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ABSTRACT

The Euclidean distance between wavelet scattering transform coefficients (known
as paths) provides informative gradients for perceptual quality assessment of deep
inverse problems in computer vision, speech, and audio processing. However, these
transforms are computationally expensive when employed as differentiable loss
functions for stochastic gradient descent due to their numerous paths, which signifi-
cantly limits their use in neural network training. Against this problem, we propose
“Scattering transform with Random Paths for machine Learning” (SCRAPL): a
stochastic optimization scheme for efficient evaluation of multivariable scattering
transforms. We implement SCRAPL for the joint time–frequency scattering trans-
form (JTFS) which demodulates spectrotemporal patterns at multiple scales and
rates, allowing a fine characterization of intermittent auditory textures. We apply
SCRAPL to differentiable digital signal processing (DDSP), specifically, unsu-
pervised sound matching of a granular synthesizer and the Roland TR-808 drum
machine. We also propose an initialization heuristic based on importance sampling,
which adapts SCRAPL to the perceptual content of the dataset, improving neural
network convergence and evaluation performance. We make our audio samples
available and provide SCRAPL as a Python package.

1 INTRODUCTION

A scattering transform (ST) is a wavelet-based nonlinear operator which decomposes a high-resolution
input x into a collection Φx of low-resolution coefficients, known as paths (Mallat, 2012). Without
loss of generality, let us consider a two-layer multivariable ST of a time-domain signal x(t):

Φx(p, t,λ ) = ρ

((∣∣∣|Wx|⊛Ψp

∣∣∣⊛Ψ0

)
(t,λ )

)
. (1)

In the equation above, W is a wavelet transform; the vertical bars denote complex modulus; the circled
asterisk ⊛ denotes a multivariable convolution over time t and wavelet scale λ ; Ψ is a multivariable
wavelet filterbank which is indexed by path p; Ψ0, i.e., Ψp with p = 0 is a multivariable low-pass
filter; and ρ is a pointwise nonlinearity, e.g., path normalization and logarithmic transformation.

The design of the filterbank Ψ aims at a tradeoff between three properties: invariance to rigid
motion, stability to small deformations, and separation of sparse patterns (Mallat, 2016). In speech
and audio processing, examples of such Ψ include “plain” time ST (Andén & Mallat, 2014); joint
time–frequency scattering (JTFS) (Andén & Mallat, 2014); and spiral ST (Lostanlen & Mallat, 2016).
In computer vision, examples include “plain” 2-D ST (Bruna & Mallat, 2013); joint roto-translation
ST Sifre & Mallat (2013); and scalo-roto-translation ST (Oyallon et al., 2014).

The squared Euclidean distance between scattering coefficients, or ST distance for short, is:

dΦ(x, x̃) =
P−1

∑
p=0

T−1

∑
t=0

Λ−1

∑
λ=0

∣∣∣Φx(p, t,λ )−Φx̃(p, t,λ )
∣∣∣2, (2)

where P is the number of paths; T is the number of time samples; and Λ is the number of scales.
Behavioral studies suggest that ST distance is a good predictor of dissimilarity judgments between
isolated sounds, for suitably chosen Ψ and ρ (Patil et al., 2012; Lostanlen et al., 2021; Tian et al.,
2025). Relatedly, neurophysiology studies suggest that JTFS is a suitable idealized model of
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spectrotemporal receptive fields in the auditory cortex of humans (Norman-Haignere & McDermott,
2018) and nonhuman mammals (Kowalski et al., 1996). These findings motivate the use of JTFS as
part of a differentiable loss function for neural audio models (Vahidi et al., 2023).

As an illustration, let x be a fixed reference and x̃= Fx(w) be its reconstruction by an autoencoder
F with trainable weights w. Denoting the set of path indices by P = {0, . . . ,P−1} and the vector of
all time–frequency entries Φx(p, t,λ ) for each path p ∈P by φp(x), the ST loss function writes as:

L Φ
x (x̃) =

1
P

P−1

∑
p=0

L
φp
x (x̃) where ∀p ∈P, L

φp
x (x̃) = P

∥∥φp(x)−φp(x̃)
∥∥2
. (3)

Unfortunately, L Φ
x (x̃) and its gradient ∇L Φ

x (x̃) are expensive in memory and in operations.
Certainly, algorithmic refinements such as FFT-based filtering, multirate processing, and depth-first
search can reduce the cost of an ST path (Oyallon et al., 2018). Yet, the need to traverse all P paths
remains an obstacle to the applicability of multivariable ST for gradient-based learning at scale.

In this article, we aim to accelerate the training of an autoencoder F whose loss is ST distance
between reference and reconstruction, and so over a finite corpus X = {x0, . . . ,xN−1}. Formally:

w⋆ = argmin
w

1
N

N−1

∑
n=0

(
L Φ

xn ◦Fxn

)
(w). (4)

Given the decomposition in Equation 3, a naı̈ve idea would be to replace each term L Φ
xn in the equation

above by some per-path loss L
φp
xn , where the p’s would be drawn independently and uniformly at

random in the path set P . This is a crude form of stochastic approximation (Benveniste et al.,
2012) which is motivated by the tree-like structure of ST: neglecting the overhead of the first layer
(|Wx|), the computation of single-path gradient ∇L

φp
xn is roughly P times more efficient than that of

a full ST gradient ∇L Φ
xn . However, this speedup comes at the detriment of numerical precision: a

deterministic quantity has been replaced by an estimator whose variance may be impractically large.

“Scattering transform with Random Paths for machine Learning” (SCRAPL) is our proposed solution
to this problem. Acknowledging that each single-path gradient makes for an inexpensive but noisy
learning signal, we stabilize it via a combination of three stochastic optimization techniques and
apply an architecture-informed importance sampling heuristic. Our contributions are:

1. Stochastic approximation of scattering transform through uniform sampling of paths.
2. Path-wise adaptive moment estimation (P-Adam for short): an extension of the Adam

algorithm (Kingma & Ba, 2014) which accounts for the non-i.i.d. nature of ST paths.
3. Path-wise stochastic average gradient with acceleration (P-SAGA for short): a variant

of the SAGA algorithm (Defazio et al., 2014) which keeps a memory of previous gradient
values across all paths p.

4. θ -importance sampling: a parallelizable initialization heuristic that supplies auxiliary
information to the stochastic optimizer by sampling paths p in proportion to the typical rate
of change of the gradient in the optimization landscape.

Our main empirical finding is that SCRAPL accomplishes a favorable tradeoff between goodness of
fit and computational efficiency on unsupervised sound matching, i.e., a nonlinear inverse problem in
which the forward operator implements an audio synthesizer. In the context of differentiable digital
signal processing (DDSP), the state-of-the-art perceptual loss function for this task is multiscale
spectral loss (MSS, Yamamoto et al. (2020), Engel et al. (2020)). However, the gradient of MSS is
uninformative when input and reconstruction are misaligned or when the synthesizer controls involve
spectrotemporal modulations (Vahidi et al., 2023). Taking advantage of the stability guarantees of
JTFS, SCRAPL expands the class of synthesizers which can be effectively decoded via DDSP.

Figure 1 illustrates one of our experiments: unsupervised sound matching for a nondeterministic
granular synthesizer. On one hand, models based on MSS and other state-of-the-art perceptual losses
are computationally efficient but inaccurate. On the other hand, JTFS-based models are five times
more accurate but twenty five times more costly. SCRAPL is a new point on this Pareto front: it is
within a factor two of JTFS in terms of accuracy while being within a factor two of MSS in terms of
runtime, making it suitable for large-scale DDSP. Relatedly, SCRAPL is also more memory-efficient
than JTFS, thus reducing overhead between CPU/GPU cores and allowing for a larger batch size.
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Figure 1: Mean average synthesizer parameter error (y-axis) versus computational cost (x-axis) of
unsupervised sound matching models for the granular synthesis task. Both axes are rescaled by the
performance of a supervised model with the same number of parameters. Whiskers denote 95% CI,
estimated over 20 random seeds. Due to computational limitations, JTFS-based sound matching is
evaluated only once.

2 RELATED WORK

The guiding intuition behind SCRAPL is that natural signals and images exhibit strong correlations
across ST paths. This fact has been observed empirically since the onset of ST research (Bruna &
Mallat, 2013; Andén & Mallat, 2011) and aligns with earlier work on texture modeling based on
pairwise correlations between wavelet modulus coefficients (Portilla & Simoncelli, 2000).

Visual and auditory textures, understood as stationary random fields, play a key role in applied
ST research. ST features outperform short-term Fourier features (e.g., MSS) in their ability to
characterize intermittency in non-Gaussian textures (Muzy et al., 2015). Texture resynthesis by
gradient descent of ST loss has been applied to such diverse settings as computer music creation
(Lostanlen et al., 2019) and the study of the cosmic microwave background (Delouis et al., 2022).

The democratization of differentiable programming toolkits (e.g., TensorFlow, PyTorch, JAX) has
greatly advanced the flexibility of gradient backpropagation in “hybrid” scattering–neural networks
involving learnable and non-learnable modules. Angles & Mallat (2018) have built a hybrid scattering–
GAN model for image generation, in which ST distance plays the role of a discriminator.

To our knowledge, the closest prior work to SCRAPL is the pruned graph scattering transform
(pGST) of Ioannidis et al. (2020), a method which reduces the complexity of ST by pruning the path
set P down to a proper subset P ′ ⊂P , based on a graph-spectrum-inspired criterion. Although
both pGST and SCRAPL share a similar overarching goal, let us point out that pGST is a feature
selection method: the cardinality of P ′ is typically ∼ 10% that of P and P ′ is kept fixed across
training examples and across epochs. In comparison, SCRAPL performs a more radical pruning,
down to a single path (cardP ′ = 1), while harnessing dedicated techniques in stochastic optimization
(P-Adam and P-SAGA) to reduce the variance of ST loss during gradient backpropagation.

3 METHODS

3.1 STOCHASTIC APPROXIMATION OF SCATTERING TRANSFORM LOSS GRADIENT

The proposition below, proven in Appendix A, shows that if paths are drawn uniformly at random,
the stochastic approximation in SCRAPL is unbiased: in other words, the expected value of the
stochastic gradient of per-path loss is equal to the gradient of full ST loss.

Proposition 3.1. Let Φ = (φp)
P−1
0 be a scattering transform with P paths. Given a signal or image x,

let Fx be an autoencoder operating on x and let L Φ
x be the associated ST reconstruction loss. Let

UP be the uniform distribution over P = {0, . . . ,P−1}. One has, for every weight vector w:

Ez∼UP

[
∇(L φz

x ◦Fx)(w)
]
=∇(L Φ

x ◦Fx)(w). (5)
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Although a uniform sampling of paths matches the intuition of approximating the ST gradient in
expectation, we will see that this may be suboptimal. The θ -importance sampling method, which
we will present in Section 3.4, does not satisfy the hypothesis of Proposition 3.1; yet, it consistently
outperforms uniform sampling as part of SCRAPL. The design of biased stochastic approximation
schemes is an active topic in machine learning research (Dieuleveut et al., 2023).

3.2 P -ADAM: PATH-WISE ADAPTIVE MOMENT ESTIMATION

The key idea behind the Adam optimizer is to smooth the successive realizations of the stochastic
gradient, here denoted by g, via autoregressive estimates of its first- and second-order element-wise
moments, denoted by m and v (Kingma & Ba, 2014). However, the smoothing technique in Adam is
ineffective for SCRAPL because the gradients of path-wise ST losses are not identically distributed.
Against this problem, we propose to maintain P estimates of path-wise moments (P-Adam):

mp← β
(k−τp)/P
1 mp +(1−β

(k−τp)/P
1 )g (6)

vp← β
(k−τp)/P
2 vp +(1−β

(k−τp)/P
2 )(g⊙g), (7)

where k is the current iteration number, τp is the iteration when path p was last drawn; β1 and β2 are
hyperparameters; and the circled dot denotes element-wise multiplication of vectors. The exponent
(k− τp)/P adapts the time constant of smoothing to the recency of the previous estimate.

The second step in P-Adam, following classical Adam, consists in bias correction and ratio of
debiased first-order moment to stable square root of debiased second-order moment:

gcurrent =

mp

1−β
k/P
1√

ε +
vp

1−β
k/P
2

, (8)

where we have adapted the original exponents of Adam (β k
1 , β k

2 ) to account for the number of paths.

3.3 P -SAGA: PATH-WISE STOCHASTIC AVERAGE GRADIENT WITH ACCELERATION

The stochastic average gradient (SAG) algorithm has the potential to accelerate stochastic gradient
descent in the context of the minimization of finite sums (Schmidt et al., 2017). Although this sum is
typically over training examples in neural network training, in SCRAPL, Equation 3 is a sum over
paths for a given example x. With this observation in mind, we propose P-SAGA, a path-wise
version of SAG with acceleration (SAGA, Defazio et al. (2014)). We maintain a memory of the
last P-Adam updates over each path, denoted by (ĝp)

P−1
0 ; and the set of paths previously visited,

denoted by Γ. Given a learning rate αk at iteration k, the P-SAGA update is:

w←w−αk

(
gcurrent− ĝp +

∑γ∈Γ ĝγ

max(1,cardΓ)

)
. (9)

Unlike the original SAG and SAGA algorithms, P-SAGA’s additional memory footprint is propor-
tional to P, not the size of the dataset N, making it suitable for neural network training and real-world
optimization tasks like our experiments in Section 4. We also note that P-Adam and P-SAGA
introduce no additional hyperparameters over the standard Adam optimizer. Algorithm 1 summarizes
SCRAPL with both P-Adam and P-SAGA enabled.

3.4 θ -IMPORTANCE SAMPLING

We now consider the important special case of differentiable digital signal processing (DDSP, see
Section 1), in which the autoencoder composes a non-learnable decoder, typically a synthesizer,
with a learned encoder: i.e., Fx = (D ◦Ex) with Ex(w) = θ̃ and D(θ̃) = x̃ (Engel et al., 2020).
We assume both D and Ex to be differentiable with respect to their inputs, but D is not necessarily
deterministic. We denote by U the dimension of the parameter space θ; i.e., the output space of Ex

and input space of D.

4
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Algorithm 1 “Scattering transform with Random Paths for machine Learning” (SCRAPL). The
pseudo-code below describes SCRAPL with a batch size equal to one, without loss of generality.

Require: Φ = (φp)
P−1
0 : Scattering transform (ST) with P paths

Require: π: Categorical distribution over the path set P = {0, . . . ,P−1}
Require: F : Autoencoder with trainable parameters w
Require: w: Neural network weights at initialization
Require: β1,β2,ε: Adam hyperparameters
Require: (αk)

K
1 : Learning rate schedule

Γ← /0
for p in {0, . . . ,P−1} do

τp← 0
mp← 0
vp← 0
ĝp← 0

end for
for k in {1, . . . ,K} do

n← draw an integer uniformly at random in {0, . . . ,N−1}
p← draw an integer at random in {0, . . . ,P−1} according to π

L (w)← P
∥∥φp(xn)− (φp ◦Fw)(xn)

∥∥2
2

g←∇L (w)

{Stochastic approx.}

mp← β
(k−τp)/P
1 mp +(1−β

(k−τp)/P
1 )g

vp← β
(k−τp)/P
2 vp +(1−β

(k−τp)/P
2 )(g⊙g)

m̂←mp/(1−β
k/P
1 )

v̂← vp/(1−β
k/P
2 )

gcurrent← m̂/
√

ε + v̂
τp← k

{P-Adam}

gavg←
1

max(1,cardΓ)
∑γ∈Γ ĝγ

gSAGA← gcurrent− ĝp +gavg
w←w−αkgSAGA
ĝp← gcurrent
Γ← Γ∪{p}

{P-SAGA}

end for
return w

A known drawback of DDSP is that the optimization landscape of spectral loss in parameter space
(i.e., of L Φ

x ◦D) may not coincide with that of supervised parameter loss (i.e., Euclidean distance to
θ, also known as P-loss) (Hayes et al., 2024). Against this drawback, we propose a method named
θ -importance sampling (θ -IS), which constructs a categorical distribution π over the path space P .
The key idea behind θ -IS is to introduce bias in the stochastic approximation of spectral loss so as to
bring it closer to P-loss. For lack of supervision, we are unable to construct the optimal distribution π

but provide a heuristic of this form:

πp =
1
U

U−1

∑
u=0

Cu,p

∑
P−1
p=0 Cu,p′

, (10)

where, intuitively, Cu,p represents the importance of parameter dimension θu upon path p. We
rescale this importance relative to all paths and average uniformly across parameters u, yielding
an importance-weighted categorical distribution π over paths. We then use π instead of a uniform
distribution for sampling paths in the SCRAPL algorithm (see Algorithm 1).

Let Ex,u(w) denote the uth coordinate of Ex(w). Given w, we measure the sensitivity of each ST
path p to the parameter control u around the input x in terms of the following partial derivative:

sx,u,p : w 7−→
∂
(
L

φp
x ◦D

)
∂θu

(
Ex,u(w)

)
(11)

5
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To convert the sensitivity function sx,u,p into relative importance Cu,p, we analyze the curvature of the
loss landscape L

φp
x . We multiply sx,u,p by the gradient of Ex,u, yielding a linear transformation of

neural network parameters. The coordinate-wise gradient of this linear transformation yields a positive
definite matrix: we compute its largest eigenvalue. We repeat this process over a representative
dataset X of NIS unlabeled signals from the training dataset. Formally:

Cu,p = Ex∼X [λmax (∇w (sx,u,p(w)∇Ex,u(w)))] , (12)

where λmax(M) is the magnitude of the largest eigenvalue of a square matrix M; ∇w is the gradient
with respect to w. In practice, we compute λmax(M) using a stochastic power iteration with deflation
and the Hessian vector product, which has the same asymptotic runtime complexity as a backpropa-
gation step.1 Crucially, the computation required for θ -IS can be trivially parallelized across p and u,
and only needs to be computed once before training.

Our definition of θ -IS is inspired by Schmidt et al. (2017), who propose a variant of the SAG
algorithm in which mini-batches are sampled non-uniformly; more precisely, in proportion to the
Lipschitz constant of the gradients, which we approximate using Equation 12 for each p and u. This
heuristic relies on the argument that gradients which change quickly should be regarded as more
important than gradients which change slowly.

4 EXPERIMENTS

We apply SCRAPL to a differentiable implementation of the joint time–frequency scattering transform
(Muradeli et al., 2022). We conduct three unsupervised sound matching experiments under the DDSP
autoencoder paradigm described in Section 3.4. The encoder, Ex, is a convolutional neural network
which operates on a constant-Q transform (Cheuk et al., 2020). We use relatively lightweight neural
networks for our experiments, a choice made possible by the strong inductive bias DDSP provides
and informed by prior work (Han et al., 2025) indicating that larger networks do not necessarily
improve sound matching capabilities. We choose all hyperparameters in experiments heuristically.

To highlight the new kinds of perceptual quality assessment tasks SCRAPL enables, all three
experiments investigate nondeterministic decoders that introduce random time shifts into the resulting
reconstructed audio. While our experiments are for a discriminative and generative audio processing
task, we emphasize that SCRAPL is a general algorithm and can be equally applied to deep inverse
problems that leverage other scattering transforms.

4.1 JOINT TIME–FREQUENCY SCATTERING TRANSFORM (JTFS)

The joint time–frequency scattering transform (JTFS) is a nonlinear convolutional operator which
extracts spectrotemporal modulations over the constant-Q spectrogram (Andén et al., 2019). The
multivariable filter Ψp comprises two stages: temporal scattering, i.e., 1-D band-pass filtering with
Morlet wavelets over the time axis; and frequential scattering, i.e., idem over the log-frequency axis.
The center frequencies of band-pass filters for temporal scattering, called rates, are measured in Hertz.
The center frequencies for frequential scattering, called scales, are measured in cycles per octave.
Thus, in the case of JTFS, the path index p is a rate–scale multiindex.

The JTFS has been shown to correlate with human perception (Lostanlen et al., 2021; Tian et al.,
2025) and can provide an informative gradient for audio comparisons that are misaligned (Vahidi
et al., 2023) or benefit from multi-resolution analysis like percussive sounds (Han et al., 2024),
which is why we select it as the underlying ST of the SCRAPL algorithm in our unsupervised sound
matching experiments. Additionally, due to its computational complexity, until now it has been used
almost exclusively as a precomputed feature instead of a loss function for neural network training.

4.2 GRANULAR SYNTH SOUND MATCHING

Granular synthesis is an example of a new class of synths that can be effectively sound matched with
SCRAPL and the JTFS, due to its inherently stochastic audio generation process with individual
grains being misaligned in time at the micro-level, but still being perceived as a single texture. It
has been extensively used in the production of electronic music since the late 1950s 2 and played a

1https://github.com/noahgolmant/pytorch-hessian-eigenthings
2https://www.iannis-xenakis.org/en/granular-synthesis/
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fundamental role in the creation of contemporary electronic music genres. Our differentiable granular
synth produces textures of chirplet grains with random temporal positions, center frequencies, and
chirp rates, and has two continuous parameters: density (θdensity) which controls how many grains
are produced, and slope (θslope) which controls their rate of frequency modulation.

We compare four MSS-based losses: linear, log + linear (Engel et al., 2020), random (Steinmetz
& Reiss, 2020), and a SOTA hyperparameter-tuned revisited MSS loss (Schwär & Müller, 2023).
Given their correlation with human perception (Kilgour et al., 2019; Tailleur et al., 2024), we also
include the Euclidean distance of MS-CLAP (Elizalde et al., 2023) and PANNs Wavegram Logmel
embeddings (Kong et al., 2020). In addition, we train with ordinary (i.e., full-tree) JTFS so as
to put the speed and accuracy of SCRAPL into context. Lastly, as an estimate of best achievable
performance with our encoder architecture and training configuration, we run a supervised version of
sound matching, also known as “parameter loss” or P-loss for short (see Section 3.4). We summarize
the implementation details in Appendix E.

4.3 CHIRPLET SYNTH SOUND MATCHING

Similar to the unsupervised granular synth sound matching experiment, we evaluate our θ -importance
sampling initialization heuristic for SCRAPL on a differentiable chirplet synth (based on the imple-
mentation by Vahidi et al. (2023)) with two parameters: θAM which controls the rate of amplitude
modulation (Hz) and θFM which controls the rate of frequency modulation (oct/s). Since the paths
in the JTFS correspond to specific wavelet AM and FM center frequencies, given a chirplet synth
configuration with bounded θAM and θFM ranges, we know approximately which paths of the JTFS
should provide the most informative gradients for the synth parameters. After computing our initial-
ization heuristic, we can analyze the resulting path probabilities and verify that the paths within the
parameter ranges of the synth have been assigned a probability greater than uniform.

We evaluate four different synth configurations:

1. Slow AM (θAM ∈ [1.0,2.0] Hz), slow FM (θFM ∈ [0.5,1.0] oct/s);
2. Slow AM (θAM ∈ [1.0,2.0] Hz), moderate FM (θFM ∈ [2.0,4.0] oct/s);
3. Fast AM (θAM ∈ [2.8,8.4] Hz), moderate FM (θFM ∈ [2.0,4.0] oct/s);
4. Fast AM (θAM ∈ [2.8,8.4] Hz), fast FM (θFM ∈ [4.0,12.0] oct/s).

We compare SCRAPL training runs using uniform sampling and θ -importance sampling calculated
from a single training batch of 32 examples. We summarize the implementation details in Appendix E.

4.4 ROLAND TR-808 SOUND MATCHING

As a real-world evaluation task, we sound match a DDSP implementation (Shier et al., 2024) of the
Roland TR-808 Drum Machine, a historically meaningful synthesizer for the creation of Detroit
techno, house, and hip-hop music.3 Inharmonic transient sounds like percussion are a form of
non-stationary signal that the JTFS is well suited for perceptual quality assessment (Han et al., 2024)
because of its ability to extract spectrotemporal patterns at multiple scales and rates. Additionally,
due to the transient nature of drum sounds, they are highly sensitive to even a few milliseconds of
misalignment, thus further benefiting from the time invariance of JTFS.

We use a high fidelity, 100% analog dataset 4 of 681 bass drum, snare, tom, and hi-hat one-shot
recordings of the TR-808 and repeat experiments 40 times on different train/validation/test splits and
random seeds. Since the transient of analog drum recordings is rarely perfectly aligned, and no two
analog TR-808 drum synths produce the same signal, we investigate both perfectly aligned (labeled
micro) and unaligned (labeled meso) sound matching by up to ±46 ms (±2048 samples at 44.1
kHz). Given its correlation with human perception, we employ the JTFS and Fréchet Audio Distance
(FAD) (Défossez et al., 2023) as evaluation metrics. We also include MSS and mean frame-by-frame
perceptual loudness and loudness-weighted perceptually-scaled spectral centroid and flatness for both
the transient and decay portions of reconstructed signals (nine metrics in total). Additional context for
these last six metrics can be found in Shier et al. (2024). We summarize the implementation details in
Appendix E.

3https://www.ethanhein.com/wp/2016/beatmaking-fundamentals/
4https://samplesfrommars.com/products/tr-808-samples
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Table 1: Evaluation results for the unsupervised granular synth sound matching task with two
continuous θsynth parameters: θdensity and θslope (more details in Section 4.2). Uncertainties are 95%
CI for 20 training runs using different random seeds. Due to computational limitations, the JTFS
method is only evaluated once.

Method θsynth L1 ‰ ↓ θdensity L1 ‰ ↓ θslope L1 ‰ ↓
JTFS 42.4 65.8 19.0
SCRAPL (no θ -IS) 73.8 ±13 70.4 ± 8.8 77.2 ±19
SCRAPL 65.7 ± 4.2 72.6 ± 6.3 58.7 ± 7.5
MSS Linear 370 ± 0.52 499 ± 0.84 241 ± 0.28
MSS Log + Linear 259 ± 1.7 277 ± 3.2 241 ± 0.42
MSS Revisited 311 ±19 376 ±40 246 ± 3.0
MSS Random 195 ± 4.2 149 ± 7.8 242 ± 1.0
MS-CLAP 166 ± 8.2 81.9 ± 9.0 250 ± 8.2
PANNs Wavegram-Logmel 159 ± 4.4 80.3 ± 4.2 238 ± 5.5

P-loss 20.5 ± 0.20 24.7 ± 0.31 16.3 ± 0.31

5 RESULTS

5.1 GRANULAR SYNTH SOUND MATCHING

We benchmark all loss function computational costs (see Appendix B, Table 5) and plot them in
Figure 1 against their evaluation accuracy (see Table 1) on θsynth L1 relative to supervised training
(i.e., P-loss). We observe that SCRAPL comes within factor two of JTFS in terms of accuracy,
and within factor two of MSS in terms of runtime, striking a notable balance between them. The
significant difference in runtime and convergence between JTFS and SCRAPL is further illustrated in
Figure 2 where we plot validation accuracy against wall-clock time, instead of optimization steps.
We also note that MSS is unable to sound match the synth at all, and the SOTA embedding losses are
only able to optimize θdensity, albeit not as well as SCRAPL and JTFS. Validation accuracy curves for
all methods are also provided in Figure 2. We provide a variation of Figure 1 plotting the test JTFS
audio distance on the y-axis in Appendix B, Figure 3.
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Figure 2: Left: JTFS vs. SCRAPL wall-clock training times on a single NVIDIA RTX A5000
GPU. Due to computational limitations, the JTFS method is only evaluated once. Right: Validation
convergence graphs for the unsupervised granular synth sound matching task. Both: Shaded areas are
95% CI for 20 training runs using different random seeds.

Table 2 summarizes the results of an ablation of SCRAPL and its P-Adam, P-SAGA, and θ -IS
optimization techniques for the granular synth sound matching task, with Appendix B, Table 6 pro-
viding additional information about statistical significance. There is a clear monotonic improvement
in accuracy and convergence time for each technique, as well as a reduction in variance provided by
P-SAGA, and θ -IS. We emphasize that SCRAPL without any extra optimization techniques still
outperforms all other non-JTFS methods in terms of accuracy, demonstrating its ability to optimize a
new class of problems and making just stochastic sampling of scattering transforms a viable approach
if the additional memory and computational requirements of P-Adam, P-SAGA, and θ -IS are
undesirable. Finally, from Table 1, we see that θ -IS results in a better overall accuracy of θsynth than
uniform sampling (despite θdensity now being slightly worse), which is consistent with our hypothesis
from Section 3.4 that θ -IS results in more balanced convergence of all synth parameters. Validation
accuracy curves for all ablations are provided in Appendix B, Figure 4.
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Table 2: Ablation table for SCRAPL with test results and validation θsynth L1 total variation and
convergence steps for the unsupervised granular synth sound matching task. Convergence is defined
as θsynth L1 < 100 ‰. Statistical significance results for each additional optimization technique are
presented in Appendix B, Table 6. Uncertainties are 95% CI for 20 training runs using different
random seeds. Due to computational limitations, the JTFS method is only evaluated once.

Method P- P- θ -IS Test Validation
Adam SAGA θsynth L1 ‰ ↓ Total Var. ↓ Conv. Steps ↓

SCRAPL 99.7 ± 8.2 5.30± 0.25 10 906±1170
✓ 87.4 ±15 6.98± 0.25 8006± 697
✓ ✓ 73.8 ±13 3.46± 0.15 7296± 683
✓ ✓ ✓ 65.7 ± 4.2 3.27± 0.12 6014± 642

JTFS 42.4 5.66 1442
P-loss 20.5 ± 0.20 1.83± 0.025 672± 23

In summary, this experiment demonstrates that the variance of the gradient elicited by the stochastic
approximation of a ST with the SCRAPL algorithm is manageably small in the context of deep
neural network (DNN) training, resulting in a favorable tradeoff between computational speed and
convergence rate when compared to full-tree scattering (i.e., the JTFS). Training with SCRAPL is
nearly equivalent to training with the gradient of full-tree scattering in terms of JTFS loss on unseen
test data: see Appendix B, Figure 3. In terms of synthesizer parameter error, training with SCRAPL
is not as accurate as training with full-tree ST, but outperforms prior work: see Table 1. This SOTA
result paves the way towards a new kind of DNN training for deep inverse problems, in which the
forward operator (synth) produces nondeterministic time–frequency patterns.

Understanding the convergence properties of algorithms like SCRAPL for convex and non-convex
tasks is an active area of research (Reddi et al., 2016; 2018; Défossez et al., 2022; Kim & Oh, 2025).
Our proof of Proposition 3.1 in Appendix A that SCRAPL without any additional optimization
techniques is an unbiased estimator of full-tree ST is an important first step in this direction. We
believe that further convergence analysis of SCRAPL remains a promising avenue for future work.

5.2 CHIRPLET SYNTH SOUND MATCHING

Table 3 summarizes the chirplet synth evaluation results, with Appendix C, Figure 5 showing
validation accuracy curves for uniform and θ -importance sampling on the four synth configurations.
θ -IS improves the prediction of θAM by 25–55% and of θFM by 14–80%, while reducing time to
convergence by 23–50%: see Appendix C, Table 7. Of course, these improvements are for synth
configurations that have been designed to showcase the benefit of nonuniform sampling of paths;
however, this overall trend remains true, albeit not as pronounced, for the granular synth (Table 2) and
real-world sound matching task (Table 4). Finally, we plot the path θ -IS probabilities in Appendix C,
Figure 6 and observe that indeed, a unique distribution is learned for each synth, and the greater than
uniform probabilities appear to roughly correspond to each configuration’s limited AM/FM range.

5.3 ROLAND TR-808 SOUND MATCHING

Table 4 and Appendix D, Tables 8, and 9 summarize the unsupervised Roland TR-808 synth sound
matching audio distance, transient, and decay perceptual similarity results. Overall, we observe that
JTFS dominates almost all metrics in both micro and meso environments, showcasing its suitability
for transient percussive sounds and temporal invariance. After JTFS, MSS performs best when
samples are perfectly aligned (micro), but performs worse in the unaligned (meso) setting and is
unable to match the transient, which is the most salient part of a drum hit. In contrast, SCRAPL
shows consistent sound matching performance in both micro and meso environments and is able to
preserve the transient even when audio is misaligned. However, SCRAPL fails to recover the less
audible decay portion of the signal. We hypothesize this is due to informative, low-frequency paths
for the decay being sparse and underrepresented in the categorical distribution over paths, even after
accounting for θ -IS. We provide listening samples at the accompanying website 5 and encourage
readers to evaluate the results directly.

5Anonymous companion website: https://icewithfrosting.github.io/scrapl/
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Table 3: Evaluation results for SCRAPL with and without the θ -importance sampling initialization
heuristic on unsupervised sound matching of four different AM / FM chirplet synths with two
continuous θsynth parameters: θAM and θFM (more details in Section 4.3). Uncertainties are 95% CI
for 20 training runs using different random seeds.

Sampling Method Synth Configuration θAM L1 ‰ ↓ θFM L1 ‰ ↓
(π) θAM (Hz) θFM (oct/s)

Uniform 1.0−2.0 0.5−1.0 124 ±10 155 ±18
θ -IS 77.7 ± 6.7 78.4 ±11

Uniform 1.0−2.0 2.0−4.0 111 ±20 68.6 ±11
θ -IS 55.5 ± 4.1 44.4 ± 2.8

Uniform 2.8−8.4 2.0−4.0 122 ±22 238 ±21
θ -IS 54.9 ± 3.5 48.5 ± 4.7

Uniform 2.8−8.4 4.0−12.0 108 ±12 95.6 ±20
θ -IS 81.5 ±12 82.1 ±11

Table 4: Audio distance evaluation results for the unsupervised Roland TR-808 DDSP synth sound
matching task with 14 continuous θsynth parameters (more details in Section 4.4). Uncertainties are
95% CI for 40 training runs using different random seeds and dataset splits. Due to computational
limitations, the JTFS method is only trained and evaluated for 4 random seeds.

Method MSS Log. + Linear ↓ JTFS ↓ FAD (EnCodec) ↓
Micro Meso Micro Meso Micro Meso

JTFS 617 ±46 622 ±45 490 ±28 523 ±17 0.781± 0.069 1.04±0.15
SCRAPL
(no θ -IS) 862 ±36 944 ±48 1140 ±48 1250 ±51 2.75 ± 0.39 2.85±0.38
SCRAPL 857 ±42 879 ±42 1050 ±50 1110 ±52 2.43 ± 0.22 2.42±0.22
MSS Lin. 611 ±15 724 ±37 779 ±31 1470 ±83 1.22 ± 0.082 3.33±0.46
MSS L+L 596 ±19 615 ±18 1260 ±58 1390 ±49 2.14 ± 0.39 3.01±0.40
MSS Rev. 637 ±16 797 ±20 870 ±23 1250 ±27 2.02 ± 0.37 2.21±0.34
MSS Rand. 682 ±25 700 ±26 1410 ±87 1500 ±59 7.03 ± 2.2 6.65±1.7

6 CONCLUSION

Differentiable similarity measures have the potential to enhance the perceptual quality of generative
models and deep inverse problem solvers. In spite of their mathematical guarantees and neuro-
physiological plausibility, scattering transforms (ST) have not been able to realize this potential,
for lack of tractable optimization algorithms. To fill this gap, SCRAPL takes advantage of the
tree-like structure of ST to save computation at each backward pass. Our numerical simulations
show the value of SCRAPL for unsupervised sound matching, particularly when the synthesizer of
interest is nondeterministic. Although our ST architecture of choice is joint time–frequency scattering
(JTFS), we stress that SCRAPL is agnostic to the specifics of multivariable filterbank design: beyond
wavelet scattering, it extends to learnable scattering-like architectures (Lattner et al., 2019; Cotter &
Kingsbury, 2019; Gauthier et al., 2022). We consider investigating SCRAPL’s generalizability to
other ST architectures, different audio tasks such as speech enhancement and automatic mixing, and
additional modalities like adversarial image generation and texture synthesis as promising directions
for future work. As a longer-term perspective, the success of our architecture-informed importance
sampling heuristic highlights the opportunity to meta-learn the relative importance of each ST path
for the task at hand over the course of neural network training (Yamaguchi et al., 2023).
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REPRODUCIBILITY STATEMENT

Appendix E contains all hyperparameters and training details for each of the three experiments in
this paper. We also provide listening samples, anonymized source code, configuration files, and
instructions to reproduce our experiments at the anonymous companion website:
https://icewithfrosting.github.io/scrapl/
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Tomás Angles and Stéphane Mallat. Generative networks as inverse problems with scattering
transforms. In Proceedings of the International Conference on Learning Representations (ICLR),
2018.

Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms and stochastic approxi-
mations, volume 22. Springer Science & Business Media, 2012.
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and Yuki Okamoto. Correlation of fréchet audio distance with human perception of environmental
audio is embedding dependant. In Proceedings of the European Signal Processing Conference
(EUSIPCO), 2024.

Haokun Tian, Stefan Lattner, and Charalampos Saitis. Assessing the alignment of audio representa-
tions with timbre similarity ratings. Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), 2025.

Cyrus Vahidi, Han Han, Changhong Wang, Mathieu Lagrange, György Fazekas, and Vincent
Lostanlen. Mesostructures: Beyond spectrogram loss in differentiable time-frequency analy-
sis. Journal of the Audio Engineering Society, 71(9):577–585, 2023.

13

https://doi.org/10.1109/CDC.2016.7798553
https://doi.org/10.1109/CDC.2016.7798553
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
https://doi.org/10.1007/s10107-016-1030-6
https://arxiv.org/abs/2407.04547


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Shin’ya Yamaguchi, Daiki Chijiwa, Sekitoshi Kanai, Atsutoshi Kumagai, and Hisashi Kashima. Reg-
ularizing neural networks with meta-learning generative models. Advances in Neural Information
Processing Systems (NeurIPS), 36:27315–27331, 2023.

Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel wavegan: A fast waveform generation
model based on generative adversarial networks with multi-resolution spectrogram. Proceedings
of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PROOF OF PROPOSITION 3.1

Let us write x̃= Fx(w). By linearity of the gradient, we may decompose ∇L Φ
x (x̃) over paths:

∇L Φ
x (x̃) =

1
P

P−1

∑
p=0

∇L
φp
x (x̃). (13)

Let us denote the Jacobian of Fx at w by JFx(w). For each p ∈P , we apply the chain rule:

∇(L
φp
x ◦Fx)(w) =∇L

φp
x (x̃)⊤JFx(w). (14)

Plugging the identity above into Equation 13 yields:

∇(L Φ
x ◦Fx)(w) =

1
P

P−1

∑
p=0

(
∇L

φp
x (x̃)⊤JFx(w)

)

=

(
1
P

P−1

∑
p=0

∇L
φp
x (x̃)

)⊤
JFx(w), (15)

where the latter equation holds by associativity of matrix multiplication.

We now compute the expected value of ∇L φz
x (x̃) for z∼UP, i.e., a uniform distribution over P:

Ez∼UP

[
∇L φz

x (x̃)
]
=

1
P

P−1

∑
p=0

∇L
φp
x (x̃). (16)

We recognize the row vector on the right-hand side of Equation 15. Thus:

∇(L Φ
x ◦Fx)(w) = Ez∼UP

[
∇L φz

x (x̃)
]⊤ JFx(w)

= Ez∼UP

[
∇L φz

x (x̃)⊤JFx(w)
]
, (17)

where the latter equation holds by linearity of the expected value. Finally, we use the reverse form of
the chain rule in Equation 14 to identify the expected SCRAPL gradient:

∇(L Φ
x ◦Fx)(w) = Ez∼UP

[
∇(L φz

x ◦Fx)(w)
]

(18)

concluding the proof.
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B ADDITIONAL GRANULAR SYNTH EVALUATION RESULTS

Table 5: Loss function benchmark results for one optimization step (forward + backward, 32768
samples of audio, batch size 4, 1 thread, single precision, 1 NVIDIA RTX A5000 GPU, CUDA 12.4,
PyTorch 2.8.0). SCRAPL paths are benchmarked individually and then aggregated across all paths
using the median for time and interquartile range (IQR), and maximum for memory usage.

Method Median Time (ms) ↓ IQR (ms) ↓ Max. Memory (MB) ↓
JTFS 1730 23.9 12 967
SCRAPL 89.8 3.62 2503
MSS Linear 26.3 1.12 694
MSS Log + Linear 19.1 0.696 702
MSS Revisited 17.0 0.210 663
MSS Random 24.7 5.81 706
MS-CLAP 75.6 1.69 2032
PANNs Wavegram-Logmel 29.3 5.92 1360

P-loss (dim(θsynth) = 2) 0.516 0.108 625

1 2 4 8 16 32
Relative Computational Cost
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MSS Random
MS-CLAPPANNs
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Figure 3: Mean average JTFS perceptual audio distance (y-axis) versus computational cost (x-axis)
of unsupervised sound matching models for the granular synthesis task. Both axes are rescaled by the
performance of a supervised model with the same number of parameters. Whiskers denote 95% CI,
estimated over 20 random seeds. Due to computational limitations, JTFS-based sound matching is
evaluated only once.

Table 6: Statistical significance and relative improvement of each additional SCRAPL optimization
technique for the unsupervised granular synth sound matching task. Convergence is defined as
θsynth L1 < 100 ‰. See Table 2 for absolute results and comparisons to JTFS and P-loss. Uncertainties
are 95% CI for 20 training runs using different random seeds. Due to computational limitations, the
JTFS method is only evaluated once.

Opt. Test Validation
Technique ∆θsynth L1 ‰ ↓ ∆ Total Var. ↓ ∆ Conv. Steps ↓
+ P-Adam −12.3 ±17 (p = 0.15) 1.68 ± 0.35 (p < 0.01) −2900±1800(p < 0.01)
+ P-SAGA −13.6 ± 5.6 (p < 0.01) −3.52 ± 0.18 (p < 0.01) −710± 450(p < 0.01)
+ θ -IS −8.13±15 (p = 0.26) −0.188± 0.092(p < 0.01) −1280± 410(p < 0.01)
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Figure 4: Validation convergence graphs of SCRAPL ablations and the JTFS for the unsupervised
granular synth sound matching task. Shaded areas are 95% CI for 20 training runs using different
random seeds. Due to computational limitations, the JTFS method is only evaluated once.
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C ADDITIONAL CHIRPLET SYNTH EVALUATION RESULTS

Figure 5: SCRAPL θsynth L1 validation values during training for four different AM / FM chirplet
synths with two continuous θsynth parameters: θAM and θFM (more details in Section 4.3). Blue
is using the θ -importance sampling initialization heuristic, and black is using uniform sampling.
Shaded areas are 95% CI for 20 training runs using different random seeds.

Table 7: Convergence rate (CR) and steps for SCRAPL with and without the θ -importance sampling
initialization heuristic on unsupervised sound matching of four different AM / FM chirplet synths
with two continuous θsynth parameters: θAM and θFM (more details in Section 4.3). Convergence is
defined as L1 < 100 ‰ for θAM or θFM. Uncertainties are 95% CI for 20 training runs using different
random seeds.

Sampling Method Synth Configuration θAM θFM

(π) θAM (Hz) θFM (oct/s) CR ↑ Conv. Steps ↓ CR ↑ Conv. Steps ↓
Uniform 1.0−2.0 0.5−1.0 60% 3944 ± 342 45% 4064 ± 372

θ -IS 100% 2002 ± 324 100% 3134 ± 492
Uniform 1.0−2.0 2.0−4.0 100% 2203 ± 135 100% 1536 ± 194

θ -IS 100% 1099 ± 173 100% 768 ± 118
Uniform 2.8−8.4 2.0−4.0 95% 3254 ± 250 0% N/A

θ -IS 100% 1925 ± 165 100% 2966 ± 210
Uniform 2.8−8.4 4.0−12.0 100% 3096 ± 334 95% 3208 ± 235

θ -IS 95% 2253 ± 218 95% 2178 ± 173
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Figure 6: SCRAPL path θ -importance sampling probabilities for four different AM / FM chirplet
synths calculated from 1 batch of 32 log-uniformly randomly sampled θsynth values. Black dots are
individual path (wavelet) AM / FM center frequency locations and each dashed rectangle is the θsynth
range for each synth configuration. A uniform probability ratio of 1.0 means a path is sampled with
probability 1/P.
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D ADDITIONAL ROLAND TR-808 EVALUATION RESULTS

Table 8: Drum transient evaluation results for the unsupervised Roland TR-808 DDSP synth sound
matching task with 14 continuous θsynth parameters (more details in Section 4.4). Uncertainties are
95% CI for 40 training runs using different random seeds and dataset splits. Due to computational
limitations, the JTFS method is only trained and evaluated for 4 random seeds.

Method Loudness L1 ↓ Spectral Centroid L1 ↓ Spectral Flatness L1 ↓
Micro Meso Micro Meso Micro Meso

JTFS 137 ±10 158 ± 20 859 ± 68 819 ± 96 1200 ± 87 1090 ±110
SCRAPL
(no θ -IS) 389 ±41 460 ± 60 1020 ±100 992 ±110 1800 ±170 1990 ±180
SCRAPL 374 ±39 377 ± 32 1000 ±120 1080 ±120 1750 ±270 1820 ±220
MSS Lin. 381 ±12 2510 ±480 902 ± 27 2350 ±310 962 ± 43 3620 ±680
MSS L+L 492 ±44 1080 ± 91 928 ± 65 1380 ± 76 916 ± 50 1320 ±150
MSS Rev. 330 ±21 808 ± 40 1070 ± 49 1540 ± 53 1390 ± 62 2640 ± 96
MSS Rand. 584 ±75 1030 ± 89 1200 ±100 1350 ± 99 1690 ±120 1950 ±140

Table 9: Drum decay evaluation results for the unsupervised Roland TR-808 DDSP synth sound
matching task with 14 continuous θsynth parameters (more details in Section 4.4). Uncertainties are
95% CI for 40 training runs using different random seeds and dataset splits. Due to computational
limitations, the JTFS method is only trained and evaluated for 4 random seeds.

Method Loudness L1 ↓ Spectral Centroid L1 ↓ Spectral Flatness L1 ↓
Micro Meso Micro Meso Micro Meso

JTFS 315 ± 22 355 ±110 614 ± 51 617 ± 71 527 ± 31 718 ±190
SCRAPL
(no θ -IS) 1810 ±190 2210 ±210 1530 ±170 1860 ±170 2620 ±310 3300 ±370
SCRAPL 1810 ±160 1740 ±170 1490 ±120 1470 ±140 2540 ±290 2480 ±290
MSS Lin. 357 ± 12 1120 ±260 654 ± 18 1110 ±160 472 ± 17 1500 ±350
MSS L+L 389 ± 42 466 ± 45 563 ± 22 597 ± 24 565 ± 29 644 ± 51
MSS Rev. 279 ± 12 494 ± 22 589 ± 21 801 ± 29 552 ± 22 846 ± 29
MSS Rand. 453 ± 21 485 ± 24 660 ± 27 640 ± 35 594 ± 30 658 ± 33
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E EXPERIMENT TRAINING DETAILS AND HYPERPARAMETERS

Table 10: Unsupervised granular synth sound matching task hyperparameters.

Category Hyperparameter Name Value
Data N (# of examples) 5120

train / val / test split 60% / 20% / 20%

Encoder # of parameters 604 K
CQT # of octaves 5
CQT bins / octave 12
CQT hop length 256
CQT postprocessing log1p
CNN # of conv. blocks 5
CNN kernel size 5 × (3, 3)
CNN stride 5 × (1, 1)
CNN pooling 5 × (2, 2)
CNN conv. block channels 128
CNN activation function PReLU
CNN embedding dim. 64
CNN dense layer dropout prob. 0.5

Decoder (Synth) dim(θsynth) 2
sampling rate 8192 Hz
T (# of samples) 32768
max. # of grains 64
grain # of samples 4096
min. grain pitch 256 Hz
max. grain pitch 2048 Hz

SCRAPL & JTFS J 12
Q1 8
Q2 2
Jfr 3
Qfr 2
T 4096
F 8
ρ identity function
P (# of paths) 315

θ -Importance Sampling NIS (# of examples) 320
# of deflated power iterations 20

Training # of random seed training runs 20
epochs 200
batch size 32
starting learning rate 1×10−5

learning rate scheduler none
Adam β1 0.9
Adam β2 0.999
weight decay 0.01
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Table 11: Unsupervised AM/FM chirplet synth sound matching task hyperparameters.

Category Hyperparameter Name Value
Data N (# of examples) 5120

train / val / test split 60% / 20% / 20%

Encoder # of parameters 604 K
CQT # of octaves 5
CQT bins / octave 12
CQT hop length 256
CQT postprocessing log1p
CNN # of conv. blocks 5
CNN kernel size 5 × (3, 3)
CNN stride 5 × (1, 1)
CNN pooling 5 × (2, 2)
CNN conv. block channels 128
CNN activation function PReLU
CNN embedding dim. 64
CNN dense layer dropout prob. 0.5

Decoder (Synth) dim(θsynth) 2
sampling rate 8192 Hz
T (# of samples) 32768
chirplet center frequency 512 Hz
chirplet bandwidth 2 octaves
min. time shift -2048 samples
max. time shift +2048 samples

SCRAPL & JTFS J 12
Q1 8
Q2 2
J f r 3
Q f r 2
T 4096
F 8
ρ identity function
P (# of paths) 315

θ -Importance Sampling NIS (# of examples) 32
# of deflated power iterations 20

Training # of random seed training runs 20
epochs 50
batch size 32
starting learning rate 1×10−4

learning rate scheduler none
Adam β1 0.9
Adam β2 0.999
weight decay 0.01
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Table 12: Unsupervised Roland TR-808 synth sound matching task hyperparameters.

Category Hyperparameter Name Value
Data N (# of examples) 681

Nbass drum 215
Nsnare 240
Ntom 189
Nhi-hat 37
Ntrain 425
Nval 128
Ntest 128

Encoder # of parameters 724 K
CQT # of octaves 9
CQT bins / octave 12
CQT hop length 256
CQT postprocessing log1p
CNN # of conv. blocks 5
CNN kernel size 5 × (3, 3)
CNN stride 5 × (1, 1)
CNN pooling (2, 2), (2, 2), (2, 3), (3, 3), (3, 3)
CNN conv. block channels 128
CNN activation function PReLU
CNN embedding dim. 128
CNN dense layer dropout prob. 0.25

Decoder (Synth) dim(θsynth) 14
sampling rate 44100 Hz
T (# of samples) 44100
min. time shift -2048 samples
max. time shift +2048 samples

SCRAPL & JTFS J 12
Q1 8
Q2 2
J f r 5
Q f r 2
T 2048
F 1
ρ log1p
P (# of paths) 483

θ -Importance Sampling NIS (# of examples) 16
# of deflated power iterations 20

Training # of random seed training runs 40
epochs 50
batch size 8
starting learning rate 1×10−5

learning rate scheduler linearly decreasing until 1×10−4

Adam β1 0.9
Adam β2 0.999
weight decay 0.01
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