
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FILOSOFER: A TEE-SHIELDED MODEL PARTITION-
ING FRAMEWORK BASED ON FISHER INFORMATION-
GUIDED LORA OBFUSCATION

Anonymous authors
Paper under double-blind review

ABSTRACT

On-device machine learning makes DNN models visible as a white-box to users,
leaving them susceptible to stealing attacks. Trusted Execution Environments
(TEEs) mitigate this risk by isolating model execution, but executing entire models
within TEEs is inefficient and slow. To balance security and performance, TEE-
Shielded DNN Partitioning (TSDP) executes privacy-insensitive parts on GPUs
while confining privacy-critical components within TEEs.
This work demonstrates that existing TSDP approaches remain vulnerable under
large query budgets (e.g., >500 queries) due to non-zero information leakage per
query, enabling attackers to gradually construct accurate surrogate models. To
address this, we propose FILOsofer (Fisher Information-Guided LoRA Obfusca-
tion), which uses Fisher Information to perturb a small subset of key weights,
rendering the exposed weights inaccurate and producing uniform outputs, thereby
safeguarding the model even under unlimited queries. We then design a novel
cross-layer LoRA to efficiently restore authorized-user performance, storing only
LoRA parameters in the TEE to eliminate information leakage while minimizing
the performance overhead. This lightweight design also allows seamless exten-
sion to LLMs. We evaluate FILOsofer in both experimental and real-world set-
tings, achieving over 10× improvement in security and more than 50× reduction
in computational overhead compared to prior TSDP solutions.

1 INTRODUCTION

On-device machine learning improves latency and privacy by processing data locally, but it also
exposes models to new threats such as unauthorized access, model stealing attacks, and membership
inference attacks (Zhu et al., 2021; Yan et al., 2020; Rakin et al., 2022; Mehnaz et al., 2022; Zhang
et al., 2023). The model stealing attacks essentially aim to clone the victim model’s functionality
without authorized access to its original training data or parameters. Prior work (Zhang et al.,
2024b; Yuan et al., 2024; Rakin et al., 2022) shows that white-box access to GPU-deployed models
allows adversaries to efficiently steal models by replicating weights and parameters, achieving high
accuracy with minimal computational cost (Orekondy et al., 2020; Juuti et al., 2019; Hanzlik et al.,
2021).

To mitigate these security risks, researchers have explored two defense strategies: (i) Cryptographic
approaches: Methods such as Multi-Party Computation (MPC) (Juvekar et al., 2018) and Homo-
morphic Encryption (HE) (Gilad-Bachrach et al., 2016; Kim et al., 2022) aim to safeguard both
input data and model parameters through algorithmic guarantees. Despite their strong theoretical
protection, these techniques remain impractical for mobile and IoT deployment due to excessive
computational overhead and non-trivial accuracy degradation. (ii) Hardware-based defenses: By
leveraging Trusted Execution Environments (TEEs) (Zhang et al., 2024b; Hu et al., 2023), these
methods achieve substantially lower overhead than cryptographic techniques. However, executing
entire DNNs within TEEs is generally infeasible, as their computational performance is 50× lower
than that of GPU-based rich execution environments (REEs).

To balance security and efficiency, recent work proposes TEE-Shielded DNN Partitioning
(TSDP) (Zhang et al., 2024b; Mo et al., 2020; Sun et al., 2020), which protects privacy-sensitive

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

portions inside TEEs while offloading the rest to REEs. To realize this idea, prior work explores
different partitioning strategies. Some shield layers are based on depth (shallow, deep, or interme-
diate layers) (Shen et al., 2022; Elgamal & Nahrstedt, 2020; Mo et al., 2020) while others focus
on non-linear layers (Sun et al., 2020; Zhang et al., 2024b). In addition to layer-based partition-
ing, obfuscation techniques keep obfuscated or quantized weights within TEEs to protect model
confidentiality (Zhou et al., 2023; Sun et al., 2024).

Despite these advances, existing TSDP methods still face a critical limitation: even if some layers
and weights are hidden within TEEs, the partitioned model running on GPUs remains highly ac-
curate. This accuracy enables adversaries to bootstrap surrogate models with correct architectures
and weights. The state-of-the-art approach, TEESlice (Zhang et al., 2024b), introduced a mitigation
strategy; however, our study shows that even with TEESlice, large query budgets allow adversaries
to reconstruct accurate surrogate models, since small amounts of per-query information leakage can
accumulate over time, which represents an inherent weakness shared by all TSDP methods.

To address this limitation, we propose FILOsofer (Fisher Information-Guided LoRA Obfuscation),
which is motivated by two core insights: first, selectively perturbing a small fraction of critical
GPU-exposed weights can degrade backbone accuracy and reduce information leakage; second,
task utility can be efficiently recovered for authorized users using a parameter-efficient, LoRA fine-
tuning mechanism. Specifically, FILOsofer perturbs a tiny fraction of GPU-exposed weights guided
by Fisher Information, to both make the GPU-exposed weights inaccurate and enforce output unifor-
mity across inputs, thereby preventing attackers from extracting any useful information from model
outputs. For authorized users, an adaptive, cross-layer LoRA branch within the TEE restores near-
original model performance efficiently, avoiding the need to store or reload obfuscated weights dur-
ing inference as previous obfuscation methods Zhou et al. (2023). User authorization is enforced via
standard cryptographic protocols implemented using the TEE. A constraint-aware joint-training al-
gorithm further optimizes the trade-off between minimal weight obfuscation and the smallest LoRA
branch size, ensuring both secure and effective model deployment. The contributions of this paper
are summarized as follows:

• We conduct a systematic evaluation of existing TSDP approaches and show that none of
them can prevent information leakage, allowing attackers to incrementally reconstruct the
model via model stealing attacks as query budgets increase.

• We propose FILOsofer, a novel TSDP framework that defends against model stealing at-
tacks even under unlimited query budgets, while supporting low-latency inference on edge
devices. FILOsofer combines Fisher-guided obfuscation with a lightweight cross-layer
LoRA recovery branch, jointly preventing information leakage, preserving predictive ac-
curacy, and incurring minimal overhead.

• We comprehensively evaluate FILOsofer on both experimental and real-world devices (Jet-
son Orin Nano), demonstrating a 10× improvement in security against model stealing at-
tacks with 50× lower computational overhead. We further show that this lightweight design
extends seamlessly to LLMs, and we propose two adaptive attacks to validate the robust-
ness of our method.

2 BACKGROUND

Trusted Execution Environments (TEEs) TEEs offer strong confidentiality and integrity guaran-
tees in untrusted environments by providing two key features: execution isolation and code/data
protection (Costan & Devadas, 2016). Isolation is achieved through the physical separation of hard-
ware and memory between protected and untrusted worlds. Code and data protection rely on cryp-
tographic techniques such as encryption and message authentication codes (MACs). Both features
depend on a distinct hardware/software runtime environment, known as the trusted computing base
(TCB), which operates correctly even under a fully compromised operating system (OS).

TEE-Shielded Secure Inference To address the latency limitations of TEEs, TSDP refers to se-
lectively protecting only parts of a DNN model within the TEE, instead of the entire model. This
reduces inference latency and effectively converts white-box attacks into black-box ones. Table 1
outlines existing TEE-shield methods and their weaknesses. Consistent with the TEESlice setup, we
evaluate the six representative baselines highlighted in the table.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: We categorize prior work relevant to TSDP and highlight the representative studies that
are empirically evaluated in this paper.

Category Name Venue Methods Weakness

Shallow Layers Serdab Elgamal & Nahrstedt (2020) CCGRID 2020 Put the layers closer to the input
inside the TEE

No protection on other layers and
outputsOrigami Narra et al. (2019) Arxiv 2019

Deep Layers
PPFLMo et al. (2021) MobiSys 2021 Put the layers closer to the output

inside the TEE
No protection on other layers and
outputsDarkneTZ Mo et al. (2020) MobiSys2020

Shredder Mireshghallah et al. (2020) ASPLOS 2020

Intermediate Layers
AegisDNN Xiang et al. (2021) RTSS 2021 Choose intermediate layers inside the

TEE
No protection on other layers and
outputsSOTER Shen et al. (2022) ATC 2022

TEESlice Zhang et al. (2024b) S&P 2024

Non-Linear Layers

ShadowNet Sun et al. (2023) S&P 2023
Put non-linear layers, such as
activation layers, inside the TEE

No protection on other layers and
outputs

Magnitude Hou et al. (2021) TDSC 2021

DarKnight Hashemi et al. (2021) MICRO 2021
Slalom Tramer & Boneh ICLR 2018

Model Obfuscation
NNSplitter Zhou et al. (2023) ICML 2023 Perturbs critical weights and store

them inside the TEE

Obfuscated weights need to be
reload to REE for inference, no
protection on the output.GroupCover Zhang et al. (2024a) ICML 2024

TSQP Sun et al. (2024) S&P 2025

Low-Rank Adaptation (LoRA) LoRA (Hu et al., 2022; Dettmers et al., 2023) is a parameter-
efficient tuning method that adapts pre-trained models by injecting trainable low-rank matrices.
Formally, consider a weight matrix W0 ∈ Rd×k in a neural network layer, where d is the output
dimension and k is the input dimension. Traditional fine-tuning would update all parameters in
W0, resulting in O(dk) trainable parameters. In contrast, LoRA freezes W0 and injects a learnable
update in the form of a low-rank decomposition:

W = W0 +∆W = W0 +BA, (1)

where A ∈ Rr×k, B ∈ Rd×r, and r ≪ min(d, k) is the rank of the decomposition. The matrix A
projects the input into a lower-dimensional space of rank r (the parameter tested in our experiment),
and B maps it back to the original output dimension. Only A and B are trained, reducing the
number of trainable parameters from O(dk) to O(r(d + k)), which is significantly smaller. Thus,
LoRA achieves fine-tuning with minimal additional memory, compute, and storage cost, making it
highly suitable for large-scale and resource-constrained scenarios.

3 THREAT MODEL

Model Stealing. We consider a deep neural network (DNN) deployed on resource-constrained
edge devices equipped with Trusted Execution Environments (TEE). In this scenario, the attacker
attempts to steal the victim model (Mvic) by exploiting access to its predictions and any unprotected
components within the Rich Execution Environment (REE; e.g., GPU). Consistent with prior TSDP
work and real-world deployments (Zhang et al., 2024b; Zhou et al., 2023; Zhang et al., 2024a), we
assume that deployed models provide users with label-only outputs, an assumption further supported
by a comprehensive survey of on-device ML systems (Sun et al., 2021).

Adversary’s Capabilities. We consider the adversary’s capabilities in three aspects. 1) The ad-
versary first infers the protected model’s architecture and weights from publicly available models
(Mpub) in the REE, then initializes a surrogate model with these priors. 2) The attacker issues lim-
ited queries on carefully selected inputs and records the corresponding outputs to approximate the
victim model’s behavior. 3) The collected input–output pairs are then used to train the surrogate
model. However, the portion of training data available for constructing such queries is restricted to
fewer than 5% of the original training set, and query budgets are also restricted based on previous
settings (Zhang et al., 2024b; Zhou et al., 2023; Orekondy et al., 2019).

4 SYSTEMATIC STUDY AND INSIGHTS

In this section, we conduct a systematic analysis of the limitations inherent in existing TSDP meth-
ods against model stealing attacks. By critically examining their empirical performance, we high-
light key vulnerabilities and main gaps.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Accuracy of surrogate model under varying query budgets, with a dashed red baseline
indicating the desired protection.

Systematic Study: To study this vulnerability, we select one representative method for each of
the five categories of TSDP schemes in Table 1, and systematically evaluate model-stealing attacks
across a range of query budgets. For the attack algorithm, we follow prior work (Zhang et al., 2024b;
Sun et al., 2020) and adopt the KnockoffNet (Orekondy et al., 2019) as our representative modified
model stealing attack. Figure 1 shows that all defenses fail against model stealing as queries increase.
Even with modest budgets (e.g., 500 queries), surrogate accuracy rises sharply. For reference, the
red dashed line marks an ideal baseline with consistently low accuracy.

The fundamental weakness of existing methods is that the partitioned model executed on GPUs
remains accurate, enabling attackers to initialize surrogate models effectively. Since the model leaks
mutual information between its weights and outputs, allowing attackers to gradually extract models
as the number of queries increases. This is particularly concerning in edge environments, where
attackers can perform effectively unlimited queries, highlighting the need for robust defenses. We
summarize the key challenges and our solutions as follows:

C1: Misleading attackers with inaccurate weights and useless outputs. Excessive parameter
modifications can degrade the model’s predictive performance for legitimate users, while insuffi-
cient modifications may fail to prevent information leakage. Solution: Select the key weights and
introduce tiny, targeted perturbations to guide the model’s output toward a desired target label to
decrease the GPU-exposed model accuracy and the leakage from outputs.

C2: Retaining accuracy while minimizing TEE workload. Storing and executing large portions
of the model inside TEE introduces significant latency and resource consumption, which is imprac-
tical for edge devices. Solution: Unlike prior obfuscation methods (Zhou et al., 2023; Zhang et al.,
2024a), we should avoid reloading weights to the GPU, preventing information leakage. LoRA pro-
vides an effective solution, and applying a single LoRA branch across multiple layers (cross-layer
LoRA) can further enhance efficiency.

C3: Reconciling obfuscation and recovery. Obfuscation prevents information leakage, whereas
recovery restores correct outputs for legitimate users; poorly designed recovery can weaken security
or inadvertently leak sensitive information. Solution: Constraint-aware dynamic joint training, the
obfuscation and recovery are jointly trained with attention to parameter sensitivity, enabling robust
protection against attacks while effective recovery for authorized usage.

5 FILOSOFER

The overall system is shown in Fig 2. Our method integrates two components: Fisher-guided obfus-
cation, which perturbs key weights in critical layers to degrade backbone accuracy, and cross-layer
LoRA, which restores task utility with adaptive rank updates. A constraint-aware joint-training al-
gorithm balances these modules, ensuring obfuscation resists trivial recovery while LoRA maintains
performance, thus achieving a trade-off between security and utility. For the online secure inference
part, we deploy the cross-layer LoRA in the TEE and the obfuscated model in the REE, without
reloading the obfuscated weights back to the REE.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Overview of FILOsofer. The system combines Fisher-guided obfuscation, which perturbs
critical weights to resist model stealing, with cross-layer LoRA, which restores utility via adaptive
rank updates. During deployment, the obfuscated model runs in the REE, while the LoRA branch is
executed inside the TEE for secure online inference.

5.1 FISHER INFORMATION GUIDED TARGET OBFUSCATION

The goal of obfuscation is to safeguard the edge-deployed model Mvic against stealing by mis-
leading adversaries with inaccurate weights and uninformative outputs, while keeping parameter
alterations minimal to preserve usability for legitimate users. Formally, let W denote the victim
model’s weights and ∆W a perturbation applied to a subset of them. The objective is to select ∆W
that minimizes information leakage to the surrogate model Msur while ensuring recoverability:

∆W ∗ = arg min
∆W∈R

I
(
f(x;W); f(x;W +∆W)

)
, (2)

where I(·; ·) denotes the mutual information over the input distribution D and R denotes the con-
straints of the perturbation (e.g., sparsity, magnitude). Let f(x;W) and f(x;W +∆W) denote the
outputs of the original and obfuscated models. The mutual information is defined as

I(f(x;W); f(x;W +∆W)) =
∑
y,z

p(y, z) log
p(y, z)

p(y)p(z)
, (3)

where y = f(x;W), z = f(x;W +∆W), and p(y, z) denotes the joint probability. If the perturbed
output is independent of the input, i.e., f(x;W + ∆W) is constant for all x ∈ D, then p(y, z) =
p(y)p(z). Substituting this into the mutual information formula yields

I(f(x;W); f(x;W +∆W)) =
∑
y,z

p(y)p(z) log
p(y)p(z)

p(y)p(z)
= 0. (4)

This confirms that when the obfuscated model’s output is input-independent, no information can be
inferred from its outputs. Thus, the problem becomes: identify the minimal perturbation that makes
the obfuscated model’s output input-independent (e.g., always output the same label).

Fisher Information, F , has been widely applied to evaluate the importance of parameters (Rissa-
nen, 1996). Specifically, given a model M with input X and parameters θT , the Fisher information
can be calculated as:

F = E
[
− ∂2

∂θ2T
L(X|θT)

]
, (5)

where L is the loss function for the model. Intuitively, Fisher Information measures how sensitively
the model output responds to small changes in its parameters; the more sensitive it is, the higher
the Fisher Information. To enforce input-independent outputs, we perturb the weights that most
strongly drive the model’s predictions toward the target label Lt. Given input x and target Lt, the
Fisher information can be calculated as:

FLt = E

[(
∂L(x,W)

∂W

)2 ∣∣∣y = Lt

]
. (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We quantify perturbation intensity using the modification ratio r, defined as the fraction of weights
obfuscated out of the total. To steer the model toward consistently predicting Lt, we perturb the key
weights along the gradient of the target loss:

W ←W + η · ∇WL(x,W), (7)

where η is the scale factor. Experiments show that even small η (e.g., ≤ 1e−4) are sufficient to
reliably bias the model toward the target label. The complete algorithm is in Appendix 1. The full
proof is provided in Appendix 9.10.

5.2 CROSS-LAYER LORA-BASED RECOVERY

While input-independent outputs effectively prevent information leakage, they degrade usability.
Thus, it is essential to recover the model for legitimate users. LoRA fine-tuning introduces low-rank
update matrices to the pre-trained weights, enabling efficient task-specific adaptation while keeping
the obfuscated model weights frozen. We propose a cross-layer LoRA scheme to reduce recovery
latency. Instead of attaching per-layer LoRA modules, we define a single branch (A,B) spanning
layers ℓs, . . . , L, where the entry layer ℓs is constrained to the last five layers and selected via Fisher
information:

ℓs = argmax
ℓ

E
[
− ∂2

∂(W (ℓ))2
L(X|θ)

]
. (8)

Layers ℓ ≥ ℓs are obfuscated. During inference, the obfuscated backbone is computed in the REE,
producing both the entry-layer activation Z(ℓs) and a preliminary output ỹ = fREE(X;W ′). Cru-
cially, ỹ represents the degraded, inaccurate prediction derived from the perturbed weights W ′. The
TEE then receives Z(ℓs) and applies the secure cross-layer LoRA parameters (A,B) to synthesize
the final prediction:

ŷ = fTEE(Z
(ℓs);A,B) + ỹ. (9)

In this formulation, the term fTEE(Z
(ℓs);A,B) functions as a low-rank, task-specific residual

learner. Mathematically, it is trained to predict the precise error vector required to compensate
for the deviation introduced by the backbone obfuscation. By superimposing this secure corrective
vector onto the erroneous preliminary result ỹ, the system successfully reconstructs the accurate la-
bel ŷ strictly within the trusted environment. This architectural decoupling effectively separates the
model’s utility from its bulk parameters: the REE executes the heavy but obfuscated computation,
while the TEE handles the lightweight but critical recovery logic. Consequently, this design pre-
vents the leakage of functional weights to the untrusted domain without incurring the high latency
of full-model TEE execution, ensuring both robust security and computational efficiency.

5.3 OBFUSCATION AND RECOVERY TRADE-OFF

Obfuscation degrades backbone accuracy for security, while LoRA fine-tuning restores utility, creat-
ing a trade-off: excessive distortion hinders recovery and increases adaptation cost. To address this
trade-off, we propose Constraint-Aware Obfuscation under Resource-Limited Adaptation (Details in
Appendix, Algorithm 2). The algorithm iteratively maximizes obfuscation on the most sensitive lay-
ers while applying a resource-constrained cross-layer LoRA branch (e.g., limited in rank or param-
eter budget) to restore task performance. A rollback mechanism ensures that the LoRA-recovered
accuracy never falls below a predefined threshold, guaranteeing recoverability. This procedure pro-
vides a realistic framework for maximizing model obfuscation under practical adaptation limits, par-
ticularly in edge device deployments, where recovery modules are inherently resource-constrained,
and highlights the security–utility trade-off that arises in such constrained environments.

6 EXPERIMENTS

Configuration. Following the methodology outlined in TEESlice (Zhang et al., 2024b), we evaluate
feasible configurations for the benchmarks introduced in Section 2. Specifically, for DarkneTZ (Mo
et al., 2020) and Serdab (Elgamal & Nahrstedt, 2020), we vary the number of consecutive layers and
report the results for the last three layers and first three layers, respectively. For Magnitude (Hou
et al., 2021), we test configuration parameter ‘mag ratio’ among {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1},
where 0.01 is the recommended setting. For TEESlice (Zhang et al., 2024b), NNSplitter (Zhou
et al., 2023) and GroupCover (Zhang et al., 2024a), we adopt the default configuration.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: The accuracy of the surrogate model. Green and Red boxes highlight the lowest and
highest accuracy, respectively.

No-Shield DarkneTZ Serdab Magnitude NNSplitter TEESlice GroupCover Ours Blackbox

Budgets Dataset / 50 5000 50 5000 50 5000 50 5000 50 5000 50 5000 5000 50 5000

AlexNet
C10 81.58 66.01 80.97 74.08 80.26 68.42 78.08 58.9 75.26 24.79 66.51 13.60 47.70 10.00 19.37 74.20
C100 55.97 13.60 52.19 42.59 54.25 30.64 50.40 19.92 42.76 3.98 35.20 1.00 1.00 1.00 2.89 30.75

Image200 47.70 4.12 33.16 31.29 34.44 14.92 35.83 3.67 29.73 0.65 13.39 0.50 0.50 0.50 0.66 13.46

ResNet18
C10 93.07 86.84 92.79 86.86 92.25 73.26 88.63 78.30 90.66 23.87 65.21 10.00 57.60 10.00 23.12 65.92
C100 81.5 26.36 79.23 77.93 80.79 59.55 77.02 47.86 78.78 5.31 58.01 1.00 19.70 1.00 3.25 31.53

Image200 65.68 61.22 63.50 5.96 59.10 43.08 58.39 25.24 42.12 2.27 48.08 0.50 6.30 0.50 1.16 34.06

VGG19
C10 91.42 89.34 91.45 91.44 91.42 83.93 90.15 79.87 89.51 40.52 89.62 10.00 11.70 10.00 40.61 81.05
C100 70.39 22.63 67.71 69.07 69.85 59.95 65.34 25.50 59.62 7.31 48.97 1.00 1.30 1.00 7.09 49.34

Image200 63.23 60.89 61.17 5.24 52.66 24.67 45.20 13.28 49.26 2.83 43.72 0.50 2.90 0.50 2.54 42.09

ViT-B16
C10 97.69 67.96 97.12 65.54 94.99 95.26 97.92 59.55 93.56 22.64 97.64 12.60 39.70 10.00 20.63 95.02
C100 86.58 24.38 78.17 14.70 80.84 15.64 85.48 9.63 53.17 12.69 86.89 1.60 11.50 1.00 11.62 84.36

Image200 81.99 12.94 78.32 9.02 80.10 72.62 85.91 14.68 82.74 10.18 81.71 0.80 4.30 0.50 8.82 80.50

Utility Cost Metric. To evaluate the efficiency implications of different TSDP configurations, we
adopt FLOPs as the primary utility cost metric. Following the setting proposed by TEESlice (Zhang
et al., 2024b), %FLOPs is defined as the proportion of total floating-point operations (FLOPs) exe-
cuted within the TEE, relative to the overall FLOPs of the full DNN model.

6.1 SECURITY GUARANTEE AND UTILITY COST

Defense against Model Stealing Table 2 presents the results of model stealing on four model ar-
chitectures across three datasets under two attack budgets (50 and 5000 queries). The ‘No-Shield’
column denotes the baseline without any defense, reflecting that the surrogate model can directly
copy the victim model. The ‘Black-Box’ setting assumes the attacker has no access to the model’s
weights and architecture but can use the input-output pairs to train the surrogate model.

Compared to existing defenses, strategies such as simple layer shielding or magnitude-based per-
turbations yield limited effectiveness. Similarly, TEESlice offers only moderate protection; while
it modifies the model architecture, it critically leaves the model outputs unprotected, leading to po-
tential leakage. In terms of other defenses, GroupCover demonstrates competitive performance by
leveraging randomization strategies and mutual covering obfuscation. However, it fails to explicitly
account for the mutual information leakage between the model parameters and the output. Conse-
quently, although GroupCover performs well in many scenarios, its protection stability cannot be
theoretically guaranteed. In contrast, our proposed method consistently achieves superior protection
across diverse datasets and architectures. As illustrated in table 2, the accuracy of the surrogate
model against our defense aligns strictly with the ideal random-guessing baselines (e.g., 10%, 1%,
and 0.5%), demonstrating that our approach effectively eliminates information leakage.

Overall, our method maintains utility for authorized users while offering significantly stronger pro-
tection for unauthorized users by outputting a constant label. In addition, our framework supports a
pay-per-query mechanism that can limit the number of model queries, ensuring long-term protection
even under black-box access. Note that none of the prior TSDP-based methods (a) can distinguish
between authorized and unauthorized users, and (b) can enforce query limits at the user level. This is
the key difference between this work and prior art. There was no consideration given to the distinc-
tion between authorized and unauthorized actions in previous work, and we are the first to address
this issue. We provide additional results and analysis for authorized vs. unauthorized user access in
Appendix 9.7.

Cross-Layer LoRA-based Recovery We also test cross-layer LoRA recovery among different
LoRA ranks. As shown in Table 3, higher LoRA ranks enhance recovery, yet even low ranks (e.g.,
rank 2) nearly restore original accuracy. Recovery scales differently across settings: shallow models
(e.g., AlexNet on CIFAR-10) benefit from increasing LoRA rank, while deeper models or harder
datasets (e.g., VGG19 on ImageNet200) demand higher ranks for comparable gains. In contrast,
ViT-B/16 shows strong robustness and efficient recovery across datasets, with higher ranks even
surpassing original accuracy, suggesting LoRA provides both restoration and performance gains.

Efficiency We further compare the computational efficiency and latency of our proposed method
with existing approaches under the query size 500. Following the definition of the Utility Cost Merit
outlined in Section 6, we estimate the number of floating-point operations (FLOPs) required for each
method. Following prior work (Zhang et al., 2024b), we define Utility(C) as the fraction of FLOPs

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: The recovery accuracy of cross-layer LoRA among varying LoRA rank.

Model Dataset Original Obfuscated LRank 2 LRank 4 LRank 8 LRank 16 LRank 32

AlexNet
C10 81.85 10.00 80.68 80.77 80.95 81.32 81.68
C100 55.97 1.00 55.62 55.93 55.95 56.30 56.92

ImageNet200 47.70 0.50 47.05 47.89 48.08 48.96 48.90

ResNet18
C10 93.07 10.00 92.56 92.92 92.98 93.04 93.42
C100 81.50 1.00 80.22 80.57 80.63 80.50 80.92

ImageNet200 65.68 0.50 49.22 50.03 52.13 53.82 55.20

VGG19
C10 91.42 10.00 90.76 90.85 90.94 91.48 91.65
C100 70.39 1.00 68.88 69.01 69.14 69.67 70.03

ImageNet200 63.23 0.50 60.74 61.10 61.77 62.66 63.32

ViT-B16
C10 97.69 10.00 97.43 97.73 97.67 97.80 97.96
C100 87.58 1.00 87.90 88.14 86.36 87.96 88.50

ImageNet200 81.99 0.50 82.69 83.27 83.43 83.58 84.16

Table 4: Utility (%FLOPs) of prior works and FILOsofer. Lower values imply lower utility cost,
with %FLOPs being 0% for the white-box baseline and 100% for the black-box baseline.

Resnet18 VGG19 Alexnet ViT

C10 C100 ImageNet C10 C100 ImageNet C10 C100 ImageNet C10 C100 ImageNet

DarkneTZ 100.00 100.00 72.16 98.85 100.00 80.70 100.00 100.00 83.23 91.07 91.07 75.13
Serdab 100.00 100.00 96.54 100.00 100.00 98.62 100.00 100.00 95.72 91.73 100 83.40

Magnitude 100.00 94.71 78.43 100.00 87.43 75.57 81.18 90.58 71.82 100.00 72.20 66.91
TEESlice 3.80 5.33 3.80 0.34 0.37 0.31 12.48 12.48 8.75 7.24 8.51 8.92

Ours 0.0027 0.0027 0.0013 0.0032 0.0032 0.0021 0.0013 0.0013 0.0017 0.0069 0.0069 0.0069

that must run inside the TEE to match the security of the black-box baseline. NNSplitter (Zhou
et al., 2023) uses an RL controller to select layers, making the protection level and TEE cost hard to
quantify, since the modified weight ratio is not directly tunable.

As shown in Table 4, our method consistently achieves the lowest utility cost across all tested models
and datasets, significantly outperforming state-of-the-art TEE-based defenses. We also observe that
utility cost increases with dataset complexity, especially for large datasets such as ImageNet. This
demonstrates that storing layers without importance selection is inefficient, whereas our Fisher infor-
mation–based selection and cross-layer recovery scale robustly without sacrificing security, making
it practical for deployment on resource-constrained edge devices.

6.2 PERFORMANCE ON REAL-WORLD DEVICES

To evaluate the practical performance of our methods, we deploy them on a NVIDIA Jetson Orin
Nano, a widely used edge AI platform featuring a 6-core ARM v8.2 CPU, an Ampere GPU with
32 Tensor Cores, and 8 GB of LPDDR4x RAM. In addition to AI acceleration, Jetson provides
hardware-level security features by ARM TrustZone, which enables secure execution by isolating
trusted operations on ARM Cortex-A CPUs. We leverage OP-TEE to run trusted applications (e.g.,
our LoRA branch) within TrustZone.

Table 5: Inference latency (per im-
age) on Jetson Orin Nano. The first
row reports the inference latency (ms)
of the obfuscated models executed on
the GPU, the second row shows the
latency (ms) of the LoRA branch de-
ployed within the ARM TrustZone.

Model AlexNet ResNet18 VGG19 ViT-B/16

GPU 12.4 22.1 48.9 91.7
TrustZone 0.84 0.86 0.85 0.87

Overhead 6.3% 3.7% 1.7% .9%

We choose one ImageNet image as the input. As shown
in Table 5, the inference latency of the backbone mod-
els executed on Jetson varies significantly by architecture,
ranging from 12.4 ms for AlexNet to 91.7 ms for ViT-
B/16, reflecting the growing computational demand of
more complex models. For end-to-end latency, our evalu-
ation over 10 runs showed a variation between 13.8–16.7
ms for AlexNet and 93.2–96.1 ms for ViT-B/16. In con-
trast, the latency of the corresponding LoRA recovery
branches deployed within TrustZone remains consistently
low across all models, below 1 ms in every case. This
demonstrates that our LoRA-based design imposes min-
imal runtime overhead while providing robust model re-
covery.

6.3 APPLICABILITY TO LLMS

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Application to LLM. The First
three lines are the accuracy of Llama3.2-1b.
The last line is per-token latency.

Dataset Original Obfuscated LoRA

GLUE-MNLI 78.14% 33.49% 78.09%
Arc easy 65.53% 25.04% 63.72%

SciQ 91.40% 25.31% 90.26%

Latency (ms) 86.3 (GPU) 86.3 (GPU) 0.88 (TrustZone)

We evaluate our method on large language models
(LLMs) but did not apply the knockoff-net attack,
given the absence of an established framework for
model stealing in this setting. Nevertheless, TDSP
methods remain valuable for LLMs, as they pro-
vide mechanisms for usage protection and authen-
tication (details in 9.3).

For our experiments, we choose LLaMA 3.2-1B and
η=1e−5, r=5e−5, LoRA rank 8. In our experimen-
tal setup for LLMs, we initially fine-tuned the classifier layer using standardized system prompts
constructed as “Question:” followed by the input query and candidate options. Subsequently, we
designated the final layer (Layer 15) as the target for obfuscation; perturbations were applied to
both this layer and the classifier head to effectively degrade baseline accuracy, while the cross-layer
LoRA branch was employed to restore task utility. Further experiments investigating the influence
of different layer selections are detailed in Appendix 9.10.

Table 6 shows the performance of three NLP benchmarks: GLUE-MNLI (3-class), ARC-Easy (4-
class), and SciQ (4-class). Across all datasets, obfuscation consistently degrades accuracy, confirm-
ing that the obfuscated model produces low-quality outputs. With the cross-layer LoRA branch,
predictive performance is restored, closely matching the original model and demonstrating an effec-
tive balance between security and utility for large language models. We also evaluate the inference
latency of LLMs on edge hardware using the NVIDIA Jetson platform, showing that our approach
is highly efficient.

This approach is particularly valuable for LLM deployment in pay-per-service scenarios. In such
settings, models are executed on white-box edge devices, and users are billed per inference query.
By obfuscating the backbone LLM, we prevent unauthorized copying or model misuse, while the
lightweight cross-layer LoRA branch allows authorized clients to efficiently recover performance.

7 RESILIENCE TO ADAPTIVE ATTACK

Based on the previous work (Zhou et al., 2023; Zhang et al., 2024a), we consider a more powerful
adversary who seeks to optimize the performance of obfuscated models by employing advanced
techniques, including norm clipping (Yu et al., 2021) and FisherPatch.

Norm Clipping: Following NNSplitter (Zhou et al., 2023), norm clipping (Yu et al., 2021) can be
adapted to the weight level, where the adversary constrains weight perturbations within a scaled
range of the modified parameters. The clipping interval is computed by scaling the minimum and
maximum of W+∆W ′ with a factor t∈ [0, 1], thereby effectively compressing the range to suppress
outliers:wi←clip(wi, t ·min(W+∆W ′), t ·max(W+∆W ′)).

As shown in Table 7, norm clipping fails across all threshold values t: large t fails to clip the
modified weights, whereas small t excessively clips weights, significantly degrading classification
performance. In contrast, norm clipping improves accuracy for NNSplitter (Zhou et al., 2023), as its
magnitude-based obfuscation does not target specific directions; the clipped weights naturally revert
toward the original decision boundary, partially restoring performance.

Table 7: Accuracy of obfuscated models before→
after applying norm clipping with varying t from
0.1 to 0.9. For different t, the clipping accuracy
remains low, which means clipping fails to restore
performance across datasets.

Model C10 C100 ImageNet200
Alexnet 10.0→ 10.0 1.0→ 1.0 0.5→ 0.5

Resnet18 10.0→ 10.0 1.0→ 1.0 0.5→ 0.5
VGG19 10.0→ 10.0 1.0→ 1.0 0.5→ 0.5
Vit-B16 10.0→ 10.0 1.0→ 1.0 0.5→ 0.5

The ineffectiveness of this defense can be at-
tributed to two main causes: 1) Sparse di-
rectional perturbations are resilient to norm
bounds. Since only a few weights are al-
tered, most values remain close to the original
W , preserving the obfuscation even after clip-
ping, especially when the perturbation scale η is
small (e.g., 1 × 10−4). 2) Semantic bias is di-
rectional rather than magnitude-based. Pertur-
bations align with the decision boundary of the
target class. Even if clipping reduces their mag-
nitude, the directional effect in weight space re-
mains, sustaining misclassification.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 8: FisherPatch results on ViT-B/16, CIFAR100. From left to right: 1) Surrogate model
accuracy varying scale factor (obfuscation ratio = 5× 10−5); 2) Cross-LoRA recovery accuracy
varying scale factor (obfuscation ratio = 5×10−5); 3) Surrogate model accuracy varying weight
ratio (scale factor=0.1); 4) Cross-LoRA recovery accuracy varying weight ratio (scale factor=0.1).

Scale Top-k Acc.

0.05
1k 87.97
10k 85.17
50k 83.97

0.1
1k 2.40
10k 2.14
50k 1.95

0.5
1k 1.30
10k 1.00
50k 1.00

Scale LRank Acc.

0.05
16 80.59
32 83.44
64 85.91

0.1
16 79.40
32 81.93
64 81.95

0.5
16 77.18
32 82.15
64 82.85

Ratio Top-k Acc.

1e-5
1k 3.17

10k 69.67
50k 84.26

5e-5
1k 2.40

10k 2.14
50k 1.95

1e-4
1k 1.01

10k 1.00
50k 1.00

Ratio LRank Acc.

1e-5
16 79.37
32 82.82
64 83.17

5e-5
16 79.40
32 81.93
64 81.95

1e-4
16 79.24
32 82.24
64 82.21

FisherPatch: We also propose a novel adaptive attack in which the adversary is assumed to be
aware that Fisher Information is used for obfuscation, but remains unaware of which specific layers
are targeted. Consequently, the adversary computes Fisher information over the entire model, ranks
the parameters, and fine-tunes only the top-k weights using 5% of the training set. We evaluate
obfuscation hyperparameters (scale factor η and modified-weight ratio r), the choice of k (number
of retrained parameters), and the cross-layer LoRA used for recovery, reporting both surrogate model
and recovery accuracies to quantify attack success and defense robustness.

Based on Table 8, we observe a trade-off between utility and security. Minor obfuscation can be
easily recovered by the adaptive attacker due to small weight perturbations. As obfuscation intensi-
fies, the attacker’s ability to recover the model progressively diminishes. In contrast, our recovery
method remains robust: while heavier obfuscation requires a larger LoRA branch, recovery accuracy
stabilizes once the branch reaches a sufficient size (e.g., 32).

8 CONCLUSION

We proposed FILOsofer, a TSDP framework that achieves robust protection against model stealing
attacks, even when the adversary is granted an unlimited query budget. FILOsofer employs a Fisher-
guided obfuscation strategy that minimally perturbs a critical subset of weights, effectively ensuring
that the model outputs leak no information to attackers. For authorized use, FILOsofer integrates a
compact, cross-layer LoRA-based branch within the TEE to restore the model’s performance. Ex-
tensive evaluation on both experimental and real-world devices (Jetson Orin Nano) demonstrates
that FILOsofer increases resistance to model stealing by 10× while reducing computational over-
head by 50×. Moreover, this lightweight design extends seamlessly to LLMs, and we introduce two
adaptive attacks to further validate the robustness of our method.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we have uploaded the full implementation of our method, including
training scripts, evaluation code, and configuration files, to an anonymous repository.1. The reposi-
tory will be made publicly available on GitHub after the review process.

ETHICS STATEMENT

This work uses only publicly available datasets and does not involve human subjects or any private
or sensitive information. We strictly follow all licensing terms and usage guidelines associated with
the datasets employed. Our experiments are conducted in a controlled research setting, ensuring
that no confidential or personally identifiable data is exposed or utilized. The contributions of this
study focus entirely on methodological improvements in existing TSDP methods, aiming to enhance
security and efficiency in machine learning systems. Moreover, all code and evaluations are intended
for academic and scientific purposes, promoting reproducibility and responsible research.

1The anonymous link is available at: https://anonymous.4open.science/r/fisher_
obfuscation_lora_modify/

10

https://anonymous.4open.science/r/fisher_obfuscation_lora_modify/
https://anonymous.4open.science/r/fisher_obfuscation_lora_modify/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint Archive, 2016.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Tarek Elgamal and Klara Nahrstedt. Serdab: An iot framework for partitioning neural networks
computation across multiple enclaves. In 2020 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGRID), pp. 519–528. IEEE, 2020.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Werns-
ing. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy.
In International conference on machine learning, pp. 201–210. PMLR, 2016.

Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Maximilian Augustin, Michael
Backes, and Mario Fritz. Mlcapsule: Guarded offline deployment of machine learning as a ser-
vice. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 3300–3309, 2021.

Hanieh Hashemi, Yongqin Wang, and Murali Annavaram. Darknight: An accelerated framework
for privacy and integrity preserving deep learning using trusted hardware. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 212–224, 2021.

Jiahui Hou, Huiqi Liu, Yunxin Liu, Yu Wang, Peng-Jun Wan, and Xiang-Yang Li. Model protection:
Real-time privacy-preserving inference service for model privacy at the edge. IEEE Transactions
on Dependable and Secure Computing, 19(6):4270–4284, 2021.

Bin Hu, Yan Wang, Jerry Cheng, Tianming Zhao, Yucheng Xie, Xiaonan Guo, and Yingying Chen.
Secure and efficient mobile dnn using trusted execution environments. In Proceedings of the 2023
ACM Asia Conference on Computer and Communications Security, pp. 274–285, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. Prada: protecting against dnn model
stealing attacks. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
512–527. IEEE, 2019.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A low latency
framework for secure neural network inference. In 27th USENIX security symposium (USENIX
security 18), pp. 1651–1669, 2018.

Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, John Kim, Minsoo Rhu, and
Jung Ho Ahn. Bts: An accelerator for bootstrappable fully homomorphic encryption. In Proceed-
ings of the 49th annual international symposium on computer architecture, pp. 711–725, 2022.

Shagufta Mehnaz, Sayanton V Dibbo, Roberta De Viti, Ehsanul Kabir, Björn B Brandenburg, Stefan
Mangard, Ninghui Li, Elisa Bertino, Michael Backes, Emiliano De Cristofaro, et al. Are your
sensitive attributes private? novel model inversion attribute inference attacks on classification
models. In 31st USENIX Security Symposium (USENIX Security 22), pp. 4579–4596, 2022.

Fatemehsadat Mireshghallah, Mohammadkazem Taram, Prakash Ramrakhyani, Ali Jalali, Dean
Tullsen, and Hadi Esmaeilzadeh. Shredder: Learning noise distributions to protect inference
privacy. In Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 3–18, 2020.

Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias Leontiadis, Andrea
Cavallaro, and Hamed Haddadi. Darknetz: towards model privacy at the edge using trusted
execution environments. In Proceedings of the 18th International Conference on Mobile Systems,
Applications, and Services, pp. 161–174, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas Kourtellis.
Ppfl: Privacy-preserving federated learning with trusted execution environments. In Proceedings
of the 19th annual international conference on mobile systems, applications, and services, pp.
94–108, 2021.

Krishna Giri Narra, Zhifeng Lin, Yongqin Wang, Keshav Balasubramaniam, and Murali Annavaram.
Privacy-preserving inference in machine learning services using trusted execution environments.
arXiv preprint arXiv:1912.03485, 2019.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality of
black-box models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4954–4963, 2019.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Prediction poisoning: Utility-constrained
defenses against model stealing attacks. In International Conference on Representation Learning
(ICLR) 2020, 2020.

Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan Yao, and Deliang Fan. Deepsteal: Advanced
model extractions leveraging efficient weight stealing in memories. In 2022 IEEE symposium on
security and privacy (SP), pp. 1157–1174. IEEE, 2022.

Jorma J Rissanen. Fisher information and stochastic complexity. IEEE transactions on information
theory, 42(1):40–47, 1996.

Tianxiang Shen, Ji Qi, Jianyu Jiang, Xian Wang, Siyuan Wen, Xusheng Chen, Shixiong Zhao, Sen
Wang, Li Chen, Xiapu Luo, et al. {SOTER}: Guarding black-box inference for general neural
networks at the edge. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pp.
723–738, 2022.

Yu Sun, Gaojian Xiong, Jianhua Liu, Zheng Liu, and Jian Cui. Tsqp: Safeguarding real-time infer-
ence for quantization neural networks on edge devices. In 2025 IEEE Symposium on Security and
Privacy (SP), pp. 1–1. IEEE Computer Society, 2024.

Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Somesh Jha, and Long
Lu. Shadownet: A secure and efficient system for on-device model inference. arXiv preprint
arXiv:2011.05905, 2020.

Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove. Mind your weight (s): A large-scale
study on insufficient machine learning model protection in mobile apps. In 30th USENIX security
symposium (USENIX security 21), pp. 1955–1972, 2021.

Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Long Lu, and Somesh Jha.
Shadownet: A secure and efficient on-device model inference system for convolutional neural
networks. In 2023 IEEE Symposium on Security and Privacy (SP), pp. 1596–1612. IEEE, 2023.

Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and private execution of neural networks in
trusted hardware. In International Conference on Learning Representations.

Yecheng Xiang, Yidi Wang, Hyunjong Choi, Mohsen Karimi, and Hyoseung Kim. Aegisdnn: De-
pendable and timely execution of dnn tasks with sgx. In 2021 IEEE Real-Time Systems Sympo-
sium (RTSS), pp. 68–81. IEEE, 2021.

Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache telepathy: Leveraging shared
resource attacks to learn {DNN} architectures. In 29th USENIX Security Symposium (USENIX
Security 20), pp. 2003–2020, 2020.

Cheng Yu, Jiansheng Chen, Youze Xue, Yuyang Liu, Weitao Wan, Jiayu Bao, and Huimin Ma.
Defending against universal adversarial patches by clipping feature norms. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 16434–16442, 2021.

Yuanyuan Yuan, Zhibo Liu, Sen Deng, Yanzuo Chen, Shuai Wang, Yinqian Zhang, and Zhendong
Su. Hypertheft: Thieving model weights from tee-shielded neural networks via ciphertext side
channels. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 4346–4360, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zheng Zhang, Na Wang, Ziqi Zhang, Yao Zhang, Tianyi Zhang, Jianwei Liu, and Ye Wu. Group-
cover: A secure, efficient and scalable inference framework for on-device model protection based
on tees. In Forty-first International Conference on Machine Learning, 2024a.

Ziqi Zhang, Yuanchun Li, Bingyan Liu, Yifeng Cai, Ding Li, Yao Guo, and Xiangqun Chen. Fed-
slice: Protecting federated learning models from malicious participants with model slicing. In
2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), pp. 460–472.
IEEE, 2023.

Ziqi Zhang, Chen Gong, Yifeng Cai, Yuanyuan Yuan, Bingyan Liu, Ding Li, Yao Guo, and Xiangqun
Chen. No privacy left outside: On the (in-) security of tee-shielded dnn partition for on-device
ml. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 3327–3345. IEEE, 2024b.

Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng. Sectee: A software-based
approach to secure enclave architecture using tee. In Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, pp. 1723–1740, 2019.

Tong Zhou, Yukui Luo, Shaolei Ren, and Xiaolin Xu. Nnsplitter: an active defense solution for dnn
model via automated weight obfuscation. In International Conference on Machine Learning, pp.
42614–42624. PMLR, 2023.

Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and Yantao Lu. Hermes attack: Steal {DNN}
models with lossless inference accuracy. In 30th USENIX Security Symposium (USENIX Security
21), 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

9 APPENDIX

9.1 THE USE OF LARGE LANGUAGE MODEL

We employed a large language model (GPT-5) to assist in proofreading and enhancing the clarity of
the manuscript. Specifically, the LLM was utilized for grammar checking, sentence restructuring,
and minor language polishing to improve readability and linguistic precision. All scientific content,
including the formulation of hypotheses, experimental design, data analysis, and interpretation of
results, was entirely executed, and verified by the authors.

9.2 ALGORITHM

Fisher-guided Obfuscation We summarize FILOsofer obfuscation mechanism in Algorithm 1. The
process takes three steps: (1) computing the gradients with respect to the target class t, (2) estimating
the Fisher information based on these gradients, and (3) updating the weights with the highest Fisher
information.

Algorithm 1 Model Obfuscation with Fisher Information
Require: Loss function L, model parameters W , dataset D, target class Lt, selection ratio r, scale factor η
Ensure: Updated (obfuscated) model parameters W ′

1: for each x ∈ D do
2: compute loss for target class: L(x,W)
3: compute gradient: g(x)← ∇WL(x,W)
4: accumulate squared gradients for Fisher estimate: FW += g(x)⊙ g(x)
5: end for
6: normalize Fisher estimate: FW ← FW /|D|
7: for each parameter tensor/block w in W do
8: select top-r fraction indices by FW : I ← TopK(FW , r)
9: compute perturbation on selected indices: ∆wI ← η · gI

10: apply perturbation: w′ ← w +∆w
11: end for
12: return W ′

Constraint-Aware Obfuscation under Resource-Limited Adaptation Algorithm 2 implements a
systematic procedure to maximize model obfuscation while respecting the resource constraints of
the adaptation module. Joint training uses the same setup as the cross-layer LoRA finetuning stage.
For the obfuscation component, we only perform a single forward pass to calculate the Fisher infor-
mation of each weight, which introduces negligible overhead. The LoRA branch requires finetuning
and therefore needs access to the corresponding training dataset (e.g., CIFAR-100). To maintain
efficiency while preserving effectiveness, rather than attaching a separate LoRA module to every
layer, we design a cross-layer LoRA branch that spans all obfuscated layers, significantly reducing
both parameters and training cost.

Line 1–5: Layer Sensitivity Selection. We first compute the Fisher information for each layer to
measure its sensitivity (Line 2). The entry layer ℓs is chosen as the most sensitive layer, and all
subsequent layers ℓ ≥ ℓs are defined as target layers Lt for obfuscation. This ensures that the
perturbation focuses on layers critical to model performance.

Line 7–8: Accuracy Evaluation and Stopping Criterion. After recovery, the LoRA-recovered ac-
curacy AccL is evaluated. The iteration continues until AccL falls below a predefined threshold,
ensuring that obfuscation is maximized without exceeding the adaptation capacity.

Line 10–16: Iterative Obfuscation and Recovery. For each iteration, the obfuscation function Fobf
is applied to target layers Lt, progressively increasing the perturbation magnitude via parameters
(robf, η). The resource-constrained LoRA branch is then applied across Lt to restore task utility
under the given adaptation budget.

Core Insight. This constraint-driven loop reveals that, under limited adaptation resources, one can
systematically explore the maximum obfuscation a model can tolerate. By decoupling obfuscation
strength from adaptation capacity, the algorithm balances security (through progressive perturba-
tion) and utility (through resource-limited recovery), providing a principled mechanism to probe the

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 Constraint-Aware Obfuscation under Resource-Limited Adaptation
Require: Backbone model M , dataset D, weight obfuscation function Fobf, cross-layer LoRA branch

hLoRA(A,B), iterations T , initial obfuscation ratio robf, scaling factor η, fixed LoRA rank rl, LoRA accu-
racy threshold AccLoRA

Ensure: Obfuscated model Mobf and LoRA branch hLoRA
1: for each layer ℓ with |ℓ, . . . , L| < 5 do ▷ Layer selection via Fisher Information

2: Compute Fℓ = E
[
− ∂2L(X|θ)

∂(W (ℓ))2

]
3: end for
4: Select entry layer ℓs = argmaxℓ Fℓ

5: Define target layers Lt = {ℓ ≥ ℓs}
6: for iteration t = 1 to T do
7: if AccL < AccLoRA then ▷ Rollback if threshold violated
8: return Mobf, hLoRA
9: else

10: robf ← robf · β, η ← η · β ▷ Increase obfuscation
11: for each layer ℓ ∈ Lt do ▷ Weight Obfuscation
12: W (ℓ) ← Fobf(W

(ℓ); robf, η)
13: end for
14: Apply hLoRA(A,B) with fixed rank rl across Lt ▷ LoRA Recovery
15: Store Mobf and hLoRA(A,B)
16: AccL = Mobf+LoRA(D) ▷ Evaluate LoRA-recovered accuracy
17: end if
18: end for

security–utility trade-off. Compared with prior obfuscation methods such as TEESlice, NNSplit-
ter and GroupCover, our computational cost is substantially lower and the overall process is more
stable. TEESlice requires iterative slice pruning and repeatedly training the pruned model, while
NNSplitter relies on reinforcement learning to identify layers and weights, often requiring many
search rounds. GroupCover applies both randomization strategies and mutual covering obfuscation,
and need to calculate the mask process and nonlinear parts in TEE. In contrast, our approach needs
only one Fisher pass plus lightweight cross-layer LoRA finetuning, making it significantly more
efficient.

9.3 AUTHORIZED ACCESS AND TEE IMPLEMENTATION

Before presenting additional results, we first explain how authorized access is achieved in our setup.

To ensure security, we consider a provisioning step, where a remote trusted gateway and TEE agree
on a “token” and a “session key” (uk) Zhao et al. (2019). The assumption is that users negotiate with
such a trusted gateway (which knows the license key), and once proper authentications are made,
the trusted gateway provisions the new token and session key and shares them with the authenticated
user Zhao et al. (2019).

The session key is generated by leveraging a symmetric license key, k, using established crypto-
graphic algorithms Zhao et al. (2019). All communication after this point (including communication
required for token generation) is cryptographically protected (integrity and confidentiality) by uk.

The token is created by also leveraging the license, and can be defined as:
userid, credits, expiry||HMACk(...). The “credits” and “expiry” are optional but can be
set if this is a pay-per-inference service.

During the inference phase, the remote user can directly query the model by creating an ARM
TrustZone SDK call (i.e., Secure Monitor Call, SMC) with the token. Note that all communications
are encrypted and authenticated using uk. The trusted app (TA) then verifies the token and accepts
the request if credits remain and are unexpired. The TA then performs the inference and returns
an encrypted response. Under this model, an unauthorized user, whether local or remote, cannot
successfully query the model, as they lack access to the session key and valid tokens. Furthermore,
the untrusted operating system is unable to infer any information, since all communication between
the user and the TEE is encrypted and protected for both confidentiality and integrity.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 3: The influence of modified weight ratio with target label 3. For different models, different
η are applied. The inserted figure shows an amplified view of the x-axis in the range [0.06, 0.10].

Figure 4: The influence of scale factor η on different datasets and models.

9.4 EVALUATION ON MIA

We also evaluate membership inference attacks as downstream threats to demonstrate the effective-
ness of our protection. Membership inference attacks (MIA) test whether an input sample x belongs
to the training dataset Dtrain. Formally, given query access to a target model fθ, the adversary con-
structs a hypothesis test between H0 : x /∈ Dtrain and H1 : x ∈ Dtrain, often leveraging prediction
confidence or loss values.

Table 9: Results of membership inference attack.

Dataset/Model Serdab DarkneTZ Magnitude NNsplitter TEESlice Ours Blackbox
C10/ResNet18 66.06 65.13 59.28 50.00 50.00 50.00 50.00
C10/VGG19 63.87 64.03 58.82 50.00 50.00 50.00 50.00

C100/ResNet18 91.81 85.47 61.88 50.00 50.00 50.00 50.00
C100/VGG19 87.80 84.66 71.48 50.00 50.00 50.00 50.00

The results show that obfuscated methods, like NNSplitter, is effective against membership infer-
ence attacks (MIA). By perturbing parameters, obfuscation reduces overfitting and diminishes the
statistical gap between members and non-members in the output distribution pθ(y|x), thereby weak-
ening the adversary’s likelihood test advantage.

9.5 IMPACT OF OBFUSCATION PARAMETERS

We further explore the factors that affect the effectiveness of model obfuscation. In particular, we
examine the influence of the scaling factor η, weight modification ratio r, and target label Lt. Based
on the experiment, we have the following findings:

Scale Factor η. Figure 4 shows the impact of the scale factor η across different models (Resnet18,
VGG19, AlexNet, and ViT) and datasets (CIFAR10, CIFAR100 and TinyImageNet200). As shown
in the figure, different models and datasets favor different scaling factors; the optimal range for
ResNet18 on CIFAR-10 is around 1e−3, while for ViT on the more complex TinyImageNet, it
is in the much smaller range of approximately 5e−4. All effective values remain very small, a

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 5: The trand-off between Fisher-guided obfuscation and Cross-layer LoRA-based fine-
tuning.

characteristic that is advantageous for obfuscation as it makes the corresponding modifications to
the input data difficult to detect.

Weight Ratio r. A small set of weights heavily influences predictions, but their identities vary
across models and datasets. As shown in Figure 3, modifying key weights in ViT models reduces
accuracy on CIFAR-10 and TinyImageNet, but the output does not consistently converge to the target
label. When the scale factor is too small, even widespread perturbations fail to induce consistent
misclassification. This underscores the importance of selecting an appropriate scale and confirms
that only a small fraction of weights are truly critical to model behavior.

Table 10: The evaluation of obfuscated
target classes on CIFAR-10.

Class ResNet18 VGG19 AlexNet
0 10.38 10.25 10.40
1 14.90 10.24 11.33
2 18.67 10.00 10.42
3 10.15 10.00 10.55
4 10.38 10.00 12.24
5 11.81 10.00 12.30
6 12.85 10.00 12.10
7 10.85 10.00 12.41
8 12.72 10.25 12.66
9 18.91 10.02 11.21

Target Class: Table 10 illustrates how obfuscation accu-
racy varies with different target labels, under the setting
of r = 0.00005 and η = 0.003 for ResNet18, η = 0.0007
for VGG19, and η = 0.001 for AlexNet. By slightly in-
creasing η, the accuracy drops to 10% (all output target
labels) across all classes. Therefore, we carefully select
η to highlight the differences between target labels. The
results show only minor differences across target labels,
suggesting that the model’s sensitivity is largely uniform
regardless of the target.

9.6 TRADE-OFFS
BETWEEN FISHER INFORMATION OBFUSCATION
AND CROSS-LAYER LORA-BASED FINE-TUNING

We also evaluate the trade-off between obfuscation and LoRA-based fine-tuning, which is shown in
Fig 5. We set r = 0.00005, target label three, and LoRA rank two. By varying η, we control the
degree of model obfuscation and observe the extent to which the LoRA branch fails to recover.

Across Datasets. The tolerance for obfuscation varies significantly by dataset complexity. On
CIFAR-10, even aggressive perturbations (e.g., reducing accuracy to 10%) still allow LoRA to re-
cover over 97% performance, showing strong robustness in simpler tasks. In contrast, CIFAR-100
and ImageNet200 exhibit much steeper trade-offs: small increases in obfuscation strength rapidly
degrade recoverability, reflecting their higher label granularity and reliance on fine-grained features.

Across Models. ViT achieves better LoRA recovery than CNN-based models under the same ob-
fuscation conditions, especially on CIFAR-100 and ImageNet200. This suggests that Transformer
architectures offer more adaptable representations, even when key weights are perturbed.

Joint Training Advantage. These results validate the effectiveness of our joint training algorithm,
which dynamically balances obfuscation strength and LoRA capacity.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 12: The accuracy of the whole model cross-layer LoRA fine-tuning with different LoRA ranks
and fine-tuning data.

Percentage(%) AlexNet VGG19 ResNet18 ViT-B/16

LoRA Rank 1 4 16 1 4 16 1 4 16 1 4 16

C10 5% 17.62 17.06 16.10 19.48 23.72 22.61 17.53 17.25 19.78 13.38 14.03 12.62
10% 17.22 17.61 16.53 20.45 23.44 22.78 17.76 18.59 20.93 13.63 14.73 13.28

C100 5% 11.47 12.95 10.45 12.20 12.85 12.84 11.05 11.83 12.03 22.49 15.62 13.67
10% 12.98 13.78 10.63 14.09 14.54 14.73 12.54 12.22 12.79 24.22 22.41 21.62

ImageNet 5% 4.05 3.08 3.20 6.11 5.60 4.83 5.93 4.25 3.40 21.32 22.37 22.57
10% 8.78 3.83 3.25 6.36 5.69 5.76 9.39 6.42 5.24 21.49 23.64 29.36

9.7 ROBUSTNESS OF AUTHORIZED USER

In this section, we evaluate the robustness of our framework under a strict threat model: an au-
thorized user who has legitimate access to the model’s inference service and receives the correct,
authorized labels. Unlike external adversaries who may only receive obfuscated outputs, an autho-
rized user possesses the ground-truth input-label pairs.

Table 11 presents the accuracy of the surrogate models constructed by authorized users. The results
indicate that access to correct labels is insufficient for successful model extraction when the under-
lying weights are obfuscated. As shown in the table, even with a budget of 5,000 queries and valid
labels, the surrogate model accuracy remains exceptionally low (e.g., < 18% on CIFAR-10 and
∼ 1% on CIFAR-100). This demonstrates that our weight obfuscation strategy effectively breaks
the correlation between the observable weights and the correct functional behavior.

9.8 CROSS-LAYER LORA ADAPTIVE ATTACK DISCUSSION

Table 11: Defense effectiveness against authorized
users. The table reports the accuracy (%) of surrogate
models trained by authorized users who have access
to correct labels. Despite possessing valid input-label
pairs, the adversary fails to achieve high accuracy due
to the weight obfuscation.

Model Dataset Surrogate Model Accuracy (%)

50 Queries 5,000 Queries

VGG19
CIFAR-10 10.00 17.25
CIFAR-100 1.00 1.00
ImageNet200 0.50 0.50

ResNet18
CIFAR-10 10.00 18.51
CIFAR-100 1.00 1.00
ImageNet200 0.50 0.50

ViT-B/16
CIFAR-10 10.31 14.87
CIFAR-100 1.41 6.83
ImageNet200 0.85 2.21

We conducted a systematic evaluation
of the impact of both the LoRA rank
and the amount of available training data
on the adaptive attack performance, re-
sults shown in Tab 12. Our findings
suggest that these two factors exhibit a
strong interdependence. Specifically, for
a fixed LoRA rank, increasing the pro-
portion of training data consistently leads
to improved accuracy, as the model bene-
fits from more representative and diverse
training signals. For example, by increas-
ing the training data from 5% to 10%,
ViT-B/16 accuracy becomes higher for all
dataset.

However, the relationship between LoRA
rank and performance is more nuanced.
Contrary to the intuition that higher-rank
adaptations might yield better results due
to increased capacity, we observe that ex-
cessively high ranks can lead to suboptimal performance, particularly when the training data is
limited. In such scenarios, large LoRA branches introduce a greater number of trainable parameters,
which may not be adequately optimized given the data constraints. Also, larger parameter spaces
lead to more complex loss surfaces, making training more sensitive to initialization and learning
rates.

These findings reveal a fundamental challenge in the attacker’s recovery strategy. Despite increas-
ing the LoRA rank or leveraging a moderate amount of training data, the obfuscated base model
imposes a structural bottleneck that restricts information flow. Consequently, even high-capacity
LoRA branches struggle to compensate for the intentionally degraded base model, resulting in a

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 13: Top-5 gradient-sensitive parameters per class and dataset. Each entry shows Layer[Index]
of the most sensitive parameters.

Label CIFAR10 CIFAR100 TinyImageNet200

0

layer4.1.bn1.bias[318]
layer4.1.bn1.bias[480]
layer2.0.bn2.bias[40]
layer2.0.downsample.1.bias[40]
layer4.1.bn1.bias[38]

layer4.1.bn1.bias[196]
fc.weight[17]
fc.weight[182]
layer4.1.bn1.weight[489]
fc.weight[310]

fc.weight[255]
fc.weight[280]
layer2.0.bn2.bias[55]
layer2.0.downsample.1.bias[55]
fc.weight[182]

1

layer4.1.bn1.bias[38]
layer4.1.bn1.bias[132]
layer4.1.bn1.weight[132]
layer4.1.bn1.bias[318]
layer4.1.bn1.weight[38]

layer2.0.bn2.bias[121]
layer2.0.downsample.1.bias[121]
layer1.1.bn1.bias[55]
layer2.1.bn2.bias[121]
fc.weight[529]

layer4.1.bn1.bias[461]
fc.weight[767]
fc.weight[792]
layer4.1.bn1.bias[259]
fc.weight[694]

persistent gap from the original performance. This supports the robustness of the FILOsofer tech-
nique against adaptive fine-tuning attacks.

We observe that when knowing exactly which layers have been obfuscated, applying cross-layer
LoRA directly to these layers enables effective recovery of the original model behavior (as demon-
strated by the recovery methods summarized in Tab. 3). However, in the adaptive attack scenario,
where the attacker knows nothing about the target layers and attaches a large LoRA branch only
at the input and output of the model, recovery performance significantly degrades. This contrast
reveals several key insights.

1) Lack of Access to Obfuscated Semantics. The obfuscation targets the last few layers of the
model, where task-specific semantics reside. LoRA branches attached only at the input/output
cannot directly influence or correct these corrupted internal representations, making recovery in-
effective. 2) Gradient Misalignment. When fine-tuning is performed without targeting the actual
obfuscated layers, the gradients flow through a corrupted backbone. This leads to poor alignment be-
tween the loss signal and the parameters that need adaptation, severely limiting learning efficiency.
3) Input-Level Adaptation is Too Weak. Adapting only at the input/output level essentially treats
the backbone as a fixed black box. Without modifying the internal transformations, the model can-
not recover class-separability or generalization, especially when its outputs are collapsed to a single
label.

9.9 THE CHOICE OF OBFUSCATED WEIGHTS ANALYSIS

We present the top five most sensitive weights of ResNet18 across different datasets and target labels
in Table 13. The results indicate that the specific sensitive weights vary significantly depending on
both the model’s training data and the chosen target class.

9.10 LLM LAYERS ANALYSIS

Table 14 presents the impact of layer-wise obfuscation on model performance using the SCIQ
dataset. ’Both’ refers obfuscate both attantion layer and mlp layer. With a baseline accuracy of
0.92, the experiments utilize a scale factor of 0.1 and a modified weight ratio of 10−4 to evaluate
the sensitivity of different architectural components. The results reveal a significant disparity in
robustness across layer depths and types. Specifically, the ”Attention” and ”Both” configurations
demonstrate relative resilience in the initial layer (Layer 0), maintaining accuracies of 0.889 and
0.885, respectively. However, this robustness rapidly diminishes in subsequent layers, with accu-
racy dropping precipitously in the middle and later stages (e.g., reaching as low as 0.194 at Layer
9). In stark contrast, the MLP layers exhibit extreme sensitivity to gradient-based perturbations; ac-
curacy collapses to approximately 0.24 across all layers immediately upon perturbation, regardless
of layer depth. These findings empirically confirm that MLP modules are the primary bottleneck for
adversarial robustness in this context, whereas attention mechanisms retain partial resilience in the
earliest embedding stages.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 14: The LLM modified results.

Layer 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Both 0.885 0.593 0.452 0.324 0.434 0.443 0.281 0.359 0.213 0.194 0.248 0.350 0.246 0.306 0.241 0.286
Attention 0.889 0.540 0.485 0.329 0.461 0.307 0.332 0.321 0.291 0.308 0.258 0.305 0.239 0.317 0.239 0.289
MLP 0.239 0.305 0.254 0.299 0.245 0.254 0.286 0.240 0.239 0.273 0.239 0.239 0.239 0.239 0.239 0.239

9.11 FUTURE DISCUSSION

Scalability of large language models A promising direction for future research is further exploring
the applicability of FILOsofer to protect large language models (LLMs), which pose unique chal-
lenges beyond those addressed in our current work. First, the definition and evaluation of model
stealing in the context of LLMs remain underexplored and ambiguous. Unlike classification mod-
els with clear prediction labels, LLMs operate in open-ended generation settings such as dialogue,
summarization, or instruction following, making it difficult to measure what constitutes a success-
ful attack. Second, our current approach is tailored to classification tasks and does not account for
the nuanced and context-dependent outputs of LLMs. Obfuscating the model in such a way that it
consistently degrades the utility of stolen outputs without harming legitimate usage requires more
sophisticated techniques. Developing mechanisms that generalize to the diverse interaction modes
of LLMs will be critical for securing them in real-world applications.

Distributed deployment scenarios. Another important direction for future exploration is the pro-
tection of models in distributed deployment scenarios, where a single model is partitioned and de-
ployed across multiple edge devices. In such settings, different segments of the model are executed
on separate devices, potentially increasing the system’s vulnerability surface. Attackers may attempt
to compromise a subset of devices to reconstruct the behavior of the partial model or launch collab-
orative attacks. Our current framework, FILOsofer, is designed under the assumption of a single-
device deployment and does not yet consider inter-device communication or consistency under ad-
versarial interference. Adapting FILOsofer to support secure distributed inference requires address-
ing challenges such as secure partition coordination, synchronization of obfuscation effects across
devices, and minimizing communication overhead, all while maintaining strong security guaran-
tees. Future work could explore integrating lightweight secure multi-party inference protocols or
developing partition-aware obfuscation strategies tailored to distributed edge environments.

9.12 FISHER INFORMATION PROOF

Notation and setup. Let x ∼ D denote inputs and consider a conditional model p(y | x;W). We
perturb parameters W to W + ∆W with ∥∆W∥ small. Denote the perturbed conditional output
distribution by pW+∆W (z | x) and its marginal by pW+∆W (z) =

∫
pW+∆W (z | x)p(x) dx. We

use gLt(x) := ∇W log p(Lt | x;W) and the target-class score s(x;W) := log p(Lt | x;W).

Assumptions.

1. The mapping W 7→ p(y | x;W) is twice continuously differentiable for each x.

2. The perturbation ∆W is sufficiently small so that Taylor expansions are valid and higher-
order terms are negligible.

3. Score functions have bounded second moments and satisfy standard regularity conditions
ensuring the interchange of expectation and differentiation (so that the Fisher information
is well-defined).

Lemma 1 (Mutual information identity). For any joint distribution p(x, z),

I(X;Z) = Ex∼D
[
DKL

(
p(z | x)

∥∥ p(z))].
Lemma 2 (Local KL expansion; conditional Fisher). Under (A1)–(A3), for small ∆W ,

DKL

(
p(· | x;W)

∥∥ p(· | x;W +∆W)
)
= 1

2 ∆W⊤F (x;W)∆W + o(∥∆W∥2),

where
F (x;W) := Ez∼p(·|x;W)

[
∇W log p(z | x;W)∇W log p(z | x;W)⊤

]
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof. By Taylor expansion of the log-likelihood and using the score zero-mean property, the first-
order term cancels and the leading term is quadratic in ∆W ; standard derivations in asymptotic
statistics produce the displayed form.

Theorem 1 (Local quadratic approximation of mutual information). Under (A1)–(A3), for suffi-
ciently small ∆W ,

IW+∆W (X;Z) = IW (X;Z) + 1
2 Ex∼D

[
∆W⊤F (x;W)∆W

]
+ o(∥∆W∥2).

Proof. By Lemma 1,
IW+∆W (X;Z) = Ex

[
DKL(p(· | x;W +∆W)∥pW+∆W (·))

]
.

One can expand the integrand around W taking into account that both the conditional p(· | x;W +
∆W) and the marginal pW+∆W (·) vary with ∆W . Careful bookkeeping of first- and second-order
terms, and using Lemma 2 for the conditional contribution, yields the stated quadratic term as the
dominant second-order contribution. The remainder is o(∥∆W∥2).

Proposition 1 (Optimal local perturbation under a Fisher (KL) budget). Define the population-
averaged conditional Fisher F := Ex∼D[F (x;W)]. Consider the constrained problem (quadratic-
budget approximation)

max
∆W

Ex[gLt(x)]
⊤∆W s.t. ∆W⊤F ∆W ≤ ε.

If F is positive definite, the optimal direction is

∆W ⋆ ∝ F
−1 Ex[gLt

(x)].

Proof. This is a standard linear objective with quadratic constraint problem. The Lagrangian is
L(∆W,λ) = Ex[gLt(x)]

⊤∆W −λ(∆W⊤F∆W −ε). Stationarity yields Ex[gLt(x)] = 2λF∆W .
For λ > 0 and invertible F , the result follows.

Remarks.

• The matrix F is the correct second-order (KL) metric for measuring the distributional
change induced by ∆W . Using an uncentered class-specific matrix F

(raw)
Lt

= E[gLt
g⊤Lt

]
without centering is generally inconsistent with the KL expansion unless additional condi-
tional assumptions are made.

• If one targets directly the sample-wise variance of the target score, then the proper quadratic
cost is ∆W⊤F̃Lt

∆W , where F̃Lt
:= Ex[(gLt

(x)− ḡ)(gLt
(x)− ḡ)⊤] is the centered class-

covariance and ḡ = Ex[gLt
(x)].

Feasibility and practical implementation.

1. For a finite representative dataset {xi}mi=1, enforcing s(xi;W + ∆W) = c for all i under
the first-order model reduces to a linear system G∆W = b with Gi,: = gLt(xi)

⊤. If G
has full row rank and the parameter dimension p is large, a solution exists (minimum-norm
solution G+b).

2. For population-level exact independence pW+∆W (z | x) = pW+∆W (z) for all x is gener-
ically impossible with finite-dimensional ∆W ; thus one aims at minimizing distributional
proxies (variance, mutual information, empirical KL) instead of exact equality.

3. In practice, F and Ex[gLt(x)] are replaced by empirical estimates and F−1 by approxima-
tions.

Targeted Fisher for Obfuscation To steer the model toward a target label Lt and reduce input
dependence, we define the gradient-based measure:

FLt
= E

[(∂L(x,W)

∂W

)2 ∣∣∣y = Lt

]
. (10)

This is a non-standard, heuristic Fisher matrix that captures which weights most strongly influence
the output toward Lt. Selecting the top weights according to FLt

ensures that perturbations are
applied where they are most effective in controlling the output.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Perturbation via Gradient Update The perturbation is applied along the gradient of the target
loss:

W ←W + η · ∇WL(x,W), (11)
where η is a scale factor. By first-order Taylor expansion:

s(x;W +∆W) ≈ s(x;W) +∇W s(x;W)⊤∆W, (12)

the perturbation increases the target class score while reducing output variance across inputs, ap-
proximately decreasing mutual information.

Rationale and Limitations This strategy is justified based on three key points:

1. Fisher-guided selection: Perturbing weights with high FLt
effectively targets the most

sensitive parameters that control the output, consistent with information-theoretic intuition.
2. Gradient alignment: Applying ∆W ∝ ∇WL(x,W) aligns the perturbation with the

direction that maximally increases the target score, which locally reduces output variance
across x.

3. Approximate input-independence: While exact input-independence cannot be guaran-
teed (because different x have different gradients and the model is nonlinear), iterative or
multi-sample perturbations can significantly reduce the output’s sensitivity to inputs, de-
creasing mutual information in expectation.

Therefore, the perturbation strategy is theoretically justified as an approximate mutual information
minimization scheme guided by Fisher information.

22

	Introduction
	Background
	Threat Model
	Systematic Study and Insights
	FILOsofer
	Fisher Information Guided Target Obfuscation
	Cross-Layer LoRA-based Recovery
	Obfuscation and Recovery Trade-off

	Experiments
	Security Guarantee and Utility Cost
	Performance on Real-World Devices
	Applicability to LLMs

	Resilience to Adaptive Attack
	Conclusion
	Appendix
	The Use of Large Language Model
	Algorithm
	Authorized Access and TEE Implementation
	Evaluation on MIA
	Impact of Obfuscation Parameters
	Trade-offs Between Fisher Information Obfuscation and Cross-layer LoRA-based Fine-tuning
	Robustness of Authorized User
	Cross-layer LoRA Adaptive Attack Discussion
	The Choice of Obfuscated Weights Analysis
	LLM layers Analysis
	Future Discussion
	Fisher Information Proof

