each p ∈P , we apply the chain rule:

∇(L
φp
x ◦Fx)(w) =∇L

φp
x (x̃)⊤JFx(w). (14)

Plugging the identity above into Equation 13 yields:

∇(L Φ
x ◦Fx)(w) =

1
P

P−1

∑
p=0

(
∇L

φp
x (x̃)⊤JFx(w)

)

=

(
1
P

P−1

∑
p=0

∇L
φp
x (x̃)

)⊤
JFx(w), (15)

where the latter equation holds by associativity of matrix multiplication.

We now compute the expected value of ∇L φz
x (x̃) for z∼UP, i.e., a uniform distribution over P:

Ez∼UP

[
∇L φz

x (x̃)
]
=

1
P

P−1

∑
p=0

∇L
φp
x (x̃). (16)

We recognize the row vector on the right-hand side of Equation 15. Thus:

∇(L Φ
x ◦Fx)(w) = Ez∼UP

[
∇L φz

x (x̃)
]⊤ JFx(w)

= Ez∼UP

[
∇L φz

x (x̃)⊤JFx(w)
]
, (17)

where the latter equation holds by linearity of the expected value. Finally, we use the reverse form of
the chain rule in Equation 14 to identify the expected SCRAPL gradient:

∇(L Φ
x ◦Fx)(w) = Ez∼UP

[
∇(L φz

x ◦Fx)(w)
]

(18)

concluding the proof.
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B SCRAPL ALGORITHM

Algorithm 1 “Scattering transform with Random Paths for machine Learning” (SCRAPL). The
pseudo-code below describes SCRAPL with a batch size equal to one, without loss of generality.

Require: Φ = (φp)
P−1
0 : Scattering transform (ST) with P paths

Require: π: Categorical distribution over the path set P = {0, . . . ,P−1}
Require: F : Autoencoder with trainable parameters w
Require: w: Neural network weights at initialization
Require: β1,β2,ε: Adam hyperparameters
Require: (αk)

K−1
0 : Learning rate schedule

Γ← /0
for p in {0, . . . ,P−1} do

τp← 0
mp← 0
vp← 0
ĝp← 0

end for
for k in {0, . . . ,K−1} do

n← draw an integer uniformly at random in {0, . . . ,N−1}
p← draw an integer at random in {0, . . . ,P−1} according to π

L (w)← P
∥∥φp(xn)− (φp ◦Fw)(xn)∥2

2
g←∇L (w)

{Stochastic approx.}

mp← β
(k−τp)/P
1 mp +(1−β

(k−τp)/P
1 )g

vp← β
(k−τp)/P
2 vp +(1−β

(k−τp)/P
2 )(g⊙g)

m̂←mp/(1−β
k/P
1 )

v̂← vp/(1−β
k/P
2 )

gcurrent← m̂/
√

ε + v̂
τp← k

{P-Adam}

gavg←
1

max(1,cardΓ)
∑γ∈Γ ĝγ

gSAGA← gcurrent− ĝp +gavg
w←w−αkgSAGA
ĝp← gcurrent
Γ← Γ∪{p}

{P-SAGA}

end for
return w
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C ADDITIONAL GRANULAR SYNTH EVALUATION RESULTS

Table 5: Loss function benchmark results for one optimization step (forward + backward, 32768
samples of audio, batch size 4, 1 thread, single precision, 1 NVIDIA RTX A5000 GPU, CUDA 12.4,
PyTorch 2.8.0). SCRAPL paths are benchmarked individually and then aggregated across all paths
using the median for time and interquartile range (IQR) and maximum for memory usage.

Method Median Time (ms) ↓ IQR (ms) ↓ Max. Memory (MB) ↓
JTFS 1730 23.9 12 967
SCRAPL 89.8 3.62 2503
MSS Linear 26.3 1.12 694
MSS Log + Linear 19.1 0.696 702
MSS Revisited 17.0 0.210 663
MSS Random 24.7 5.81 706
MS-CLAP 75.6 1.69 2032
PANNs Wavegram-Logmel 29.3 5.92 1360

P-Loss (θsynth ∈ R2) 0.516 0.108 625

0 2500 5000 7500 10000 12500 15000 17500
Steps

0.00

0.05

0.10

0.15

0.20

0.25

sy
nt

h
L 1

SCRAPL: no -Adam, no -SAGA, no -IS
SCRAPL: no -SAGA, no -IS
SCRAPL: no -Importance Sampling ( -IS)
SCRAPL
JTFS

Figure 3: Validation convergence graphs of SCRAPL ablations and the JTFS for the unsupervised
granular synth sound matching task. Shaded areas are 95% confidence intervals for 20 training runs
using different random seeds. Due to computational limitations, the JTFS method is only evaluated
once.
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D ADDITIONAL CHIRPLET SYNTH EVALUATION RESULTS

Table 6: Convergence rate (CR) and steps for SCRAPL with and without the θ -importance sampling
initialization heuristic on unsupervised sound matching of four different AM / FM chirplet synths.
Convergence is defined as L1 < 100 ‰ for θAM or θFM. Uncertainties are 95% confidence intervals
for 20 training runs using different random seeds.

Sampling Method Synth Configuration θAM θFM

θAM (Hz) θFM (oct/s) CR ↑ Conv. Steps ↓ CR ↑ Conv. Steps ↓
Uniform 1.0−2.0 0.5−1.0 60% 3944 ± 342 45% 4064 ± 372

θ -IS 1.0−2.0 0.5−1.0 100% 2002 ± 324 100% 3134 ± 492
Uniform 1.0−2.0 2.0−4.0 100% 2203 ± 135 100% 1536 ± 194

θ -IS 1.0−2.0 2.0−4.0 100% 1099 ± 173 100% 768 ± 118
Uniform 2.8−8.4 2.0−4.0 95% 3254 ± 250 0% N/A

θ -IS 2.8−8.4 2.0−4.0 100% 1925 ± 165 100% 2966 ± 210
Uniform 2.8−8.4 4.0−12.0 100% 3096 ± 334 95% 3208 ± 235

θ -IS 2.8−8.4 4.0−12.0 95% 2253 ± 218 95% 2178 ± 173

Figure 4: SCRAPL θsynth L1 validation values during training for four different AM / FM chirplet
synths. Blue is using the θ -importance sampling initialization heuristic, and black is using uniform
sampling. Shaded areas are 95% confidence intervals for 20 training runs using different random
seeds.
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Figure 5: SCRAPL (J = 12,Q1 = 8,Q2 = 2,Jfr = 3,Qfr = 2,Npaths = 315) path θ -importance sam-
pling probabilities for four different AM / FM chirplet synths calculated from 1 batch of 32 log-
uniformly randomly sampled θsynth values. Black dots are individual path (wavelet) AM / FM center
frequency locations and each dashed rectangle is the θsynth range for each synth configuration. A
uniform probability ratio of 1.0 means a path is sampled with probability 1

P .
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E ADDITIONAL ROLAND TR-808 EVALUATION RESULTS

Table 7: Drum transient evaluation results for the unsupervised Roland TR-808 DDSP synth sound
matching task. Uncertainties are 95% confidence intervals for 40 training runs using different random
seeds and dataset splits. Due to computational limitations, the JTFS method is only trained and
evaluated for 4 random seeds.

Method Loudness L1 ↓ Spectral Centroid L1 ↓ Spectral Flatness L1 ↓
Micro Meso Micro Meso Micro Meso

JTFS 137 ±10 158 ± 20 859 ± 68 819 ± 96 1200 ± 87 1090 ±110
SCRAPL
(no LS) 389 ±41 460 ± 60 1020 ±100 992 ±110 1800 ±170 1990 ±180
SCRAPL 374 ±39 377 ± 32 1000 ±120 1080 ±120 1750 ±270 1820 ±220
MSS Lin. 381 ±12 2510 ±480 902 ± 27 2350 ±310 962 ± 43 3620 ±680
MSS L+L 492 ±44 1080 ± 91 928 ± 65 1380 ± 76 916 ± 50 1320 ±150
MSS Rev. 330 ±21 808 ± 40 1070 ± 49 1540 ± 53 1390 ± 62 2640 ± 96
MSS Rand. 584 ±75 1030 ± 89 1200 ±100 1350 ± 99 1690 ±120 1950 ±140

Table 8: Drum decay evaluation results for the unsupervised Roland TR-808 DDSP synth sound
matching task. Uncertainties are 95% confidence intervals for 40 training runs using different random
seeds and dataset splits. Due to computational limitations, the JTFS method is only trained and
evaluated for 4 random seeds.

Method Loudness L1 ↓ Spectral Centroid L1 ↓ Spectral Flatness L1 ↓
Micro Meso Micro Meso Micro Meso

JTFS 315 ± 22 355 ±110 614 ± 51 617 ± 71 527 ± 31 718 ±190
SCRAPL
(no LS) 1810 ±190 2210 ±210 1530 ±170 1860 ±170 2620 ±310 3300 ±370
SCRAPL 1810 ±160 1740 ±170 1490 ±120 1470 ±140 2540 ±290 2480 ±290
MSS Lin. 357 ± 12 1120 ±260 654 ± 18 1110 ±160 472 ± 17 1500 ±350
MSS L+L 389 ± 42 466 ± 45 563 ± 22 597 ± 24 565 ± 29 644 ± 51
MSS Rev. 279 ± 12 494 ± 22 589 ± 21 801 ± 29 552 ± 22 846 ± 29
MSS Rand. 453 ± 21 485 ± 24 660 ± 27 640 ± 35 594 ± 30 658 ± 33
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F EXPERIMENT TRAINING DETAILS AND HYPERPARAMETERS

Table 9: Unsupervised granular synth sound matching task hyperparameters.

Category Hyperparameter Name Value
Data N (# of examples) 5120

train / val / test split 60% / 20% / 20%

Encoder # of parameters 604 K
CQT # of octaves 5
CQT bins / octave 12
CQT hop length 256
CQT postprocessing log1p
CNN # of conv. blocks 5
CNN kernel size (3, 3)
CNN channels / conv. block 128
CNN embedding dim. 64
CNN dense layer dropout prob. 0.5

Decoder (Synth) dim(θsynth) 2
sampling rate 8192 Hz
# of samples 32768
max. # of grains 64
grain # of samples 4096
min. grain pitch 256 Hz
max. grain pitch 2048 Hz

SCRAPL & JTFS J 12
Q1 8
Q2 2
J f r 3
Q f r 2
T 4096
F 8
ρ identity function
P (# of paths) 315

θ -Importance Sampling NIS (# of examples) 320
λmax # of deflated power iterations 20

Training # of random seed training runs 20
epochs 200
batch size 32
starting learning rate 1×10−5

learning rate scheduler none
Adam β1 0.9
Adam β2 0.999
weight decay 0.01
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Table 10: Unsupervised AM/FM chirplet synth sound matching task hyperparameters.

Category Hyperparameter Name Value
Data N (# of examples) 5120

train / val / test split 60% / 20% / 20%

Encoder # of parameters 604 K
CQT # of octaves 5
CQT bins / octave 12
CQT hop length 256
CQT postprocessing log1p
CNN # of conv. blocks 5
CNN kernel size (3, 3)
CNN channels / conv. block 128
CNN embedding dim. 64
CNN dense layer dropout prob. 0.5

Decoder (Synth) dim(θsynth) 2
sampling rate 8192 Hz
# of samples 32768
chirplet center frequency 512 Hz
chirplet bandwidth 2 octaves
min. time shift -2048 samples
max. time shift +2048 samples

SCRAPL & JTFS J 12
Q1 8
Q2 2
J f r 3
Q f r 2
T 4096
F 8
ρ identity function
P (# of paths) 315

θ -Importance Sampling NIS (# of examples) 32
λmax # of deflated power iterations 20

Training # of random seed training runs 20
epochs 50
batch size 32
starting learning rate 1×10−4

learning rate scheduler none
Adam β1 0.9
Adam β2 0.999
weight decay 0.01

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11: Unsupervised Roland TR-808 synth sound matching task hyperparameters.

Category Hyperparameter Name Value
Data N (# of examples) 681

Nbass drum 215
Nsnare 240
Ntom 189
Nhi-hat 37
Ntrain 425
Nval 128
Ntest 128

Encoder # of parameters 724 K
CQT # of octaves 9
CQT bins / octave 12
CQT hop length 256
CQT postprocessing log1p
CNN # of conv. blocks 5
CNN kernel size (3, 3)
CNN channels / conv. block 128
CNN embedding dim. 128
CNN dense layer dropout prob. 0.25

Decoder (Synth) dim(θsynth) 14
sampling rate 44100 Hz
# of samples 44100
min. time shift -2048 samples
max. time shift +2048 samples

SCRAPL & JTFS J 12
Q1 8
Q2 2
J f r 5
Q f r 2
T 2048
F 1
ρ log1p
P (# of paths) 483

θ -Importance Sampling NIS (# of examples) 16
λmax # of deflated power iterations 20

Training # of random seed training runs 40
epochs 50
batch size 8
starting learning rate 1×10−5

learning rate scheduler linearly decreasing until 1×10−4

Adam β1 0.9
Adam β2 0.999
weight decay 0.01
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