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ABSTRACT

Adversarial training has proven to be one of the most effective methods to defend
against adversarial attacks. Nevertheless, robust overfitting is a common obsta-
cle in adversarial training of deep networks. There is a common belief that the
features learned by different network layers have different properties, however,
existing works generally investigate robust overfitting by considering a DNN as
a single unit and hence the impact of different network layers on robust overfit-
ting remains unclear. In this work, we divide a DNN into a series of layers and
investigate the effect of different network layers on robust overfitting. We find
that different layers exhibit distinct properties towards robust overfitting, and in
particular, robust overfitting is mostly related to the optimization of latter parts
of the network. Based upon the observed effect, we propose a robust adversar-
ial training (RAT) prototype: in a minibatch, we optimize the front parts of the
network as usual, and adopt additional measures to regularize the optimization of
the latter parts. Based on the prototype, we designed two realizations of RAT, and
extensive experiments demonstrate that RAT can eliminate robust overfitting and
boost adversarial robustness over the standard adversarial training.

1 INTRODUCTION

Deep neural networks (DNNs) have been widely applied in multiple fields, such as computer vi-
sion (He et al., 2016) and natural language processing (Devlin et al., 2018). Despite its achieved
success, recent studies show that DNNs are vulnerable to adversarial examples. Well-constructed
perturbations on the input images that are imperceptible to human’s eyes can make DNNs lead to a
completely different prediction (Szegedy et al., 2013). The security concern due to this weakness
of DNNs has led to various works in the study of improving DNNs robustness against adversar-
ial examples. Across existing defense techniques thus far, Adversarial Training (AT) (Goodfellow
et al., 2014; Madry et al., 2017), which optimizes DNNs with adversarially perturbed data instead of
natural data, is the most effective approach (Athalye et al., 2018). However, it has been shown that
networks trained by AT technique do not generalize well (Rice et al., 2020). After a certain point
in AT, immediately after the first learning rate decay, the robust test accuracy continues to decrease
with further training. Typical regularization practices to mitigate overfitting such as l1 & l2 regular-
ization, weight decay, data augmentation, etc. are reported to be as inefficient compared to simple
early stopping (Rice et al., 2020).

Many studies have attempted to improve the robust generalization gap in AT, and most have gen-
erally investigated robust overfitting by considering DNNs as whole. However, DNNs trained on
natural images exhibit a common phenomenon: features obtained in the first layers appear to be
general and applicable widespread, while features computed by the last layers are dependent on a
particular dataset and task (Yosinski et al., 2014). Such behavior of DNNs sparks a question: Do
different layers contribute differently to robust overfitting? Intuitively, robust overfitting acts as an
unexpected optimization state in adversarial training, and its occurrence may be closely related to
the entire network. Nevertheless, the unique effect of different network layers on robust overfitting is
still unclear. Without a detailed understanding of the layer-wise mechanism of robust overfitting, it
is difficult to completely demystify the exact underlying cause of the robust overfitting phenomenon.

In this paper, we provide the first layer-wise diagnosis of robust overfitting. Specifically, instead
of considering the network as a whole, we treat the network as a composition of layers and sys-
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tematically investigate the impact of robust overfitting phenomenon on different layers. To do this,
we first fix the parameters for the selected layers, leaving them unoptimized during AT, and then
normally optimize other layer parameters. We discovered that robust overfitting is always mitigated
in the case where the latter layers are left unoptimized, and applying the same effect to other layers
is futile for robust overfitting, suggesting a strong connection between the optimization of the latter
layers and the overfitting phenomenon.

Based upon the observed effect, we propose a robust adversarial training (RAT) prototype to relieve
the issue of robust overfitting. Specifically, RAT works in each mini-batch: it optimizes the front
layers as usual, and for the latter layers, it implements additional measures on these parameters
to regularize their optimization. It is a general adversarial training prototype, where the front and
latter network layers can be separated by some simple test experiments, and the implementation
of additional measures to regularize network layer optimization can be versatile. For instance, we
designed two representative methods for the realizations of RAT: RATLR and RATWP. They adopt
different strategies to hinder weight update, e.g., enlarging the learning rate and weight perturbation,
respectively. Extensive experiments show that the proposed RAT prototype effectively eliminates
robust overfitting. The contributions of this work are summarized as follows:

• We provide the first diagnosis of robust overfitting on different network layers, and find
that there is a strong connection between the optimization of the latter layers and the robust
overfitting phenomenon.

• Based on the observed properties of robust overfitting, we propose the RAT prototype,
which adopts additional measures to regularize the optimization of the latter layers and is
tailored to prevent robust overfitting.

• We design two different realizations of RAT, with extensive experiments on a number of
standard benchmarks, verifying its effectiveness.

2 RELATED WORK

2.1 ADVERSARIAL TRAINING

Since the discovery of adversarial examples, there have been many defensive methods attempted to
improve the DNN’s robustness against such adversaries, such as adversarial training (Madry et al.,
2017), defense distillation (Papernot et al., 2016), input denoising (Liao et al., 2018), gradient reg-
ularization (Tramèr et al., 2018). So far, adversarial training (Madry et al., 2017) has proven to be
the most effective method. Adversarial training comprises two optimization problems: the inner
maximization and outer minimization. The first one constructs adversarial examples by maximizing
the loss and the second updates the weight by minimizing the loss on adversarial data. Here, fw is
the DNN classifier with weight w, and ℓ(·) is the loss function. d(., .) specify the distance between
original input data xi and adversarial data x′

i, which is usually an lp-norm ball such as the l2 and
l∞-norm balls and ϵ is the maximum perturbation allowed.

ℓAT(w) = min
w

∑
i

max
d(xi,x′

i)≤ϵ
ℓ(fw(x

′
i), yi), (1)

2.2 ROBUST GENERALIZATION

An interesting characteristic of deep neutral networks (DNNs) is their ability to generalize well in
practice (Belkin et al., 2019). For the standard training setting, it is observed that test loss continues
to decrease for long periods of training (Nakkiran et al., 2020), thus the common practice is to train
DNNs for as long as possible. However, this is no longer the case in adversarial training, which
exhibits overfitting behavior the longer the training process (Rice et al., 2020). This phenomenon
has been referred to as ”robust overfitting” and has shown strong resistance to standard regularization
techniques such as l1, l2 regularization and data augmentation methods. (Rice et al., 2020)

Schmidt et al. (2018) theorizes that robust generalization have a large sample complexity, which
requires substantially larger dataset. Many subsequent works have empirically validated such claim,
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such as AT with semi-supervised learning (Carmon et al., 2019; Zhai et al., 2019), robust local fea-
ture (Song et al., 2020) and data interpolation (Lee et al., 2020; Chen et al., 2021). (Chen et al., 2020)
proposes to combine smoothing the logits via self-training and smoothing the weight via stochas-
tic weight averaging to mitigate robust overfitting. Wu et al. (2020) emphasizes the connection of
weight loss landscape and robust generalization gap, and suggests injecting the adversarial perturba-
tions into both inputs and weights during AT to regularize the flatness of weight loss landscape. The
intriguing property of robust overfitting has motivated great amount of study and investigation, but
current works typically approach the phenomenon considering a DNN as a whole. In contrast, our
work treats a DNN as a series of layers and reveals a strong connection between robust overfitting
and the optimization of the latter layers, providing a novel perspective into better understanding the
phenomenon.

3 INTRIGUING PROPERTIES OF ROBUST OVERFITTING

In this section, we first investigate the layer-wise properties of robust overfitting by fixing model
parameters in AT (Section 3.1). Based on our observations, we further propose a robust adversar-
ial training (RAT) prototype to eliminate robust overfitting (Section 3.2). Finally, we design two
different realizations for RAT to verify the effectiveness of the proposed method (Section 3.3).

3.1 LAYER-WISE ANALYSIS OF ROBUST OVERFITTING

Current works usually study the robust overfitting phenomenon considering the network as a single
unit. However, features computed by different layers exhibit different properties, such as first-layer
features are general and last-layer features are specific (Yosinski et al., 2014). We hypothesize
that different network layers have different effects on robust overfitting. To empirically verify the
above hypothesis, we deliberately fix the parameters of the selected network layers, leaving them
unoptimized during AT and observe the behavior of robust overfitting accordingly. Specifically, we
considered ResNet-18 architecture as a composition of 4 main layers, corresponding to 4 Residual
blocks. We then train multiple PreAct ResNet-18 networks on CIFAR-10 for 200 epochs using AT,
each time selecting a set of network layers to have their parameter fixed.

The robust test performance in figure 1(a) shows a consistent pattern. Robust overfitting is mitigated
whenever we fix the parameters for layer 4 during AT, while any settings that do not fix the param-
eters for layer 4 result in a more severe gap between the best accuracy and the accuracy at the last
epoch. For example, for settings such as AT-fix-param-[4], AT-fix-param-[1,4], AT-fix-param-[2,4]
and AT-fix-param-[3,4], robust overfitting is significantly reduced. On the other hand, for settings
such AT-fix-param-[1,2], AT-fix-param-[1,3] and AT-fix-param-[2,3], when we fix the parameters of
various set of layers but allow for the optimization of layer 4, robust overfitting still widely exists.
For extreme case like AT-fix-param-[1,2,3], where we fix the first three front layers and only allow
for the optimization of that last layer 4, the gap between the best accuracy and the last accuracy is
still obvious. This clearly indicates that the optimization of the latter layers present a strong cor-
relation to the robust overfitting phenomenon. Note that this relationship can be observed across a
variety of datasets, model architectures, and threat models (shown in Appendix A), indicating that it
is a general property in adversarial training.

In many of these settings, robust overfitting is mitigated at the cost of robust accuracy. For example
in AT-fix-param-[3,4], if we leave both layer 3 & 4 unoptimized, robust overfitting will practically
disappear, but the peak performance is much worse compared to standard AT. When carefully ex-
amining the training performance in these settings shown in figure 1(b), we generally observe that
the network capacity to fit adversarial data is strong when we fix the parameters for the front layers,
but it gradually gets weaker as we try to fix the latter layers. For instance, AT-fix-param-[1] has the
highest train robust accuracy, then comes AT-fix-param[2], AT-fix-param[3] and AT-fix-param[4];
AT-fix-param[1,2,3] has higher training accuracy than AT-fix-param[2,3,4]. This suggests fixing
the latter layers’ parameters can regularize the network better compared to fixing the front layers’s
parameters. In the subsequent sections, we will introduce methods that specifically regularize the
optimization of the latter layers, so as to mitigate robust overfitting without tradeoffs in robustness.
We will compare the impact on robust overfitting when applied such methods on the front layers vs
the latter layers, further highlighting the importance of the latter layers in relation to robust overfit-
ting.
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(a) Robust Test Performance
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(b) Robust Train Performance

Figure 1: The robust train/test performance of adversarial training with different sets of network
layers fixed. AT-fix-param[1,2] corresponds to fixing the parameters of layers 1 & 2 during AT

3.2 A PROTOTYPE OF RAT

As witnessed in Section 3.1, the optimization of AT in the latter layers is highly correlated to the
existence of robust overfitting. To address this, we propose to train the network on adversarial data
with some restrictions put onto the optimization of the latter layers, dubbed as Robust Adversarial
Training (RAT). RAT adopts additional measures to regularize the optimization of the latter layers,
and ensures that robust overfitting will not occur.

The RAT prototype is given in Algorithm 1. It runs as follows. We start with a base adversarial
training algorithm A. In Line 1-3, The inner maximization pass aims to maximize the loss via cre-
ating adversarial examples, and then the outer minimization pass updates the weight by minimizing
the loss on adversarial data. Line 4 initiates a loop through all parts of the weight w from the front
layers to the latter layers. Line 5-9 then manipulate different parts of the weight based on its layer
conditions. If the parts of the weight belong to the front layers (Cfront), they will be kept intact.
Otherwise, a weight update scheme S is put onto the parts of the weight corresponding to the latter
layers (Clatter). The role of S is to apply some regularization on the latter layers’ weight. Finally,
the optimizer O updates the model fw in Line 11.

Note that RAT is a general prototype where layer conditions Cfront, Clatter and weight adjustment
strategy S can be versatile. For example, based on the observations in Section 3.1, we treat the
Res-Net architecture as a composition of 4 main layers, corresponding to 4 residual blocks, where
Cfront indicates layer 1 & 2 and Clatter indicates layer 3 & 4. S can also represent various strategies
that serves to regularize the optimization of the latter layers. In the section below, we will propose
two different strategies S in the implementations of RAT to demonstrate RAT’s effectiveness.

3.3 TWO REALIZATIONS OF RAT

In this section, we will propose two different methods to put certain restrictions on the optimization
of selected parts of the network, and then investigate the robust overfitting behavior upon applying
such method to the front layers vs the latter layers. These methods showcase a clear relation between
the optimization of the latter layers and robust generalization gap.

RAT through enlarging learning rate. In standard AT, the sudden increases in robust test perfor-
mance appears to be closely related to the drops in the scheduled learning rate decay. We hypothesize
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Algorithm 1 RAT-prototype (in a mini-batch).
Require: base adversarial training algorithm A, optimizer O, network fw, model parameter w =
{w1, w2, ..., wn}, training dataD = {(xi, yi)}, mini-batch B, front and latter layer conditions Cfront

and Clatter for fw, gradient adjustment strategy S

1: Sample a mini-batch B = {(xi, yi)} from D
2: B′ = A.inner maximization(fw,B)
3: ∇w ← A.outer minimization(fw, ℓB′)
4: for i = 1, ..., n do
5: if Cfront(wi) then
6: ∇wi

← ∇wi

7: else if Clatter(wi) then
8: ∇wi

← S(fw,B′,∇wi
) # adjust gradient

9: end if
10: end for
11: O.step(∇w)

that training AT without learning rate decays is sub-optimal, which can regularize the learning pro-
cess of adversarial training. Comparison of the train/test performance between standard AT and AT
without learning rate decay (AT-fix-lr-[1,2,3,4]) are shown in figure 2(b). Training performance of
standard AT accelerates quickly right after the first learning rate drop, expanding the generalization
gap with further training, whereas for AT without learning rate decay, training performance increases
slowly and maintain a stable generalization gap. This suggests that AT optimized without learning
rate decay has less capacity to fit adversarial data, and thus provides the regularization needed to
relieve robust overfitting. As our previous analysis suggests that the optimization of the latter layers
is more important in mitigating robust overfitting, we propose using a fixed learning rate = 0.1 for
optimizing the latter parts of the network while applying the piecewise decay learning rate for the
former parts to close the robust generalization gap. We refer to this approach as a realization of
RAT, namely RATLR. Compared to standard AT, RATLR essentially enlarge the weight update step
∇wi along the latter parts of the gradients by 10 at the first learning rate decay and 100 at the second
decay.

∇wi
= η∇wi

, (2)

where η is the amplification coefficient.

To demonstrate the effectiveness of RATLR, we train multiple PreAct ResNet-18 networks on
CIFAR-10 for 200 epochs using AT, each time selecting a set of network layers to have their learning
rate fixed to 0.1 while maintaining the piece-wise learning rate schedule for other layers. Figure 2(a)
validate our proposition. Robust overfitting is relieved for all settings that target layers that include
layer 4 (AT-fix-lr-[4], AT-fix-lr-[1,4], AT-fix-lr-[2,4], etc.) while any settings that fix the learning
rate of layers that exclude layer 4 do not reduce robust overfitting. Furthermore, all settings that fix
the learning rate for both layer 3 & 4, including AT-fix-lr-[3,4], AT-fix-lr-[1,3,4], AT-fix-lr-[2,3,4]
AT-fix-lr-[1,2,3,4] completely eliminate robust overfitting. The observations verify that regulariz-
ing the optimization of the latter layers by optimizing those layers without learning rate decays can
prevent robust overfitting from occurring. An important observation is that RATLR (AT-fix-lr-[3,4])
can both overcome robust overfitting and achieve better robust test performance compared to the
network using a fixed learning rate for all layers (AT-fix-lr-[1,2,3,4]). Examining the training per-
formance between these two settings in figure 2(c), we find that RATLR exhibits a rapid rise in both
robust and standard training performance immediately after the first learning rate decay similar to
standard AT. The training performance of RATLR is able to benefit from the learning rate decay oc-
curring at layer 1 & 2, making a notable improvement compared to AT-fix-lr-[1,2,3,4]. By training
layers 3 & 4 without learning rate decays, we specifically put some restrictions on the optimization
of only the latter parts of the network heavily responsible for robust overfitting, which can relieve
robust overfitting without sacrificing too much performance. The experiment results provide another
indication that the latter layers have stronger connections to robust overfitting than the front layers
do, and regularizing the optimization of the latter layers from the perspective of learning rate can
effectively solve robust overfitting.
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(a) Robust test performance of all settings
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Figure 2: The train/test performance of adversarial training using a fixed learning rate for different
sets of network layers. AT-fix-lr[1,2] corresponds to using a fixed learning rate for layers 1 & 2
during AT

RAT through adversarial weight pertubation. We continue to study the impact of different net-
work layers to robust overfitting phenomenon from the perspective of adversarial weight perturba-
tion (AWP). Wu et al. (2020) proposes AWP as a method to explicitly flatten weight loss landscape,
by introducing adversarial perturbations into both inputs and weights during AT:

min
w

max
v∈V

∑
i

max
d(xi,x′

i)≤ϵ
ℓ(fw+v(x

′
i), yi), (3)

where v is the adversarial weight perturbation generated by maximizing the classification loss:

v = ∇w

∑
i

ℓi. (4)

As AWP keeps injecting the worst-case perturbations on weight during training, it could also be
viewed as a means to regularize the optimization of AT. In fact, the training of AWP exhibits a
negative robust generalization gap, where robust training accuracy is in short of robust testing accu-
racy by a large margin, shown in figure 3(c). This indicates AWP put significant restrictions to the
optimization of AT, introducing huge trade-offs to training performance. As our previous analysis
suggests a strong correlation between robust overfitting and the optimization of the latter layers, we
argue that the capacity to mitigate robust overfitting from AWP is mostly thanks to the perturbations
occurring at latter layers’ weight. As such, we propose to specifically apply AWP to the latter half
of the network, and refer to this method as RATWP. In essence, RATWP compute the adversarial
weight perturbation vi under the layer condition Clatter(wi), so that only the parts of the weight
along the latter half of the network are perturbed.

min
w=[w1,...,wi,...,wn]

max
v=[0,...,vi,...0]∈V

∑
i

max
d(xi,x′

i)≤ϵ
ℓ(fw+v(x

′
i), yi), (5)

vi = ∇wi

∑
i

ℓi. (6)

To prove the effectiveness of RATWP , we train multiple PreAct ResNet-18 networks on CIFAR-10
for 200 epochs using AT, each time selecting a set of network layers to have their weight locally
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(a) Robust test performance of all settings
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(b) AWP applied to front layers vs latter layers
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Figure 3: The train/test performance of adversarial training when applying AWP for different sets
of network layers. AT-AWP-[1,2] means only layer 1 & 2 have their weight perturbed using AWP

perturbed using AWP. As seen from figure 3(a), There are only 3 settings that can overcome robust
overfitting, namely AT-AWP-[3,4], AT-AWP-[1,3,4] and AT-AWP-[2,3,4]. These settings share one
key similarity: both layer 3&4 have their weight adversarially perturbed during AT. Simply applying
AWP to any set of layers that exclude layers 3&4 is not sufficient to eliminate robust overfitting.
This shows that AWP is effective in solving robust overfitting only when applied to both layer
3 and layer 4. Even when AWP is applied to the first 3 former layers out of 4 layers (AT-awp-
[1,2,3]), robust overfitting still widely exists. In another word, it is essential for the adversarial
weight perturbations to occur at the latter part of the network in order to mitigate robust overfitting.
To examine this phenomenon in detail, we compare the training performance of AWP applied to
front layers (represented by AT-AWP-[1,2,3]) vs AWP applied to latter layers (represented by AT-
AWP-[3,4]), shown in figure 3(b). AWP applied in the front layers have a much better training
performance than AWP applied in the latter layers. Furthermore, AWP applied to front layers reveals
a positive robust generalization gap (training accuracy > testing accuracy) shortly after the first
drop in learning rate, which continues to widen with further training. Conversely, AWP applied
in the latter layers exhibits a negative robust generalization gap throughout most of the training,
only converging to 0 after the second drop in learning rate. These differences demonstrate that
worst-case perturbations, when injected into the latter layers’ weights, have a more powerful impact
in regularizing the optimization of AT. Consistent with our previous findings, AWP applied to the
latter layers can be considered as an approach to regularize the optimization of AT in those layers,
which successfully mitigates robust overfitting. This finding supports our analysis thus far, further
demonstrating that regularizing the optimization of the latter layers is key to improving the robust
generalization.

4 EXPERIMENT

In this section, we conduct extensive experiments to verify the effectiveness of RATLR and RATWP.
Details of the experiment settings and performance evaluation are introduced below.
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Table 1: Test robustness (%) on CIFAR10. We omit the standard deviations of 5 runs as they are
very small (< 0.6%).

Network Threat Model Method PGD-20 AA

Best Last Diff Best Last Diff

PreAct ResNet-18

L∞

AT 52.31 44.45 7.86 47.95 42.05 5.90
RATLR 51.57 49.07 2.50 46.89 45.35 1.54
RATWP 54.85 53.98 0.87 49.19 48.24 0.95

L2

AT 69.27 65.86 3.41 67.65 64.64 3.01
RATLR 68.97 68.21 0.76 64.26 63.44 0.82
RATWP 70.77 69.49 1.28 68.29 67.11 1.18

Wide ResNet-34-10

L∞

AT 55.57 47.37 8.20 52.13 46.09 6.04
RATLR 55.50 47.32 8.18 52.05 45.89 6.16
RATWP 58.92 58.23 0.69 54.46 53.98 0.48

L2

AT 70.57 68.99 1.58 69.44 66.92 2.52
RATLR 71.91 68.94 2.96 70.53 67.90 2.63
RATWP 71.31 69.19 2.12 70.12 67.35 2.77

Table 2: Test robustness (%) on CIFAR100. We omit the standard deviations of 5 runs as they are
very small (< 0.6%).

Network Threat Model Method PGD-20 AA

Best Last Diff Best Last Diff

PreAct ResNet-18

L∞

AT 28.07 21.24 6.83 23.61 18.41 5.20
RATLR 26.57 26.18 0.39 21.77 21.22 0.55
RATWP 30.91 30.42 0.49 25.52 24.57 1.05

L2

AT 41.38 35.34 6.04 37.94 33.58 4.36
RATLR 38.31 37.76 0.55 35.16 34.49 0.77
RATWP 45.23 44.93 0.3 41.32 39.47 1.85

Wide ResNet-34-10

L∞

AT 30.74 24.89 5.85 26.98 23.07 3.91
RATLR 30.57 23.53 7.04 26.72 22.53 4.19
RATWP 30.81 25.46 5.35 27.11 23.56 3.55

L2

AT 44.05 41.22 2.83 41.39 39.34 2.05
RATLR 44.43 40.42 4.01 41.47 39.42 2.05
RATWP 46.12 44.64 1.48 41.94 40.38 1.56

4.1 EXPERIMENTAL SETUP

We conduct extensive experiments on two realizations of RAT across three benchmark datasets
(CIFAR10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011) and CIFAR100 (Krizhevsky et al.,
2009)) and two threat models (L∞ and L2). We use PreAct ResNet-18 He et al. (2016) and Wide
ResNet-34-10 following the same hyperparameter settings for AT in Rice et al. (2020): for L∞ threat
model, ϵ = 8/255, step size is 1/255 for SVHN, and 2/255 for CIFAR-10 and CIFAR-100; for L2

threat model, ϵ = 128/255, step size is 15/255 for all datasets. For training, all models are trained
under 10-step PGD (PGD-10) attack for 200 epochs using SGD with momentum 0.9, weight decay
5 × 10−4, and a piecewise learning rate schedule with an initial learning rate of 0.1. RAT models
are decomposed into a series of 4 main layers, corresponding to 4 residual blocks of the ResNet
architecture. For RATLR, learning rate for layer 3&4 are set to a fixed value of 0.1. For RATWP

leveraging AWP in layer 3&4, γ = 1 × 10−2. For testing, the robustness accuracy is evaluated
under two different adversarial attacks, including 20-step PGD (PGD-20) and Auto Attack (AA)
Croce & Hein (2020b). Auto Attack is considered the most reliable robustness evaluation to date,
which is an ensemble of complementary attacks, consisting of three white-box attacks (APGD-CE
(Croce & Hein, 2020b), APGD-DLR (Croce & Hein, 2020b), and FAB (Croce & Hein, 2020a)) and
a black-box attack (Square Attack (Andriushchenko et al., 2020))
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Table 3: Test robustness (%) on SVHN. We omit the standard deviations of 5 runs as they are very
small (< 0.6%).

Network Threat Model Method PGD-20 AA

Best Last Diff Best Last Diff

PreAct ResNet-18

L∞

AT 53.10 44.12 8.98 45.09 40.36 4.73
RATLR 53.32 43.41 9.92 45.98 39.61 6.37
RATWP 57.91 54.32 3.58 50.32 44.82 5.49

L2

AT 66.29 64.73 1.55 63.55 60.14 3.41
RATLR 66.47 62.10 4.36 62.44 58.72 3.72
RATWP 71.66 65.68 5.98 65.17 59.64 5.53

Wide ResNet-34-10

L∞

AT 55.57 47.11 8.46 48.05 42.46 5.59
RATLR 55.34 46.81 8.53 47.94 42.12 5.82
RATWP 58.48 54.92 3.56 54.65 50.46 3.99

L2

AT 67.19 65.08 2.11 62.58 60.86 1.72
RATLR 67.50 64.24 3.27 62.79 59.94 2.85
RATWP 69.07 64.76 4.31 63.12 59.57 3.55

4.2 PERFORMANCE EVALUATION

In this section, we present the experimental results of RATLR and RATWP across three benchmark
datasets

CIFAR10 Results. The evaluation results on CIFAR10 dataset are summarized in Table 1, where
“Best” is the highest test robustness achieved during training; “Last” is the test robustness at the
last epoch checkpoint; “Diff” denotes the robust accuracy gap between the “Best” & “Last”. It
is observed that RATWP generally achieves the best robust performance compared to RATLR &
standard AT. Regardless, both RATLR and RATWP tighten the robustness gaps by a significant
margin, indicating they can effectively suppress robust overfitting.

CIFAR100 Results. We also show the results on CIFAR100 dataset in Table 2. We observe similar
performance like CIFAR10, where both RATLR and RATWP is able to significantly reduce the
robustness gaps. For robustness improvement, RATWP stands out to be the leading method. The
results further verify the effectiveness of the proposed approach.

SVHN Results. Finally, we summarize the results on the SVHN dataset in Table 3, where robustness
gap are also narrowed down to a small margin by RATWP. SVHN dataset is a special case where
RATLR strategy does not improve robust overfitting. Unlike CIFAR10 and CIFAR100, learning
rate decay in SVHN’s training does not have much connection to the sudden increases in robust test
performance or the prevalence of robust overfitting, and hence makes RATLR ineffective. Other than
this, The improvement in robust generalization gaps can be witnessed in all cases, demonstrating the
proposed approachs are generic and can be applied widely.

5 CONCLUSION

In this paper, we investigate the effects of different network layers on robust overfitting and identify
that robust overfitting is mainly driven by the optimization occurred at the latter layers. Following
this, we propose a robust adversarial training (RAT) prototype to specifically hinder the optimiza-
tion of the latter layers in the process of training adversarial network. The approach prevents the
model from overfitting the latter parts of the network, which effectively eliminate robust overfitting
of the network as a whole. We then further demonstrate two implementations of RAT: one locally
uses a fixed learning rate for the latter layers and the other utilize adversarial weight perturbation for
the latter layers. Extensive experiments show the effectiveness of both approaches, suggesting RAT
is generic and can be applied across different network architectures, threat models and benchmark
datasets to solve robust overfitting.
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(b) SVHN

Figure 4: Robust test performance of adversarial training using a fixed learning rate for different sets
of network layers, across datasets (CIFAR-100 and SVHN) under l∞ threat
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(b) SVHN

Figure 5: Robust test performance of adversarial training applying AWP for different sets of network
layers, across datasets (CIFAR-100 and SVHN) under l∞ threat

A MORE EVIDENCES FOR THE LAYER-WISE PROPERTIES OF ROBUST
OVERFITTING

In this section, we provide more empirical experiments to showcase the layer-wise properties of
robust overfitting across different datasets, model architectures and threat models. Specifically, we
use two strategies mentioned in Section 3.3 to put restriction on the optimization of different network
layers. We can always observe that there is no robust overfitting when we regularize the optimization
of layers 3 and 4 (the latter layers), while robust overfitting is prevalent for other settings. These
evidences further highlight the strong relation between robust overfitting and the optimization of the
latter layers.

A.1 EVIDENCES ACROSS DATASETS

We show that the layer-wise properties of robust overfitting is universal across datasets on CIFAR-
100 and SVHN. We adversarially train PreAct ResNet-18 under l∞ threat model on different datasets
with the same settings as Section 3.3. The results are shown in Figure 4 and 5. Note that for SVHN,
regularization strategy utilizing a fixed learning rate (RATLR) for does not improve robust overfitting
(Figure 4). Unlike CIFAR10 and CIFAR100, SVHN’s training overfits way before the first learning
rate decay. Also, learning rate decay in SVHN’s training does not have any relation to the sudden
increases in robust test performance or the appearance of robust overfitting. Hence, SVHN dataset
is a special case where RATLR does not apply. For all other cases, robust overfitting is effectively
eliminated by regularizing the optimization of layers 3 and 4.

A.2 EVIDENCES ACROSS THREAT MODELS

We further demonstrate that the generality of layer-wise properties of robust overfitting by conduct-
ing experiments under l2 threat model across datasets. The settings are the same as Section 3.3.
The results are shown in Figure 6 and 7. Under l2 threat model, except for SVHN dataset where
regularization strategy utilizing a fixed learning rate (RATLR) does not apply, robust overfitting is
effectively eliminated by regularizing the optimization of layers 3 and 4.
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Figure 6: Robust test performance of adversarial training using a fixed learning rate for different sets
of network layers, across datasets (CIFAR-10, CIFAR-100 and SVHN) under l2 threat
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(c) SVHN

Figure 7: Robust test performance of adversarial training applying AWP for different sets of network
layers, across datasets (CIFAR10, CIFAR-100 and SVHN) under l2 threat
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