

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FILOSOFER: A TEE-SHIELDED MODEL PARTITION- ING FRAMEWORK BASED ON FISHER INFORMATION- GUIDED LoRA OBFUSCATION

Anonymous authors

Paper under double-blind review

ABSTRACT

On-device machine learning makes DNN models visible as a white-box to users, leaving them susceptible to stealing attacks. Trusted Execution Environments (TEEs) mitigate this risk by isolating model execution, but executing entire models within TEEs is inefficient and slow. To balance security and performance, TEE-Shielded DNN Partitioning (TSDP) executes privacy-insensitive parts on GPUs while confining privacy-critical components within TEEs.

This work demonstrates that existing TSDP approaches remain vulnerable under large query budgets (e.g., >500 queries) due to non-zero information leakage per query, enabling attackers to gradually construct accurate surrogate models. To address this, we propose FILOsofer (Fisher Information-Guided LoRA Obfuscation), which uses Fisher Information to perturb a small subset of key weights, rendering the exposed weights inaccurate and producing uniform outputs, thereby safeguarding the model even under unlimited queries. We then design a novel cross-layer LoRA to efficiently restore authorized-user performance, storing only LoRA parameters in the TEE to eliminate information leakage while minimizing the performance overhead. This lightweight design also allows seamless extension to LLMs. We evaluate FILOsofer in both experimental and real-world settings, achieving over $10\times$ improvement in security and more than $50\times$ reduction in computational overhead compared to prior TSDP solutions.

1 INTRODUCTION

On-device machine learning improves latency and privacy by processing data locally, but it also exposes models to new threats such as unauthorized access, model stealing attacks, and membership inference attacks (Zhu et al., 2021; Yan et al., 2020; Rakin et al., 2022; Mehnaz et al., 2022; Zhang et al., 2023). **The model stealing attacks essentially aim to clone the victim model’s functionality without authorized access to its original training data or parameters.** Prior work (Zhang et al., 2024b; Yuan et al., 2024; Rakin et al., 2022) shows that white-box access to GPU-deployed models allows adversaries to efficiently steal models by replicating weights and parameters, achieving high accuracy with minimal computational cost (Orekondy et al., 2020; Juuti et al., 2019; Hanzlik et al., 2021).

To mitigate these security risks, researchers have explored *two* defense strategies: *(i) Cryptographic approaches:* Methods such as Multi-Party Computation (MPC) (Juvekar et al., 2018) and Homomorphic Encryption (HE) (Gilad-Bachrach et al., 2016; Kim et al., 2022) aim to safeguard both input data and model parameters through algorithmic guarantees. Despite their strong theoretical protection, these techniques remain impractical for mobile and IoT deployment due to excessive computational overhead and non-trivial accuracy degradation. *(ii) Hardware-based defenses:* By leveraging Trusted Execution Environments (TEEs) (Zhang et al., 2024b; Hu et al., 2023), these methods achieve substantially lower overhead than cryptographic techniques. However, executing entire DNNs within TEEs is generally infeasible, as their computational performance is $50\times$ lower than that of GPU-based rich execution environments (REEs).

To balance security and efficiency, recent work proposes **TEE-Shielded DNN Partitioning (TSDP)** (Zhang et al., 2024b; Mo et al., 2020; Sun et al., 2020), which protects privacy-sensitive

054 portions inside TEEs while offloading the rest to REEs. To realize this idea, prior work explores
 055 different partitioning strategies. Some shield layers are based on depth (shallow, deep, or interme-
 056 diate layers) (Shen et al., 2022; Elgamal & Nahrstedt, 2020; Mo et al., 2020) while others focus
 057 on non-linear layers (Sun et al., 2020; Zhang et al., 2024b). In addition to layer-based partition-
 058 ing, obfuscation techniques keep obfuscated or quantized weights within TEEs to protect model
 059 [confidentiality \(Zhou et al., 2023; Sun et al., 2024\)](#).

060 Despite these advances, existing TSDP methods still face a *critical limitation*: even if some layers
 061 and weights are hidden within TEEs, the partitioned model running on GPUs remains highly ac-
 062 curate. This accuracy enables adversaries to bootstrap surrogate models with correct architectures
 063 and weights. The state-of-the-art approach, TEESlice (Zhang et al., 2024b), introduced a mitigation
 064 strategy; however, our study shows that even with TEESlice, large query budgets allow adversaries
 065 to reconstruct accurate surrogate models, since small amounts of per-query information leakage can
 066 accumulate over time, which represents an inherent weakness shared by all TSDP methods.

067 To address this limitation, we propose **FILosofer** (Fisher Information-Guided LoRA Obfuscation),
 068 which is motivated by two core insights: first, selectively perturbing a small fraction of critical
 069 GPU-exposed weights can degrade backbone accuracy and reduce information leakage; second,
 070 task utility can be efficiently recovered for authorized users using a parameter-efficient, LoRA fine-
 071 tuning mechanism. Specifically, FILosofer perturbs a tiny fraction of GPU-exposed weights guided
 072 by Fisher Information, to both make the GPU-exposed weights inaccurate and enforce output unifor-
 073 mity across inputs, thereby preventing attackers from extracting *any* useful information from model
 074 outputs. For authorized users, an adaptive, cross-layer LoRA branch within the TEE restores near-
 075 original model performance efficiently, avoiding the need to store or reload obfuscated weights dur-
 076 ing inference as previous obfuscation methods Zhou et al. (2023). User authorization is enforced via
 077 standard cryptographic protocols implemented using the TEE. A constraint-aware joint-training al-
 078 gorithm further optimizes the trade-off between minimal weight obfuscation and the smallest LoRA
 079 branch size, ensuring both secure and effective model deployment. The contributions of this paper
 080 are summarized as follows:

- 081 • We conduct a systematic evaluation of existing TSDP approaches and show that none of
 082 them can prevent information leakage, allowing attackers to incrementally reconstruct the
 083 model via model stealing attacks as query budgets increase.
- 084 • We propose FILosofer, a novel TSDP framework that defends against model stealing at-
 085 tacks even under unlimited query budgets, while supporting low-latency inference on edge
 086 devices. FILosofer combines Fisher-guided obfuscation with a lightweight cross-layer
 087 LoRA recovery branch, jointly preventing information leakage, preserving predictive ac-
 088 curacy, and incurring minimal overhead.
- 089 • We comprehensively evaluate FILosofer on both experimental and real-world devices (Jet-
 090 son Orin Nano), demonstrating a 10 \times improvement in security against model stealing at-
 091 tacks with 50 \times lower computational overhead. We further show that this lightweight design
 092 extends seamlessly to LLMs, and we propose two adaptive attacks to validate the robust-
 093 ness of our method.

094 2 BACKGROUND

095 **Trusted Execution Environments (TEEs)** TEEs offer strong confidentiality and integrity guaran-
 096 tees in untrusted environments by providing two key features: *execution isolation* and *code/data*
 097 *protection* (Costan & Devadas, 2016). Isolation is achieved through the physical separation of hard-
 098 ware and memory between protected and untrusted worlds. Code and data protection rely on cryp-
 099 tographic techniques such as encryption and message authentication codes (MACs). Both features
 100 depend on a distinct hardware/software runtime environment, known as the trusted computing base
 101 (TCB), which operates correctly even under a fully compromised operating system (OS).

102 **TEE-Shielded Secure Inference** To address the latency limitations of TEEs, TSDP refers to se-
 103 lectively protecting only parts of a DNN model within the TEE, instead of the entire model. This
 104 reduces inference latency and effectively converts white-box attacks into black-box ones. [Table 1](#)
 105 outlines existing TEE-shield methods and their weaknesses. Consistent with the TEESlice setup, we
 106 evaluate the six representative baselines highlighted in the table.

108
 109 Table 1: We categorize prior work relevant to TSDP and **highlight** the **representative studies that**
 110 **are empirically evaluated in this paper.**

Category	Name	Venue	Methods	Weakness
Shallow Layers	Serdab	Elgamal & Nahrstedt (2020) Origami Narra et al. (2019)	CCGRID 2020 Arxiv 2019	Put the layers closer to the input inside the TEE
	PPFLMo et al. (2021)	MobiSys 2021		No protection on other layers and outputs
Deep Layers	DarkneTZ	Mo et al. (2020)	MobiSys2020	Put the layers closer to the output inside the TEE
	Shredder Miresghallah et al. (2020)	ASPLOS 2020		No protection on other layers and outputs
Intermediate Layers	AegisDNN Xiang et al. (2021)	RTSS 2021	Choose intermediate layers inside the TEE	No protection on other layers and outputs
	SOTER Shen et al. (2022)	ATC 2022		
Non-Linear Layers	TEESlice Zhang et al. (2024b)	S&P 2024		
	ShadowNet Sun et al. (2023)	S&P 2023		
Model Obfuscation	Magnitude Hou et al. (2021)	TDSC 2021	Put non-linear layers, such as activation layers, inside the TEE	No protection on other layers and outputs
	DarkKnight Hashemi et al. (2021)	MICRO 2021		
	Slalom Tramer & Boneh	ICLR 2018		
	NNSplitter Zhou et al. (2023)	ICML 2023	Perturbs critical weights and store them inside the TEE	Obfuscated weights need to be reload to REE for inference, no protection on the output.
	GroupCover Zhang et al. (2024a)	ICML 2024		
	TSQP Sun et al. (2024)	S&P 2025		

124
 125 **Low-Rank Adaptation (LoRA)** LoRA (Hu et al., 2022; Dettmers et al., 2023) is a parameter-
 126 efficient tuning method that adapts pre-trained models by injecting trainable low-rank matrices.
 127 Formally, consider a weight matrix $W_0 \in \mathbb{R}^{d \times k}$ in a neural network layer, where d is the output
 128 dimension and k is the input dimension. Traditional fine-tuning would update all parameters in
 129 W_0 , resulting in $\mathcal{O}(dk)$ trainable parameters. In contrast, LoRA freezes W_0 and injects a learnable
 130 update in the form of a low-rank decomposition:

$$W = W_0 + \Delta W = W_0 + BA, \quad (1)$$

131 where $A \in \mathbb{R}^{r \times k}$, $B \in \mathbb{R}^{d \times r}$, and $r \ll \min(d, k)$ is the rank of the decomposition. The matrix A
 132 projects the input into a lower-dimensional space of rank r (the parameter tested in our experiment),
 133 and B maps it back to the original output dimension. Only A and B are trained, reducing the
 134 number of trainable parameters from $\mathcal{O}(dk)$ to $\mathcal{O}(r(d + k))$, which is significantly smaller. Thus,
 135 LoRA achieves fine-tuning with minimal additional memory, compute, and storage cost, making it
 136 highly suitable for large-scale and resource-constrained scenarios.

3 THREAT MODEL

141 **Model Stealing.** We consider a deep neural network (DNN) deployed on resource-constrained
 142 edge devices equipped with Trusted Execution Environments (TEE). In this scenario, the attacker
 143 attempts to steal the victim model (M_{vic}) by exploiting access to its predictions and any unprotected
 144 components within the Rich Execution Environment (REE; e.g., GPU). Consistent with prior TSDP
 145 work and real-world deployments (Zhang et al., 2024b; Zhou et al., 2023; Zhang et al., 2024a), we
 146 assume that deployed models provide users with label-only outputs, an assumption further supported
 147 by a comprehensive survey of on-device ML systems (Sun et al., 2021).

148 **Adversary’s Capabilities.** We consider the adversary’s capabilities in three aspects. 1) The ad-
 149 versary first infers the protected model’s architecture and weights from publicly available models
 150 (M_{pub}) in the REE, then initializes a surrogate model with these priors. 2) The attacker issues lim-
 151 ited queries on carefully selected inputs and records the corresponding outputs to approximate the
 152 victim model’s behavior. 3) The collected input–output pairs are then used to train the surrogate
 153 model. However, the portion of training data available for constructing such queries is restricted to
 154 fewer than 5% of the original training set, and query budgets are also restricted based on previous
 155 settings (Zhang et al., 2024b; Zhou et al., 2023; Orekondy et al., 2019).

4 SYSTEMATIC STUDY AND INSIGHTS

160 In this section, we conduct a systematic analysis of the limitations inherent in existing TSDP meth-
 161 ods against model stealing attacks. By critically examining their empirical performance, we high-
 162 light key vulnerabilities and main gaps.

Figure 1: **Accuracy of surrogate model under varying query budgets**, with a dashed red baseline indicating the desired protection.

Systematic Study: To study this vulnerability, we select one representative method for each of the five categories of TSDP schemes in Table 1, and systematically evaluate model-stealing attacks across a range of query budgets. For the attack algorithm, we follow prior work (Zhang et al., 2024b; Sun et al., 2020) and adopt the KnockoffNet (Orekondy et al., 2019) as our representative modified model stealing attack. Figure 1 shows that all defenses fail against model stealing as queries increase. Even with modest budgets (e.g., 500 queries), surrogate accuracy rises sharply. For reference, the red dashed line marks an ideal baseline with consistently low accuracy.

The **fundamental weakness** of existing methods is that the partitioned model executed on GPUs remains accurate, enabling attackers to initialize surrogate models effectively. Since the model leaks mutual information between its weights and outputs, allowing attackers to gradually extract models as the number of queries increases. This is particularly concerning in edge environments, where attackers can perform effectively *unlimited* queries, highlighting the need for robust defenses. We summarize the key challenges and our solutions as follows:

C1: Misleading attackers with inaccurate weights and useless outputs. Excessive parameter modifications can degrade the model’s predictive performance for legitimate users, while insufficient modifications may fail to prevent information leakage. **Solution:** Select the key weights and introduce tiny, targeted perturbations to guide the model’s output toward a desired target label to decrease the GPU-exposed model accuracy and the leakage from outputs.

C2: Retaining accuracy while minimizing TEE workload. Storing and executing large portions of the model inside TEE introduces significant latency and resource consumption, which is impractical for edge devices. **Solution:** Unlike prior obfuscation methods (Zhou et al., 2023; Zhang et al., 2024a), we should avoid reloading weights to the GPU, preventing information leakage. LoRA provides an effective solution, and applying a single LoRA branch across multiple layers (cross-layer LoRA) can further enhance efficiency.

C3: Reconciling obfuscation and recovery. Obfuscation prevents information leakage, whereas recovery restores correct outputs for legitimate users; poorly designed recovery can weaken security or inadvertently leak sensitive information. **Solution:** Constraint-aware dynamic joint training, the obfuscation and recovery are jointly trained with attention to parameter sensitivity, enabling robust protection against attacks while effective recovery for authorized usage.

5 FILOSOFER

The overall system is shown in Fig 2. Our method integrates two components: Fisher-guided obfuscation, which perturbs key weights in critical layers to degrade backbone accuracy, and cross-layer LoRA, which restores task utility with adaptive rank updates. A constraint-aware joint-training algorithm balances these modules, ensuring obfuscation resists trivial recovery while LoRA maintains performance, thus achieving a trade-off between security and utility. For the online secure inference part, we deploy the cross-layer LoRA in the TEE and the obfuscated model in the REE, without reloading the obfuscated weights back to the REE.

Figure 2: **Overview of FILosofer.** The system combines Fisher-guided obfuscation, which perturbs critical weights to resist model stealing, with cross-layer LoRA, which restores utility via adaptive rank updates. During deployment, the obfuscated model runs in the REE, while the LoRA branch is executed inside the TEE for secure online inference.

5.1 FISHER INFORMATION GUIDED TARGET OBFUSCATION

The goal of obfuscation is to safeguard the edge-deployed model M_{vic} against stealing by misleading adversaries with inaccurate weights and uninformative outputs, while keeping parameter alterations minimal to preserve usability for legitimate users. Formally, let W denote the victim model’s weights and ΔW a perturbation applied to a subset of them. The objective is to select ΔW that minimizes information leakage to the surrogate model M_{sur} while ensuring recoverability:

$$\Delta W^* = \arg \min_{\Delta W \in \mathcal{R}} I(f(x; W); f(x; W + \Delta W)), \quad (2)$$

where $I(\cdot; \cdot)$ denotes the mutual information over the input distribution \mathcal{D} and \mathcal{R} denotes the constraints of the perturbation (e.g., sparsity, magnitude). Let $f(x; W)$ and $f(x; W + \Delta W)$ denote the outputs of the original and obfuscated models. The mutual information is defined as

$$I(f(x; W); f(x; W + \Delta W)) = \sum_{y, z} p(y, z) \log \frac{p(y, z)}{p(y)p(z)}, \quad (3)$$

where $y = f(x; W)$, $z = f(x; W + \Delta W)$, and $p(y, z)$ denotes the joint probability. If the perturbed output is independent of the input, i.e., $f(x; W + \Delta W)$ is constant for all $x \in \mathcal{D}$, then $p(y, z) = p(y)p(z)$. Substituting this into the mutual information formula yields

$$I(f(x; W); f(x; W + \Delta W)) = \sum_{y, z} p(y)p(z) \log \frac{p(y)p(z)}{p(y)p(z)} = 0. \quad (4)$$

This confirms that when the obfuscated model’s output is input-independent, no information can be inferred from its outputs. Thus, the problem becomes: identify the minimal perturbation that makes the obfuscated model’s output input-independent (e.g., always output the same label).

Fisher Information, F , has been widely applied to evaluate the importance of parameters (Rissanen, 1996). Specifically, given a model M with input X and parameters θ_T , the Fisher information can be calculated as:

$$F = \mathbb{E} \left[-\frac{\partial^2}{\partial \theta_T^2} \mathcal{L}(X | \theta_T) \right], \quad (5)$$

where \mathcal{L} is the loss function for the model. Intuitively, Fisher Information measures how sensitively the model output responds to small changes in its parameters; the more sensitive it is, the higher the Fisher Information. To enforce input-independent outputs, we perturb the weights that most strongly drive the model’s predictions toward the target label L_t . Given input x and target L_t , the Fisher information can be calculated as:

$$F_{L_t} = \mathbb{E} \left[\left(\frac{\partial \mathcal{L}(x, W)}{\partial W} \right)^2 \middle| y = L_t \right]. \quad (6)$$

We quantify perturbation intensity using the modification ratio r , defined as the fraction of weights obfuscated out of the total. To steer the model toward consistently predicting L_t , we perturb the key weights along the gradient of the target loss:

$$W \leftarrow W + \eta \cdot \nabla_W \mathcal{L}(x, W), \quad (7)$$

where η is the scale factor. Experiments show that even small η (e.g., $\leq 1e^{-4}$) are sufficient to reliably bias the model toward the target label. The complete algorithm is in Appendix 1. [The full proof is provided in Appendix 9.10](#).

5.2 CROSS-LAYER LoRA-BASED RECOVERY

While input-independent outputs effectively prevent information leakage, they degrade usability. Thus, it is essential to recover the model for legitimate users. LoRA fine-tuning introduces low-rank update matrices to the pre-trained weights, enabling efficient task-specific adaptation while keeping the obfuscated model weights **frozen**. We propose a **cross-layer LoRA** scheme to reduce recovery latency. Instead of attaching per-layer LoRA modules, we define a single branch (A, B) spanning layers ℓ_s, \dots, L , where the entry layer ℓ_s is constrained to the last five layers and selected via Fisher information:

$$\ell_s = \arg \max_{\ell} \mathbb{E} \left[-\frac{\partial^2}{\partial (W^{(\ell)})^2} \mathcal{L}(X | \theta) \right]. \quad (8)$$

Layers $\ell \geq \ell_s$ are obfuscated. During inference, the obfuscated backbone is computed in the REE, producing both the entry-layer activation $Z^{(\ell_s)}$ and a preliminary output $\tilde{y} = f_{\text{REE}}(X; W')$. [Crucially, \$\tilde{y}\$ represents the degraded, inaccurate prediction derived from the perturbed weights \$W'\$](#) . The TEE then receives $Z^{(\ell_s)}$ and applies the secure cross-layer LoRA parameters (A, B) to synthesize the final prediction:

$$\hat{y} = f_{\text{TEE}}(Z^{(\ell_s)}; A, B) + \tilde{y}. \quad (9)$$

[In this formulation, the term \$f_{\text{TEE}}\(Z^{\(\ell_s\)}; A, B\)\$ functions as a low-rank, task-specific residual learner](#). Mathematically, it is trained to predict the precise error vector required to compensate for the deviation introduced by the backbone obfuscation. By superimposing this secure corrective vector onto the erroneous preliminary result \tilde{y} , the system successfully reconstructs the accurate label \hat{y} strictly within the trusted environment. This architectural decoupling effectively separates the model’s utility from its bulk parameters: the REE executes the heavy but obfuscated computation, while the TEE handles the lightweight but critical recovery logic. Consequently, this design prevents the leakage of functional weights to the untrusted domain without incurring the high latency of full-model TEE execution, ensuring both robust security and computational efficiency.

5.3 OBFUSCATION AND RECOVERY TRADE-OFF

Obfuscation degrades backbone accuracy for security, while LoRA fine-tuning restores utility, creating a trade-off: excessive distortion hinders recovery and increases adaptation cost. To address this trade-off, we propose Constraint-Aware Obfuscation under Resource-Limited Adaptation (Details in Appendix, Algorithm 2). The algorithm iteratively maximizes obfuscation on the most sensitive layers while applying a resource-constrained cross-layer LoRA branch (e.g., limited in rank or parameter budget) to restore task performance. A rollback mechanism ensures that the LoRA-recovered accuracy never falls below a predefined threshold, guaranteeing recoverability. This procedure provides a realistic framework for maximizing model obfuscation under practical adaptation limits, particularly in edge device deployments, where recovery modules are inherently resource-constrained, and highlights the security–utility trade-off that arises in such constrained environments.

6 EXPERIMENTS

Configuration. Following the methodology outlined in TEEslice (Zhang et al., 2024b), we evaluate feasible configurations for the benchmarks introduced in Section 2. Specifically, for DarkneTZ (Mo et al., 2020) and Serdar (Elgamal & Nahrstedt, 2020), we vary the number of consecutive layers and report the results for the last three layers and first three layers, respectively. For Magnitude (Hou et al., 2021), we test configuration parameter ‘mag_ratio’ among $\{0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1\}$, where 0.01 is the recommended setting. For TEEslice (Zhang et al., 2024b), NNSplitter (Zhou et al., 2023) and GroupCover (Zhang et al., 2024a), we adopt the default configuration.

324
 325 **Table 2: The accuracy of the surrogate model.** Green and Red boxes highlight the lowest and
 326 highest accuracy, respectively.

Budgets	Dataset	No-Shield	DarkneTZ	Serdab	Magnitude	NNSplitter	TEESlice	GroupCover	Ours	Blackbox
		/	50	5000	50	5000	50	5000	50	5000
AlexNet	C10	81.58	66.01	80.97	74.08	80.26	68.42	78.08	58.9	75.26
	C100	55.97	13.60	52.19	42.59	54.25	30.64	50.40	19.92	42.76
	Image200	47.70	4.12	33.16	31.29	34.44	14.92	35.83	3.67	29.73
ResNet18	C10	93.07	86.84	92.79	86.86	92.25	73.26	88.63	78.30	90.66
	C100	81.5	26.36	79.23	77.93	80.79	59.55	77.02	47.86	78.78
	Image200	65.68	61.22	63.50	5.96	59.10	43.08	58.39	25.24	42.12
VGG19	C10	91.42	89.34	91.45	91.44	91.42	83.93	90.15	79.87	89.51
	C100	70.39	22.63	67.71	69.07	69.85	59.95	65.34	25.50	59.62
	Image200	63.23	60.89	61.17	5.24	52.66	24.67	45.20	13.28	49.26
ViT-B/16	C10	97.69	67.96	97.12	65.54	94.99	95.26	97.92	59.55	93.56
	C100	86.58	24.38	78.17	14.70	80.84	15.64	85.48	9.63	53.17
	Image200	81.99	12.94	78.32	9.02	80.10	72.62	85.91	14.68	82.74

337 **Utility Cost Metric.** To evaluate the efficiency implications of different TSDP configurations, we
 338 adopt FLOPs as the primary utility cost metric. Following the setting proposed by TEESlice (Zhang
 339 et al., 2024b), %FLOPs is defined as the proportion of total floating-point operations (FLOPs) exe-
 340 cuted within the TEE, relative to the overall FLOPs of the full DNN model.

341 6.1 SECURITY GUARANTEE AND UTILITY COST

344 **Defense against Model Stealing** Table 2 presents the results of model stealing on four model ar-
 345 chitectures across three datasets under two attack budgets (50 and 5000 queries). The ‘No-Shield’
 346 column denotes the baseline without any defense, reflecting that the surrogate model can directly
 347 copy the victim model. The ‘Black-Box’ setting assumes the attacker has no access to the model’s
 348 weights and architecture but can use the input-output pairs to train the surrogate model.

349 Compared to existing defenses, strategies such as simple layer shielding or magnitude-based per-
 350 turbations yield limited effectiveness. Similarly, TEESlice offers only moderate protection; while
 351 it modifies the model architecture, it critically leaves the model outputs unprotected, leading to po-
 352 tential leakage. In terms of other defenses, GroupCover demonstrates competitive performance by
 353 leveraging randomization strategies and mutual covering obfuscation. However, it fails to explicitly
 354 account for the mutual information leakage between the model parameters and the output. Con-
 355 sequently, although GroupCover performs well in many scenarios, its protection stability cannot be
 356 theoretically guaranteed. In contrast, our proposed method consistently achieves superior protection
 357 across diverse datasets and architectures. As illustrated in table 2, the accuracy of the surrogate
 358 model against our defense aligns strictly with the ideal random-guessing baselines (e.g., 10%, 1%,
 359 and 0.5%), demonstrating that our approach effectively eliminates information leakage.

360 Overall, our method maintains utility for authorized users while offering significantly stronger pro-
 361 tection for unauthorized users by outputting a constant label. In addition, our framework supports a
 362 pay-per-query mechanism that can limit the number of model queries, ensuring long-term protection
 363 even under black-box access. Note that none of the prior TSDP-based methods (a) can distinguish
 364 between authorized and unauthorized users, and (b) can enforce query limits at the user level. This is
 365 the key difference between this work and prior art. There was no consideration given to the distinc-
 366 tion between authorized and unauthorized actions in previous work, and we are the first to address
 367 this issue. We provide additional results and analysis for authorized vs. unauthorized user access in
 368 Appendix 9.7.

369 **Cross-Layer LoRA-based Recovery** We also test cross-layer LoRA recovery among different
 370 LoRA ranks. As shown in Table 3, higher LoRA ranks enhance recovery, yet even low ranks (e.g.,
 371 rank 2) nearly restore original accuracy. Recovery scales differently across settings: shallow models
 372 (e.g., AlexNet on CIFAR-10) benefit from increasing LoRA rank, while deeper models or harder
 373 datasets (e.g., VGG19 on ImageNet200) demand higher ranks for comparable gains. In contrast,
 374 ViT-B/16 shows strong robustness and efficient recovery across datasets, with higher ranks even
 375 surpassing original accuracy, suggesting LoRA provides both restoration and performance gains.

376 **Efficiency** We further compare the computational efficiency and latency of our proposed method
 377 with existing approaches under the query size 500. Following the definition of the Utility Cost Merit
 378 outlined in Section 6, we estimate the number of floating-point operations (FLOPs) required for each
 379 method. Following prior work (Zhang et al., 2024b), we define Utility(C) as the fraction of FLOPs

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Table 3: The recovery accuracy of cross-layer LoRA among varying LoRA rank.

Model	Dataset	Original	Obfuscated	LRank 2	LRank 4	LRank 8	LRank 16	LRank 32
AlexNet	C10	81.85	10.00	80.68	80.77	80.95	81.32	81.68
	C100	55.97	1.00	55.62	55.93	55.95	56.30	56.92
	ImageNet200	47.70	0.50	47.05	47.89	48.08	48.96	48.90
ResNet18	C10	93.07	10.00	92.56	92.92	92.98	93.04	93.42
	C100	81.50	1.00	80.22	80.57	80.63	80.50	80.92
	ImageNet200	65.68	0.50	49.22	50.03	52.13	53.82	55.20
VGG19	C10	91.42	10.00	90.76	90.85	90.94	91.48	91.65
	C100	70.39	1.00	68.88	69.01	69.14	69.67	70.03
	ImageNet200	63.23	0.50	60.74	61.10	61.77	62.66	63.32
ViT-B16	C10	97.69	10.00	97.43	97.73	97.67	97.80	97.96
	C100	87.58	1.00	87.90	88.14	86.36	87.96	88.50
	ImageNet200	81.99	0.50	82.69	83.27	83.43	83.58	84.16

Table 4: Utility (%FLOPs) of prior works and FILOsofer. Lower values imply lower utility cost, with %FLOPs being 0% for the white-box baseline and 100% for the black-box baseline.

	Resnet18			VGG19			Alexnet			ViT		
	C10	C100	ImageNet	C10	C100	ImageNet	C10	C100	ImageNet	C10	C100	ImageNet
DarkneTZ	100.00	100.00	72.16	98.85	100.00	80.70	100.00	100.00	83.23	91.07	91.07	75.13
Serdab	100.00	100.00	96.54	100.00	100.00	98.62	100.00	100.00	95.72	91.73	100	83.40
Magnitude	100.00	94.71	78.43	100.00	87.43	75.57	81.18	90.58	71.82	100.00	72.20	66.91
TEESlice	3.80	5.33	3.80	0.34	0.37	0.31	12.48	12.48	8.75	7.24	8.51	8.92
Ours	0.0027	0.0027	0.0013	0.0032	0.0032	0.0021	0.0013	0.0013	0.0017	0.0069	0.0069	0.0069

that must run inside the TEE to match the security of the black-box baseline. NNSplitter (Zhou et al., 2023) uses an RL controller to select layers, making the protection level and TEE cost hard to quantify, since the modified weight ratio is not directly tunable.

As shown in Table 4, our method consistently achieves the lowest utility cost across all tested models and datasets, significantly outperforming state-of-the-art TEE-based defenses. We also observe that utility cost increases with dataset complexity, especially for large datasets such as ImageNet. This demonstrates that storing layers without importance selection is inefficient, whereas our Fisher information-based selection and cross-layer recovery scale robustly without sacrificing security, making it practical for deployment on resource-constrained edge devices.

6.2 PERFORMANCE ON REAL-WORLD DEVICES

To evaluate the practical performance of our methods, we deploy them on a NVIDIA Jetson Orin Nano, a widely used edge AI platform featuring a 6-core ARM v8.2 CPU, an Ampere GPU with 32 Tensor Cores, and 8 GB of LPDDR4x RAM. In addition to AI acceleration, Jetson provides hardware-level security features by ARM TrustZone, which enables secure execution by isolating trusted operations on ARM Cortex-A CPUs. We leverage OP-TEE to run trusted applications (e.g., our LoRA branch) within TrustZone.

We choose one ImageNet image as the input. As shown in Table 5, the inference latency of the backbone models executed on Jetson varies significantly by architecture, ranging from 12.4 ms for AlexNet to 91.7 ms for ViT-B/16, reflecting the growing computational demand of more complex models. For end-to-end latency, our evaluation over 10 runs showed a variation between 13.8–16.7 ms for AlexNet and 93.2–96.1 ms for ViT-B/16. In contrast, the latency of the corresponding LoRA recovery branches deployed within TrustZone remains consistently low across all models, below 1 ms in every case. This demonstrates that our LoRA-based design imposes minimal runtime overhead while providing robust model recovery.

6.3 APPLICABILITY TO LLMs

Table 5: Inference latency (per image) on Jetson Orin Nano. The first row reports the inference latency (ms) of the obfuscated models executed on the GPU, the second row shows the latency (ms) of the LoRA branch deployed within the ARM TrustZone.

Model	AlexNet	ResNet18	VGG19	ViT-B/16
GPU	12.4	22.1	48.9	91.7
TrustZone	0.84	0.86	0.85	0.87
Overhead	6.3%	3.7%	1.7%	.9%

We evaluate our method on large language models (LLMs) but did not apply the knockoff-net attack, given the absence of an established framework for model stealing in this setting. Nevertheless, TDSP methods remain valuable for LLMs, as they provide mechanisms for usage protection and authentication (details in 9.3).

For our experiments, we choose LLaMA 3.2-1B and $\eta=1e^{-5}$, $r=5e^{-5}$, LoRA rank 8. In our experimental setup for LLMs, we initially fine-tuned the classifier layer using standardized system prompts constructed as “Question:” followed by the input query and candidate options. Subsequently, we designated the final layer (Layer 15) as the target for obfuscation; perturbations were applied to both this layer and the classifier head to effectively degrade baseline accuracy, while the cross-layer LoRA branch was employed to restore task utility. Further experiments investigating the influence of different layer selections are detailed in Appendix 9.10.

Table 6 shows the performance of three NLP benchmarks: GLUE-MNLI (3-class), ARC-Easy (4-class), and SciQ (4-class). Across all datasets, obfuscation consistently degrades accuracy, confirming that the obfuscated model produces low-quality outputs. With the cross-layer LoRA branch, predictive performance is restored, closely matching the original model and demonstrating an effective balance between security and utility for large language models. We also evaluate the inference latency of LLMs on edge hardware using the NVIDIA Jetson platform, showing that our approach is highly efficient.

This approach is particularly valuable for LLM deployment in pay-per-service scenarios. In such settings, models are executed on white-box edge devices, and users are billed per inference query. By obfuscating the backbone LLM, we prevent unauthorized copying or model misuse, while the lightweight cross-layer LoRA branch allows authorized clients to efficiently recover performance.

7 RESILIENCE TO ADAPTIVE ATTACK

Based on the previous work (Zhou et al., 2023; Zhang et al., 2024a), we consider a more powerful adversary who seeks to optimize the performance of obfuscated models by employing advanced techniques, including norm clipping (Yu et al., 2021) and FisherPatch.

Norm Clipping: Following NNSplitter (Zhou et al., 2023), norm clipping (Yu et al., 2021) can be adapted to the weight level, where the adversary constrains weight perturbations within a scaled range of the modified parameters. The clipping interval is computed by scaling the minimum and maximum of $W + \Delta W'$ with a factor $t \in [0, 1]$, thereby effectively compressing the range to suppress outliers: $w_i \leftarrow \text{clip}(w_i, t \cdot \min(W + \Delta W'), t \cdot \max(W + \Delta W'))$.

As shown in Table 7, norm clipping fails across all threshold values t : large t fails to clip the modified weights, whereas small t excessively clips weights, significantly degrading classification performance. In contrast, norm clipping improves accuracy for NNSplitter (Zhou et al., 2023), as its magnitude-based obfuscation does not target specific directions; the clipped weights naturally revert toward the original decision boundary, partially restoring performance.

The ineffectiveness of this defense can be attributed to two main causes: 1) **Sparse directional perturbations** are resilient to norm bounds. Since only a few weights are altered, most values remain close to the original W , preserving the obfuscation even after clipping, especially when the perturbation scale η is small (e.g., 1×10^{-4}). 2) **Semantic bias** is directional rather than magnitude-based. Perturbations align with the decision boundary of the target class. Even if clipping reduces their magnitude, the directional effect in weight space remains, sustaining misclassification.

Table 6: **Application to LLM.** The First three lines are the accuracy of Llama3.2-1b. The last line is per-token latency.

Dataset	Original	Obfuscated	LoRA
GLUE-MNLI	78.14%	33.49%	78.09%
Arc_easy	65.53%	25.04%	63.72%
SciQ	91.40%	25.31%	90.26%
Latency (ms)	86.3 (GPU)	86.3 (GPU)	0.88 (TrustZone)

Table 7: Accuracy of obfuscated models before → after applying norm clipping with varying t from 0.1 to 0.9. For different t , the clipping accuracy remains low, which means clipping fails to restore performance across datasets.

Model	C10	C100	ImageNet200
Alexnet	10.0 → 10.0	1.0 → 1.0	0.5 → 0.5
Resnet18	10.0 → 10.0	1.0 → 1.0	0.5 → 0.5
VGG19	10.0 → 10.0	1.0 → 1.0	0.5 → 0.5
Vit-B16	10.0 → 10.0	1.0 → 1.0	0.5 → 0.5

486
 487
 488
 489
 Table 8: **FisherPatch** results on **ViT-B/16, CIFAR100**. From left to right: 1) Surrogate model
 accuracy varying scale factor (obfuscation ratio = 5×10^{-5}); 2) Cross-LoRA recovery accuracy
 varying scale factor (obfuscation ratio = 5×10^{-5}); 3) Surrogate model accuracy varying weight
 ratio (scale factor = 0.1); 4) Cross-LoRA recovery accuracy varying weight ratio (scale factor = 0.1).

490	Scale	Top- k	Acc.	491	Scale	LRank	Acc.	492	Ratio	Top- k	Acc.	493	Ratio	LRank	Acc.
494 0.05	1k	87.97		495 0.05	16	80.59		496 0.1	1e-5	1k	3.17		497 0.5	16	79.37
	10k	85.17			32	83.44			10k	69.67			498 0.1	32	82.82
	50k	83.97			64	85.91			50k	84.26				64	83.17
499 0.1	1k	2.40		500 0.1	16	79.40		501 0.5	1k	2.40			502 0.5	16	79.40
	10k	2.14			32	81.93			10k	2.14				32	81.93
	50k	1.95			64	81.95			50k	1.95				64	81.95
503 0.5	1k	1.30		504 0.5	16	77.18		505 0.5	1k	1.01			506 0.5	16	79.24
	10k	1.00			32	82.15			10k	1.00				32	82.24
	50k	1.00			64	82.85			50k	1.00				64	82.21

498
 499 **FisherPatch**: We also propose a novel adaptive attack in which the adversary is assumed to be
 500 aware that Fisher Information is used for obfuscation, but remains unaware of which specific layers
 501 are targeted. Consequently, the adversary computes Fisher information over the entire model, ranks
 502 the parameters, and fine-tunes only the top- k weights using 5% of the training set. We evaluate
 503 obfuscation hyperparameters (scale factor η and modified-weight ratio r), the choice of k (number
 504 of retrained parameters), and the cross-layer LoRA used for recovery, reporting both surrogate model
 505 and recovery accuracies to quantify attack success and defense robustness.

506 Based on Table 8, we observe a trade-off between utility and security. Minor obfuscation can be
 507 easily recovered by the adaptive attacker due to small weight perturbations. As obfuscation intensi-
 508 fies, the attacker’s ability to recover the model progressively diminishes. In contrast, our recovery
 509 method remains robust: while heavier obfuscation requires a larger LoRA branch, recovery accuracy
 510 stabilizes once the branch reaches a sufficient size (e.g., 32).

511 8 CONCLUSION

512 We proposed FILOsofer, a TSDP framework that achieves robust protection against model stealing
 513 attacks, even when the adversary is granted an unlimited query budget. FILOsofer employs a Fisher-
 514 guided obfuscation strategy that minimally perturbs a critical subset of weights, effectively ensuring
 515 that the model outputs leak no information to attackers. For authorized use, FILOsofer integrates a
 516 compact, cross-layer LoRA-based branch within the TEE to restore the model’s performance. Ex-
 517 tensive evaluation on both experimental and real-world devices (Jetson Orin Nano) demonstrates
 518 that FILOsofer increases resistance to model stealing by 10x while reducing computational over-
 519 head by 50x. Moreover, this lightweight design extends seamlessly to LLMs, and we introduce two
 520 adaptive attacks to further validate the robustness of our method.

523 REPRODUCIBILITY STATEMENT

525 To facilitate reproducibility, we have uploaded the full implementation of our method, including
 526 training scripts, evaluation code, and configuration files, to an anonymous repository.¹ The reposi-
 527 tory will be made publicly available on GitHub after the review process.

529 ETHICS STATEMENT

531 This work uses only publicly available datasets and does not involve human subjects or any private
 532 or sensitive information. We strictly follow all licensing terms and usage guidelines associated with
 533 the datasets employed. Our experiments are conducted in a controlled research setting, ensuring
 534 that no confidential or personally identifiable data is exposed or utilized. The contributions of this
 535 study focus entirely on methodological improvements in existing TSDP methods, aiming to enhance
 536 security and efficiency in machine learning systems. Moreover, all code and evaluations are intended
 537 for academic and scientific purposes, promoting reproducibility and responsible research.

538
 539 ¹The anonymous link is available at: [https://anonymous.4open.science/r/fisher_](https://anonymous.4open.science/r/fisher_obfuscation_lora_modify/)
 obfuscation_lora_modify/

540 REFERENCES
541

542 Victor Costan and Srinivas Devadas. Intel sgx explained. *Cryptology ePrint Archive*, 2016.

543 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
544 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.

545 Tarek Elgamal and Klara Nahrstedt. Serdab: An iot framework for partitioning neural networks
546 computation across multiple enclaves. In *2020 20th IEEE/ACM International Symposium on
547 Cluster, Cloud and Internet Computing (CCGRID)*, pp. 519–528. IEEE, 2020.

548 Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
549 Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy.
550 In *International conference on machine learning*, pp. 201–210. PMLR, 2016.

551 Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Maximilian Augustin, Michael
552 Backes, and Mario Fritz. Mlcapsule: Guarded offline deployment of machine learning as a ser-
553 vice. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
554 pp. 3300–3309, 2021.

555 Hanieh Hashemi, Yongqin Wang, and Murali Annavaram. Darknight: An accelerated framework
556 for privacy and integrity preserving deep learning using trusted hardware. In *MICRO-54: 54th
557 Annual IEEE/ACM International Symposium on Microarchitecture*, pp. 212–224, 2021.

558 Jiahui Hou, Huiqi Liu, Yunxin Liu, Yu Wang, Peng-Jun Wan, and Xiang-Yang Li. Model protection:
559 Real-time privacy-preserving inference service for model privacy at the edge. *IEEE Transactions
560 on Dependable and Secure Computing*, 19(6):4270–4284, 2021.

561 Bin Hu, Yan Wang, Jerry Cheng, Tianming Zhao, Yucheng Xie, Xiaonan Guo, and Yingying Chen.
562 Secure and efficient mobile dnn using trusted execution environments. In *Proceedings of the 2023
563 ACM Asia Conference on Computer and Communications Security*, pp. 274–285, 2023.

564 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
565 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

566 Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. Prada: protecting against dnn model
567 stealing attacks. In *2019 IEEE European Symposium on Security and Privacy (EuroS&P)*, pp.
568 512–527. IEEE, 2019.

569 Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A low latency
570 framework for secure neural network inference. In *27th USENIX security symposium (USENIX
571 security 18)*, pp. 1651–1669, 2018.

572 Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, John Kim, Minsoo Rhu, and
573 Jung Ho Ahn. Bts: An accelerator for bootstrappable fully homomorphic encryption. In *Proceed-
574 ings of the 49th annual international symposium on computer architecture*, pp. 711–725, 2022.

575 Shagufta Mehnaz, Sayanton V Dibbo, Roberta De Viti, Ehsanul Kabir, Björn B Brandenburg, Stefan
576 Mangard, Ninghui Li, Elisa Bertino, Michael Backes, Emiliano De Cristofaro, et al. Are your
577 sensitive attributes private? novel model inversion attribute inference attacks on classification
578 models. In *31st USENIX Security Symposium (USENIX Security 22)*, pp. 4579–4596, 2022.

579 Fatemehsadat Mireshghallah, Mohammadkazem Taram, Prakash Ramrakhyani, Ali Jalali, Dean
580 Tullsen, and Hadi Esmaeilzadeh. Shredder: Learning noise distributions to protect inference
581 privacy. In *Proceedings of the Twenty-Fifth International Conference on Architectural Support
582 for Programming Languages and Operating Systems*, pp. 3–18, 2020.

583 Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias Leontiadis, Andrea
584 Cavallaro, and Hamed Haddadi. Darknetz: towards model privacy at the edge using trusted
585 execution environments. In *Proceedings of the 18th International Conference on Mobile Systems,
586 Applications, and Services*, pp. 161–174, 2020.

594 Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas Kourtellis.
 595 *Ppfl: Privacy-preserving federated learning with trusted execution environments.* In *Proceedings*
 596 *of the 19th annual international conference on mobile systems, applications, and services*, pp.
 597 94–108, 2021.

598 Krishna Giri Narra, Zhifeng Lin, Yongqin Wang, Keshav Balasubramaniam, and Murali Annavaram.
 599 *Privacy-preserving inference in machine learning services using trusted execution environments.*
 600 *arXiv preprint arXiv:1912.03485*, 2019.

601 Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality of
 602 black-box models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 603 *recognition*, pp. 4954–4963, 2019.

604 Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Prediction poisoning: Utility-constrained
 605 defenses against model stealing attacks. In *International Conference on Representation Learning*
 606 (*ICLR*) 2020, 2020.

607 Adnan Siraj Rakin, Md Hafizul Islam Chowdhury, Fan Yao, and Deliang Fan. Deepsteal: Advanced
 608 model extractions leveraging efficient weight stealing in memories. In *2022 IEEE symposium on*
 609 *security and privacy (SP)*, pp. 1157–1174. IEEE, 2022.

610 Jorma J Rissanen. Fisher information and stochastic complexity. *IEEE transactions on information*
 611 *theory*, 42(1):40–47, 1996.

612 Tianxiang Shen, Ji Qi, Jianyu Jiang, Xian Wang, Siyuan Wen, Xusheng Chen, Shixiong Zhao, Sen
 613 Wang, Li Chen, Xiapu Luo, et al. {SOTER}: Guarding black-box inference for general neural
 614 networks at the edge. In *2022 USENIX Annual Technical Conference (USENIX ATC 22)*, pp.
 615 723–738, 2022.

616 Yu Sun, Gaojian Xiong, Jianhua Liu, Zheng Liu, and Jian Cui. Tsqp: Safeguarding real-time infer-
 617 ence for quantization neural networks on edge devices. In *2025 IEEE Symposium on Security and*
 618 *Privacy (SP)*, pp. 1–1. IEEE Computer Society, 2024.

619 Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Somesh Jha, and Long
 620 Lu. Shadownet: A secure and efficient system for on-device model inference. *arXiv preprint*
 621 *arXiv:2011.05905*, 2020.

622 Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Somesh Jha, and Long Lu.
 623 Shadownet: A secure and efficient on-device model inference system for convolutional neural
 624 networks. In *30th USENIX security symposium (USENIX security 21)*, pp. 1955–1972, 2021.

625 Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Long Lu, and Somesh Jha.
 626 Shadownet: A secure and efficient on-device model inference system for convolutional neural
 627 networks. In *2023 IEEE Symposium on Security and Privacy (SP)*, pp. 1596–1612. IEEE, 2023.

628 Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and private execution of neural networks in
 629 trusted hardware. In *International Conference on Learning Representations*.

630 Yecheng Xiang, Yidi Wang, Hyunjong Choi, Mohsen Karimi, and Hyoseung Kim. Aegisdnn: De-
 631 pendable and timely execution of dnn tasks with sgx. In *2021 IEEE Real-Time Systems Sympo-*
 632 *sium (RTSS)*, pp. 68–81. IEEE, 2021.

633 Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache telepathy: Leveraging shared
 634 resource attacks to learn {DNN} architectures. In *29th USENIX Security Symposium (USENIX*
 635 *Security 20)*, pp. 2003–2020, 2020.

636 Cheng Yu, Jiansheng Chen, Youze Xue, Yuyang Liu, Weitao Wan, Jiayu Bao, and Huimin Ma.
 637 Defending against universal adversarial patches by clipping feature norms. In *Proceedings of the*
 638 *IEEE/CVF International Conference on Computer Vision*, pp. 16434–16442, 2021.

639 Yuanyuan Yuan, Zhibo Liu, Sen Deng, Yanzuo Chen, Shuai Wang, Yingqian Zhang, and Zhendong
 640 Su. Hypertheft: Thieving model weights from tee-shielded neural networks via ciphertext side
 641 channels. In *Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communi-*
 642 *cations Security*, pp. 4346–4360, 2024.

648 Zheng Zhang, Na Wang, Ziqi Zhang, Yao Zhang, Tianyi Zhang, Jianwei Liu, and Ye Wu. Group-
649 cover: A secure, efficient and scalable inference framework for on-device model protection based
650 on tees. In *Forty-first International Conference on Machine Learning*, 2024a.

651
652 Ziqi Zhang, Yuanchun Li, Bingyan Liu, Yifeng Cai, Ding Li, Yao Guo, and Xiangqun Chen. Fed-
653 slice: Protecting federated learning models from malicious participants with model slicing. In
654 *2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)*, pp. 460–472.
655 IEEE, 2023.

656 Ziqi Zhang, Chen Gong, Yifeng Cai, Yuanyuan Yuan, Bingyan Liu, Ding Li, Yao Guo, and Xiangqun
657 Chen. No privacy left outside: On the (in-) security of tee-shielded dnn partition for on-device
658 ml. In *2024 IEEE Symposium on Security and Privacy (SP)*, pp. 3327–3345. IEEE, 2024b.

659 Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng. Sectee: A software-based
660 approach to secure enclave architecture using tee. In *Proceedings of the 2019 ACM SIGSAC*
661 *conference on computer and communications security*, pp. 1723–1740, 2019.

663 Tong Zhou, Yukui Luo, Shaolei Ren, and Xiaolin Xu. Nnsplitter: an active defense solution for dnn
664 model via automated weight obfuscation. In *International Conference on Machine Learning*, pp.
665 42614–42624. PMLR, 2023.

666 Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and Yantao Lu. Hermes attack: Steal {DNN}
667 models with lossless inference accuracy. In *30th USENIX Security Symposium (USENIX Security*
668 *21)*, 2021.

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **9 APPENDIX**
703

704 **9.1 THE USE OF LARGE LANGUAGE MODEL**
705

706 We employed a large language model (GPT-5) to assist in proofreading and enhancing the clarity of
707 the manuscript. Specifically, the LLM was utilized for grammar checking, sentence restructuring,
708 and minor language polishing to improve readability and linguistic precision. All scientific content,
709 including the formulation of hypotheses, experimental design, data analysis, and interpretation of
710 results, was entirely executed, and verified by the authors.
711

712 **9.2 ALGORITHM**
713

714 **Fisher-guided Obfuscation** We summarize FILosofer obfuscation mechanism in Algorithm 1. The
715 process takes three steps: (1) computing the gradients with respect to the target class t , (2) estimating
716 the Fisher information based on these gradients, and (3) updating the weights with the highest Fisher
717 information.
718

719 **Algorithm 1** Model Obfuscation with Fisher Information
720

721 **Require:** Loss function \mathcal{L} , model parameters W , dataset \mathcal{D} , target class L_t , selection ratio r , scale factor η
722 **Ensure:** Updated (obfuscated) model parameters W'
723 1: **for** each $x \in \mathcal{D}$ **do**
724 2: compute loss for target class: $\mathcal{L}(x, W)$
725 3: compute gradient: $g(x) \leftarrow \nabla_W \mathcal{L}(x, W)$
726 4: accumulate squared gradients for Fisher estimate: $F_W += g(x) \odot g(x)$
727 5: **end for**
728 6: normalize Fisher estimate: $F_W \leftarrow F_W / |\mathcal{D}|$
729 7: **for** each parameter tensor/block w in W **do**
730 8: select top- r fraction indices by F_W : $\mathcal{I} \leftarrow \text{TopK}(F_W, r)$
731 9: compute perturbation on selected indices: $\Delta w_{\mathcal{I}} \leftarrow \eta \cdot g_{\mathcal{I}}$
732 10: apply perturbation: $w' \leftarrow w + \Delta w$
733 11: **end for**
734 12: **return** W'
735

736 **Constraint-Aware Obfuscation under Resource-Limited Adaptation** Algorithm 2 implements a
737 systematic procedure to maximize model obfuscation while respecting the resource constraints of
738 the adaptation module. Joint training uses the same setup as the cross-layer LoRA finetuning stage.
739 For the obfuscation component, we only perform a single forward pass to calculate the Fisher infor-
740 mation of each weight, which introduces negligible overhead. The LoRA branch requires finetuning
741 and therefore needs access to the corresponding training dataset (e.g., CIFAR-100). To maintain
742 efficiency while preserving effectiveness, rather than attaching a separate LoRA module to every
743 layer, we design a cross-layer LoRA branch that spans all obfuscated layers, significantly reducing
744 both parameters and training cost.
745

746 Line 1–5: Layer Sensitivity Selection. We first compute the Fisher information for each layer to
747 measure its sensitivity (Line 2). The entry layer ℓ_s is chosen as the most sensitive layer, and all
748 subsequent layers $\ell \geq \ell_s$ are defined as target layers L_t for obfuscation. This ensures that the
749 perturbation focuses on layers critical to model performance.
750

751 Line 7–8: Accuracy Evaluation and Stopping Criterion. After recovery, the LoRA-recovered ac-
752 curacy Acc_L is evaluated. The iteration continues until Acc_L falls below a predefined threshold,
753 ensuring that obfuscation is maximized without exceeding the adaptation capacity.
754

755 Line 10–16: Iterative Obfuscation and Recovery. For each iteration, the obfuscation function F_{obf}
756 is applied to target layers L_t , progressively increasing the perturbation magnitude via parameters
757 (r_{obf}, η). The resource-constrained LoRA branch is then applied across L_t to restore task utility
758 under the given adaptation budget.
759

760 **Core Insight.** This constraint-driven loop reveals that, under limited adaptation resources, one can
761 systematically explore the maximum obfuscation a model can tolerate. By decoupling obfuscation
762 strength from adaptation capacity, the algorithm balances security (through progressive perturba-
763 tion) and utility (through resource-limited recovery), providing a principled mechanism to probe the
764

756 **Algorithm 2** Constraint-Aware Obfuscation under Resource-Limited Adaptation

757 **Require:** Backbone model M , dataset D , weight obfuscation function F_{obf} , cross-layer LoRA branch
758 $h_{\text{LoRA}}(A, B)$, iterations T , initial obfuscation ratio r_{obf} , scaling factor η , fixed LoRA rank r_l , LoRA accu-
759 racy threshold Acc_{LoRA}

760 **Ensure:** Obfuscated model M_{obf} and LoRA branch h_{LoRA}

761 1: **for** each layer ℓ with $|\ell, \dots, L| < 5$ **do** ▷ Layer selection via Fisher Information

762 2: Compute $F_\ell = \mathbb{E} \left[-\frac{\partial^2 \mathcal{L}(X|\theta)}{\partial (W^{(\ell)})^2} \right]$

763 3: **end for**

764 4: Select entry layer $\ell_s = \arg \max_\ell F_\ell$

765 5: Define target layers $L_t = \{\ell \geq \ell_s\}$

766 6: **for** iteration $t = 1$ to T **do**

767 7: **if** $Acc_L < Acc_{\text{LoRA}}$ **then** ▷ Rollback if threshold violated

768 8: **return** $M_{\text{obf}}, h_{\text{LoRA}}$

769 9: **else**

770 10: $r_{\text{obf}} \leftarrow r_{\text{obf}} \cdot \beta, \eta \leftarrow \eta \cdot \beta$ ▷ Increase obfuscation

771 11: **for** each layer $\ell \in L_t$ **do** ▷ Weight Obfuscation

772 12: $W^{(\ell)} \leftarrow F_{\text{obf}}(W^{(\ell)}; r_{\text{obf}}, \eta)$

773 13: **end for**

774 14: Apply $h_{\text{LoRA}}(A, B)$ with fixed rank r_l across L_t ▷ LoRA Recovery

775 15: Store M_{obf} and $h_{\text{LoRA}}(A, B)$

776 16: $Acc_L = M_{\text{obf+LoRA}}(D)$ ▷ Evaluate LoRA-recovered accuracy

777 17: **end if**

778 18: **end for**

779 security–utility trade-off. Compared with prior obfuscation methods such as TEESlice, NNSplitter
780 and GroupCover, our computational cost is substantially lower and the overall process is more
781 stable. TEESlice requires iterative slice pruning and repeatedly training the pruned model, while
782 NNSplitter relies on reinforcement learning to identify layers and weights, often requiring many
783 search rounds. GroupCover applies both randomization strategies and mutual covering obfuscation,
784 and need to calculate the mask process and nonlinear parts in TEE. In contrast, our approach needs
785 only one Fisher pass plus lightweight cross-layer LoRA finetuning, making it significantly more
786 efficient.

788 9.3 AUTHORIZED ACCESS AND TEE IMPLEMENTATION

790 Before presenting additional results, we first explain how authorized access is achieved in our setup.

791 To ensure security, we consider a *provisioning* step, where a remote trusted gateway and TEE agree
792 on a “token” and a “session key” (uk) Zhao et al. (2019). The assumption is that users negotiate with
793 such a trusted gateway (which knows the license key), and once proper authentications are made,
794 the trusted gateway provisions the new token and session key and shares them with the authenticated
795 user Zhao et al. (2019).

797 The session key is generated by leveraging a symmetric *license* key, k , using established crypto-
798 graphic algorithms Zhao et al. (2019). All communication after this point (including communication
799 required for token generation) is cryptographically protected (integrity and confidentiality) by uk .

800 The token is created by also leveraging the license, and can be defined as:
801 $user_id, credits, expiry || HMAC_k(...)$. The “credits” and “expiry” are optional but can be
802 set if this is a pay-per-inference service.

803 During the inference phase, the remote user can directly query the model by creating an ARM
804 TrustZone SDK call (i.e., Secure Monitor Call, SMC) with the token. Note that all communications
805 are encrypted and authenticated using uk . The trusted app (TA) then verifies the token and accepts
806 the request if credits remain and are unexpired. The TA then performs the inference and returns
807 an encrypted response. Under this model, an unauthorized user, whether local or remote, cannot
808 successfully query the model, as they lack access to the session key and valid tokens. Furthermore,
809 the untrusted operating system is unable to infer any information, since all communication between
the user and the TEE is encrypted and protected for both confidentiality and integrity.

Figure 3: The influence of modified weight ratio with target label 3. For different models, different η are applied. The inserted figure shows an amplified view of the x-axis in the range [0.06, 0.10].

Figure 4: The influence of scale factor η on different datasets and models.

9.4 EVALUATION ON MIA

We also evaluate membership inference attacks as downstream threats to demonstrate the effectiveness of our protection. Membership inference attacks (MIA) test whether an input sample x belongs to the training dataset D_{train} . Formally, given query access to a target model f_θ , the adversary constructs a hypothesis test between $H_0 : x \notin D_{train}$ and $H_1 : x \in D_{train}$, often leveraging prediction confidence or loss values.

Table 9: Results of membership inference attack.

Dataset/Model	Serdab	DarkneTZ	Magnitude	NNsplitter	TEESlice	Ours	Blackbox
C10/ResNet18	66.06	65.13	59.28	50.00	50.00	50.00	50.00
C10/VGG19	63.87	64.03	58.82	50.00	50.00	50.00	50.00
C100/ResNet18	91.81	85.47	61.88	50.00	50.00	50.00	50.00
C100/VGG19	87.80	84.66	71.48	50.00	50.00	50.00	50.00

The results show that obfuscated methods, like NNsplitter, is effective against membership inference attacks (MIA). By perturbing parameters, obfuscation reduces overfitting and diminishes the statistical gap between members and non-members in the output distribution $p_\theta(y|x)$, thereby weakening the adversary's likelihood test advantage.

9.5 IMPACT OF OBFUSCATION PARAMETERS

We further explore the factors that affect the effectiveness of model obfuscation. In particular, we examine the influence of the scaling factor η , weight modification ratio r , and target label L_t . Based on the experiment, we have the following findings:

Scale Factor η . Figure 4 shows the impact of the scale factor η across different models (Resnet18, VGG19, AlexNet, and ViT) and datasets (CIFAR10, CIFAR100 and TinyImageNet200). As shown in the figure, different models and datasets favor different scaling factors; the optimal range for ResNet18 on CIFAR-10 is around $1e^{-3}$, while for ViT on the more complex TinyImageNet, it is in the much smaller range of approximately $5e^{-4}$. All effective values remain very small, a

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
Figure 5: The trade-off between Fisher-guided obfuscation and Cross-layer LoRA-based fine-tuning.

characteristic that is advantageous for obfuscation as it makes the corresponding modifications to the input data difficult to detect.

Weight Ratio r . A small set of weights heavily influences predictions, but their identities vary across models and datasets. As shown in Figure 3, modifying key weights in ViT models reduces accuracy on CIFAR-10 and TinyImageNet, but the output does not consistently converge to the target label. When the scale factor is too small, even widespread perturbations fail to induce consistent misclassification. This underscores the importance of selecting an appropriate scale and confirms that only a small fraction of weights are truly critical to model behavior.

Target Class: Table 10 illustrates how obfuscation accuracy varies with different target labels, under the setting of $r = 0.00005$ and $\eta = 0.003$ for ResNet18, $\eta = 0.0007$ for VGG19, and $\eta = 0.001$ for AlexNet. By slightly increasing η , the accuracy drops to 10% (all output target labels) across all classes. Therefore, we carefully select η to highlight the differences between target labels. The results show only minor differences across target labels, suggesting that the model’s sensitivity is largely uniform regardless of the target.

9.6 TRADE-OFFS

BETWEEN FISHER INFORMATION OBFUSCATION AND CROSS-LAYER LORA-BASED FINE-TUNING

We also evaluate the trade-off between obfuscation and LoRA-based fine-tuning, which is shown in Fig 5. We set $r = 0.00005$, target label three, and LoRA rank two. By varying η , we control the degree of model obfuscation and observe the extent to which the LoRA branch fails to recover.

Across Datasets. The tolerance for obfuscation varies significantly by dataset complexity. On CIFAR-10, even aggressive perturbations (e.g., reducing accuracy to 10%) still allow LoRA to recover over 97% performance, showing strong robustness in simpler tasks. In contrast, CIFAR-100 and ImageNet200 exhibit much steeper trade-offs: small increases in obfuscation strength rapidly degrade recoverability, reflecting their higher label granularity and reliance on fine-grained features.

Across Models. ViT achieves better LoRA recovery than CNN-based models under the same obfuscation conditions, especially on CIFAR-100 and ImageNet200. This suggests that Transformer architectures offer more adaptable representations, even when key weights are perturbed.

Joint Training Advantage. These results validate the effectiveness of our joint training algorithm, which dynamically balances obfuscation strength and LoRA capacity.

Table 10: The evaluation of obfuscated target classes on CIFAR-10.

Class	ResNet18	VGG19	AlexNet
0	10.38	10.25	10.40
1	14.90	10.24	11.33
2	18.67	10.00	10.42
3	10.15	10.00	10.55
4	10.38	10.00	12.24
5	11.81	10.00	12.30
6	12.85	10.00	12.10
7	10.85	10.00	12.41
8	12.72	10.25	12.66
9	18.91	10.02	11.21

918
919
920
921 Table 12: The accuracy of the whole model cross-layer LoRA fine-tuning with different LoRA ranks
922 and fine-tuning data.
923
924
925
926

	Percentage(%)	AlexNet			VGG19			ResNet18			ViT-B/16		
		LoRA Rank	1	4	16	1	4	16	1	4	16	1	4
C10	5%	17.62	17.06	16.10	19.48	23.72	22.61	17.53	17.25	19.78	13.38	14.03	12.62
	10%	17.22	17.61	16.53	20.45	23.44	22.78	17.76	18.59	20.93	13.63	14.73	13.28
C100	5%	11.47	12.95	10.45	12.20	12.85	12.84	11.05	11.83	12.03	22.49	15.62	13.67
	10%	12.98	13.78	10.63	14.09	14.54	14.73	12.54	12.22	12.79	24.22	22.41	21.62
ImageNet	5%	4.05	3.08	3.20	6.11	5.60	4.83	5.93	4.25	3.40	21.32	22.37	22.57
	10%	8.78	3.83	3.25	6.36	5.69	5.76	9.39	6.42	5.24	21.49	23.64	29.36

927 928 929 9.7 ROBUSTNESS OF AUTHORIZED USER 930

931 In this section, we evaluate the robustness of our framework under a strict threat model: an au-
932 thorized user who has legitimate access to the model’s inference service and receives the correct,
933 authorized labels. Unlike external adversaries who may only receive obfuscated outputs, an autho-
934 rized user possesses the ground-truth input-label pairs.
935

936 Table 11 presents the accuracy of the surrogate models constructed by authorized users. The results
937 indicate that access to correct labels is insufficient for successful model extraction when the under-
938 lying weights are obfuscated. As shown in the table, even with a budget of 5,000 queries and valid
939 labels, the surrogate model accuracy remains exceptionally low (e.g., < 18% on CIFAR-10 and
940 ~ 1% on CIFAR-100). This demonstrates that our weight obfuscation strategy effectively breaks
941 the correlation between the observable weights and the correct functional behavior.
942

943 9.8 CROSS-LAYER LORA ADAPTIVE ATTACK DISCUSSION 944

945 We conducted a systematic evaluation
946 of the impact of both the LoRA rank
947 and the amount of available training data
948 on the adaptive attack performance, re-
949 sults shown in Tab 12. Our findings
950 suggest that these two factors exhibit a
951 strong interdependence. Specifically, for
952 a fixed LoRA rank, increasing the pro-
953 portion of training data consistently leads
954 to improved accuracy, as the model bene-
955 fits from more representative and diverse
956 training signals. For example, by increas-
957 ing the training data from 5% to 10%,
958 ViT-B/16 accuracy becomes higher for all
959 dataset.

960 However, the relationship between LoRA
961 rank and performance is more nuanced.
962 Contrary to the intuition that higher-rank
963 adaptations might yield better results due
964 to increased capacity, we observe that ex-
965 cessively high ranks can lead to suboptimal performance, particularly when the training data is
966 limited. In such scenarios, large LoRA branches introduce a greater number of trainable parameters,
967 which may not be adequately optimized given the data constraints. Also, larger parameter spaces
968 lead to more complex loss surfaces, making training more sensitive to initialization and learning
969 rates.

970 These findings reveal a fundamental challenge in the attacker’s recovery strategy. Despite increas-
971 ing the LoRA rank or leveraging a moderate amount of training data, the obfuscated base model
972 imposes a structural bottleneck that restricts information flow. Consequently, even high-capacity
973 LoRA branches struggle to compensate for the intentionally degraded base model, resulting in a

974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428<br

972 Table 13: Top-5 gradient-sensitive parameters per class and dataset. Each entry shows Layer[Index]
 973 of the most sensitive parameters.

974 Label	975 CIFAR10	976 CIFAR100	977 TinyImageNet200
978 0	layer4.1.bn1.bias[318]	layer4.1.bn1.bias[196]	fc.weight[255]
	layer4.1.bn1.bias[480]	fc.weight[17]	fc.weight[280]
	layer2.0.bn2.bias[40]	fc.weight[182]	layer2.0.bn2.bias[55]
	layer2.0.downsample.1.bias[40]	layer4.1.bn1.weight[489]	layer2.0.downsample.1.bias[55]
	layer4.1.bn1.bias[38]	fc.weight[310]	fc.weight[182]
982 1	layer4.1.bn1.bias[38]	layer2.0.bn2.bias[121]	layer4.1.bn1.bias[461]
	layer4.1.bn1.bias[132]	layer2.0.downsample.1.bias[121]	fc.weight[767]
	layer4.1.bn1.weight[132]	layer1.1.bn1.bias[55]	fc.weight[792]
	layer4.1.bn1.bias[318]	layer2.1.bn2.bias[121]	layer4.1.bn1.bias[259]
	layer4.1.bn1.weight[38]	fc.weight[529]	fc.weight[694]

983
 984
 985 persistent gap from the original performance. This supports the robustness of the FILOsofer tech-
 986 nique against adaptive fine-tuning attacks.
 987

988 We observe that when knowing exactly which layers have been obfuscated, applying cross-layer
 989 LoRA directly to these layers enables effective recovery of the original model behavior (as demon-
 990 strated by the recovery methods summarized in Tab. 3). However, in the adaptive attack scenario,
 991 where the attacker knows nothing about the target layers and attaches a large LoRA branch only
 992 at the input and output of the model, recovery performance significantly degrades. This contrast
 993 reveals several key insights.

994 **1) Lack of Access to Obfuscated Semantics.** The obfuscation targets the last few layers of the
 995 model, where task-specific semantics reside. LoRA branches attached only at the input/output
 996 cannot directly influence or correct these corrupted internal representations, making recovery in-
 997 effective. **2) Gradient Misalignment.** When fine-tuning is performed without targeting the actual
 998 obfuscated layers, the gradients flow through a corrupted backbone. This leads to poor alignment be-
 999 tween the loss signal and the parameters that need adaptation, severely limiting learning efficiency.
 1000 **3) Input-Level Adaptation is Too Weak.** Adapting only at the input/output level essentially treats
 1001 the backbone as a fixed black box. Without modifying the internal transformations, the model can-
 1002 not recover class-separability or generalization, especially when its outputs are collapsed to a single
 1003 label.

1004 9.9 THE CHOICE OF OBFUSCATED WEIGHTS ANALYSIS

1005 We present the top five most sensitive weights of ResNet18 across different datasets and target labels
 1006 in Table 13. The results indicate that the specific sensitive weights vary significantly depending on
 1007 both the model’s training data and the chosen target class.

1012 9.10 LLM LAYERS ANALYSIS

1015 Table 14 presents the impact of layer-wise obfuscation on model performance using the SCIQ
 1016 dataset. ‘Both’ refers obfuscate both attention layer and mlp layer. With a baseline accuracy of
 1017 0.92, the experiments utilize a scale factor of 0.1 and a modified weight ratio of 10^{-4} to evaluate
 1018 the sensitivity of different architectural components. The results reveal a significant disparity in
 1019 robustness across layer depths and types. Specifically, the “Attention” and “Both” configurations
 1020 demonstrate relative resilience in the initial layer (Layer 0), maintaining accuracies of 0.889 and
 1021 0.885, respectively. However, this robustness rapidly diminishes in subsequent layers, with accu-
 1022 racy dropping precipitously in the middle and later stages (e.g., reaching as low as 0.194 at Layer
 1023 9). In stark contrast, the MLP layers exhibit extreme sensitivity to gradient-based perturbations;
 1024 accuracy collapses to approximately 0.24 across all layers immediately upon perturbation, regardless
 1025 of layer depth. These findings empirically confirm that MLP modules are the primary bottleneck for
 1026 adversarial robustness in this context, whereas attention mechanisms retain partial resilience in the
 1027 earliest embedding stages.

Table 14: The LLM modified results.

Layer	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Both	0.885	0.593	0.452	0.324	0.434	0.443	0.281	0.359	0.213	0.194	0.248	0.350	0.246	0.306	0.241	0.286
Attention	0.889	0.540	0.485	0.329	0.461	0.307	0.332	0.321	0.291	0.308	0.258	0.305	0.239	0.317	0.239	0.289
MLP	0.239	0.305	0.254	0.299	0.245	0.254	0.286	0.240	0.239	0.273	0.239	0.239	0.239	0.239	0.239	0.239

9.11 FUTURE DISCUSSION

Scalability of large language models A promising direction for future research is further exploring the applicability of FILOsofer to protect large language models (LLMs), which pose unique challenges beyond those addressed in our current work. First, the definition and evaluation of model stealing in the context of LLMs remain underexplored and ambiguous. Unlike classification models with clear prediction labels, LLMs operate in open-ended generation settings such as dialogue, summarization, or instruction following, making it difficult to measure what constitutes a successful attack. Second, our current approach is tailored to classification tasks and does not account for the nuanced and context-dependent outputs of LLMs. Obfuscating the model in such a way that it consistently degrades the utility of stolen outputs without harming legitimate usage requires more sophisticated techniques. Developing mechanisms that generalize to the diverse interaction modes of LLMs will be critical for securing them in real-world applications.

Distributed deployment scenarios. Another important direction for future exploration is the protection of models in distributed deployment scenarios, where a single model is partitioned and deployed across multiple edge devices. In such settings, different segments of the model are executed on separate devices, potentially increasing the system’s vulnerability surface. Attackers may attempt to compromise a subset of devices to reconstruct the behavior of the partial model or launch collaborative attacks. Our current framework, FILOsofer, is designed under the assumption of a single-device deployment and does not yet consider inter-device communication or consistency under adversarial interference. Adapting FILOsofer to support secure distributed inference requires addressing challenges such as secure partition coordination, synchronization of obfuscation effects across devices, and minimizing communication overhead, all while maintaining strong security guarantees. Future work could explore integrating lightweight secure multi-party inference protocols or developing partition-aware obfuscation strategies tailored to distributed edge environments.

9.12 FISHER INFORMATION PROOF

Notation and setup. Let $x \sim \mathcal{D}$ denote inputs and consider a conditional model $p(y | x; W)$. We perturb parameters W to $W + \Delta W$ with $\|\Delta W\|$ small. Denote the perturbed conditional output distribution by $p_{W+\Delta W}(z | x)$ and its marginal by $p_{W+\Delta W}(z) = \int p_{W+\Delta W}(z | x)p(x) dx$. We use $g_{L_t}(x) := \nabla_W \log p(L_t | x; W)$ and the target-class score $s(x; W) := \log p(L_t | x; W)$.

Assumptions.

1. The mapping $W \mapsto p(y | x; W)$ is twice continuously differentiable for each x .
2. The perturbation ΔW is sufficiently small so that Taylor expansions are valid and higher-order terms are negligible.
3. Score functions have bounded second moments and satisfy standard regularity conditions ensuring the interchange of expectation and differentiation (so that the Fisher information is well-defined).

Lemma 1 (Mutual information identity). *For any joint distribution $p(x, z)$,*

$$I(X; Z) = \mathbb{E}_{x \sim \mathcal{D}} [D_{\text{KL}}(p(z | x) \| p(z))].$$

Lemma 2 (Local KL expansion; conditional Fisher). *Under (A1)–(A3), for small ΔW ,*

$$D_{\text{KL}}(p(\cdot | x; W) \| p(\cdot | x; W + \Delta W)) = \frac{1}{2} \Delta W^\top F(x; W) \Delta W + o(\|\Delta W\|^2),$$

where

$$F(x; W) := \mathbb{E}_{z \sim p(\cdot | x; W)} [\nabla_W \log p(z | x; W) \nabla_W \log p(z | x; W)^\top].$$

1080 *Proof.* By Taylor expansion of the log-likelihood and using the score zero-mean property, the first-
 1081 order term cancels and the leading term is quadratic in ΔW ; standard derivations in asymptotic
 1082 statistics produce the displayed form. \square

1083 **Theorem 1** (Local quadratic approximation of mutual information). *Under (A1)–(A3), for suffi-
 1084 ciently small ΔW ,*

$$1086 I_{W+\Delta W}(X; Z) = I_W(X; Z) + \frac{1}{2} \mathbb{E}_{x \sim \mathcal{D}} [\Delta W^\top F(x; W) \Delta W] + o(\|\Delta W\|^2).$$

1087 *Proof.* By Lemma 1,

$$1089 I_{W+\Delta W}(X; Z) = \mathbb{E}_x [D_{\text{KL}}(p(\cdot | x; W + \Delta W) \| p_{W+\Delta W}(\cdot))].$$

1090 One can expand the integrand around W taking into account that both the conditional $p(\cdot | x; W +$
 1091 $\Delta W)$ and the marginal $p_{W+\Delta W}(\cdot)$ vary with ΔW . Careful bookkeeping of first- and second-order
 1092 terms, and using Lemma 2 for the conditional contribution, yields the stated quadratic term as the
 1093 dominant second-order contribution. The remainder is $o(\|\Delta W\|^2)$. \square

1094 **Proposition 1** (Optimal local perturbation under a Fisher (KL) budget). *Define the population-
 1095 averaged conditional Fisher $\bar{F} := \mathbb{E}_{x \sim \mathcal{D}}[F(x; W)]$. Consider the constrained problem (quadratic-
 1096 budget approximation)*

$$1097 \max_{\Delta W} \mathbb{E}_x [g_{L_t}(x)]^\top \Delta W \quad \text{s.t.} \quad \Delta W^\top \bar{F} \Delta W \leq \varepsilon.$$

1099 If \bar{F} is positive definite, the optimal direction is

$$1100 \Delta W^* \propto \bar{F}^{-1} \mathbb{E}_x [g_{L_t}(x)].$$

1102 *Proof.* This is a standard linear objective with quadratic constraint problem. The Lagrangian is
 1103 $L(\Delta W, \lambda) = \mathbb{E}_x [g_{L_t}(x)]^\top \Delta W - \lambda(\Delta W^\top \bar{F} \Delta W - \varepsilon)$. Stationarity yields $\mathbb{E}_x [g_{L_t}(x)] = 2\lambda \bar{F} \Delta W$.
 1104 For $\lambda > 0$ and invertible \bar{F} , the result follows. \square

1106 Remarks.

- 1108 • The matrix \bar{F} is the correct second-order (KL) metric for measuring the distributional
 1109 change induced by ΔW . Using an uncentered class-specific matrix $F_{L_t}^{(\text{raw})} = \mathbb{E}[g_{L_t} g_{L_t}^\top]$
 1110 without centering is generally inconsistent with the KL expansion unless additional condi-
 1111 tional assumptions are made.
- 1112 • If one targets directly the sample-wise variance of the target score, then the proper quadratic
 1113 cost is $\Delta W^\top \tilde{F}_{L_t} \Delta W$, where $\tilde{F}_{L_t} := \mathbb{E}_x [(g_{L_t}(x) - \bar{g})(g_{L_t}(x) - \bar{g})^\top]$ is the centered class-
 1114 covariance and $\bar{g} = \mathbb{E}_x [g_{L_t}(x)]$.

1116 Feasibility and practical implementation.

- 1118 1. For a finite representative dataset $\{x_i\}_{i=1}^m$, enforcing $s(x_i; W + \Delta W) = c$ for all i under
 1119 the first-order model reduces to a linear system $G\Delta W = b$ with $G_{i,:} = g_{L_t}(x_i)^\top$. If G
 1120 has full row rank and the parameter dimension p is large, a solution exists (minimum-norm
 1121 solution $G^+ b$).
- 1122 2. For population-level exact independence $p_{W+\Delta W}(z | x) = p_{W+\Delta W}(z)$ for all x is gener-
 1123 ically impossible with finite-dimensional ΔW ; thus one aims at minimizing distributional
 1124 proxies (variance, mutual information, empirical KL) instead of exact equality.
- 1125 3. In practice, \bar{F} and $\mathbb{E}_x [g_{L_t}(x)]$ are replaced by empirical estimates and F^{-1} by approxima-
 1126 tions.

1127 **Targeted Fisher for Obfuscation** To steer the model toward a target label L_t and reduce input
 1128 dependence, we define the gradient-based measure:

$$1130 F_{L_t} = \mathbb{E} \left[\left(\frac{\partial \mathcal{L}(x, W)}{\partial W} \right)^2 \middle| y = L_t \right]. \quad (10)$$

1132 This is a non-standard, heuristic Fisher matrix that captures which weights most strongly influence
 1133 the output toward L_t . Selecting the top weights according to F_{L_t} ensures that perturbations are
 applied where they are most effective in controlling the output.

1134

Perturbation via Gradient Update The perturbation is applied along the gradient of the target loss:

1135

$$W \leftarrow W + \eta \cdot \nabla_W \mathcal{L}(x, W), \quad (11)$$

1136

where η is a scale factor. By first-order Taylor expansion:

1137

$$s(x; W + \Delta W) \approx s(x; W) + \nabla_W s(x; W)^\top \Delta W, \quad (12)$$

1138

the perturbation increases the target class score while reducing output variance across inputs, approximately decreasing mutual information.

1139

1140

1141

1142

1143

Rationale and Limitations This strategy is justified based on three key points:

1144

1. **Fisher-guided selection:** Perturbing weights with high F_{L_t} effectively targets the most sensitive parameters that control the output, consistent with information-theoretic intuition.
2. **Gradient alignment:** Applying $\Delta W \propto \nabla_W \mathcal{L}(x, W)$ aligns the perturbation with the direction that maximally increases the target score, which locally reduces output variance across x .
3. **Approximate input-independence:** While exact input-independence cannot be guaranteed (because different x have different gradients and the model is nonlinear), iterative or multi-sample perturbations can significantly reduce the output's sensitivity to inputs, decreasing mutual information in expectation.

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

Therefore, the perturbation strategy is theoretically justified as an *approximate mutual information minimization* scheme guided by Fisher information.

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187