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ABSTRACT
Large language models (LLMs) now support extremely long context windows, but the quadratic complexity
of vanilla attention results in significantly long Time-to-First-Token (TTFT) latency. Exisiting sparse attention
approaches employ either static sparse pattern or fixed sparsity ratio to utilize the high attention sparsity, failing to
capture the adaptive sparsity ratio and dynamic sparse pattern across attention heads, input contents and model
architectures. To balance accuracy and performance efficiently, we introduce a robust indicator for accuracy,
Cumulative Residual Attention (CRA), which measures the percentage of attention recall. Leveraging this
key insight, we present SampleAttention, which employs a novel two-stage query-guided key-value filtering
approach to efficiently and dynamically select a minimal set of important column and slash strips to meet a desired
CRA threshold, thus maximizing efficiency while preserving accuracy. Comprehensive evaluations show that
SampleAttention can establish a new Pareto frontier in the accuracy-efficiency trade-off, and reduces TTFT by up
to 5.29× compared with FlashAttention2.

1 INTRODUCTION

Recent advances (Xiong et al., 2023; Liu et al., 2023a;
Chen et al., 2023b; Li et al., 2023; Chen et al., 2023a)
race to scale the context window of large language models
(LLMs) (Brown et al., 2020; Vaswani et al., 2017; Touvron
et al., 2023) for more complex applications, including doc-
ument analysis (Zhang et al., 2024a), code copilot (Chen
et al., 2021c; Roziere et al., 2023), and prolonged conversa-
tions (Chiang et al., 2023; Taori et al., 2023). Popular LLMs
like Gemini (Team et al., 2023), Claude (Anthropic, 2023)
and Kimi (Moonshot, 2023) now support context lengths
exceeding 1 million tokens. However, the increase in con-
text length makes it challenging to support live interactions
due to the quadratic complexity of attention mechanism.
As illustrated in Figure 1, the attention computation time
increases quadratically with sequence length, quickly domi-
nating the Time to First Token (TTFT) latency (i.e. prefill
latency). For example, in a 1 million token context, the
attention of ChatGLM3-6B (Du et al., 2021) takes 1555
seconds, constituting over 90% of the TTFT when evaluated
on an A100 GPU.

Prior work has consistently demonstrated that attention
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Figure 1. Compared to previous static and dynamic sparse attention
methods, SampleAttention captures adaptive structured sparse
patterns for each head. It achieves a significant reduction in TTFT
compared to FlashAttention2.

scores exhibit high sparsity (Zaheer et al., 2020; Kitaev et al.,
2020; Jiang et al., 2024; Li et al., 2024). This characteristic
makes sparse attention a promising approach for reducing
prefill latency, as it allows the model to compute attention
selectively for only the most important query and key-value
tokens rather than the entire sequence. Based on these ob-
servations, plenty of approaches propose to approximate
the dense attention with static sparse pattern, like Long-
Former (Beltagy et al., 2020), BigBird (Zaheer et al., 2020),
LongNet (Ding et al., 2023) and StreamingLLM (Xiao et al.,
2023b). However, these approaches fail to capture the dy-
namic sparse pattern across heads and inputs (Jiang et al.,
2024; Likhosherstov et al., 2021) and cannot achieve the
same accuracy of full attention.

Recent work proposes to address this dynamic sparse pat-
tern through runtime attention index selection (Liu et al.,
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2022; Han et al., 2023; Jiang et al., 2024). DSA (Liu et al.,
2022) approximates attention patterns using low-rank hid-
den dimensions, but incurs significant computational over-
head with long contexts. While HyperAttention (Han et al.,
2023) employs Locality Sensitive Hashing (LSH) to iden-
tify important attention scores, its coarse-grained selection
approach struggles to maintain model accuracy. MInfer-
ence (Jiang et al., 2024) takes a hybrid approach: it pre-
defines several sparse patterns and matches each attention
head to its optimal pattern offline to achieve a target sparsifi-
cation budget, then dynamically searches for sparse indices
during the prefill phase. However, this approach’s reliance
on predefined patterns and fixed budgets fails to capture
both the varying sparsity ratios across attention heads and
the dynamic sparse patterns that adapt to different input
contents.

In this paper, we find effectively exploiting the inherently-
high attention sparsity to accelerate prefill computation re-
mains challenging due to two key factors. First, the optimal
sparsity ratio varies adaptively across attention heads, input
contents, and model architectures, making it necessary to be
determined at runtime. Second, attention patterns also varies
across heads and contents, often combining typical column
and slash patterns. Some attention heads even display in-
tricate combinations of these patterns, further complicating
sparse pattern selection. These dynamic characteristics cre-
ate significant challenges for existing methods to achieve
an optimal trade-off due to their lack of flexibility. This
highlights the need for a more adaptable, runtime-efficient
approach to determine both the sparsity ratio and the pattern.

To address these challenges, we propose a novel approach,
SampleAttention, which can dynamically determine sparse
ratios and patterns at runtime. To select a minimal set of
significant column and slash patterns while maintaining ac-
curacy, we introduce a robust metric for evaluating model ac-
curacy called Cumulative Residual Attention (CRA), which
measures the capability of attention recall. The details of
this key insight will be presented in Section 3. Based on
CRA, we elaborate on a two-stage query-guided key-value
filtering method proposed by SampleAttention in Section 4.
This implementation is designed to efficiently identify im-
portant columns and slashes at runtime. SampleAttention
also develops an automated tuning method that uses a small
profiling dataset to determine the optimal hyperparameter
setting for each model across different length ranges. Sam-
pleAttention significantly accelerates vanilla attention by
reducing both I/O and computation requirements. We also
implement hardware-efficient kernels. Notably, SampleAt-
tention aims to reduce the computation overhead of atten-
tion, and is orthogonal and can be combined with existing
KV cache eviction approaches (Zhang et al., 2024c; Ribar
et al., 2023; Mu et al., 2024) to further reduce memory
consumption.

We evaluate SampleAttention on ChatGLM (GLM et al.,
2024), YI (Young et al., 2024) and InternLM (Cai et al.,
2024) with a suite of popular benchmarks covering various
generative tasks across different sequence lengths. Experi-
mental results show that SampleAttention achieves nearly
no accuracy loss1 for different LLMs, significantly outper-
forming prior works, and reduces the TTFT by up to 5.29×
compared with FlashAttention2.

2 BACKGROUND AND MOTIVATION

2.1 LLM Inference

LLMs are built upon transformer architectures (Vaswani
et al., 2017), which stacks multiple transformer decoder
blocks. Each block consists of an attention layer (Self-
Attention) followed by a feed-foward network (MLP).

The inference process of LLMs operates in two phases: pre-
fill and decoding. During the prefill phase, the model pro-
cesses the entire input prompt in parallel and generates the
first output token. This phase also generates and stores the
Key-Value (KV) cache for each token in the prompt, which
will be used in subsequent computations. The decoding
phase follows the prefill phase and sequentially generates
each new token based on all previous tokens. The model
takes one output token as input each time, and leverages the
KV cache to generate the subsequent new token autoregres-
sively. The KV cache of the input token will also be saved
as the context for subsequent generation.

When processing long input sequences, the computational
demands of handling lengthy prompts can result in signif-
icant Time To First Token (TTFT) latency (i.e. prefill la-
tency), creating a substantial bottleneck for real-world appli-
cations. For example, the TTFT of 1 million sequence for
ChatGLM-6B (Du et al., 2021) takes near 30 minutes. This
prohibitive latency makes it impractical for applications
requiring real-time responses. Therefore, reducing TTFT
for long sequences becomes crucial for enabling practical
deployment of LLMs in scenarios demanding both long
context processing and responsive interaction.

2.2 Attention Computation

The attention layer enables the model to weigh the impor-
tance of different tokens in the input sequence and dynam-
ically adjust their influence on the output. We start with a
regular full attention for one attention head to examine the
mechanism, while the following contents can be seamlessly
applied to multiple attention heads.

In attention layer, each token in the input sequence is trans-
formed into three vectors: query, key and value tensors. Let

1Near-lossless refers to that model accuracy stays above 99%
of the baseline according to MLPerf (Reddi et al., 2020).
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Figure 2. The average sparsity ratio of three different models with
long-context window on tasks with varying length ranges.

Q ∈ RSq×d and K, V ∈ RSk×d be the query and key-value
tensor of one head, where Sq, Sk is the sequence length
respectively, and d is the head dimension. The full attention
output O ∈ RSq×d can be formulated as,

P = softmax(
QKT

√
d

) ∈ [0, 1]Sq×Sk (1)

O = PV ∈ RSq×d (2)

where softmax is applied in row-wise, and P is the atten-
tion score.

This attention mechanism poses a fundamental challenge
during long-context inference: both the memory footprint of
P and the computational complexity scale quadratically with
sequence length. While FlashAttention (Dao et al., 2022)
effectively addresses the memory bottleneck through online
softmax computation, the quadratic computational complex-
ity remains unresolved, resulting in substantial response
delays. As previously discussed, attention computation can
constitute over 90% of the total TTFT latency, making its
optimization crucial for achieving practical long-context
inference.

2.3 Inherently-High Attention Sparsity

In attention computation, applying softmax over long
sequences tends to reduce the influence of smaller elements,
making them less significant. This insight motivates us
to investigate the inherent sparsity in the attention scores,
which can potentially accelerate the attention mechanism
without compromising accuracy. Formally, the full attention
score matrix P can be approximated with sparse attention
score P̂,

P̂ = softmax(
QKT

√
d

− c(1− M)) (3)

where M ∈ {0, 1}Sq×Sk is a binary mask matrix that deter-
mines the sparse attention pattern, and c is a large constant
that effectively zeroes out masked attention scores after
the softmax operation. The sparsity ratio measures the
percentage of attention scores that are masked.

27.4%

99.8%

Head-Specifc

Content-Aware

Model-Aware

Figure 3. The sparsity ratio of ChatGLM3 (28 layers×32 heads)
and InternLM2 (32 layers×32 heads), evaluated over different
tasks during prefill. The sparsity ratio varies across different atten-
tion heads, input contents and model architectures.

Our observations reveal that LLMs inherently exhibit a sig-
nificant sparsity ratio in their attention computations, even
without explicit optimization for this property. This finding
emerges from our comprehensive evaluation of attention pat-
terns across different model architectures and input prompts,
as shown in Figure 2. These observations suggest that at-
tention sparsity is an intrinsic characteristic of how LLMs
process information during the prefill phase, and the average
sparsity ratio is high across different models and datasets,
suppressing 89.6%.

3 MOTIVATION

While the high attention sparsity has been discussed in re-
cent works (Jiang et al., 2024; Li et al., 2024; Xiao et al.,
2024), we find that the adaptive sparsity ratio and dynamic
sparse pattern make it challenging to effectively exploit this
peoperty to accelerate prefill attention computation for long
context LLMs.

3.1 C#1: Adaptive Sparsity Ratio

Our observations reveal that attention sparsity in LLMs
exhibits adaptive sparsity ratio across three dimensions: at-
tention heads, input contents, and model architectures (Fig-
ure 3).

• Head-Specific: different attention heads exhibit remark-
ably different sparsity ratios, even within the same
layer. Speciafically, one head in the first layer has a
sparsity ratio as low as 27.4%, while the highest can
reach 99.8%.

• Content-Aware: the sparsity ratios of different in-
put prompts and context lengths are different. Our
observation indicates that as the context becomes
longer, the sparsity ratio increases correspondingly
(Appendix A.2).

• Model-Aware: different models exhibit distinct sparsity
ratios (Figure 2, Figure 3, Appendix A.2).
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(a) Head-A, prompt-A (b) Head-B, prompt-A (c) Head-C, prompt-A (d) Head-C, prompt-B

Figure 4. The visualization of attention reveals diverse structured sparse patterns. Different heads with same prompt exhibit dynamic
sparse indices and ratios, but the patterns can generally be categorized into (a) column , (b) slash , or (c) composed pattern with column
and slash. These structured patterns generally extend across the entire head. However, in some heads, such as (c), a prominent column
structure in the upper half gradually fades in the lower half. Additionally, as shown in (d), the same head exhibits significant pattern
differences under different prompts, highlighting the content-aware nature.

This adaptive sparsity ratio demonstrates that applying a
fixed sparsification budget across all attention heads and
input contents, as employed by MInference (Jiang et al.,
2024) and DuoAttention (Xiao et al., 2024), to search for
sparse pattern is suboptimal. To maximize the efficiency
of sparse attention while maintaining accuracy, the sparsity
ratio need to be dynamically determined at runtime for each
individual attention head and input prompt, allowing the
model to adapt to the inherent variations in sparsity ratios.

3.2 C#2: Dynamic Sparse Pattern

Our observations also reveal that the attention pattern varies
across different attention heads, input contents, and model
architectures. Figure 4 visualizes distinct sparse patterns
from different heads. Our analysis identifies two significant
sparse patterns that substantially contribute to the attention
score. The column pattern embodies crucial global contex-
tual information (Figure 4(a)), with the attention sink (Xiao
et al., 2023b) as a typical example. On the other hand, the
slash pattern maintains connections between contexts of
regular intervals (Figure 4(b)), such as the local window pat-
tern which captures recent context information. These two
patterns can be combined to cover diverse sparse patterns.
For example, Figure 4(c-d) display a composition of column
and slash patterns on a single head. Moreover, the concrete
sparse pattern varies across different input contents.

These dynamic patterns present a significant challenge to
determine the exact sparse pattern during inference. While
MInference (Jiang et al., 2024) acknowledges similar col-
umn and slash patterns, its approach of classifying atten-
tion heads into fixed categories (A-shape, Vertical-Slash, or
Block-Sparse) and determining optimal patterns offline fails
to capture the content-dependent variations in sparse pat-
terns. This limitation highlights the need for a more flexible,
runtime-adaptive approach to pattern selection.
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Figure 5. The curves of model accuracy and attention recall with
changing CRA thresholds α for different tasks.

3.3 Insight: Cumulative Residual Attention

To effectively balance the trade-off between efficiency and
accuracy when determining runtime sparsity ratios and pat-
terns, we need a reliable metric to guide these decisions.
Our finding reveals that the Cumulative Residual Atten-
tion (CRA), defined as the minimum sum of remaining
attention probabilities per query after sparsification, serves
as a robust indicator of model accuracy. As demonstrated
in Figure 5, there exists a consistent positive correlation
between the CRA threshold and model accuracy across
different LLMs and tasks. This relationship provides a prin-
cipled way to navigate the efficiency-accuracy trade-off:
while lower CRA thresholds enable greater computational
speedups, they should be carefully balanced against poten-
tial accuracy degradation.

Leveraging this insight, we can dynamically identify a
minimal set of attention indices that satisfy the desired
CRA threshold, thereby optimizing computational effi-
ciency while preserving accuracy. This dynamic selection
approach naturally accommodates varying sparsity ratios
and sparse patterns across different attention heads, input
contents, and model architectures.
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Figure 6. SampleAttention replaces the original full attention with a two-stage implementation. In the first stage, token-level attention
scores are computed by performing chunked sampling across multiple query blocks and accumulating the scores along the column
and slash direction. In the second stage, we determine the minimum quota of blocks required for each sampling region based on the
block-reduced scores and thresholds (αc, αs). Then, we perform top-k operation on each head to filter out the required block indices Ic
and Is. These indices will be extended along the column and slash patterns and merged into M̂ to enable sparse computation in attention.
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Figure 7. Relationship between the ratio of selected top-k
columns-slashes and CRA. The high similarity of the numeri-
cal distribution enables a small amount of critical stripes-slashes
to cover the majority values of the full attention score matrix.

The precise dynamic selection for a CRA threshold requires
computing the full attention score, which is computationally
expensive. Inspired by the observed significant column and
slash pattern, we find that selecting an appropriate number
of key column and slash strips can accurately approximate
the CRA (Figure 7). The number of selected strips can
be determined at runtime to vary the sparsity ratio across
different heads and contents. Additionally, the combination
of column and slash patterns provides sufficient flexibility
to capture diverse attention distributions encountered.

4 SAMPLEATTENTION

In this section, we demonstrate how SampleAttention effi-
ciently determines dynamic sparsity ratios and structured
patterns at runtime, ensuring maximum efficiency through

sparse acceleration while maintaining nearly lossless accu-
racy. In Section 4.1, we provide an overview of the key con-
siderations and the two-stage implementation of SampleAt-
tention. Subsequently, in Section 4.2 and Section 4.3, we
delve into the details of the two critical stages of SampleAt-
tention: query-guided chunked sampling and score-based
key-value filtering. Additionally, in Section 4.4, we explain
how the introduced hyperparameters affect the tradeoff be-
tween accuracy and performance, and outline the method
for tuning them. Finally, we detail the hardware-efficient
implementation in Section 4.5.

4.1 Overview

Given a desired CRA threshold, SampleAttention dynam-
ically selects a set of important column and slash strips to
capture adaptive sparsity ratio and dynamic sparse pattern.
However, the selection is non-trivial since SampleAttention
requires fast and accurate estimation of attention scores. To
address this, SampleAttention proposes a two-stage sam-
pling algorithm.

The first stage is Query-Guided Chunked Sampling, where
SampleAttention estimates the full attention score by com-
puting the attention scores for a few queries, inspired by
the observed column pattern. While prior work like MIn-
ference (Jiang et al., 2024) uses only last lastq queries for
estimation, we found this approach insufficient for capturing
complex hybrid column and slash patterns. For instance,
as shown in Figure 4(c), the column pattern is significant
in the upper half region, but gradually fades in the lower
half region. To capture such varying patterns effectively,
SampleAttention partitions the queries into chunkn equal
segments and perform separate attention sampling for each
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chunk, enabling more accurate pattern detection across the
entire attention matrix.

The second stage is Score-Based Key-Value Filtering, where
SampleAttention filters key columns and slashes that meet
a specified CRA threshold α based on the sampled atten-
tion scores. A naive approach of jointly selecting column
and slash strips would require evaluating ncolumn × nslash

combinations, making the selection process computationally
expensive. To improve efficiency, we decompose the single
threshold α into separate thresholds: αc for columns and αs

for slashes. This decomposition reduces the computational
complexity from ncolumn × nslash to ncolumn + nslash.
The filtering stage independently selects column and slash
strips before merging them into the final pattern.

SampleAttention introduces several tunable hyperparame-
ters to control the trade-off between efficiency and accuracy.
To facilitate rapid adoption of SampleAttention, we pro-
vide a method for automatic hyperparameter tuning on a
compact validation dataset, which maximizes computational
efficiency while maintaining accuracy.

Algorithm 1 Two-stage Implementation of SampleAttention

Input: Q,K,V ,αc,αs ∈ [0, 1], chunkn

# Stage1: Query-Guided Chunked Attention Sampling
itv ← Sq

chunkn
, blk← 128

Qslice ← [Q[i∗itv−blk:i∗itv] for i in range(1, chunkn+1)]

Â← softmax
(
QsliceK

⊤/
√
d+mcasual

)
Âc, Âs ← block_reduction

(
Â, blk

)
# Stage2: Score-Based Key-Value Block Filtering
kc ← find_k

(
cumsum(sort(Âc)),αc

)
Ic ← arg_topk

(
Âc,kc

)
ks ← find_k

(
cumsum(sort(Âs)),αs

)
Is ← arg_topk

(
Âs,ks

)
# Extend and Merge Block-sparse Mask across Each Head
M̂ ← merge_index(Ic, Is, itv)

# Final Sparse FlashAttention with Block Index
O ← sparse_flash_attn

(
Q,K,V ,M̂

)
return O

4.2 Stage1: Query-Guided Chunked Sampling

As discussed in Section 4.1, we need to divide the queries
into chunks to ensure that sampling can more accurately
determine the sparse structure within each head. Compared
to random sampling or bottom sampling, this equidistant
sampling technique is low-overhead and more stable. Our
experiments show that this straightforward approach is ef-
fective: sampling a small number of query blocks can ac-
curately approximate the actual CRA (Further details can

be found in Appendix A.3). It should be noted that existing
methods (Jiang et al., 2024; Li et al., 2024) commonly use
bottom sampling, which fixes chunkn at 1. This means
that only query blocks at the bottom of the score matrix are
sampled. Due to the overly concentrated sample locations,
this approach may lead to biases in index selection.

Subsequently, we accurately compute the attention scores
for the query blocks at the bottom of each chunk. These
token-level scores are then reduced at the block size (blk)
granularity in both column and slash directions. The result-
ing block-level scores help us dynamically determine the
required sparsity ratios and indices in the second stage.

4.3 Stage 2: Score-Based Key-Value Filtering

In the second stage, our approach performs a refined fil-
tering of key-value indices based on the sample attention
scores. A significant challenge remains in efficiently and
dynamically selecting the minimal set of key-value indices
of interest under different patterns, denoted as Ic and Is ,
that align with the input prompt and satisfy the CRA thresh-
old α. Determining a fixed quota of critical indices does not
achieve the optimal balance between accuracy and perfor-
mance, especially given the extensive sequence lengths. To
address this inefficiency, we employ an adaptive approach
that filters block-level indices based on blocked attention
scores in both the column and slash directions, comparing
them with their respective thresholds.

In detail, as shown in Algorithm 1, for each sampled block
within a chunk, SampleAttention first accumulates the atten-
tion scores along the column and slash directions and then
reduces them at the block granularity. This accumulation
serves as a statistical approximation of the overall attention
scores. Using these block-level scores in both directions,
SampleAttention can effectively select the minimal number
of key-value blocks kc and ks that meet the CRA thresholds
αc and αs for each attention head, respectively. Finally,
based on the derived minimal quota, SampleAttention per-
forms a top-k operation in each direction to filter out the
essential block indices Ic and Is. It is noteworthy that sam-
pled chunks from different positions may filter out different
sets of column and slash indices. SampleAttention extends
these indices obtained from each sampled block according
to the patterns so that they cover the entire attention ma-
trix. This ensures that the final merged mask M̂ achieves an
almost lossless sparse approximation. This approach also
enables the identification of critical attention sinks and local
window masks, thereby maintaining stable accuracy.

4.4 Hyperparameter Tuning

Due to the introduction of three hyperparameters in Sam-
pleAttention, as shown in Table 1, it is crucial to analyze
their impact on the accuracy and performance. Here, we
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briefly discuss the influence of these parameters and outline
the approach to tuning them. Detailed results of modifying
these hyperparameters are studied in Section 5.3.

Thresholds for Columns and Slashes. The most critical hy-
perparameters in SampleAttention are the CRA thresholds
αc and αs. Generally, larger threshold values can reduce
the speedup but enhance the model’s accuracy. Therefore, it
is necessary to predetermine cost-effective threshold values
for columns and slashes offline using a compact dataset.
We can use the accuracy and latency metrics of FlashAt-
tention2 (Dao, 2023) as reference standards for this pro-
cess. Moreover, since long-context tasks span a wide range,
further segmenting the context by length and tuning each
segment individually can more effectively leverage sparsity
at different lengths, thereby achieving more cost-effective
threshold values.

Sampling Positions and Ratios. Additionally, the number
of sampling chunks significantly affects SampleAttention’s
performance by influencing the sampling positions and the
ratio of selected indices. For instance, too few sampling
samples may fail to capture the full sparse structures in
the head, thereby reducing accuracy. Conversely, excessive
sampling can increase overhead and introduce redundant
computations in attention. Therefore, during the tuning, we
introduce multiple values for chunkn to expand the search
space and identify more efficient configurations.

Table 1. The meaning of hyperparameters and they will be tuned
offline for different length ranges.

Hyperparameter Description

αc The desired CRA threshold for columns
αs The desired CRA threshold for slashes

chunkn The number of sampling chunks

4.5 Hardware-efficient Implementation

To achieve substantial speedup in wall-clock time, Sam-
pleAttention is implemented with IO-awareness to max-
imize hardware-efficiency. First, the query-guided key-
value filtering involves a series of small operators (bmm,
mask_fill, softmax, reduction) that read and
write large intermediate results. SampleAttention signif-
icantly reduces IO overhead by fusing these operators. Sec-
ond, SampleAttention implements an efficient adaptive
structured sparse attention kernel by modifying FlashAt-
tention2 (Dao, 2023). These hardware-aware optimizations
enhance speed performance significantly.

5 EXPERIMENTS

5.1 Setup

Backbones. We evaluate our method on three widely used
open-source LLM variants: ChatGLM4-9B with a 1M con-
text window based on GLM (Du et al., 2021; GLM et al.,
2024); ; YI-9B, featuring a 200K context window (Young
et al., 2024); and InternLM2-7B, also with a 200K con-
text window (Cai et al., 2024). All utilized models are
decoder-only transformers (Radford et al., 2018), and are
pre-trained via causal language modeling. They encom-
pass similar architectural components, such as rotary po-
sitional encoding (Su et al., 2024), and grouped-query at-
tention (Ainslie et al., 2023). Simultaneously, there are
notable differences, e.g., the former augments the context
window capacity via continued training with an extended
sequence length, whereas the latter achieves length extrap-
olation through rope scaling. It is important to note that
we specifically replace the full-attention implementation
during the prompt prefill stage with SampleAttention and
baseline methods, while preserving an uncompressed key-
value (KV) cache and dense attention computation in the
decoding phase.

Tasks. We evaluate SampleAttention and other methods’
understanding capabilities in long-context scenarios on
three distinct tasks: RULER (Hsieh et al., 2024), Long-
Bench (Bai et al., 2023) and Infinite Bench (Zhang et al.,
2024b). RULER provides a comprehensive evaluation of
long-context language models through flexible configura-
tions for sequence lengths. Unlike the traditional needle-
in-a-haystack (Kamradt, 2023) test, RULER extends it by
incorporating diverse types and quantities of "needles" and
introduces new tasks such as multi-hop tracing and aggre-
gation, which evaluate more complex behaviors beyond
simple retrieval. RULER encompasses 13 tasks, making
it an excellent tool for testing long-context understanding.
LongBench, a multi-task benchmark, comprises single and
multi-document QA, summarization, few-shot learning, syn-
thetic tasks, and code completion. It offers over 4,750 test
cases with task lengths from 4K-35K. InfiniteBench, a
benchmark specifically designed to evaluate language mod-
els’ ability in handling, understanding, and reasoning in
contexts exceeding an average length of 200K. It comprises
10 unique tasks, each crafted to assess different aspects of
language processing and comprehension in extended con-
texts.

Baselines and settings. We conducted all experiments on a
single NVIDIA-A100 GPU (80GB) to evaluate accuracy and
performance of attention operation during the prefill stage.
We consider the full attention (as the gold baseline), Min-
ference (Jiang et al., 2024), BigBird (Zaheer et al., 2020),
Streaming-LLM (Xiao et al., 2023b), HyperAttention (Han
et al., 2023) and Hash-Sparse (Pagliardini et al., 2023) as
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Figure 8. The trade-off between accuracy (measured via RULER benchmark scores) and speedup (relative to FlashAttention2) is analyzed
across various sparse attention methods. Figures (a)–(c) illustrate this trade-off under the GLM4-9B architecture for sequence lengths of
32K, 64K, and 128K, respectively. Meanwhile, Figures (d)–(f) present averaged results across different models for each of the three
sequence lengths, focusing exclusively on configurations demonstrating optimal performance in both acceleration and precision. Notably,
our proposed method consistently outperforms MInference in both accuracy and speedup across all evaluated scenarios, showcasing
superior efficiency-accuracy trade-offs.

baselines to compare model accuracy across different tasks.
Minference requires pre-profiling to determine the optimal
pattern. And both BigBird and StreamingLLM were as-
signed a window size ratio of 8%. BigBird retains a global
ratio of 8%. StreamingLLM sets its initail attention sink
at 4 tokens. HyperAttention set both bucket size and the
number of sampled columns to 256. For SampleAttention,
we generate small-scale tasks using the RULER benchmark
at specific lengths (e.g., 16K, 32K, 64K, 128K) to tune hy-
perparameters and subsequently apply these parameters to
tasks across different length ranges. This approach enables
SampleAttention to achieve an optimal trade-off balance
within each length range.

5.2 Trade-off between Accuracy and Efficiency

Main results. Figure 8 compares the trade-offs between
accuracy and the speedup relative to FlashAttention2 among
different sparse methods and SampleAttention under various
hyperparametres on the RULER benchmark. Table 2, on
the other hand, compares the accuracy of different sparse
methods on LongBench and InfiniteBench tasks. The results
show that:

• The performance in accuracy of SampleAttention is
consistently robust across all benchmarks (including
subdomains), various models, and diverse sequence
lengths. When compared to full attention, which
serves as the gold standard, SampleAttention consis-
tently achieves scores above 99% of full attention,

demonstrating near-lossless efficiency. Furthermore,
our approach establishes a new Pareto frontier in the
accuracy-efficiency trade-off, surpassing existing meth-
ods in both dimensions.

• While Minference achieves accuracy comparable to
FullAttention at lengths of 32K and 64K, it fails to pro-
vide any speedup benefits. In contrast, sample attention
maintains nearly lossless performance and achieves
speedup ranging from 1.24× to 2.36× compared to
FlashAttention2 across different lengths.

• BigBird exhibits varying degrees of performance degra-
dation across different models and lengths. Nonethe-
less, on average, BigBird still achieves approximately
86% of the scores achieved by full attention and pro-
vides a relatively stable speedup due to the nature of
its static pattern.

• StreamingLLM and HyperAttention result in perfor-
mance degradation across all tasks, demonstrating that
these techniques fail to capture critical KV elements in
long sequences at the prefill stage.

5.3 Ablation Study and Tuning for Hyperparameter

As introduced in Section 4.4, the sparse properties of dif-
ferent models exhibit significant variability across sequence
lengths. Therefore, we implement an automated, offline
hyperparameter tuning method for the specified models on
the small-scale datasets. This approach discretizes sequence
lengths into distinct intervals and performs multi-task tuning
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Table 2. Accuracy comparison across various sparse methods on LongBench and InfiniteBench under GLM4-9B model. The hyperparam-
eters applied are the optimal accuracy configurations, tuned for different sequence length ranges. The best results are highlighted in Bold
while the second best results are marked with an Underline.

Benchmark Baseline
Task Type

Single-
Doc QA

Multi-
Doc QA

Summari-
zation

Few-shot
Learning

Synthetic
Tasks

Code
Completion Total Score

LongBench

Full Attention 213.12 174.35 109.69 273.87 231.49 121.52 1124.04
Ours 214.53 174.42 108.92 278.33 234.55 125.18 1135.93

Minference 212.14 173.37 110.02 274.45 231.87 124.37 1126.22
BigBrid 207.57 146.45 95.64 272.17 161.60 117.38 1000.81

StreamingLLM 142.79 129.36 89.71 168.13 19.70 98.43 648.12
HyperAttention 125.74 119.08 88.05 206.35 32.69 86.35 658.26

En.Sum En.QA En.MC En.Dia Zh.QA Code.
Debug

Math.
Find

Retr.
PassKey

Retr.
Number

Retr.
KV

InfiniteBench
Full Attention 28.30 12.17 58.95 34.00 13.22 30.71 37.71 100 100 44.0

Ours 28.30 16.52 61.57 31.50 14.28 31.40 37.14 100 100 49.6
Minference 28.00 11.39 60.26 28.70 14.81 31.70 39.43 100 100 43.0

within each segment. Such a strategy ensures an optimal bal-
ance between accuracy and efficiency over the entire range
of sequence lengths. Figure 9 demonstrates how varying
the CRA thresholds for column and slash patterns influ-
ences both accuracy and the sparsity ratio under different
conditions. Table 3, on the other hand, investigates how
different numbers of sampling chunks impact accuracy and
computational speedup.

CRA threshold αc and αs: Tuning αc and αs within a
given model is crucial for finding a cost-effective configura-
tion. Generally, as shown in Figures 9 (a) and (c), increasing
either αc or αs alone can improve accuracy, but at the ex-
pense of increased computational load. However, there are
differences between them. The YI model in Figure (c) at
128K shows significantly greater sensitivity to changes in
the slash threshold αs, whereas Figure (a) demonstrates a
more balanced response to changes in both thresholds. Ad-
ditionally, Figure (b) shows that smaller thresholds can still
deliver sufficiently good scores, enabling higher speedup
while maintaining accuracy.

Number of Sampling Chunks: We further evaluate the im-
pact of different numbers (1, 2, 4, 6) of sampling chunks on
accuracy, given a fixed threshold. Table 3 demonstrates that
an appropriate chunkn size can yield more cost-effective re-
sults. For instance, increasing the number from 1 to 2 helps
SampleAttention enhance accuracy without significantly im-
pacting the speedup ratio. However, an excessively large
number of chunks may not improve accuracy and can de-
crease the speedup. Thus, selecting an appropriate chunkn
size is essential.

Cross-Task Robustness The hyperparameters of SampleAt-
tention are inherently model-specific due to architectural
design and intrinsic sparsity patterns. To evaluate cross-task
robustness, we tested shared hyperparameter configurations

across three distinct benchmarks under the same model.
First, we performed tuning on GLM4 and InternLM2 us-
ing subsets of the RULER benchmark at various sequence
lengths. We selected optimal configurations under two cri-
teria: accuracy-optimized settings with negligible perfor-
mance loss compared to full-attention baselines, and con-
figurations maximizing acceleration gains. Detailed hy-
perparameters are provided in Appendix 6. Experimental
results in Figure 10 demonstrate that hyperparameters tuned
on a subset of tasks generalize effectively across diverse
benchmarks. For instance, GLM4’s accuracy-optimized
hyperparameters maintained near-lossless performance on
different tasks from LongBench and InfiniteBench. This in-
dicates robust cross-domain adaptability without significant
performance degradation. Additionally, consistent speedup
gains were observed for the same model under identical
sequence lengths across tasks.

Table 3. The impact of changing chunkn on scores/speedup in
different cases. The scores above are based on RULER, while
the speedup below are relative to FlashAttention2. The best score
results are highlighted in bold, while the best speedup results are
marked with underline.

Model (αc,αs) chunkn

1 2 4 6

GLM
(128K)

(0.90,0.90) 82.89/
1.92

84.70/
1.89

84.02/
1.70

83.62/
1.53

(0.95,0.95) 84.17/
1.64

84.04/
1.60

83.14/
1.46

83.73/
1.33

Yi
(128K)

(0.95,0.95) 52.81/
2.17

54.54/
2.12

53.10/
1.89

54.58/
1.71

(0.98,0.98) 56.24/
1.29

58.58/
1.25

59.37/
1.21

59.36/
1.13



SampleAttention: Near-Lossless Acceleration of Long Context LLM Inference with Adaptive Structured Sparse Attention

0.8 0.9 0.95 0.98
Alpha_c

0.8

0.9

0.95

0.98

Al
ph

a_
s

75.44
10.98%

83.12
13.68%

85.65
15.37%

85.93
23.09%

82.33
12.77%

84.63
17.01%

87.32
19.55%

88.41
26.75%

85.52
18.69%

86.07
21.31%

87.89
24.68%

89.17
27.5%

87.09
27.95%

88.80
28.875%

89.45
31.37%

89.76
34.77%

(a) GLM4-9B 32K

0.8 0.9 0.95 0.98
Alpha_c

0.8

0.9

0.95

0.98

Al
ph

a_
s

72.00
6.06%

77.09
9.97%

81.71
13.18%

84.39
21.93%

84.58
14.23%

84.70
17.47%

82.98
20.33%

84.35
24.11%

83.29
16.41%

83.44
19.52%

84.04
22.72%

84.43
25.34%

85.06
21.38%

84.21
24.62%

84.92
26.52%

83.26
29.8%

(b) GLM4-9B 128K

0.8 0.9 0.95 0.98
Alpha_c

0.8

0.9

0.95

0.98

Al
ph

a_
s

47.65
6.25%

50.23
9.19%

50.18
10.08%

51.13
12.34%

50.22
7.89%

50.83
9.28%

52.08
14.33%

53.45
17.61%

52.65
11.60%

52.10
14.02%

53.10
15.49%

53.96
22.30%

56.16
21.83%

56.55
24.74%

58.18
30.84%

59.37
32.6%

(c) YI-9B 128K

77.5

80.0

82.5

85.0

87.5

74

76

78

80

82

84

48

50

52

54

56

58

Figure 9. The heatmaps under different cases illustrate the impact of choosing different values of αc and αs on the accuracy of
SampleAttention (the white text represents the scores under the RULER benchmark, while the black italic text denotes the actual ratio of
calculated blocks). The chunkn values for the GLM and YI models are set to 2 and 4, respectively.
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Figure 10. Results from offline tuning and evaluation of (a) GLM4-
9B and (b) InternLM2-7B across RULER, LongBench, and In-
finiteBench benchmarks. Different tasks share the same hyperpa-
rameters from offline tuning when sequence lengths fall within the
same range.

5.4 Acceleration Speedup Benchmarking

We conducted micro-benchmarks on a single A100 to eval-
uate the time breakdown and TTFT metrics. The baseline
selected is FlashAttention2. All tests were conducted us-
ing the configuration from ChatGLM4-9B: 32 heads, and
d = 128, with synthetic data from the RULER benchmark
as input. We standardized the batch size of the input data
to 1 to support longer sequence lengths. The hyperparam-
eters are tuned to attain the best possible speedup without
accuracy loss compared to FlashAttention2, ensuring the
optimal acceleration-accuracy trade-off. For example, the
hyperparameters for 32K are set to αc = 0.95, αs = 0.95,
and chunkn = 1. For lengths above 128K, the parameters
tuned for 128K are reused.

Sampling overhead. Figure 11(a) presents the time break-
down for a full 40-layer model using synthetic data span-
ning sequence lengths from 32K to 128K. The results reveal
that as sequence lengths increase, the relative contribution
of sampling overhead diminishes. This trend underscores
the potential of SampleAttention to deliver substantial ac-
celeration advantages for longer sequences. However, in
short-sequence scenarios, the performance gains are less
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Figure 11. (a) The percentage of time spent on sampling and sparse
computation in SampleAttention. (b) Comparison of the TTFT
metric using FlashAttention2 as the baseline.

pronounced due to the computational overhead associated
with dynamic sampling and index construction. For in-
stance, in the GLM4-9B model at an 8K sequence length,
the latency of SampleAttention remains nearly identical to
FlashAttention2 without compromising accuracy.

Scaling the sequence length to 1M. We also conducted
GPU performance evaluations scalable to a sequence length
of 1 million. To avoid memory issues, for sequence lengths
greater than 256K, we divide the input sequence into mul-
tiple chunks and partition them by head during attention.
We also further reduced a large number of intermediate re-
sults through operator fusion. Figure 11(b) shows that when
the sequence length scales to 1M, the TTFT metric can be
significantly reduced by 5.29×.

6 RELATED WORK

Approximate Attention. Plenty of works have been pro-
posed to approximate quadratic attention with lower com-
plexity(Ainslie et al., 2020; Beltagy et al., 2020; Zaheer
et al., 2020; Kitaev et al., 2020; Ding et al., 2023; Child
et al., 2019; Pagliardini et al., 2023; Roy et al., 2021;
Han et al., 2023; Wang et al., 2020; Choromanski et al.,
2020; Katharopoulos et al., 2020; Chen et al., 2021b;a; Zhu
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et al., 2023; Ribar et al., 2023; Roy et al., 2021; Liu et al.,
2023b). For example, BigBird (Zaheer et al., 2020) com-
bines window-, global- and random-attention to capture
long range dependency. Reformer (Kitaev et al., 2020)
reduces computional cost via locality-sensitive hashing.
LongNet (Ding et al., 2023) replaces full attention with di-
lated attention. Linformer (Wang et al., 2020) employs low-
rank matrix to approximate attention. HyperAttention (Han
et al., 2023) utilizes locality sensitive hashing to identify im-
portant entries on attention map. However, these approaches
uses either static or coarse-grained sparse pattern, and often
overlook the head-specific sparsity pattern. They cannot be
losslessly applied in pretrained LLMs without additional
finetuning or training. Additionally, although the recent
work Minference (Jiang et al., 2024) addresses the varying
sparsity among attention heads by employing three distinct
sparse attention patterns for long sequences, it relies on
predefined fixed ratios for these sparse patterns and fails to
account for the dynamic nature of the actual model and its
prompts.

KV Cache Compression. Long sequence comes
with substantial KV cache memory consumption.
StreamingLLM (Xiao et al., 2023b) keeps attention sinks
and several recent tokens for infinite length generation.
H2O (Zhang et al., 2024c) dynamically retains a balance
of recent and heavy hitter tokens according to attention
score during decoding. FastGen (Ge et al., 2023) adaptively
construct KV cache according to observed head-specific
policies. SnapKV (Li et al., 2024) strategically compresses
the KV cache by selecting clustered critical positions for
each attention head, leading to improvements in memory
and latency efficiency during decoding. CHAI (Agarwal
et al., 2024) exemplifies head pruning methods that target
reducing the KV cache overhead at the attention head
level, thereby accelerating decoding. Recent efforts also
quantize KV cache to lower precision to reduce memory
consumption (Duanmu et al., 2024; Xiao et al., 2023a; Zhao
et al., 2023). These works target on reducing the memory
consumption of KV cache, while SampleAttention focuses
on mitigating the long context computation overhead.
SampleAttention can be combined with these approaches to
further reduce memory consumption of KV cache.

7 CONCLUSION

In this paper, we identify the challenge of effectively ex-
ploiting the inherent high attention sparsity to accelerate
prefill attention, due to the highly dynamic structured pat-
terns and optimal sparsity ratios exhibited by the attention
mechanism over long contexts. To address this, we propose
SampleAttention, which utilizes CRA as a robust inficator
of model accuracy and adaptively determines the sparsity ra-
tio and pattern at runtime. Through an innovative two-stage

query-guided filtering approach and hyperparameter tuning,
it dynamically selects the minimal set of critical key-values,
maximizing efficiency while maintaining accuracy. Exper-
imental results demonstrate that SampleAttention consis-
tently maintains robust accuracy across various benchmarks,
models, and sequence lengths, and significantly reduces the
TTFT metric.
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A APPENDIX

A.1 Visualization of Attention Score

Figures 12 and Figures 13 present the sparse patterns across
various heads in the ChatGLM3-6B model (28 layers x 32
heads) under a sequence length of 61K. We conducted row-
by-row filtering based on the full attention softmax weight,
using a CRA threshold of α = 0.95, and randomly selected
four heads from different layers for display.

According to the visualization results on the majority of
heads, we observed two distinct and prominent patterns
prevalent in the heatmap of attention weight: column stripes
and slash stripes. Column stripe patterns embody the global
contextual information whereas slash stripe capture local
information.

A.2 Sparisty Analysis

To further quantify the degree of sparsity exposed as se-
quence lengths increase, we conducted scalability tests on
the ChatGLM3-6B model using the "Needle-in-a-Haystack"
task to evaluate sparsity. The results are presented in Ta-
ble 4. According to the results, the increase in sequence
length introduces more apparent sparsity. With each dou-
bling of length, the proportion of KV elements needed to
maintain the same threshold α decreases by approximately
20%. Concurrently, a smaller threshold results in the filter-
ing of more KV elements, which may also lead to a decline
in task performance in accuracy.

Table 4. Sparsity analysis for the "Needle in a Haystack" task

Sequence Length Average Sparsity
in ChatGLM-6B

Average Sparsity
in InternLM-7B

4K 88.00% 91.13%
8K 90.74% 92.72%
16K 92.52% 93.89%
32K 93.88% 94.83%
64K 94.89% 95.89%

128K 95.84% 96.67%

A.3 Effectiveness of sampling

To validate the efficiency of this chunked sampling method,
we conducted tests using two different sampling ratios on
three different heads. One sampling rate was set to full
sampling, while the other was configured with a query block
size of 128 and a sampling rate where chunkn was 2. We
applied varying proportions of top-k columns and slash
stripes to the full attention matrix as masks to observe the
changes in CRA. The results, shown in Table 5, indicate
that the CRA obtained by selecting top-k stripes at a 0.4%
sampling rate is very close to the CRA obtained from the

complete attention scores, with the difference decreasing as
the proportion increases. This demonstrates that the chun-
ked sampling method in SampleAttention is both simple
and efficient.
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(a) Layer0 (b) Layer0 (c) Layer0 (d) Layer0

(e) Layer4 (f) Layer4 (g) Layer4 (h) Layer4

(i) Layer8 (j) Layer8 (k) Layer8 (l) Layer8

(m) Layer12 (n) Layer12 (o) Layer12 (p) Layer12

Figure 12. The visualization attention based on a content length of 61K, displays the sparse patterns for randomly chosen heads from
layers 0, 4, 8 and 12.
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(a) Layer16 (b) Layer16 (c) Layer16 (d) Layer16

(e) Layer20 (f) Layer20 (g) Layer20 (h) Layer20

(i) Layer24 (j) Layer24 (k) Layer24 (l) Layer24

Figure 13. The visualization attention based on a content length of 61K, displays the sparse patterns for randomly chosen heads from
layers 16, 20 and 24.
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Table 5. The CRA percentages can be achieved by selecting different ratios of top-k stripes under varying sampling rates. The tests were
conducted on the RULER task with a sequence length of 64K using the GLM4-9B model.

ratio of
top-k

2.5% 10% 20% 40% 80%

sampling ratio 100% 0.4% 100% 0.4% 100% 0.4% 100% 0.4% 100% 0.4%

HEAD-1 16.35% 12.74% 26.91% 23.33% 45.99% 42.14% 58.21% 55.34% 96.30% 93.65%
HEAD-2 55.43% 48.40% 63.89% 58.63% 85.92% 81.98% 89.07% 84.21% 99.15% 98.08%
HEAD-3 93.20% 90.44% 98.32% 97.62% 99.14% 98.43% 99.41% 99.12% 99.98% 99.66%

Table 6. Hyperparameters selected for GLM-4B and InterLM2-7B after tuning across sequence length ranges. Acc | Spd represents the
optimal configuration that maintains accuracy without loss compared to the full-attention, as well as the configuration achieving the
highest speedups while retaining at least 90% of the accuracy.

range of
sequence length < 16K [16K,48K) [48K,80K) [80K,112K) >=112K

models
Acc | Spd GLM4 InternLM2 GLM4 InternLM2 GLM4 InternLM2 GLM4 InternLM2 GLM4 InternLM2

CRA
Column 0.98 | 0.85 0.98 | 0.85 0.95 | 0.85 0.95 | 0.80 0.95 | 0.80 0.92 | 0.80 0.90 | 0.80 0.92 | 0.80 0.95 | 0.80 0.95 | 0.80

CRA
Slash 0.90 | 0.85 0.95 | 0.85 0.95 | 0.80 0.90 | 0.80 0.95 | 0.80 0.92 | 0.80 0.90 | 0.80 0.90 | 0.80 0.85 | 0.80 0.90 | 0.80

Num of
Chunks 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 2 | 1 2 | 1 1 | 1 2 | 1


