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ABSTRACT

While most existing self-supervised 3D feature learning methods mainly focus
on point cloud data, this paper explores the inherent multimodal attributes of 3D
objects. We propose to jointly learn effective features from different modalities
including image, point cloud, and mesh with heterogeneous networks from un-
labeled 3D data. Our proposed novel self-supervised model learns two types of
distinct features: modality-invariant features and modality-specific features. The
modality-invariant features capture high-level semantic information across differ-
ent modalities with minimum modality discrepancy, while the modality-specific
features capture specific characteristics preserved in each modality. These two
types of features provide a more comprehensive representation for 3D data. The
quality of the learned features are evaluated on different downstream tasks in-
cluding 3D object recognition, 3D within-modal retrieval, and 3D cross-modal
retrieval tasks with three data modalities including image, point cloud, and
mesh. Our proposed method significantly outperforms the state-of-the-art self-
supervised methods for all the three tasks and even achieves comparable perfor-
mance with the state-of-the-art supervised methods on the ModelNet10 and Mod-
elNet40 datasets.

1 INTRODUCTION

Figure 1: The proposed self-supervised model
jointly learns two types of distinct features:
modality-invariant features and modality-specific
features. The modality-invariant features capture
features for multiple modalities in the same met-
ric space making the cross-modal retrieval task
possible, while the modality-specific features en-
code complementary information among different
modalities and the fusion of these features can be
used for downstream tasks such as recognition.

Self-supervised learning methods learn visual
features from large-scale datasets without re-
quiring any manual annotations. The core
of self-supervised learning is to define a pre-
text task and learn visual features through the
processing of accomplishing the pretext task.
Since it can be easily scaled up to large-scale
datasets, recently some self-supervised meth-
ods achieved comparable or even better perfor-
mance on some downstream tasks than super-
vised methods (Asano et al., 2019; Chen et al.,
2020; He et al., 2019; Jing & Tian, 2019; Misra
& van der Maaten, 2019).

Most of the existing self-supervised learning
methods focus on learning features for only one
modality. As a rising trend to model 3D vi-
sual features, various methods were proposed
to learn point cloud features from point cloud
either by reconstructing point cloud (Achliop-
tas et al., 2017; Gadelha et al., 2018; Yang
et al., 2018; Zhao et al., 2019b), by generating
point cloud with Generative Adversarial Net-
works (Li et al., 2018a; Sun et al., 2018; Wu
et al., 2016), or by accomplishing pre-defined
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pretext tasks (Hassani & Haley, 2019; Zhang & Zhu, 2019). Recently Jing et al. started to ex-
plore multimodal correspondence of 3D data as a supervision signal for 3D self-supervised feature
learning (Jing et al., 2020).

Generally, 3D data are inherently multimodal such as mesh, point cloud, multi-view images, etc. The
correspondence among multiple modalities is a rich source of supervision signals for self-supervised
learning. However, only a few work (Jing et al., 2020) attempted to utilize the multimodal corre-
spondence for self-supervised learning. To fully explore the potential of using it for self-supervised
learning, as shown in Fig. 1, we propose a novel framework to jointly learn modality-invariant and
modality-specific features for 3D objects.

The modality-invariant features aim to reduce modality gaps. For each object, no matter its modal-
ity, the features from different modalities are firstly extracted by different encoders and then mapped
into the same universal space to reduce the modality discrepancy. Although these features are ex-
tracted from different modalities, the features for each object share the same underline high-level
semantic information such as the context and structure of the objects. Mapping these features to the
same space helps the network to capture the shared correlated features that are invariant to different
modalities. The modality-invariant features can be directly compared making the 3D cross-modal
retrieval task feasible.

Different from the modality-invariant features, our proposed model also learns modality-specific
features that preserve specific characteristics of each modality. For each object, each modality has
distinctive characteristics such as images explicitly encode texture information while point clouds
explicitly encode the 3D local structure of the objects. The representations from different modalities
encode features from different perspectives and might be complementary to each other. Therefore,
the features from different modalities can be fused to form a more robust and comprehensive rep-
resentation for the data samples which can potentially benefit downstream tasks such as 3D object
recognition.

These modality-specific features along with the modality-invariant features in a common space
jointly provide a comprehensive multimodal representation of 3D objects. To learn both modality-
invariant and modality-specific features, we propose three different constraints: cross-modal invari-
ant constraint enforces the network to maximize the similarity of features from different modalities
for the same object, cross-view invariant constraint enforces the network to maximum similarity
of features from different views of data for objects in the same modality, and soft orthogonal con-
straint avoids the redundancy between the modality-invariant and modality-specific features. Our
proposed framework is evaluated on different downstream tasks including 3D object recognition,
3D within-domain retrieval, and 3D cross-modal retrieval tasks using two popular 3D object bench-
mark datasets (i.e. ModelNet40 and ModelNet10) with three different modalities (i.e.image, point
cloud, and mesh). In both datasets with all the downstream tasks, our proposed framework signifi-
cantly outperforms the state-of-the-art self-supervised models. The main contributions of this paper
are summarized as follows:

• We propose a novel self-supervised learning framework to jointly learn modality-invariant
and modality-specific features for 3D objects without using any manual labels.

• To the best of our knowledge, we are the first to extensively explore the self-supervised 3D
cross-modal retrieval for 3D objects with three modalities including image, point cloud,
and mesh.

• Our proposed method significantly outperforms the state-of-the-art self-supervised meth-
ods on multiple downstream tasks and even achieves comparable performance with the
state-of-the-art supervised methods on the ModelNet10 and ModelNet40 datasets.

2 RELATED WORK

Self-supervised 2D Feature Learning: Many methods have been proposed to learn visual features
from unlabeled 2D data including videos and images. Based on the source of supervision signal,
there are four types of self-supervised learning methods: generation-based method, context-based
method, free semantic label-based method, and cross-modal-based method. The generation-based
methods learn features by reconstructing the data such as generating images or videos with GAN
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(Goodfellow et al., 2014; Ledig et al., 2017; Zhang et al., 2016; Srivastava et al., 2015). The context-
based methods learn features by using spatial context or temporal context including Jigsaw puzzle
(Noroozi & Favaro, 2016), geometric transformation (Gidaris et al., 2018; Jing & Tian, 2018), clus-
tering (Caron et al., 2018), frame order reasoning (Misra et al., 2016). The free semantic label-based
methods learn features either by data generated by game engines or to distil features from other un-
supervised learning features (Pathak et al., 2017). The cross-modal-based methods learn features by
the correspondence between a pair of channels of data including video-audio (Korbar et al., 2018)
or video-text. Recently, more researchers explore to apply these self-supervised learning methods
to 3D point cloud data (Hassani & Haley, 2019; Jing et al., 2020; Zhang & Zhu, 2019; Sauder &
Sievers, 2019).

Self-supervised 3D Feature Learning: Several self-supervised learning methods have been pro-
posed to learn features for 3D point cloud objects by reconstructing point cloud data (Achlioptas
et al., 2017; Gadelha et al., 2018; Yang et al., 2018; Zhao et al., 2019b), by generating point cloud
with GANs (Li et al., 2018a; Sun et al., 2018; Thabet et al., 2019; Wu et al., 2016), or by training
networks to solve pre-defined pretext tasks (Hassani & Haley, 2019; Jing et al., 2020; Sauder &
Sievers, 2019; Zhang & Zhu, 2019). Sauder et al. proposed to learn point cloud features by training
networks to recognize the relative position of two segments of point cloud (Sauder & Sievers, 2019).
Zhang et al. designed clustering and contrastive as pretext task to train networks to learn point cloud
features (Zhang & Zhu, 2019). Hassani et al. proposed to train networks with multiple pre-defined
pretext tasks including clustering, prediction, and reconstruction for point cloud data (Hassani &
Haley, 2019). Jing et al. proposed to utilize cross-modal relations of point clouds and multi-view
images as the supervision signal to jointly learn image and point cloud features for 3D objects (Jing
et al., 2020). However, the point cloud and image features learned by the network in (Jing et al.,
2020) are not modality-invariant. To thoroughly utilize the cross-modal coherent attributes of 3D
data, here we propose to learn modality-invariant and modality-specific features for 3D objects with
three different modalities including image, point cloud, and mesh.

Multimodal Feature Learning: The multimodal feature learning has been widely studied in other
research fields including video action recognition (Feichtenhofer et al., 2016; Simonyan & Zis-
serman, 2014; Wang et al., 2015), video captioning (Venugopalan et al., 2015), cross-modal re-
trieval (Ging et al., 2020; Lee et al., 2018; Li et al., 2019b), etc. The features from different modali-
ties usually capture features from different perspectives, therefore, these features might be comple-
mentary to each other. However, the multimodal feature learning has not been widely explored in
3D object recognition task which is a fundamental task for 3D applications. Our model can learn
modality-specific features and the fusion of the modality-specific features from multiple modalities
can provide a more comprehensive representation for 3D objects.

Cross-Modal Retrieval Task: The cross-modal retrieval aims to retrieval data from one modality
by using the query from another modality (e.g. retrieval image using text) (Ging et al., 2020; Lee
et al., 2018; Li et al., 2019b; Wang et al., 2017; Zhen et al., 2019). The challenge for this task
is to learn features with minimum modality discrepancy for data from multiple modalities. Many
deep learning methods have been proposed for retrieval task such as adversarial cross-modal re-
trieval (ACMR) (Wang et al., 2017) and deep supervised cross-modal retrieval (DSCMR) (Zhen
et al., 2019). Normally, all these methods require large-scale labelled datasets for training. In this
paper, we explore a less studied task, 3D cross-modal retrieval, in a self-supervised learning way.
Our model can learn modality-invariant features without using any manual labels while achieves
comparable performance to the state-of-the-art supervised methods.

3 METHOD

An overview of the proposed framework is shown in Fig. 2. The core of our method is to optimize
heterogeneous networks to jointly learn both modality-invariant and modality-specific features. The
framework contains three heterogeneous feature encoders to extract hidden features for three dif-
ferent data modalities. Then these hidden features for each modality are mapped into two types of
spaces: one is the universal feature space for the modality-invariant features and the other is the
modality-specific space of each data modality for the modality-specific features. The entire frame-
work is jointly trained end-to-end with a combination of our proposed constraints. The general
formulation of our proposed method is described in the following subsections.
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Figure 2: An overview of the proposed self-supervised modality-invariant and modality-specific
feature learning for 3D objects. The hidden features for mesh, point cloud, and image are extracted
by corresponding encoders, then these hidden features for each modality are mapped into two spaces
including a universal space for capturing modality-invariant features and a private feature space for
each modality for capturing modality-specific features. The self-supervised learned features can be
further used for various downstream tasks such as 3D cross-modal retrieval and multimodal fusion
for 3D recognition.

3.1 PROBLEM SETUP

For a dataset D contains N unlabeled instances where the i-th instance di is a set of M modalities,
it can be formulated as:

D = {di}Ni=1, di = {xmi }Mm=1. (1)

Here, each data instance di consists of {x1i , x2i , · · · , xMi } in M different modalities. Normally
the learned representations for these M modalities are in different feature spaces and their sim-
ilarities cannot be directly measured. Our proposed model learns two types of distinct features
for each modality xmi : modality-invariant features Imi which are invariant to the modality, and
modality-specific features Sm

i which model the specific characteristics preserved in each modal-
ity. The modality-invariant features Imi and the modality-specific features S1

i ,S
2
i , ...,S

m
i provide a

more comprehensive representations for the object di. All these features are jointly learned with our
proposed framework for each modality from unlabeled data.

3.2 MULTIMODAL FEATURE ENCODING

For each data instance di, each modality sample xmi is firstly mapped into a hidden vector Fm
i by a

feature encoder Gm specifically designed for the modality m:
Fm
i = Gm(θm, x

m
i ), (2)

while θm is the learnable parameters ofGm. Normally, this hidden representation Fm is in a separate
modality specific space. Given a dataset with M different modalities, there are M different feature
encoders as G1(θ1, x

1
i ), G2(θ2, x

2
i ), ..., Gm(θM , x

M
i ). Therefore, for each instance di, the hidden

vectors {F1
i ,F

2
i , ...,F

m
i } are obtained by M encoders.

To jointly learn both modality-invariant and modality-specific features, our model maps the hidden
representation Fm

i for each modality xmi into two feature spaces (i.e. the universal feature and
the modality-specific spaces.) To learn these two distinct feature spaces, two parallel heads with
neural networks are added on each feature encoder Gm(θm, x

m
i ) to map this hidden vector into both

modality-invariant and modality-specific features. The mapping process for hidden vector Fm
i of

data xmi can be formulated as:
Imi = Em(ωm,Fm

i ), (3)
Sm
i = Hm(δm,Fm

i ), (4)
while Hm maps the hidden representation Fm

i to the universal feature space and Em maps Fm
i into

the modality-specific feature space. During the learning, Imi and Sm
i can be obtained by training the

entire network with a combination of our proposed three different constraints.
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3.3 SELF-SUPERVISED MODALITY-SPECIFIC FEATURE LEARNING

The modality-specific features aim to model the specific characteristics preserved in each modal-
ity. We propose the cross-view invariant constraint to learn the modality-specific features for each
modality. The cross-view constraint maximizes the similarity of features from different views of the
same object while minimizes the similarity of features from the data of different objects. Inspired
by the recent remarkable progress achieved by contrastive learning (Chen et al., 2020), we employ
contrastive loss to capture the modality-specific features.

Given each data sample xmi from modality m, the data of two views {xm1
i , xm2

i } can be obtained
by performing a set of data augmentation techniques over the data xmi . The general hidden vectors
{Fm1

i ,Fm2
i } are firstly extracted by feature encoder Gm(θm), then the modality-specific features

are extracted by the network Hm(δm). Suppose the extracted modality-specific features for data
{xm1

i , xm2
i } are Sm1

i and Sm2
i , the cross-view invariant constraint is optimized by the contrastive

loss over the extracted modality-specific features among a batch as:

LS =
∑

1≤m≤M

Ls(Sm1
i , Sm2

i ), (5)

Ls(Sm1
i , Sm2

i )=−log
h
(
Sm1
i ,Sm2

i

)
h
(
Sm1
i ,Sm2

i

)
+

B∑
k=1

1{k 6=i}h
(
Sm1
i ,Sm2

k

) , (6)

where h(u,v) = exp
(

u>v
||u||2||v||2

/τ
)

is the exponential of cosine similarity measure, B is the batch size, and
τ is the temperature hyper-parameter.

This objective function enforces the networks to capture mutual information across different views of the data
from the same modality. After the training finished, the encoder Gm(θm) and the modality-specific heads
Hm(δm) can capture modality-specific features for each modality.

3.4 SELF-SUPERVISED MODALITY-INVARIANT FEATURE LEARNING

For modality-invariant feature learning from data of multiple modalities, the cross-modal invariant constraint
is proposed to enforce the network to capture the high-level semantic information that exists across all the
modalities and learns the features that invariant to the modality. For each object, we have a collection of m
modalities {M1, . . . ,Mm}. To capture the modality-invariant features across different modalities, we train
the network with pair-wise multimodal pairs and to maximize the high-level semantic information that co-
exists between two different pairs. For any two different modalities of Ma and Mb, the high-level semantic
information across the modalitiesMa andMb can be captured by maximizing the feature similarity between the
features from Ma and Mb. Given any two modalities of data from the same object, the network is optimized
over the features extracted by learning the contrastive loss over the features IMa

i and IMb
i extracted by the

modality invariant feature encoder Em(ωm).

To fully utilize the multimodal correspondence, we train the network with all the pair combinations (a, b) from
M modalities. In this way, the high-level semantic information across all the modalities can be captured by
learning the relations among the modality pairs. By considering all the pairs of different modalities, the entire
modality-invariant objective function that we optimize is:

LI = −
∑

1≤a<b≤M

log
h
(
IMa
i ,IMb

i

)
B∑

k=1

h
(
IMa
i ,IMb

k

) . (7)

By optimizing with all the pairs, the high-level semantic information across all the modalities is maximized
through the learning process. Ideally, more modalities of data provide more supervision signal from the cor-
respondences and potentially can lead to better performance. With this objective function, the features from
different modalities are directly optimized in the same universal space, therefore, are modality-invariant.

3.5 SOFT ORTHOGONAL FEATURE LEARNING

Ideally, our model jointly learns the modality-invariant and modality-specific features. However, without other
constraints, the model may learn redundant features between the two types of features. To further ensure the
model to learn different aspects of the data for each modality, we further constrain the relation between the
modality-invariant features Imi and modality-specific features Sm

i by enforcing a soft orthogonality constraint
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between a pair of features. For each batch of data, both the modality-invariant and modality-specific features
are firstly normalized to zero mean and unit l2 norm. Let HI

m and HS
m be the matrices whose rows denote

the hidden vectors Imi and Sm
i for modality m of each object. Then the orthogonality constraint between the

invariant and specific feature vectors for modality m is calculated as:∥∥∥HI
mHS>

m

∥∥∥2
F
. (8)

Here, ‖ · ‖2F is the squared Frobenius norm. In addition to the constraints between the invariant and specific
vectors, we also add orthogonality constraints between the modality-specific vectors. The overall difference
loss is then computed as:

LO =
∑

1≤i≤M

∥∥∥HI
Mi

HS>
Mi

∥∥∥2
F
+

∑
1≤i<j≤M

∥∥∥HS
Mi

HS>
Mj

∥∥∥2
F
. (9)

3.6 JOINTLY LEARNING

When jointly trained with the above three objective functions, a linear weighted combination of all the loss
functions is employed to optimize the entire framework. The final loss to optimize the framework is as:

L = αLI + βLS + λLO. (10)

After the jointly training finished, the network encoder for each modality is obtained as the pre-trained model
and can be used for other downstream tasks. The joint training enables the feature encoders of different modal-
ities to learn comprehensive and robust features.

3.7 FRAMEWORK ARCHITECTURE

The effectiveness and generalizability of our proposed model are evaluated on 3D datasets with three different
modalities including image, point cloud, and mesh. As shown in Fig. 2, our framework consists of three
heterogeneous backbone networks including an image feature encoder, a point cloud feature encoder, and a
mesh feature encoder. Two distinct parallel MLP layers are employed over the output of each feature encoder to
produce the modality-invariant and modality-specific features for each modality. The details of the framework
architecture and implementation details can be found in the appendix.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Self-supervised learning: The proposed framework is jointly trained using SGD optimizer with an initial
learning rate of 0.001, the moment of 0.9, and weight decay of 0.0005. The network is optimized with a mini-
batch size of 96 for 90, 000 iterations and the learning rate decreases by 90% every 30, 000 iterations. Data
augmentation used for point cloud network includes randomly rotated between [0, 2π] degrees along the up-
axis, randomly jittered the position of each point by Gaussian noise with zero mean and 0.02 standard deviation.
Data augmentation for images includes randomly cropped and randomly flipped with 50% probability. Data
augmentation for mesh includes random rotation with a degree between [0, 2π].

Datasets: Two 3D object benchmarks including ModelNet40 (Wu et al., 2015) and ModelNet10 (Wu et al.,
2015) are used to evaluate the proposed method. The ModelNet40 contains about 12.3k objects covering 40
object classes, while about 9.8k are used for training and about 2.5k for testing. The ModelNet10 consists of
4, 900 objects belong to 10 categories with 3, 991 for training and 909 for testing.

4.2 BENCHMARKING SELF-SUPERVISED 3D OBJECT RECOGNITION

Following the prior state-of-the-art self-supervised learning methods (Achlioptas et al., 2017; Chen et al., 2003;
Gadelha et al., 2018; Girdhar et al., 2016; Hassani & Haley, 2019; Jing et al., 2020; Kazhdan et al., 2003;
Sharma et al., 2016; Wu et al., 2016; Yang et al., 2018; Zhao et al., 2019b), we compare the performance with
them on 3D object recognition task reporting the TOP-1 classification accuracy of a Support Vector Machine
(SVM) over the self-supervised learned features. Compared to the existing methods which mainly learn features
for one modality, our method jointly learns features from multiple modalities which makes it possible to fuse
the multimodal features for more robust representations. To thoroughly evaluate the performance, we compare
the performance by using the single modality and by using the features fused from multiple modalities on
the ModelNet40 dataset. For the results of using multiple modalities, the features from these modalities are
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Method Modality Acc (%)
SPH (Kazhdan et al., 2003) Mesh 68.2
T-L Network (Girdhar et al., 2016) Point 74.4
LFD (Chen et al., 2003) Image 75.5
VConv-DAE (Sharma et al., 2016) Point 75.5
3D-GAN (Wu et al., 2016) Point 83.3
FV (Sánchez et al., 2013) Image 84.8
Latent-GAN (Achlioptas et al., 2017) Point 85.7
MRTNet-VAE (Gadelha et al., 2018) Point 86.4
Contrast (Zhang & Zhu, 2019) Point 86.8
FoldingNet (Yang et al., 2018) Point 88.4
PointCapsNet (Zhao et al., 2019b) Point 88.9
MultiTask (Hassani & Haley, 2019) Point 89.1
XMV (Jing et al., 2020) Point 89.8
ContextPred (Sauder & Sievers, 2019) Point 90.6
Orientation (Poursaeed et al., 2020) Point 90.7
Ours Image 87.0
Ours Point 89.7
Ours Mesh 90.4
Ours Image & Point 90.6
Ours Image & Mesh 91.5
Ours Mesh & Point 92.3
Ours 3 Modalities 92.9

Table 1: The comparison with the state-of-
the-art self-supervised methods for 3D object
recognition on the ModelNet40 dataset.

Method Modality Acc (%)
VoxNet (Maturana & Scherer, 2015) Voxel 85.9
Subvolume (Qi et al., 2016) Voxel 89.2
PointNet (Qi et al., 2017a) Point 89.2
MVCNN (Su et al., 2015) Image 90.1
Pairwise (Johns et al., 2016) Image 90.7
MeshNet (Feng et al., 2019) Mesh 91.9
PointNet++ (Qi et al., 2017b) Point 91.9
SpecGCN (Wang et al., 2018) Point 92.1
PointCNN (Li et al., 2018b) Point 92.2
DGCNN (Li et al., 2019a) Point 92.2
PointWeb (Zhao et al., 2019a) Point 92.3
SpiderCNN (Xu et al., 2018) Point 92.4
KPConv (Thomas et al., 2019) Point 92.9
InterpCNN (Mao et al., 2019) Point 93.0
PointTransformer (Zhao et al., 2020) Point 93.7
Ours Image 87.0
Ours Point 89.7
Ours Mesh 90.4
Ours Image & Point 90.6
Ours Image & Mesh 91.5
Ours Mesh & Point 92.3
Ours 3 Modalities 92.9

Table 2: Comparison of our self-supervised
method over the state-of-the-art supervised
methods ModelNet40.

extracted and then concatenated together to represent the object, and the TOP-1 classification accuracy over the
concatenated features are reported for comparison.

The performance comparison against other state-of-the-art self-supervised methods is shown in Table 1. The
overall performance of our method are much better. When only one modality is used, our performance based on
mesh modality or point cloud modality is comparable to the-state-of-the-art methods. Compared to the other
two modalities, the performance based on image modality is lower and the performance can be improved if
more multi-view images are used to represent each object. When fusing any two modalities of features, the
performance is consistently improved, while the highest performance is achieved when all the modalities are
used. These results demonstrate that the features from multiple modalities are indeed complementary to each
other while validating the hypothesis of our method.

To demonstrate the strength and potential of our method, we further compare the performance of our self-
supervised method with the state-of-the-art supervised methods on 3D object recognition on the ModelNet40
dataset in Table 2. With the advantage of utilizing multimodal features, our proposed self-supervised method
even outperforms most of the supervised learning methods and the performance is only 0.8% lower than the
most recent Transformer-based method PointTransformer (Zhao et al., 2020). This demonstrates the potential
of utilizing the multimodal features for the fundamental 3D understanding tasks.

4.3 BENCHMARKING SELF-SUPERVISED 3D CROSS-MODAL AND WITHIN-MODAL
RETRIEVAL

Another advantage of our proposed method is that the learned modality-invariant features from different modal-
ities can be directly compared in the universal space. To thoroughly evaluate the performance of the learned
modality-invariant features, we verify the effectiveness with the self-supervised 3D cross-modal and within-
modal retrieval tasks among the modalities including image, point cloud, and mesh. The Euclidean distance
over the normalized modality-invariant features is used to measure the similarity of data from different modal-
ities. Following the convention, the Mean Average Precision (mAP) score is used to indicate the performance.

The learned modality-invariant features in the universal feature space for three different data modalities
make the cross-modal retrieval for 3D objects possible, which is, as far as we know, not explored by any
other self-supervised methods. To demonstrate the ability of our proposed method, we compare with two
types of methods: (1) other self-supervised 3D feature learning methods including XMV (Jing et al., 2020)
and Contrast (Zhang & Zhu, 2019); (2) the supervised cross-modal retrieval model DSCMR (Zhen et al.,
2019) which achieved the state-of-the-art performance on four image-text retrieval benchmarks including
Wikipedia (Pereira et al., 2013), Pascal (Rashtchian et al., 2010), NUS-WIDE-10k (Chua et al., 2009), and
XMediaNet (Peng et al., 2017; 2018) datasets. We conduct 6 pairs of cross-modal retrieval tasks (Mesh2Point,
Mesh2Image, Point2Mesh, Point2Image, Image2Point, and Image2Mesh) and 3 pairs of within-modal retrieval
tasks (Mesh2Mesh, Point2Point, and Image2Image) on the ModelNet40 dataset.

The performance comparison is shown in Table 3. The existing self-supervised learning methods normally only
learn modality-specific features for one or two modalities like Contrast (Zhang & Zhu, 2019) and XMV (Jing
et al., 2020), the learned features of these methods cannot be applied to cross-modal retrieval tasks, and their
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Task Self-Supervised Supervised

Method XMV Contrast Ours DSCMR
(Jing et al., 2020) (Zhang & Zhu, 2019) (Zhen et al., 2019)

3D Cross-Modal Retrieval
Image2Mesh — — 69.3 76.9
Image2Point — — 69.8 73.8
Point2Image — — 70.5 72.7
Mesh2Point — — 71.0 70.2
Point2Mesh — — 71.0 71.6
Mesh2Image — — 71.2 75.2

3D Within-Modal Retrieval
Image2Image 36.3 — 71.2 81.1
Point2Point 48.4 45.3 71.4 70.8
Mesh2Mesh — — 71.6 74.8

Table 3: The comparison with the self-supervised learning methods and a state-of-the-art supervised
method for the 3D cross-modal and within-modal retrieval tasks on the ModelNet40 dataset.

performance for the within-modal retrieval tasks are much lower due to lacking carefully designed constraints.
Our model learns modality-invariant features for multiple modalities and the performance for all the retrieval
tasks are much higher than these self-supervised learning methods (Jing et al., 2020; Zhang & Zhu, 2019) and
even outperform the supervised method DSCMR (Zhen et al., 2019) on some tasks such as Mesh2Point and
Point2Point. The performance comparison with these models demonstrates the effectiveness of the modality
invariance ability of the learned features.

4.4 ABLATION STUDY

To thoroughly evaluate the impact of each component of the propose model, we conducted two sets of ablation
studies to evaluate the impact of (1) each loss function and (2) different modalities. The results are shown in
Table 4 and Table 5.

Task LI LS LI , LS LI , LS , LO

3D Cross-Modal Retrieval
Image2Mesh 66.1 7.2 65.8 69.3
Image2Point 66.7 4.5 66.3 69.8
Point2Image 68.3 6.5 67.8 70.5
Mesh2Point 69.6 5.8 70.6 71.0
Point2Mesh 69.6 5.1 70.6 71.0
Mesh2Image 68.9 6.9 68.6 71.2

3D Within-Modal Retrieval
Image2Image 69.2 60.9 68.4 71.2
Point2Point 69.8 60.3 70.7 71.4
Mesh2Mesh 70.7 25.1 71.8 71.6

3D Multimodal Recognition
Multimodal 92.3 90.9 92.8 92.9

Table 4: Ablation study for evaluating impact
of each loss function to 3D retrieval and 3D
multimodal recognition tasks on ModelNet40.

Task Mesh-Image Image-Point Point-Mesh All
3D Cross-Modal Retrieval

Image2Mesh 60.2 — — 69.3
Image2Point — 62.9 — 69.8
Point2Image — 64.9 — 70.5
Point2Mesh — — 62.4 71.0
Mesh2Point — — 62.7 71.0
Mesh2Image 61.7 — — 71.2

Within-Modality 3D Retrieval
Image2Image 63.2 64.8 — 71.2
Point2Point — 70.3 62.0 71.4
Mesh2Mesh 67.3 — 64.1 71.6

3D Multimodal Recognition
Multimodal 90.9 89.9 91.5 92.9

Table 5: Ablation study for the number of
modalities for 3D object retrieval and recogni-
tion tasks on the ModelNet40 dataset. ‘All’ in-
dicates all the three modalities are used.

Ablation Study of Losses. The proposed framework is trained with a combination of three objective functions.
To thoroughly evaluate the impact of each objective function, we perform ablation studies on three downstream
tasks including cross-modal retrieval, within-modal retrieval, and recognition on the ModelNet40 dataset and
report the performance in Table 4. The LI is to enforce the network to capture modality-invariant features, and
it alone achieves relative high performance for both retrieval and recognition tasks. The LS is to enforce the
network to capture modality-specific features and the learned features are not modality-invariant which leads
to low performance for the cross-modal retrieval task. When the two objective functions LI and LS are jointly
employed, the performance of the recognition and most of the retrieval tasks are improved indicating the two
objective functions are complementary with each other. When all three objective functions are used, our model
achieves the best performance for all tasks demonstrating the effectiveness of our objective function design.

Ablation Study of Different Modalities. Our model is jointly trained on the data with three modalities in-
cluding image, point cloud, and mesh. Ideally, more modalities of data can provide the network with more
multimodal correspondences and can potentially lead to better performance. To thoroughly evaluate the impact
of the number of modalities, we conduct ablation studies by only training our framework with two modalities
and report the performance on both the recognition and retrieval tasks in Table 5. When only trained with two
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Figure 3: The qualitative visualization of modality-specific and modality-invariant features on the
ModelNet40 dataset.

modalities, the performance for both the retrieval and recognition tasks are lower than all the three modalities
are used during training. These results are consistent with our hypothesis that more modalities of data can
provide more supervision signals which can lead to better performance on downstream tasks.

4.5 COMPARING WITH MULTIMODAL SUPERVISED METHODS

Modality Supervised (%) Ours (Self-Supervised) (%)
Point Cloud (Li et al., 2019a) 91.85 92.62
Mesh (Feng et al., 2019) 83.70 92.62
Image (Su et al., 2015) 92.51 91.07
3 Modalities 93.83 94.05

Table 6: Performance comparison of our self-supervised learning method over the supervised coun-
terparts for 3D object recognition on the ModelNet10 dataset.

To demonstrate the advantage of the multimodal self-supervised learning, we compare supervised learning and
our proposed self-supervised learning method with the same backbone networks for 3D object recognition on
the ModelNet10 dataset. For the supervised training, we follow the exact setting as proposed in the papers (Feng
et al., 2019; Li et al., 2019a; Su et al., 2015). For the self-supervised learning, the features are extracted by our
learned models and then a Support Vector Machine (SVM) is used for performing the recognition.

The performance comparison are shown in Table 6. Even with a linear classifier, our proposed self-supervised
learning method achieves comparable performance with the supervised method using the same backbone net-
work. When the features from multiple modalities are fused together, the performance is significantly improved
for both methods. These results confirm the potential of self-supervised multimodal feature learning.

4.6 QUALITATIVE FEATURE VISUALIZATION

To visually demonstrate the ability of learning modality-specific and modality-invariant features, we compare
qualitative visualization of features from the ModelNet40 dataset by using the t-SNE method (Maaten & Hin-
ton, 2008). As shown in Fig. 3 (a), the distributions of the modality-specific features from three modalities
are different which confirms that the learned features are indeed modality-specific. Fig. 3 (b) shows that the
modality-invariant features extracted from different modalities have similar distributions and mixed in the com-
mon space indicating that the features are indeed modality-invariant.

5 CONCLUSION

In this paper, we have proposed a novel self-supervised learning method to jointly learn both modality-invariant
and modality-specific features from unlabeled 3D datasets. The features learned from different modalities
have been extensively evaluated on different tasks. Our method significantly outperforms other self-supervised
learning methods on multiple downstream tasks. The multimodal features learned by our model even achieves
comparable performance with the most recent state-of-the-art supervised methods on some tasks, indicating
that the self-supervised multimodal feature learning for 3D object is a promising research direction.
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A APPENDIX

A.1 FRAMEWORK ARCHITECTURE

As shown in the Fig. 2 in the main paper, our framework consists of three heterogeneous backbone net-
works including an image feature encoder, a point cloud feature encoder, and a mesh feature encoder. The
MeshNet (Feng et al., 2019), dynamic graph convolutional neural network (DGCNN) (Wang et al., 2019), and
ResNet (He et al., 2016) are employed as backbone networks to extract representation features from mesh,
point cloud, and image, respectively. The architecture of backbone networks is described as follows.

Point Cloud Feature Encoder: The 3D point cloud feature learning network (Gp) employs DGCNN as the
backbone model due to its capability to model local structures of each point by dynamically constructed graphs.
There are four EdgeConv layers and the number of kernels in each layer is 64, 64, 64, and 128, and the
EdgeConv layers aim to construct graphs over k nearest neighbors calculated by KNN and the features for
each point are calculated by an MLP over all the k closest points. After the four EdgeConv blocks, a 512-
dimension fully connected layer is used to extract per-point features for each point and then a max-pooling
layer is employed to extract global features for each object.

Mesh Feature Encoder: The backbone architecture for mesh data is MeshNet, denoted as Gm. MeshNet
contains three main blocks: spatial descriptor, structural descriptor, and mesh convolution block. The spatial
descriptor applies fully-connected layers (64, 64) to extract spatial features from face’s center. The structural
descriptor contains a face rotate convolution within fully-connected layers (32, 32) and (64, 64), and a face ker-
nel correlation with 64 kernels. Two mesh convolution blocks are used to aggregate features with neighboring
information which the input/output channels of spatial and structural features are configured as (64, 131, 256,
256) and (256, 256, 512, 512), respectively. After the two mesh convolution blocks, a fully-connected layer
(1024) further fuses the neighboring features and a max-pooling layer is employed to extract 512-dimension
global features from the aggregated features.

Image Feature Encoder: ResNet18 is employed as the image feature capture network (Gimg) for 2D images.
It contains four convolution blocks with a number of {64, 128, 256, and 512} kernels. Each convolution
block includes two convolution layers followed by a batch-normalization layer and a ReLU layer, except the
first convolution block which consists of one convolution layer, one batch-normalization layer, and one max-
pooling layer. A global average pooling layer, after the fourth convolution blocks, is used to obtain the global
features for each image. Unless specifically pointed out, a 512-dimensional vector after the global average
pooling layer is used for all our experiments.

A.2 ABLATION STUDY FOR NUMBER OF VIEWS FOR IMAGE FEATURES

For each object, the features from multiple views of images are extracted and then averaged to obtain the object-
level features. Ideally, higher performance should be obtained when more views of images are available since
the features of images from different perspectives are complementary with each other. To evaluate the impact
of the number of views for image features, we conduct experiments to evaluate the recognition performance
with different number of views on the ModelNet40 dataset.

As shown in Table 7, when only one view of images is available, the performance of recognition is only
81.65%, and the performance is significantly boosted when more views of images are available. These results
are consistent with our hypothesis that more views of images lead to better performance.
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# Views Recognition Accuracy(%)
1 81.65
2 84.31
4 85.56
8 86.83
16 87.47
32 88.04

Table 7: Ablation study for evaluating impact of numbers of images for the 3D recognition task. ”#
Views” indicates how many views of images are used to obtain the image features.

Task Results
Image2Mesh 65.67
Image2Point 65.19

Cross-Modal Point2Image 65.97
Retrieval Mesh2Point 64.95

Point2Mesh 65.03
Mesh2Image 66.35

Within-Modal Image2Image 66.44

Retrieval Point2Point 65.30
Mesh2Mesh 66.16

Recognition Multimodal 94.05

Table 8: More results for the 3D cross-modal retrieval, 3D within-modal retrieval, and 3D multi-
modal recognition on the ModelNet10 dataset.

A.3 MORE RESULTS ON THE MODELNET10 DATASET

Due to the space limitation, we only reported the performance for the recognition task on the ModelNet10
dataset in the main paper. Table 8 shows a complete results of our model for the 3D cross-modal retrieval,
3D within-modal retrieval, and 3D multimodal recognition on the ModelNet10 dataset. As shown in both
Table 8 and Table 6 in the main paper, our proposed self-supervised learning method achieves comparable
performance with the supervised method using the same backbone network for the recognition task. These
results demonstrate the effectiveness of our design.

B QUALITATIVE VISUALIZATION OF CROSS-MODAL RETRIEVAL

Fig. 4 shows the top-10 retrieval results for four different queries from the ModelNet40 dataset. The similarity
between two objects are measured by Euclidean distance over the L1 normalized modality-invariant features.
The results show that the objects with similar appearance are closer in the feature space even though they are
from different modalities which confirm that the network indeed can learn modality-invariant features from
unlabeled data.
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Figure 4: The Top-10 ranking for six query samples on cross-modal retrieval on the ModelNet40
dataset by our models. All the top-10 selected samples have very similar appearance as the query
data.
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