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ABSTRACT

In recent years, there has been a race among researchers, developers,
engineers, and designers to come up with new interaction techniques
for enhancing the performance and experience of users while inter-
acting with virtual environments, and a key component of a 3D inter-
action technique is the selection technique. In this paper, we explore
the environmental factors used in the assessment of 3D selection
methods and classify each factor based on the task environment. Our
approach consists of a thorough literature collection process, includ-
ing four major Human-Computer Interaction repositories—Scopus,
Science Direct, IEEE Xplore, and ACM Digital Library and created
a dataset of a total of 909 papers. Drawing inspiration from the
parameters outlined by Laviola et al. we manually classified each of
those papers based on the task environment described in the papers.
In addition, we explore the methodologies used in recent user studies
to assess interaction techniques within various task environments,
providing valuable insights into the developing landscape of virtual
interaction research. We hope that the outcomes of our paper serve
as a valuable resource for researchers, developers, and designers,
providing a deeper understanding of task environments and offering
fresh perspectives to evaluate their proposed 3D selection techniques
in virtual environments.

Index Terms: Human-centered computing—Virtual R-
eality—Augmented Reality—3D User Interfaces; Human-centered
computing—Selection—Virtual Task Environments

1 INTRODUCTION

The advancements in Virtual Reality (VR) and Augmented Reality
(AR) systems have led to an increased focus on the overall perception
and satisfaction of users. This also involves interactivity, e.g., the
dynamic exchange of information between the user and the VR
system, allowing users to interact with and manipulate objects or
elements in the virtual space. As a result, one of the major research
topics of 3D user interfaces (UI) focused on developing novel 3D
interaction techniques, aiming to interact with and manipulate virtual
objects seamlessly and intuitively.

Researchers developed novel interaction techniques for 3D UIs
to address specific challenges and limitations associated with exist-
ing methods such as raycasting and virtual hand [9]. While these
common techniques are widely used, they have limitations in terms
of addressing diverse user needs, providing precision and accuracy,
and addressing challenges in interaction scenarios. Thus, 3D UI
studies started to propose novel interaction methods designed for
Virtual Reality (VR) or Augmented Reality (AR) environments, each
addressing specific challenges and offering trade-offs in terms of
time, accuracy, and precision or offering improvements in user expe-
rience, efficiency, and adaptability to different virtual environments.
Consequently, researchers, practitioners, and designers continue to
propose novel 3D interaction techniques based on various aspects,
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including input devices, virtual environments, and task complexity,
e.g., [86, 115, 150, 213].

One crucial aspect of interaction techniques is 3D selection, which
is closely intertwined with effectively navigating and manipulating
objects within a 3D space. Selection is considered one of the major
methods of interaction with physical and virtual environments [115].
According to LaViola et al.’s 3D User Interfaces book [115], the
selection is defined as one of the four ”canonical tasks” for manipu-
lation, which is a sub-part of the interaction techniques. Here, we
define 3D selection in virtual environments as the action of identify-
ing, highlighting, or designating specific items or elements within a
3D space.

The virtual task environment plays a crucial role in 3D selection
studies, enabling the exploration of innovative techniques for chal-
lenging parameters such as occlusion and density. Additionally, the
field of VR & AR has undergone significant advancements in the
past 25 years since the last comprehensive paper on virtual task en-
vironment factors for 3D selection [180]. The rapid evolution of VR
technologies and systems has introduced novel features, improved
graphics, and enhanced interaction capabilities.

Given these recent developments in the past 25 years, there is
a need to update the literature on virtual task environment factors
to align with the current state-of-the-art systems since the variation
of task environments in recent studies on 3D selection techniques
has not been thoroughly examined. With the advancements in VR
& AR systems, there is potential for the development and evalua-
tion of new techniques in diverse task environments. An updated
review will not only reflect the present capabilities of VR but also
provide valuable insights for designing experiments that accurately
represent the dynamic and sophisticated nature of today’s virtual
task environments. An elaboration on the classification of the vir-
tual task environment factors that are used to evaluate the proposed
techniques can support researchers, developers, and practitioners in
creating efficient task environments. This can reveal the potential of
the evaluated technique under different task environment factors.

In this paper, we explored different virtual task environment
evaluation factors used in 3D selection studies and discussed them.
We also extended the existing literature by either sub-categorizing
environment parameters or proposing novel parameters. We hope
that our results in this paper can be used to determine and design
the virtual task environment to evaluate their proposed 3D selection
method.

2 PREVIOUS WORK

The previous studies surveyed, reviewed and analyzed 3D selection
techniques as well as 3D interaction techniques. One of the first
studies that reviewed the selection techniques is Hand’s survey on
3D interaction techniques [86]. In that paper, Hand focused on
different interaction techniques designed for mouse and 3D input
devices. In a latter study, Bowman et al. [40] classified 3D selection
techniques by different tasks. Researchers grouped occlusion, object
touching, pointing, and indirect selection under the indication of
objects. Dang also surveyed and classified 3D selection techniques
based on 3D cursor [62].

In recent years, surveys on 3D interaction techniques mostly
focused on immersive environments and VR & AR HMDs. In
Arelaguet and Andujar’s survey [9], along with 3D object selection



method classification and human models used for evaluation, the
authors examined the factors influencing user performance. They
explored target geometry, object distance and area of reach, and
object density topics, which are related to the task environment
parameters. In Mendes et al.’s survey [150], the authors focused
on 9 degrees of freedom manipulation techniques. They analyzed
different trends in interaction and object manipulation in virtual
environments.

Poupyrev et al. [180] described task parameters as independent
variables that affect the users’ performance during the selection pro-
cess. Later, LaVioala et al. [115] used the identical set of parameters
as in Poupyrev’s work to define task parameters that are used for
design dimensions in 3D UIs. These parameters are distance and di-
rection to the target, target size, the density of the objects around the
target, the number of targets to be selected, and target occlusion. The
authors also briefly mentioned the application- and domain-specific
approaches. In this paper, we will use this classification to further
extend the literature on virtual task environment parameters.

Other papers surveyed 3D interaction techniques, such as Subra-
manian and IJsselsteijn [217] and Zhi et al. [281], but all these papers
were focused on either 3D interaction techniques or 3D selection
techniques, but not the environment parameters.

3 METHOD

On July 17th, 2023, we searched four major Human-Computer In-
teraction (HCI) repositories: Scopus, Science Direct, IEEE Xplore,
and ACM Digital Library. In Scopus, our query [ALL(”3D selec-
tion”) AND (ALL(”Virtual reality”) OR ALL(”Augmented real-
ity”))] within the period 1997 to 2023, resulted in the identification
of 442 research papers.

In Science Direct, using the query [”3D selection” AND (”virtual
reality” OR ”augmented reality”)] within the timeframe ranging
from 1993 to 2023 returned 31 research papers.

The search query [All: ”3d selection”] AND [[All: ”virtual re-
ality”] OR [All: ”augmented reality”]] in the ACM digital library
between 2007 and 2023 gave us a total of 81 research papers.

Within IEEE Xplore, we searched for papers using the query
(”All Metadata”: 3D selection) AND ((”All Metadata”: ”virtual
reality”) OR (”All Metadata”: ”augmented reality”)). This search,
covering the years from 1993 to 2023, gave us 369 papers.

We deliberately and strategically selected broad search terms
for these queries. Using a wide net of keywords in our keyword
selection, we aimed to maximize coverage and minimize the risk
of overlooking any pertinent research papers on the topic of 3D
selection.

4 RESULTS

Our queries resulted in a total of 909 papers (81 ACM Digital Library
+ 355 IEEE Xplore + 442 Scopus + 31 Science Direct). We manually
reviewed and analyzed each of these papers and removed 495 of
them that were not about 3D selection in interaction methods (220 of
them from IEEE Xplore, 12 from Science Direct, 260 from Scopus,
and 3 from the ACM Digital Library). We also disregarded 31
survey papers (21 papers from Scopus, 1 paper from Science Direct,
7 papers from IEEE Xplore, 2 papers from ACM Digital Library),
3 lecture notes from Scopus and ACM Digital Library, 1 editorial
and 1 book chapter from Scopus and Science Direct respectively
and 11 papers in other languages rather than English (3 papers from
Scopus, 6 papers from IEEE Xplore and 2 papers from ACM Digital
Library). We also excluded 62 papers that did not explain the task
environment used to evaluate the interaction technique (8 papers
from ACM Digital Library, 12 papers from Science Direct, 20 papers
from Scopus, and 22 papers from IEEE Xplore) and 1 paper with
no change in selection techniques from ACM Digital Library. We
also dismissed 11 papers (4 papers from ACM Digital Library and 7
papers from IEEE Xplore) with no task description. We came across

17 papers that were present in two different repositories. Given
the potential for redundancy and duplication of research findings,
we decided to disregard these 17 papers. A total of 632 papers, 26
papers from Science Direct, 325 papers from Scopus, 23 papers from
the ACM Digital Library, and 258 from IEEE Xplore, respectively,
were disregarded in this study.

We only considered the papers that were archived by the above-
mentioned repositories. In other words, we did not include posters,
workshop papers, and other materials that might be extended to a
full article, as the final results of the study might vary.

5 TASK ENVIRONMENT PARAMETERS & CLASSIFICATION

We systematically categorized a total of 277 papers related to 3D
selection techniques, primarily based on the task environments in
which these techniques were applied. To provide a clear overview
of our findings, we present our findings in 3 tables.

We first present a brief summary of papers that align with the
task environment classification outlined by LaViola et al. [115] in
Table 1.

We also extend existing research by classifying papers that com-
bine two or more task environment parameters to evaluate 3D selec-
tion techniques. A summary of these additional categories is shown
in Table 2.

In addition, we added five new categories to our classification
scheme to broaden the scope of the literature. These new categories
were based on emerging paradigms and novel approaches in 3D se-
lection research. A comprehensive summary of these new categories,
along with their corresponding references, is presented in Table 3.

5.1 Task Environment Parameters Classification based
on Current Literature

This section examines papers that fit the description of task environ-
ment parameters outlined by LaViola et al. [115].

5.1.1 Distance and Direction to the Target
The first task environment described in LaViola et al.’s [115] book
is the distance and direction to the target. Here, the target distance
refers to the distance variation between the target and the other sur-
rounding objects. In some research papers, the target distance refers
to the distance between the camera, i.e., the user’s position, and the
target. On the other hand, target direction refers to the orientation
or direction between the target and the other surrounding objects.
Similarly, the target direction can indicate the direction between the
camera, i.e., the user’s position, and the target position in the 3D
environment. Target distance and direction have a significant effect
on users’ performance in 3D selection studies, when the distance
between the user and the target object increases, accurate target
selection becomes more difficult due to the smaller appearance of
the target object. Within this category, we examined papers that
varied the distance between the target and surrounding objects, as
well as the orientation of objects in relation to the target. In total, we
found 117 papers in this category.

Specifically, papers such as [12,30,32,139,193,258,266], investi-
gated the impact of altering the spatial separation between the target
and other objects in the virtual environment. These papers aimed
to investigate how such variations affect performance metrics such
as target selection accuracy, task completion time, and the selection
strategies employed.

Similarly, papers, such as [63, 190, 224], modified the orientation
of objects relative to the target in the virtual environment, examin-
ing how objects facing towards or away from the target influenced
target selection accuracy, task completion time, and the observer’s
approach to the task.

In several papers, including [24,26,171,204] researchers explored
the performance and usability of different target selection techniques



Table 1: Virtual task environment classification outlined by LaViola et al. [115].

Parameters Description References

Distance & Direction to
the target

Authors vary distance and direction to the targets to understand what
effects it has on the user’s perception, accuracy, and time.

[2, 5, 6, 12–14, 18–20, 22, 23, 26–36, 41–44, 44, 56, 58, 63, 65, 70, 74, 78,
84, 87, 88, 90, 94, 98, 106, 108, 113, 114, 117, 118, 122, 123, 126, 128, 130,
131, 135–139, 142, 144, 148, 151, 153, 154, 158, 165, 169, 171, 178, 185,
187, 190, 193, 209, 210, 221, 223, 224, 226–229, 238, 243, 244, 253, 255,
258, 259, 266, 270, 271, 276, 282, 283, 285, 286, 288]

Target size Researcher investigates the effect on 3D selection performance and task
completion time changes in the target’s width, height, and size.

[5, 17, 21, 24, 25, 30, 33, 63, 71, 81, 101, 107, 112, 119, 121, 125, 133, 134,
140, 147, 152, 167–169, 176, 183, 191, 194, 204, 208, 215, 232, 247, 251,
252, 254, 263, 267–269, 280, 284]

The density of the ob-
jects around the target

Authors evaluated the effects of object density on 3D selection perfor-
mance by designing virtual environments with a high concentration of
objects in proximity to the target.

[7, 21, 24, 25, 38, 39, 49–54, 59, 60, 67, 77, 82, 92, 97–100, 117–119, 121,
129, 133, 134, 148, 149, 155, 156, 158, 159, 162, 170, 173, 176, 177, 184,
188–190, 192, 196, 205, 214, 232, 235, 238–241, 244, 247, 248, 252, 254,
255, 260, 264, 267, 268, 272, 273]

Number of targets to be
selected

The impact of object size, dimension, and quantity on user selection
performance was investigated by researchers in scenarios where users
were tasked with choosing a specific number of unique objects from a
set of similar objects.

[162, 165, 244]

Target occlusion

Researchers designed the environment in an occluded manner and varied
the degree of occlusion, such as the size and location of the occluding
object, to measure how these factors affect task completion time, error
rate, and user selection preferences.

[1,2,6,10,11,25,37–39,51,57,59,68,69,77,87,92,98,99,103,118,119,
133, 134, 140, 148, 149, 151, 152, 155, 160–162, 165, 170, 174–176, 178,
188, 192, 194, 199, 206, 207, 214, 222, 235, 238–240, 244–248, 255, 263,
267–269, 273, 275, 280]

such as Raycasting and Virtual Hand with variations in target ob-
jects’ distance and direction and reported the shortcomings of these
techniques. One such notable shortcoming is that user performance
decreases for small and distant objects with the raycasting interaction
technique.

Overall, in the evaluation of novel 3D selection techniques within
3D UIs, the distance and direction to the target have emerged as
crucial factors.

5.1.2 Target Size
Within the scope of this category, we identified 46 papers that cen-
tered their investigation on the effects of varying target sizes. In
these papers, the authors varied the dimensions of a target, e.g., the
target’s width, height, and depth. Target size plays an important
role in 3D selection studies within a virtual environment. These
papers also contributed to a comprehensive understanding of how
these size-based variations impact the effectiveness and efficiency
of 3D selection techniques, since a target’s size directly impacts
the precision and accuracy of selection, with larger targets typically
facilitating easier and more reliable interactions. However, higher
degrees of precision lead to increased error rates and longer selection
times. Considering the lack of physical support in mid-air interac-
tion, the evaluation of the selection technique in terms of precise
and accurate interaction for small targets plays a crucial role in
understanding its efficiency.

Furthermore, our survey revealed six studies [25, 63, 167, 215,
263, 284] that considered target shape as a factor to evaluate 3D
selection performance. Through the examination of aspects such as
whether the target shape is round or square, these studies extended
the exploration beyond simply examining the size of the target.

In a 3D selection task user’s selection accuracy, speed, and overall
experience are greatly influenced by the target object’s character-
istics. It is important to find the right balance between different
target sizes and shapes to create an instinctive and efficient virtual
environment.

5.1.3 The Density of the Objects Around the Target
Density refers to the concentration or amount of objects or elements
within a given space. It is a measure of how crowded or compact the
objects are in the virtual scene.

In this category, researchers have designed virtual environments
with variable object density near the target to evaluate 3D selection

techniques. In these studies, the researcher considered attributes of
surrounding objects, such as their quantity, classification, dimen-
sions, and spatial arrangement. A total of 65 papers investigated
the impact of object density on task performance, exploring how
changes in the number and arrangement of peripheral objects affect
target detection accuracy and task completion time.

Several studies, including [189, 235, 264], also reported that in-
creased object density can result in higher cognitive load as users
navigate the crowded environment to identify and select the target.
With the increased density around the targets, while participants’
decision-making duration and the likelihood of errors were increased,
their overall user experience decreased.

A densely populated environment can require more precise move-
ments from users to avoid inadvertently selecting the wrong object.
This increased demand for precision can lead to increased men-
tal and physical effort, potentially resulting in user fatigue during
the experiment or even after the experiment, which was observed
by [134, 155, 238, 247, 267].

Overall, research has examined how object density in virtual en-
vironments affects task performance, revealing that higher densities
can increase cognitive load and decrease user experience, resulting
in fatigue in users as they navigate crowded scenes and need to be
precise.

5.1.4 Number of Targets to be Selected
LaVioala et al. [115] described this factor as a task where users have
to select a fixed number of unique objects among similar objects.
We identified three [162, 165, 244] such papers that evaluated 3D
selection methods in a virtual environment with a fixed number
of target objects. These studies investigated the impact of various
target object attributes, such as object color, size, and shape, on
user performance. These virtual environments were designed to
challenge users with the task of correctly identifying and selecting a
set number of unique objects from a larger set of objects categorized
by variations in size and dimension. This allowed researchers to
investigate user interaction performance in situations that focused
on the sequence and the number of target objects to be selected.

5.1.5 Target Occlusion
”Target Occlusion” in virtual environments refers to when an object
in 3D space is partially or completely hidden or obstructed from



view by another object. This can occur when one object is positioned
in such a way that it blocks the user’s line of sight to another object
that they are trying to interact with.

We found 65 papers that used target occlusion to evaluate the
3D selection technique. These studies introduced occluded targets
in their user study, as well as the characteristics of that occlusion,
such as partial or full, e.g., [39, 119, 148, 275]. The researchers
investigated the impact of occlusion on task performance, measuring
factors such as completion time, error rate, and other performance
metrics. By manipulating the degree of occlusion, including the
size and location of the occluding objects, researchers explored how
these factors influence task performance.

Overall, occlusion can hinder users’ ability to assess the spatial
relationships between objects. Understanding the relative positions
of objects is crucial for effective interaction, and occlusion can dis-
rupt this understanding, potentially leading to inaccurate selections
and interactions.

5.2 Extending the Literature
In this subsection, we categorized papers that combine two or more
existing task environment parameters and created a testbed for 3D
selection techniques. These testbeds are also frequently used in 3D
selection technique papers and highlighted by researchers. Thus,
we also analyzed them here to extend the existing literature on task
environment parameters.

5.2.1 Application Specific Environments
In this category, we focus on papers that used an application to evalu-
ate the proposed 3D selection technique. In the virtual environment,
the positions, sizes, orientations, and other environmental factors of
the objects were varied to evaluate the technique. We found a total
of 23 papers on application-specific approaches.

In these studies, users were not only performing a task; they were
active participants who explored the prototype of the potential appli-
cation. Through this engagement, users gain a tangible sense of how
the virtual space would appear in the real application, enabling them
to make informed decisions regarding object selection. In some of
these studies, participants navigated within virtual environments and
viewed the objects from different angles and perspectives, allowing
them to get a sense of how the space would also look and feel in real
life to select them.

5.2.2 Depth
Target depth in virtual environments refers to the spatial interval that
spans from the user to a specific point of interest (target), containing
the foreground, middle-ground, and background of the scene. It
affects how the object is perceived, including size, location, and
movement. Among the selected papers, 44 of them include depth as
an evaluation factor in their design, highlighting its importance.

Depth variations introduce an additional layer of complexity to
the 3D selection process. Users must not only consider lateral
positions but also factor in the depth dimension, creating a heavier
cognitive load. This can increase decision-making time as users
mentally compute the relative distances between objects and their
spatial relationships [122, 157, 230, 280].

Design considerations play a significant role in optimizing the
effect of depth on 3D selection. Proper cues, shading, lighting,
and visual feedback can enhance users’ depth perception and as-
sist in making accurate selections. The strategic placement of
objects can ensure that important targets are within comfortable
reach, minimizing the challenges posed by extreme depth differ-
ences [31, 183, 192, 218, 221].

Although this category is related to target distance and direction,
we consider depth as an additional task parameter due to its frequent
emphasis by researchers in the mentioned studies, and the authors
indicate that they varied the target depth, not direction.

5.2.3 Targets Inside a Volume
In 3D selection studies, the idea of interacting with objects contained
within prism-shaped volumes, such as cuboid volumes, is a unique
area of interest. This involves scenarios where the target objects are
positioned within defined spatial boundaries, or volumes, adding an
extra layer of complexity to the selection process. Among the 277
papers, six focused on user studies involving target placement inside
a volume, where users were instructed to select targets. Within these
papers, Deng et al. [68] examined user performance and perception
in virtual environment selection tasks, while Cordeil et al. [61] inves-
tigated selection accuracy and speed within a cuboid volume. Tran
et al. and Marquardt et al. [145, 233] explored the impact of virtual-
arm representation and collision interactions on user performance
and perception, comparing confined and open space environments.
These studies examined the influence of dense target placement in
confined spaces on user perception and accuracy.

5.2.4 Menus
Researchers have explored the use of 2D graphical menus as a
familiar and successful approach to evaluate 3D selection techniques
in a virtual environment. We found a total of 14 studies that use
menus as a virtual task environment.

Alex et al. [4] and Kapinus et al. [104] conducted comprehensive
investigations on body-referenced graphical menus in virtual envi-
ronments. Other studies examined shake menus [256, 257], handy
menus [127], and peripheral menus [266], using various forms (lin-
ear and radial) and selection techniques. Additionally, studies such
as [46, 66, 120, 197, 236] assessed task completion time, error rates,
and user preferences for different menu-based selection techniques.
Researchers introduced variations in menu elements, including size,
distance, and density, to create diverse new virtual environments.

Graphical menus are widely used and evaluated in desktop appli-
cations and also integrated into immersive virtual environments. We
view menus as an extension of the literature because researchers use
them to test how people select things and see how making changes to
menus affects user’s selection process/performance in virtual reality.

5.2.5 Keyboard
In this category, we examined the papers that used either a physical
keyboard or a virtual (i.e., soft) keyboard interface to evaluate the
3D selection technique. We found nine papers that used a keyboard
to evaluate 3D selection techniques. The main goal of these studies
is to evaluate the effectiveness of the selection technique used in
the typing context. In these papers, participants used the keyboard
to input commands and interact with target objects, which could
include text, numbers, images, or 3D models. The studies varied
factors such as target direction, distance, and key sizes during the
selection process.

5.2.6 Pick and Place Task
Pick and place tasks include the requirement to set specific crite-
ria and setups for users transferring things between predetermined
places. These parameters contain the object’s spatial coordinates,
its orientation, and the intended target location where the object
is to be placed. Seven papers [47, 47, 83, 109, 110, 182, 242] used
pick-and-place task as a framework to evaluate the effectiveness of
3D selection techniques. These studies changed the experimental
setup by introducing alterations in the tasks related to picking up
and putting down objects in the 3D space, rather than executing the
same action. These changes consist of an intentional modification
of key factors such as the size of the objects, the direction, and the
spatial separation between the origin and destination during the im-
plementation of the task. The researchers adjusted these parameters
to investigate the connection between the characteristics of objects,
conditions of the task, and users’ performance.



Table 2: Virtual task environment classification in 3D selection studies extending the existing literature.

Parameters Description References

Application
Specific Envi-
ronments

VR systems were incorporated by researchers to create 3D selection
VEs, allowing users to explore virtual space, view objects from various
angles, and modify object attributes like position, size, orientation, and
environmental conditions to facilitate effective selection.

[3,15,16,64,76,80,85,89,116,156,164,172,195,
201, 212, 220, 225, 249, 250, 277, 279, 282, 287]

Depth
In virtual environments, target depth refers to the spatial distance ex-
tending from the user to a designated point of interest, impacting the
perception of objects in terms of size, location, and movement within
the virtual space.

[8, 18, 19, 26–31, 33, 46, 55, 72, 88, 101, 122, 133,
134, 139, 146, 147, 157, 183, 185, 192, 200, 203,
218, 219, 221, 226–228, 230, 234, 236, 237, 274,
277, 278, 280, 282]

Targets Inside a
Volume

Numerous targets were placed within a volume to enhance object density
and occlusion. These studies were conducted by researchers to examine
how object density, occlusion, and target collisions within a confined
space affect user performance and perception in virtual environments.

[61, 68, 145, 202, 232, 233]

Menus

The use of 2D graphical menus as a selection method is being explored
within 3D virtual environments. Researchers investigated the effects of
different selection techniques on task completion time, error rates, and
user preference by varying the elements in a menu, such as size, distance,
or density, to create new virtual environments.

[4, 46, 66, 104, 120, 124, 127, 181, 188, 197, 236,
256, 257, 266]

Keyboard

A virtual environment was designed to evaluate the selection technique
using a real or virtual keyboard. Users engage with target objects through
a physical or virtual keyboard to assess the selection technique, involving
participants using keyboard inputs to interact with various target objects
such as text, numbers, images, or 3D models, where the selection of
the next key requires movement towards a target direction at varying
distances, potentially involving different keyboard configurations.

[32, 36, 79, 102, 143, 261, 262, 266, 278]

Pick and Place
Task

The pick and place task involves defining the task environment for users
to pick up and relocate an object, where parameters such as object
location, orientation, target location, and object size, direction, and
distance are varied during task performance.

[47, 48, 83, 109, 110, 182, 242]

In order to complete the pick and place task in a 3D virtual
space, the user has to point, select, pick, and place the object in the
destination point. The overall sequence of the pick and place task
heavily depends on the accurate selection of the objects, which can
be affected by factors including the target objects’ size, distance,
depth, and occlusion, or a combination of them. Thus, we categorize
pick and place as a selection task in extending the literature sub-
section.

5.3 New parameters
We found that, in addition to the parameters mentioned above, to
evaluate 3D selection techniques, researchers introduced new design
parameters for their study. These parameters are different from
those outlined by the LaViola classification [115] and are not a
combination of them. In this section, we discussed these parameters
in detail.

5.3.1 Adaptive Selection
Adaptive target selection in virtual environments involves identi-
fying and selecting dynamic targets that may move, change shape
or size, or appear and disappear over time. This specialized field
emphasizes the dynamic nature of target interactions within virtual
scenarios, offering an alternative to traditional static target selection
paradigms. We found nine user studies highlighting the importance
of considering the variation of target characteristics such as size,
shape, color, and movement patterns in designing effective training
and simulation programs for time-constrained and cluttered environ-
ments.

Studies [49, 51, 53, 236] aim to explore the relationship between
adaptive target characteristics and the effectiveness of selection pro-

cesses. Unlike traditional selection models that consider targets
as static with fixed properties, these studies acknowledge that real-
world situations often involve targets that evolve dynamically. This
requires users to make informed decisions under changing condi-
tions. By adopting an adaptive approach that considers the temporal
dimension of the selection process, the studies considered changes
in target attributes over time, which can directly impact the user’s
ability to accurately and efficiently perceive, track, and select targets.

5.3.2 Height
Target height in virtual environment interaction refers to the vertical
distance between the base level of the virtual environment and the
top of the target, with the user as the reference point rather than
the surrounding objects. Unlike the distance and direction to the
target, the reference point to vary the object height was set as the
base level or ground. For example, Mohr et al. [154] investigated
the effect of targets placed with an offset based on the user’s head
height. Jackson et al. [97] evaluate users’ selection preferences when
selecting architectural design objects at varying heights.

The influence of target height on spatial awareness was explored
in a study by Mohr et al. [154]. The study found that the manip-
ulation of target height affected the accuracy of reach estimations,
with reach being more significantly accurate for low target heights.
This suggests that target height can impact spatial tasks, and the
specific virtual body used may also influence performance. There-
fore, considering target height as a new task environment parameter
is important for understanding its effects on user interactions and
task performance in virtual environments. Although there exists a
correlation between height and distance and direction to the target,
height adds a new paradigm to the user workload. For example,



if an object’s height is remarkably high, users will have to move
their heads to bring it into their field of view, which can affect their
selection accuracy. We found that the significance of height in the
design of virtual environments has received limited attention in the
literature.

5.3.3 Accessibility of Objects
The accessibility of objects/targets in virtual environments refers
to the ease with which users can locate, select, and interact with
them. This includes factors like target location, size, shape, and
color, as well as the layout and design of the virtual environment.
Particularly, in these studies, targets were not occluded but rather
hidden or covered by other objects deliberately, which varies the
mental model of the user, affecting their 3D selection performance.
For instance, the participants had to remove an obstacle to reveal
the spatial information of the target, such as its position. Three
papers [73, 160, 238] investigated user perception, performance, and
selection techniques in immersive virtual environments characterized
by dense layouts. By including obstacle removal as a feature of the
3D selection task, the accessibility of objects was considered as a
task environment parameter.

Intentionally manipulating accessibility as a task environment
parameter enables researchers to explore the impact of changes in
object visibility and interaction difficulty on the overall selection
experience. The findings highlight the complex relationship between
users’ cognitive processes, spatial awareness, and motor skills in
navigating targets with different levels of accessibility.

5.3.4 VR/AR Games
The core difference between VR/AR games and other parameters
is that, in a game, a user’s goal is to win, such as eliminating the
competitor while following the game rules, whereas in other param-
eters user is doing a task following the experimenter’s instructions
without the explicit goal of winning. Moreover, most 3D selection
studies were developed and evaluated in static or sparse environ-
ments. In contrast, games involve interaction with densely packed
and dynamically changing objects.

VR/AR games offer opportunities to study user performance in
various task environments and evaluate 3D selection techniques.
These games use different 3D interaction techniques, providing a
platform for researchers to explore user interactions with virtual
environments and objects. Studies such as, [51, 52, 85, 111, 266]
have investigated the challenges in object selection by comparing
selection techniques.

VR/AR games stand out as a distinct parameter within virtual
task environments, diverging fundamentally from conventional pa-
rameters such as target size, occlusion, and distance and direction
to the target. VR/AR games are intentionally designed to actively
involve and capture the players’ attention. This intentional design
creates an experiential dimension that exceeds the static or sparse
nature commonly associated with traditional parameters. Further, in
VR/AR games, users have to navigate and interact within dynamic,
and often unpredictable, virtual environments where the goal is to
win the game rather than just performing a task, compared to other
environments factor. This dynamism establishes a clear difference,
demanding users to adapt in real-time, facing challenges such as
object occlusion, depth perception, and real-world interactions. This
motivates us to consider VR/AR games as an independent design
factor.

5.3.5 Immersive Data Visualization
Here, we define visualization as various visual elements that are used
to display information in the virtual environment, and participants
were asked to select information to evaluate the selection techniques.

Within our literature survey, we identified a total of 15 papers
that used immersive data visualization as a task for evaluating 3D

selection methods. In these studies, the prescribed task involves the
selection of a virtual object integrated within the visualized data,
thereby serving as the basis for evaluating the effectiveness of the
respective selection methods. In addition, as the visualized data itself
functioned as an essential task component in these investigations,
we consider it as an individual parameter within the evaluation
framework.

Another factor that influenced us to recognize this as a distinct
task parameter is its unique impact on user interactions and decision-
making processes. Traditional parameters often focus on physical
aspects such as target size or distance, but the inclusion of immersive
data visualization introduces a cognitive dimension. The represen-
tation of complex information in three-dimensional space not only
influences how users perceive and interact with data but also poses
new challenges for effective selection techniques. This emphasizes
the nature of the relationship between data visualization and 3D
selection techniques, exploring new challenges and opportunities
presented when interacting with and selecting objects within immer-
sive data-rich environments.

6 DISCUSSION

In this paper, we explored the design considerations of evaluation
factors within virtual environments, with a focus on how they affect
the assessment of 3D selection techniques. The focus of our study,
which was conducted within the larger field of 3D User Interface
(3DUI) design, was the dynamic changes displayed by task environ-
ments in the context of 3D selection tasks. Our investigation was
based on a collection of research papers that were carefully obtained
from four research paper databases. These libraries were chosen
for their importance in holding a multitude of materials related to
3D selection in Virtual Reality (VR) and Augmented Reality (AR)
environments.

Previous surveys examined 3D selection techniques and 3D in-
teraction techniques, such as 3D cursor for 3D selection by Dang
et al. [62], task complexity by Bowman et al. [40] and user perfor-
mance by Arelaguet and Andujar’s survey [9]. Here, we aim to
extend this literature to virtual task environment factors by LaViola
et al. [115] to provide an updated classification, and thus improve
the evaluation testbeds used to assess 3D interaction techniques.

Existing Literature and Task Environments The findings of this
paper contribute to the existing literature on the use of virtual task
environment parameters in 3D selection studies design, as origi-
nally defined by LaViola et al. [115]. These parameters, including
distance and direction to the target, target occlusion, density, and
target size, have been widely used by researchers in the field. We
found that the distance and direction to the target category was the
most frequently researched parameter, followed by target occlusion
and density. An important finding of our paper is that researchers
extensively explored how changes in spatial location and directional
orientation affect user interactions within virtual environments. This
emphasizes the importance of understanding the effects of target
position and direction on the efficiency of 3D selection techniques.

The researchers also explored how changing the size of the target
object compared to other objects affects the user’s selection accuracy
in virtual reality. For instance, when the target size is larger, it can
become more user-friendly for selection, since users have a larger
surface area to aim at. Additionally, researchers varied the density
of objects around the target and explored how the presence and
arrangement of nearby objects impact the selection process. In the
more dense environment, 3D selection was more challenging. In
occluded environments, they experimented with partial and fully
hidden/occluded targets and observed how users approach those
scenarios, how often mistakes are made, and how long it takes them
to complete the task.

These findings provide valuable insight into which parameters re-
searchers usually focus on when designing virtual task environments



Table 3: New Virtual task environment parameters in 3D selection studies.

Parameters Description References

Adaptive Selec-
tion

Adaptive target selection in virtual environments involves the dynamic process
of identifying and selecting targets that exhibit changes in attributes such as
movement, size, shape, appearance, or disappearance. These papers focused
on users’ quick and accurate identification and selection of targets, considering
factors like target characteristics (size, shape, color, movement patterns), which
significantly impact the selection process.

[17, 49–53, 132, 236]

Height
Target height in virtual environment interaction corresponds to the vertical dis-
tance between the top of the target and the base level of the virtual environment,
considering the user as the reference point rather than surrounding objects.

[97, 154]

Accessibility
of Objects

Accessibility of objects/targets in virtual environments is a complex factor that
includes the target’s location, size, shape, color, layout, and design of the virtual
environment, as well as the user’s expertise level and preference. Researchers
investigated user perception and performance in selecting specific areas within
large, dense, 3D-immersed virtual environments.

[73, 160, 238]

VR/AR games
VR/AR games offer players the opportunity to engage with virtual environ-
ments and objects using diverse 3D interaction techniques. They provide a
valuable platform for researchers to investigate user performance in different
task environments.

[51, 52, 85, 111, 266]

Immersive Data Vi-
sualization

Data visualization refers to the assortment of visual components employed to
present information within the virtual environment, with the task focusing on
selecting a virtual object that is part of the visualized data. The authors further
assessed the performance of the selection techniques during task execution.

[45, 91, 93, 95, 105, 141, 163, 166, 179,
186, 198, 211, 216, 231, 265]

for evaluation purposes.
Extending Literature In addition to the task environment factors

in LaViola et al. [115], recent studies also combined several factors
and evaluated 3D interaction techniques for 3D UI design studies.
Here, we explored the idea of combining several variables to produce
varied and thorough evaluation scenarios. In particular, the incorpo-
ration of factors such as object density and occlusion in scenarios
involving targets within volumes, as well as deliberate variations
in target distance, direction, density, and size within menu-based
task environments, augment the diversity of evaluated contexts. It
is also important to mention that depth plays an important role in
3D selection techniques as well as 3D UI studies, and is frequently
used as an assessment criterion in a large amount of research papers.
Therefore, we separated depth from the existing classification and
discussed it as a separate criterion.

In addition, we examined papers related to Fitts’ Law [75] and
relevant ISO 9241-411 [96] selection task to incorporate them into
our classification. Although these tasks combine and vary target size
and distance and are used for evaluating 3D pointing performance,
we did not consider them as task environment parameters as one of
their goals is to mathematically model human movement or analyze
the speed-accuracy trade-off. Yet, we acknowledge their importance
in evaluating 3D selection techniques.

Moreover, while certain task parameters may not be adjustable
in some categories (e.g., keyboards), it is suggested to modify the
factors that constitute that environment (e.g., target size and dis-
tance) within the task environment itself (e.g., keyboard) to vary task
parameters during evaluation tasks.

New Parameters In this paper, we introduce additional new task
environment parameters for evaluating 3D selection techniques. The
motivation behind proposing these new parameters was to facilitate
researchers to tailor their education to specific needs, contexts, or ap-
plications while improving their design. Since these new parameters
focus on new environmental parameters and have different cognitive
focuses, we examined them under distinct categories.

Our study introduces several new key parameters crucial for un-
derstanding 3D selection in virtual environments. Firstly, “Adap-
tive Selection Tasks” focus on targets whose characteristics change,
reflecting the need for adaptability in real-world scenarios. The
“Height Parameter” category emphasizes the importance of varying
object heights in interaction design, using the base level as a ref-

erence to measure the height of the object. We also introduce the
”Accessibility of Objects” category, which considers the necessity
of manipulating objects to select targets, highlighting the interactive
nature of 3D environments and it’s impact on user mental models.
We explore the use of ”VR/AR games” as effective platforms for
evaluating 3D selection techniques, due to their immersive chal-
lenges and opportunities, as well as the goal of winning. Lastly,
”Immersive Data Visualization” is discussed as a task parameter,
where the complexity and structure of visualized data significantly
influence interaction design. These categories collectively aim to en-
hance our understanding and assessment of 3D selection techniques
in various contexts.

Our review of the literature has also revealed a common methodol-
ogy used by most researchers to evaluate the proposed 3D selection
techniques. This method consists of a two-phase approach involving
user studies. In the first phase, researchers conduct an initial user
study designed to evaluate a selection technique in simple virtual
scenes and analyze user performance and user experience. Then, re-
searchers move on to a second study aimed at testing how adaptable
and versatile this technique is in different and more complex task
environments. This allows researchers to highlight their contribution,
as well as reveal the advantages and disadvantages of the proposed
techniques.

We also wanted to ensure that we included all research papers
related to 3D object selection. After carefully investigating the
terms ”3D,” ”selection,” and ”3D selection,” we did not find any
clear differences between them. We found that ”selection” and ”3D
selection” appeared to be used interchangeably or without significant
differentiation in the literature. The absence of clear differences
shows the need for precise terminology and clear definitions within
the field to ensure a consistent understanding among researchers and
practitioners.

6.1 Limitations
In this paper, we examine the evaluation factors for 3D virtual
task environments related to the 3D selection methods only and,
thus, the types of problems they were trying to solve. Therefore,
we also discussed the evaluation criteria described in the literature.
Topics such as the classification of interaction techniques, modalities,
hardware, and software, assessment criteria, detailed observations,
and insights on previous studies were not the focus of this paper.



Workshop papers and posters are typically considered as non-
archival publications, allowing for future expansion and potential
publication in other conferences or journals. For this reason, we
have excluded workshop papers from our database.

It is important to note that our analysis exclusively focused on
papers written in the English language. This deliberate choice of
language criteria allowed us to maintain consistency and facilitate a
more in-depth examination of the selected papers within our research
scope.

7 CONCLUSION

In this paper, we examined virtual task environment parameters used
in 3D selection studies. Our primary objective was to classify the
virtual environments utilized for evaluating interaction methods in
accordance with the parameters established by LaViola et al. [115].
Going beyond this foundation, we also contribute to the existing
literature by proposing novel task environment parameters tailored
to the design of virtual environments.

In the context of 3D selection methods, we emphasize that there
is no de facto virtual task environments factor that can be used to
evaluate 3D selection techniques. The collection of various studies
presented in this paper highlights the importance of continuously
exploring new task environment parameters and evaluation method-
ologies when designing and assessing virtual task environments.
Such studies will be crucial to obtaining a comprehensive under-
standing of both the potential and limitations associated with newly
developed 3D selection methods and interaction techniques, thus
advancing the state-of-the-art in VR research.

We hope that the insights derived from our research will serve
as a valuable resource for researchers, developers, designers, and
practitioners engaged in the selection and customization of task
environment parameters for the evaluation of their respective 3D
interaction techniques.
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