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ABSTRACT

The Contextual Graph Markov Model is a deep, unsupervised, and probabilistic
model for graphs that is trained incrementally on a layer-by-layer basis. As with
most Deep Graph Networks, an inherent limitation is the lack of an automatic
mechanism to choose the size of each layer’s latent representation. In this paper,
we circumvent the problem by extending the Contextual Graph Markov Model with
Hierarchical Dirichlet Processes. The resulting model for graphs can automatically
adjust the complexity of each layer without the need to perform an extensive
model selection. To improve the scalability of the method, we introduce a novel
approximated inference procedure that better deals with larger graph topologies.
The quality of the learned unsupervised representations is then evaluated across a
set of eight graph classification tasks, showing competitive performances against
end-to-end supervised methods. The analysis is complemented by studies on the
importance of depth, hyper-parameters, and compression of the graph embeddings.
We believe this to be an important step towards the theoretically grounded and
automatic construction of deep probabilistic architectures for graphs.

1 INTRODUCTION

It can be argued that one of the most daunting processes in machine learning is the selection of
appropriate hyper-parameters for the task at hand. Indeed, due to the data-dependent nature of the
learning problem, there usually exists no single model configuration that works well in all contexts.
The most straightforward approach to mitigate this issue has typically been to rely on standard model
selection techniques such as grid and random searches (Bergstra & Bengio, 2012), where the range
of values to try are fixed a priori by the user. Nonetheless, there has always been an interest in
alternative methods that automatically choliteratureose the “right” values for some hyper-parameters
(Gershman & Blei, 2012; He et al., 2021). In the Bayesian nonparametric (BNP) literature, which is
of particular interest for this work, the complexity of Bayesian models automatically grows with the
data (Teh et al., 2006), e.g., a BNP mixture model can adjust the number of its mixtures to better fit
the empirical data distribution, thus freeing the user from the burden of choosing the most important
(if not all) hyper-parameters.

In recent years, much research effort has been devoted to the theoretical and practical development
of Deep Graph Networks (DGNs), which originated from Micheli (2009); Scarselli et al. (2009).
DGNs can deal with graphs of varying topology without the need for human intervention, and they
rely on local and iterative processing of information commonly known as message passing; for a
thorough description of some of the most popular DGNs in the literature (and of the more general
graph representation learning field) we refer the reader to recent surveys on the topic (Bronstein et al.,
2017; Battaglia et al., 2018; Bacciu et al., 2020b; Wu et al., 2020). Despite most of these methods
belonging to the neural world, the Contextual Graph Markov Model (CGMM) stands out as a deep,
unsupervised, constructive and fully probabilistic model that has shown competitive performances
on downstream graph classification tasks (Bacciu et al., 2018; 2020a). CGMM trains a stack of
Bayesian networks, where each layer is conditioned on the frozen posteriors of the nodes of the graph
computed at previous layers. Each layer optimizes the likelihood of the data using the Expectation
Maximization (EM) algorithm (Moon, 1996) with closed-form solutions. Like its neural counterparts,
for which the number of hidden units in each layer has typically been selected as a hyper-parameter,
CGMM relies on model selection to choose the “reasonable” number of hidden states associated with
the categorical latent variables. Differently from the neural methods though, CGMM is amenable to
a BNP extension, as each layer is essentially a conditional mixture model.
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The main challenge we tackle in this work is the adaptation of CGMM to the elegant theoretical
framework of BNP methods, in order to automatize the choice of its hyper-parameters, e.g., the number
of states. The principal difficulty lies in how to handle the variable-size number of neighbors of each
node inside this framework, which in CGMM is solved by (possibly weighted) convex combinations
of the neighbors’ posteriors. The resulting model, called Infinite Contextual Graph Markov Model
(ICGMM), can generate as many latent states as needed to solve the unsupervised density estimation
task at each layer. To the extent of our knowledge, this is the first Bayesian nonparametric model
for adaptive graph processing. As a second contribution, we provide a faster implementation of our
method that scales to the social datasets considered in this work while still providing state of the art
results. We compare ICGMM against CGMM as well as end-to-end supervised methods on eight
different graph classification tasks, following a fair, robust and reproducible experimental procedure
(Errica et al., 2020). Results show that ICGMM performs on par or better than the related models.
We complement the analysis with studies on the effects of depth and generation of our model’s latent
states. All in all, we believe that ICGMM is an important (if not the first) step towards a theoretically
grounded and automatic construction of Deep Bayesian Graph Networks.

2 RELATED WORKS

The fundamental Bayesian nonparametric literature that is relevant to our work relates to the families
of Dirichlet Processes (DPs) (Gershman & Blei, 2012) and Hierarchical Dirichlet Processes (HDPs)
(Teh et al., 2006). In its most essential definition, a DP is a stochastic process that defines a probability
distribution over other probability distributions. A DP is parametrized by a base distributionG0, i.e.,
the expected value of the process, and a scaling parameter α0 that controls the concentration of DP
realizations aroundG0 (Teh, 2010). In particular, the Chinese Restaurant Process (Aldous, 1985),
the Stick-breaking Construction (Sethuraman, 1994) and the Pòlya urn scheme (Hoppe, 1984) are
all alternative ways to formalize a DP. Moving to HDPs is conceptually straightforward, in that it
considers the base distributionG0 as a draw from another DP parametrized by a base distribution
H and a scaling parameter γ. For a detailed treatment of learning with DP and HDPs, the reader
can check a number of tutorials and surveys (Teh et al., 2006; Orbanz & Teh, 2010; Gershman &
Blei, 2012). Our work shares similarities with the Infinite Hidden Markov Model for temporal series
(Beal et al., 2002), with the fundamental differences that causality assumptions have to be relaxed to
deal with graphs and that the hidden variables’ distributions are conditioned on a varying number of
observations.

Most of the recent advances of the graph representation learning field are based on the so called
feedforward DGNs (Bacciu et al., 2020b). These models rely on “spatial” graph convolutional layers,
i.e., the state of each node in the graph is determined by applying a permutation invariant function to
its neighboring states computed at the previous layers. Combined with the depth of the architecture,
these models propagate contextual information across the graph, a process also known as “message
passing” (Gilmer et al., 2017). However, to the best of our knowledge, the only neural method for
graphs that automatically constructs part of its architecture in a principled way is the pioonering work
of Micheli (2009). In fact, the Neural Network for Graphs (NN4G), known to be the first spatial
DGN, relies on the Cascade Correlation learning algorithm (Fahlman & Lebiere, 1990) to determine
the number of layers to use for the task under investigation.

Instead, despite being loosely related to our work, AutoML methods for graphs are yet another way
to automatize the selection of all hyper-parameters of a DGN (He et al., 2021). In particular, the
Auto-GNN technique relies on Neural Architecture Search to discover, based on performance trends,
an adequate configuration for the supervised task (Zhou et al., 2019). We differ from these approaches
in two fundamental respects: first, we build upon theoretical grounds rooted in the BNP literature;
secondly, we determine the right number of states in a completely unsupervised fashion.

In what follows, we provide a formalization of the Infinite Contextual Graph Markov Model. Apart
from the technical details, our hope is to show how the cross-fertilization of ideas from different
research fields can help us advance the state of the art, both in the theoretical and empirical sense.
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3 METHOD

This Section introduces the details of our method. Since we borrow ideas from two relatively distant
fields, we define a unified mathematical notation and jargon as well as a high-level overview of the
CGMM and HDP models to ease the subsequent exposition.

We define a graph as a tuple g = (Vg, Eg,Xg) where Vg is the set of entities (also referred to as nodes
or vertices), Eg is the set of oriented edges (u, v) connecting node u to v, and the symbol Xg stands
for the set of node attributes associated with the graph g. Also, the neighborhood of a node u is the
set of nodes connected to u, i.e., Nu = {v ∈ Vg|(v, u) ∈ Eg}. For the purpose of this work, we will
define the (categorical or continuous) node feature of a node u with the term xu ∈ Xg .

3.1 BASICS OF CGMM

To best understand how and why this work extends CGMM, we now give a brief but essential
description of its main characteristics. CGMM is, first and foremost, a deep architecture for the
adaptive processing of graphs. Like other DGNs, it maps the entities of a graph, if not the graph itself,
into latent representations. More specifically, we can get one of such representations for each layer of
the architecture and then concatenate all of them to obtain richer node and graph embeddings. The
latter is usually obtained as a global aggregation of the former.

The second peculiarity of CGMM is that it is constructive, i.e., trained in an incremental fashion:
after one layer is trained, another one can be stacked atop of it and trained using the frozen outputs of
the previous layer. This idea is borrowed from NN4G (Micheli, 2009), and it allows CGMM to relax
the mutual dependencies between latent variables in a cyclic graph. However, because the local and
iterative message passing mechanism used by spatial methods (Micheli, 2009; Kipf & Welling, 2017)
is responsible for information propagation across the graph, this relaxation is not restrictive.

Thirdly, the node/graph embedding construction is fully probabilistic and unsupervised, since layer
` is represented as the Bayesian network on the left hand-side of Figure 1. A latent variable q`u is
attached to each node u, and it is responsible for the the generation of the node feature xu. To take into
account structural information, the hidden state q`u is conditioned on the neighboring hidden states
computed at the previous layer, i.e., the set {q`−1

v | v ∈ Nu}. Importantly, the constructive approach
allows us to treat the hidden (frozen) states of the previous layer as observable variables. Each layer
is trained to fit the data distribution of node features using the EM algorithm, thus guaranteeing the
convergence to a local minima. Once inference is performed, the state of each node is frozen and we
can move to the subsequent layer. Lastly, the embedding of each node at layer ` is encoded as the
posterior of its hidden state.

3.2 BASICS OF HDP

The HDP is a Bayesian nonparametric prior for the generation of grouped data using different infinite
mixture models with shared mixture components. Let {x1, x2, . . . } be a set of observations that
are grouped into J groups, i.e., each observation xu belongs to the group ju ∈ {1, . . . , J}. Using
the stick-breaking representation (Sethuraman, 1994), the HDP mixture model that generates the
observations can be defined as (Teh et al., 2006):

β | γ ∼ Stick(γ) qu | ju, (πj)
J
j=1 ∼ πju

πj | β, α0 ∼ DP(α0,β) xu | qu, (θc)∞c=1 ∼ F (θqu)

θ |H ∼H,

(1)

where F (θqu) denotes the emission distribution, parametrized by θqu , that generates the observation
xu. The latent state qu indicates which mixture component should be used to generate xu. The value
of qu is sampled from the distribution πju , which stands for the mixture weights of group ju. All
(πj)

J
j=1 are obtained from a DP with concentration parameter α0 and base distribution β. Notably,

all groups’ mixture weights are defined on the same set of mixture components, meaning there is
a form of parameter sharing across different groups. Finally, we sample the distribution β via the
stick-breaking process Stick(γ) of Sethuraman (1994).

To generate a possibly infinite number of emission distributions, we exploit a prior distributionH that
allows us to create new mixture components on demand. Thanks to the stick-breaking construction,
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Figure 1: Differences between layer `’s graphical model of the original CGMM and the proposed
ICGMM. Observable variables are blue circles, latent ones are empty circles, and white boxes
denote prior knowledge. Each ICGMM is an HDP mixture model where the group j for each node
observation xu is pre-determined by the set of states of neighboring nodes q`−1

Nu
computed at layer

`− 1. Contrarily to CGMM, the number of values that the latent indicator variable qu can assume
is automatically adjusted to fit the underlying data distribution. Dashed arrows denote the flow of
contextual information from previous layers through the neighbors of each node u.

even though an infinite number of mixture components can be used, only a finite number of them is
istantiated during the inference phase. Hereinafter, we indicate with the symbol C the number of
mixture components that are chosen by the HDP at inference time.

3.3 MODEL DEFINITION

Architecturally speaking, ICGMM shares the same characteristics of CGMM described in Section
3.1, whereas the differences of each layer’s graphical model are highlighted in Figure 1. In particular,
ICGMM assumes that the generation of the node features xu at each layer is governed by a HDP
mixture model. Thus, following the stick-breaking construction detailed in Section 3.2, the generative
process of a single ICGMM layer ` can be formalized as follows:

β` | γ` ∼ Stick(γ`) j`u | q`−1
Nu

= ψ(q`−1
Nu

)

π`
j | β`, α`

0 ∼ DP(α`
0,β

`) q`u | j`u, (πj)
C`−1

j=1 ∼ π`
ju

θ` |H ∼H xu | q`u, (θ`c)∞c=1 ∼ F (θ`q`u),

(2)

where we add the superscript ` to the HDP mixture model quantities to highlight that they are different
at each ICGMM layer. Similarly to the HDP case, we use C` to denote the number of states chosen
by the model at the current layer. When clear from the context, we will omit such a superscript to
ease the notation.

In any HDP mixture model, each observation must be assigned to a group in advance. In this work, the
assignment of a node feature to a group is not known a priori, but that is the key to propagate contextual
information across the graph. We select the group j`u of the feature node xu based on the neighbors’
observable posteriors computed at the previous layer, i.e., q`−1

Nu
= {q`−1

v ∈ [0, 1]C
l−1 | v ∈ Nu}.

However, due to known intractability issues, each posterior distribution q`−1
v is approximated by the
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inference phase of the previous layer (see Section 3.4). To stick as much as possible to the original
CGMM formalism, ju is chosen as the most likely position in the C`−1-sized macrostate, obtained
by averaging the neighbors’ probabilities in q`−1

Nu
:

j`u = ψ(q`−1
Nu

) = arg max
j∈{1,...,C`−1}

( 1

|Nu|
∑
v∈Nu

q`−1
v

)
j
. (3)

It follows that nodes with the same feature may have a different latent state c, due to the fact that they
are assigned to different groups, i.e., different πj , on the basis of their neighborhood; this mimics the
role of CGMM neighborhood aggregation but in an HDP mixture model. In the first layer, where no
previous layer exists, we shall just assume that all node features belong to the same group.

Summing up, we depart from the basic CGMM layer of Bacciu et al. (2020a) in more than one
way. First and foremost, we do not parametrize nor learn the CGMM transition distribution, which
was responsible for the convex combination of neighboring states when computing the E-step of
the EM algorithm. Instead, we rely on the most probable choice of the group ju that is encoded by
the neighbors’ macrostate. Secondly, due to the sheer complexity of the Bayesian nonparametric
treatment, we do not train the model via EM as done with CGMM; instead, we will exploit Gibbs
sampling (Geman & Geman, 1984) to compute the quantities of interest. Finally, ICGMM retains
one important architectural characteristic of CGMM, i.e., it prevents vanishing gradient effects and
over-smoothing by default (Bacciu et al., 2020a), thus allowing us to construct deeper architectures
that propagate contextual information.

3.4 INFERENCE

The inference phase of every BNP method is meant to estimate the posterior of the model parameters.
For each ICGMM layer `, we wish to compute the quantities q`u,β

`,π`
j and θ`. Thanks to the

incremental construction of the ICGMM architecture, we can do so one layer at a time. It is worth
mentioning that the constructive approach of CGMM is not an approximation of a more complex
graphical model, rather it is a design choice that applies the basic principle of iterative computation
underpinning all DGNs. Thus, since each ICGMM layer is an HDP mixture model, we can infer its
parameters following the Gibbs sampling schema of Teh et al. (2006). Note that it is also possible
to estimate the hyper-parameters α`

0 and γ`: whenever that is the case, we shall append a subscript
“auto” to our model’s name. In the interest of space, we report the ICGMM complete Gibbs sampling
equations and pseudo-code in Appendix A and B, respectively.

Graph Embedding Generation. In a similar vein with (Bacciu et al., 2020a), we prefer to use
the sample distribution of qu (Eq. 4) at the last iteration, rather than the last sampled state, as an
approximation of node u’s posterior distribution. This way, we encode more information about state
occupancy into node/graph embeddings.

As in Bacciu et al. (2020a), node embeddings of each layer are represented as unibigrams. A
unibigram concatenates the posterior of a node, i.e., a vector called unigram, with its bigram. A
bigram counts, for each possible state qu, how many of u’s neighbors are in another state, and it is
represented as a vector of size C2. The final graph representation that is fed into the classifier is
obtained by concatenation of node unibigrams across all layers followed by global aggregation.

Faster Inference with Node Batches (ICGMMf ). Due to the sequential nature of the Gibbs sam-
pling procedure, a naive implementation is slow when applied to the larger social graphs considered
in this work. In the literature, there exist several exact distributed inference methods for HDP (Lovell
et al., 2012; Williamson et al., 2013; Chang & Fisher III, 2014; Ge et al., 2015), but their effectiveness
might be limited due to the unbalanced workload among workers or the elevated rejection rate (Gal &
Ghahramani, 2014).

In this work, we prefer to speed-up the inference procedure by introducing an approximation rather
than relying on an exact distributed computation. As suggested in Gal & Ghahramani (2014), an
approximated inference procedure may indeed suffice for many problems. What we propose is based
on a straightforward idea, which is to perform sampling for a batch of node observations in parallel.
This way, the necessary statistics are updated in batch rather than individually, and matrix operations
can be used to gain efficiency. To maintain a good trade-off between the quality and speedup, we stick
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to 1 graph as the size of our batch. Such a trade-off provides a CPU speedup of up to 60× at training
time, and we empirically observed that performances remain unchanged with respect to the original
version on the smaller chemical tasks considered. While this faster version of ICGMM, which we
call ICGMMf , does not strictly adhere to the technical specifications of the previous section, we
believe that the pros largely outperform the cons. The interested reader can refer to Appendix D for
an analysis of the speedup gains on the different datasets.

3.5 LIMITATIONS

Due to the complexity of the BNP treatment, one limitation of this work is that naive Gibbs sampling
does not scale to very large datasets. The node independence assumption made by CGMM enables
a faster batch computation, which can also be run on GPU. Despite having provided a simple, but
approximated, sampling process that guarantees a substantial speedup and allows us to process graphs
of non-negligible size, it would be interesting in the future to explore other inference methods to
increase ICGMM’s speedup, e.g., variational inference (Bryant & Sudderth, 2012; Wang & Blei,
2012; Hoffman et al., 2013; Hughes et al., 2015). The second limitation of ICGMM is that edge
features are not taken into account. While there exist many neural models that do the same, we know
that CGMM and its variant E-CGMM (Atzeni et al., 2021) can deal with discrete and arbitrary
features, respectively. Our research directions for the future will investigate these aspects, providing
an exact and efficient version of ICGMM that can process edge features as well.

4 EXPERIMENTS

We evaluated the performances of ICGMM using the fair, robust, and reproducible evaluation setup
for graph classification defined in Errica et al. (2020). It consists of an external 10-fold cross validation
for model assessment, followed by an internal hold-out model selection for each of the external
folds. Stratified data splits were already provided; in this respect, we had to re-assess CGMM and
E-CGMM (Atzeni et al., 2021), a recently proposed variant, by trying all the hyper-parameters
specified in the original papers (in particular, the values of C tried were 5, 10 and 20). We first
experiment on the three chemical datasets D&D (Dobson & Doig, 2003), NCI1 (Wale et al., 2008)
and PROTEINS (Borgwardt et al., 2005), where node features represent atom types. Then, we
consider social datasets, including IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-
MULTI-5K, and COLLAB (Yanardag & Vishwanathan, 2015), where the degree of each node is the
sole continuous feature available. All datasets are publicly available (Kersting et al., 2016) and their
statistics are summarized in Appendix C. Finally, we relied on Pytorch Geometric (Fey & Lenssen,
2019) for the implementation of our method.1

Apart from CGMM’s variants, we will compare ICGMM against the following end-to-end supervised
neural architectures for graphs: DGCNN (Zhang et al., 2018), DIFFPOOL (Ying et al., 2018), ECC
(Simonovsky & Komodakis, 2017), GIN (Xu et al., 2019), GRAPHSAGE (Hamilton et al., 2017),
and a structure-agnostic baseline method BASELINE, described in Errica et al. (2020), which was
competitive on a number of benchmarks. We recall that these supervised methods construct the
graph embeddings leveraging the supervision information coming from the target label; on the
contrary, ICGMM embeddings are built in an unsupervised and constructive way, thus this represents
a challenging comparison for our approach. Results for the supervised models are taken from (Errica
et al., 2020).

We have discussed how ICGMM can automatize the choice its hyper-parameters, e.g., the size of the
latent representation. In general, the choice of the Bayesian hyper-parameters is much less important
than that of the number of states C, as in principle one can recursively introduce hyper-priors over
these hyper-parameters (Bernardo & Smith, 2009; Goel & Degroot, 1981). That said, being this
the first work to study HDP methods in the context of graph classification, we both i) explored the
hyper-parameter space to best assess and characterize the behaviour of the model and ii) introduced
hyper-priors to estimate α`

0 and γ` at each layer, thus further reducing the need for an extensive model
selection.

For the chemical tasks, the prior H over the emission parameters θc was the uniform Dirichlet
distribution. The range of ICGMM hyper-parameters tried in this case were: number of layers

1The code to rigorously reproduce our results is provided in the supplementary material.
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Table 1: Results on chemical datasets (mean accuracy and standard deviation) are shown. The best
performances are highlighted in bold.

D&D NCI1 PROTEINS

BASELINE 78.4± 4.5 69.8± 2.2 75.8± 3.7
DGCNN 76.6± 4.3 76.4± 1.7 72.9± 3.5
DIFFPOOL 75.0± 3.5 76.9± 1.9 73.7± 3.5
ECC 72.6± 4.1 76.2± 1.4 72.3± 3.4
GIN 75.3± 2.9 80.0± 1.4 73.3± 4.0
GRAPHSAGE 72.9± 2.0 76.0± 1.8 73.0± 4.5
CGMM 74.9± 3.4 76.2± 2.0 74.0± 3.9
E-CGMM 73.9± 4.1 78.5± 1.7 73.3± 4.1

ICGMM 75.6± 4.3 76.5± 1.8 72.7± 3.4
ICGMMf 75.0± 5.6 76.7± 1.7 73.3± 2.9

ICGMMauto 76.3± 5.6 77.6± 1.5 73.1± 3.9
ICGMMfauto 75.1± 3.8 76.4± 1.4 73.2± 3.9

Table 2: Results on social datasets (mean accuracy and standard deviation) are shown, where the
node degree is used as the only node feature. The best performances are highlighted in bold.

IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB

BASELINE 70.8± 5.0 49.1± 3.5 82.2± 3.0 52.2± 1.5 70.2± 1.5
DGCNN 69.2± 3.0 45.6± 3.4 87.8± 2.5 49.2± 1.2 71.2± 1.9
DIFFPOOL 68.4± 3.3 45.6± 3.4 89.1± 1.6 53.8± 1.4 68.9± 2.0
ECC 67.7± 2.8 43.5± 3.1 - - -
GIN 71.2± 3.9 48.5± 3.3 89.9± 1.9 56.1± 1.7 75.6± 2.3
GRAPHSAGE 68.8± 4.5 47.6± 3.5 84.3± 1.9 50.0± 1.3 73.9± 1.7
CGMM 72.7± 3.6 47.5± 3.9 88.1± 1.9 52.4± 2.2 77.32± 2.2
E-CGMM 70.7± 3.8 48.3± 4.1 89.5± 1.3 53.7± 1.0 77.45± 2.3

ICGMMf 73.0± 4.3 48.6± 3.4 91.3± 1.8 55.5± 1.9 78.6± 2.8

ICGMMfauto 71.8± 4.4 49.0± 3.8 91.6± 2.1 55.6± 1.7 78.9± 1.7

∈ {5, 10, 15, 20}, α0 ∈ {1, 5}, γ ∈ {1, 2, 3}, unibigram aggregation ∈ {sum,mean}, and Gibbs
sampling iterations ∈ {10, 20, 50}. Instead, for the social tasks we implemented a Normal-Gamma
priorH over a Gaussian distribution. Here the prior is parametrized by the following hyper-priors: µ0,
the mean node degree extracted from the data; λ0, which is inversely proportional to the prior variance
of the mean; and (a0, b0), whose ratio t = b0

a0
represents the expected variance of the data. The

ICGMM hyper-parameters here were: number of layers ∈ {5, 10, 15, 20}, λ0 ∈ {1e-6}, a0 ∈ {1.},
b0 ∈ {0.09, 1.}, α0 ∈ {1, 5, 10}, γ ∈ {2, 5, 10}, unibigram aggregation {sum,mean}, and Gibbs
Sampling iterations ∈ {100}. To further automate learning of ICGMM’s unsupervised layers, we
place uninformative Gamma(1, rate = 0.01) hyper-priors on both α`

0, γ
` hyper-parameters. To

prevent the model from getting stuck in a local minimum on COLLAB (due to bimodal degree
distribution and large variances), we tried λ0 ∈ {1e-4, 1e-5}.
To conclude, we list the hyper-parameters tried for the one-layer MLP classifier trained on the
unsupervised graph embeddings: optimizer ∈ {Adam}, batch size ∈ {32}, hidden units ∈ {32, 128},
learning rate ∈ {1e-3}, L2 regularization ∈ {0., 5e-4}, epochs ∈ {2000}, ReLU activation, and early
stopping on validation accuracy with patience 300 on chemical tasks and 100 on social ones.

5 RESULTS

The empirical results on chemical and social benchmarks are reported in Tables 1 and 2, respectively.
There are several observations to be made, starting with the chemical tasks. First of all, ICGMM
performs similarly to CGMM, E-CGMM, and most of the supervised neural models; this suggests
that the selection of ju based on the neighboring recommendations is a subtle but effective form of
information propagation between the nodes of the graph. In addition, results indicate that we have
succeeded in effectively automatizing the choice of the number of latent states without compromising
the accuracy, which was the main goal of this work. Finally, ICGMMf performs as well as the exact
version, and for this reason we safely applied the faster variant to the larger social datasets (including
IMDB-B and IMDB-M to ease the exposition).
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Moving to the social datasets, we observe that ICGMM achieves better average performances than
other methods on IMDB-B, REDDIT-B and COLLAB. One possible reason for such an improvement
with respect to CGMM variants may be how the emission distributions are initialized. On the one
hand, and differently from the chemical tasks, CGMM and E-CGMM use the k-means algorithm
(with fixed k=C), to initialize the mean values of the C Gaussian distributions, which can be stuck in
a local minimum around the most frequent degree values. One the other hand, ICGMM adopts a
fully Bayesian treatment, which combined with the automatic selection of the latent states allows to
better model outliers by adding a new state when the posterior probability of a data point is too low.

In what follows, we will try to shed more light into the improved generalization performances of
ICGMM, by analyzing the exact model from a layer-wise perspective.
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Figure 2: Figures 2a and 2b analyze the relation between depth, performances, and the number of
chosen states on NCI1.

On the effectiveness of depth and hyper-parameters. To confirm our intuition about the benefits
of the proposed information propagation mechanism, Figure 2a shows the NCI1 training and validation
performances of both CGMM and ICGMM as we add more layers. For simplicity, we picked the
best ICGMM configuration on the first external fold, and we compared it against the CGMM
configuration with the most similar performances. Note that C = 20 was the most frequent choice
of CGMM states by the best model configurations across the 10 outer folds: this is because having
more emission distributions to choose from allows the CGMM model to find better local minima,
whereas ICGMM can automatically add states whenever the data point’s sampling probabilities
are too low. We trained the same classifier at different depths, and we averaged scores across the
10 outer folds. We observe that the validation performance of both models are similar, with an
asymptotic behavior as we reach 20 layers; it follows that depth remains fundamental to improve the
generalization performances (Bacciu et al., 2020a). Importantly, we see that gap between ICGMM
training and validation scores is thinner than its non-BNP counterpart, suggesting that the classifier is
less prone to overfitting the data.

We now study how ICGMM behaves as we vary the main hyper-parameters α0 and γ. We continue
our experimentation on NCI1; Figure 2b depicts the average validation performance and number of
states C over all configurations and folds, subject to changes of α0 and γ values. The trend indicates
how greater values for both hyper-parameters achieve, on average, better validation performance.
Also, smaller values of the two hyper-parameters tend to strongly regularize the model by creating
fewer states, with consequent reduction in validation accuracy. The relation between the number of
states and these hyper-parameters remains consistent with the mathematical details of Section 3.

On the quality of graph embeddings. So far, we have argued that ICGMM selects the appropriate
number of states for its unsupervised task at each layer. As a matter of fact, Figure 3a reports such
a statistic on the same NCI1 configuration as before: ICGMM preferred a lower number of latent
states than CGMM, i.e., around 5 per layer. In turn, the resulting graph embeddings become much
smaller, with important savings in terms of memory footprint and computational costs to train the
subsequent classifier. Figure 3b displays the cumulative graph embedding size across layers, using
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Figure 3: We show comparative results on the size and quality of graph embeddings between CGMM
and ICGMM. Overall, ICGMM generates ≈ 0 unused latent states, with consequent savings in terms
of memory and compute time of the classifier with respect to CGMM. See the text for more details.

the unibigram representation without loss of generality. We see that, when compared with CGMM
(C=20), the size of graph embeddings produced by ICGMM is approximately 7% of those of the
original model, while still preserving the same performance as CGMM.

On the automatic estimation of α` and γ`. We conclude this work with a performance analysis
of the fully automated versions of ICGMM and ICGMMf , namely those with an “auto” subscript
in Tables 1 and 2; in particular, we observe no statistically significant performance differences
with respect to the original models. By estimating all hyper-parameters of our models using
uninformative priors, we almost always (but for COLLAB) managed to avoid the model selection
for the unsupervised graph embeddings creation. In turn, this amounted to a 6× reduction in the
overall number of configurations to be tried, but most importantly it frees the user from making hard
choices about which configurations of hyper-parameters to try. Additionally, we observe that the
number of chosen states and the consequent graph embedding size is very similar to that of ICGMM
with α0 = 5, γ = 3, but this time the two hyper-parameters have been automatically adjusted by the
model on the basis of the data.

To sum up, we have shown that: i) our model has very competitive performances with respect to the
state of the art; ii) the information propagation mechanism introduced in the HDP is effective; iii)
the model can automatically selects the number of states; iv) we can get a much lower memory and
computational footprints due to the previous points without sacrificing the predictive performance;
v) we can fully automatize the choice of the hyper-parameters using uninformative priors, which
drastically reduces the cost of the model selection phase.

6 CONCLUSIONS

With the Infinite Contextual Graph Markov Model, we have bridged the gap between Bayesian
nonparametric techniques and machine learning for graphs. We have described how our approach can
automatically adjust the number of states and most hyper-parameters of each unsupervised layer, thus
freeing the user from the burden of selecting them a priori. As the empirical analyses show, not only
can the model exploit depth to increase its generalization performances, but it also produces smaller
embeddings than CGMM, with consequent savings in terms of memory footprint and training time
of the subsequent classifier. For these reasons, we believe that ICGMM represents a first relevant
step towards the automatic construction of fully probabilistic deep learning models for graphs.
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REPRODUCIBILITY STATEMENT

To ensure that the results in this paper are reproducible, we relied on the PyDGN library (https://
pypi.org/project/PyDGN/), which automatically handles both data and experiment pipelines,
thus letting the researcher focus on the model definition. We follow the robust and reproducible
settings of Errica et al. (2020); Section 4 reports further experimental details and the hyper-parameters
tried for the models considered. Likewise, the appendix contains a detailed description of the inference
procedure, as well as the pseudocode that has been implemented in the supplementary material. The
data splits used can be retrieved from Errica et al. (2020), but they are nonetheless stored in the
supplementary material alongside the code for ICGMM. To completely reproduce the experiments
(model selection, model assessment) and the data pre-processing steps, we have also provided the
necessary PyDGN configuration files.
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A ICGMM GIBBS SAMPLING PROCEDURE

HDP Gibbs sampling is an iterative procedure (Neal, 2000; Teh et al., 2006; Fox et al., 2007) that we
use to estimate all node latent states and ICGMM’s parameters at each layer. Hereinafter, to keep the
notation less cluttered, we shall omit the superscript ` of the current layer and define C̄=C`−1.

Sampling qu. The conditional distribution qu of qu given all the other variables is given by:

P (qu = c | ju = j, q−u,β,θ,x) ∝ (α0βc + n−ujc )f(xu | θc), c ∈ {1, . . . , C + 1}; (4)

where we recall that C denotes the number of current states in the mixture model, f is the p.d.f.
associated with emission distribution F (θ) and the distribution πj has been integrated out (Teh et al.,
2006). Here, n−ujc indicates the number of observations assigned so far to the mixture component c
of group j. Whenever we have that qu = C + 1, we create a new state and sample a new emission
distribution θC+1 fromH . On the contrary, if at the end of an iteration there are no observation of
any group associated with a certain mixture component, we can remove that mixture component and
decrement the current number of states C. This is how ICGMM varies in complexity to fit the data
distribution. Also, note that q`u will be used in Eq. 3 at the next layer `+ 1. When inferring the latent
states of a new data point, no statistics of the model are updated.

Sampling β. In the HDP stick-breaking representation that we use to define the ICGMM in Section
3.3, we require an auxiliary variable method to sample the base distribution β (Teh et al., 2006). We
therefore introduce the auxiliary variables m = {mjc | ∀j ∈ {1, . . . , C̄},∀c ∈ {1, . . . , C}} that
need to be sampled in order to compute β. However, being mjc dependent on njc, the sampling step
of these variables is very inefficient for large values of njc, as the probability values are proportional
the Stirling number of the first-kind s(njc, ·) (Fox et al., 2008). Luckily, we can avoid this step by
observing that the value mjc corresponds to the number of tables where dish qu = c is served at
restaurant j in the Chines Restaurant Franchise (CRF) representation (Teh et al., 2006; Fox et al.,
2007). Thus, we can compute each mjc by simply simulating the table assignments process. We
recall that, in the CRF representation, each customer (i.e., observation) of each restaurant (i.e., group)
is assigned to a table where just a single dish (i.e., mixture component) is served. Thus, while all
customers sitting at the same table must be eating the same dish, there can be multiple tables serving
the same dish as well.

Knowing that customer u is eating the dish qu = c, its table assignment tu can be sampled according
to:

P (tu = t | qu = c, ju = j, c, t−u,β, α0) ∝
{
ñ−ujt , ∀t s.t. cjt = c;

α0βc, t = tnew,
(5)

where t−u represents the tables assigned to all the other nodes except u, cjt ∈ c specifies the dish
assigned to table t at restaurant j and ñ−ujt denotes the number of customers (except u) sitting at table
t of restaurant j. Since we know the dish qu selected by the customer u, there is zero probability that
the customer sits to a table where that dish is not served. The creation and deletion of tables is very
similar to that of Eq. 4, so we skip it in the interest of the exposition and refer to the pseudocode in
Appendix B for a complete treatment.

At last, after computing mjc as described above (i.e.,
∑

t′ I[cjt′ = c]), the base distribution β is
sampled from:

β | q,m ∼ Dir(
C̄∑

j=1

mj1, . . . ,

C̄∑
j=1

mjC , γ), (6)

where Dir stands for the Dirichlet distribution.

Sampling θ. To update the emission parameters θ, we rely on its posterior given q and x:

P (θc | q,x) ∝ h(θc)
∏

∀u|qu=c

f(xu | θc). (7)

By choosing the family of the base distribution H to be a conjugate prior for F , e.g., a Dirichlet
distribution for Categorical emissions or a Normal-Gamma distribution for Normal emissions, we
can compute the posterior in closed form.
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Let the emission distribution be a categorical distribution with M possible states. When creating a
new state, we can sample the emission parameter according to a Dirichlet distribution, which is a
conjugate prior for the categorical distribution:

θc ∼ Dir(η, . . . , η), (8)

where the subscript c indicates the mixture component. Thanks to the conjugate prior, the emission
parameters can be updated by sampling its Dirichlet posterior distribution:

θ′c ∼ Dir(η +N1
c , . . . , η +NM

c ), (9)

where Nm
c indicates the number of times the visible label m has been associated with the latent state

c, i.e., N c
m =

∑
u I[qu = c ∧ xu = m].

Similarly to the categorical case, let the emission distribution be an univariate Gaussian. In this case,
for each state, we can sample the emission parameter according to a Normal-Gamma distribution:

µc ∼ N (µ0, 1/(λ0τc)) (10)
τc ∼ Gamma(a0, b0), (11)

where the subscript c indicates a mixture component ant τc is the inverse of the variance. Then, the
emission parameters of the Gaussian can be updated as follows:

µ′c ∼ N
(
λ0µ0 +Ncx̄c
λ0 +Nc

,
1

(λ0 +Nc)τ ′c

)
(12)

τ ′c ∼ Gamma
(
a0 +

Nc

2
, b0 +

1

2

(
Ncsc +

λ0Nc(x̄c − µ0)2

λ0 +Nc

))
, (13)

where Nc indicates the number of visible labels associated with the latent state c (i.e., Nc =∑
u I[qu = c]), x̄c is the mean of the data associated with the class c (i.e., x̄c = 1

Nc

∑
∀u|qu=c xu),

and sc is the variance of the data associated with the class c (i.e., sc = 1
Nc

∑
∀u|qu=c(xu − x̄u)2).

Sampling α0. Following (Teh et al., 2006), the concentration parameter α0 can be updated between
Gibbs sampling iterations by exploiting an auxiliary variable schema. Assume that α0 has a Gamma
prior distribution Gamma(a, b) (i.e., α0 ∼ Gamma(a, b)). Then, we define the auxiliary variables
w1, . . . , wC̄ and s1, . . . , sC̄ , where each wj variable takes a value between 0 and 1, and each sj is a
binary variable. Then, the value of α0 can be sampled according to the following schema:

wj ∼ Beta(α0 + 1, nj.), (14)

sj ∼ Bernoulli
(

nj.
nj. + α0

)
, (15)

α0 ∼ Gamma

a+m.. −
C̄∑

j=1

sj , b−
C̄∑

j=1

logwj

 , (16)

where nj. is the number of costumer eating in the j-th restaurant, and m.. is the total number of tables
in all the restaurants.

Sampling γ. Similarly, assuming that the hyperparameter γ has a gamma prior distribution
Gamma(a′, b′) (i.e., γ ∼ Gamma(a′, b′)), its value can be updated by following the auxiliary variable
schema below (Teh et al., 2006; Fox et al., 2008):

r ∼ Beta(γ + 1,m..), (17)

p ∼ Bernoulli
(

m..

m.. + γ

)
, (18)

γ ∼ Gamma(a′ + C − p, b′ − log r). (19)
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B ICGMM PSEUDOCODE

To facilitate the practical understanding of our model, we provide the pseudocode of the Gibbs
sampling method employed in this work.

Algorithm 1 Gibbs sampling method for exact ICGMM

Require: A dataset of graphs D = {g1, . . . , gN}. Initialize C = 1, θ = {θ1} (where θ1 ∼ H), Tj = ∅ (for
all restaurant j), q = t = c = ⊥, and n = ñ = 0.
repeat

for g ∈ D do . For each graph
for u ∈ Vg do . For each node

// assign the restaurant
ju ← ψ(q`−1

Nu
) . Can be done once ∀u

// assign the dish
njuqu ← njuqu − 1 . If qu 6= ⊥, remove qu from the counting
qu ← SAMPLING(ju,n,θ,x,β, α0) . Sample the dish according to Eq. (4)
if qu is new then . Create a new state

θnew ∼ H
θ ← θ ∪ {θnew}
C ← C + 1
njqu ← 0 ∀j ∈ {1, . . . , C̄} . Initialize the counters

end if
njuqu ← njuqu + 1 . Update the counter

// assign the table
ñjutu ← ñjutu − 1 . If tu 6= ⊥, remove tu from the counting
tu ← SAMPLING(ju, qu, c, ñ,β, α0) . Sample the table according to Eq. (5)
if tu is new then . Create a new table
Tj ← Tj ∪ {tu}
cjutu ← qu . Save the dish-table assignment
mjuqu ← mjuqu + 1 . Update the table count
ñjutu ← 0 . Initialize customer counter

end if
ñjutu ← ñjutu + 1

end for
end for

// remove unused dishes
for c ∈ {1, . . . , C} do

if
∑C̄

j=1 njc = 0 then . No customers eat the dish c
θ ← θ \ {θc}
C ← C − 1

end if
end for

// remove empty tables
for j ∈ {1, . . . , C̄} do

for t ∈ Tj do
if ñjt = 0 then . No customers eat at the table t in the restaurant j
Tj ← Tj \ {t}
mjcjt ← mjcjt − 1

end if
end for

end for

// update model parameters
β ← SAMPLING(q,m) . Sample according to Eq. (6)
θ ← SAMPLING(q,x) . Sample according to Eq. (7)

if ICGMMauto then
α0 ← SAMPLING(a, b,n) . Sample according to Eq. (14), (15), (16)
γ ← SAMPLING(a′, b′,m) . Sample according to Eq. (17), (18), (19)

end if
until stopping criteria
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C DATASET STATISTICS

Below we report some statistics for the chosen benchmarks.

Table 3: Dataset statistics.

# Graphs # Classes # Nodes # Edges # Node labels

C
H

E
M

. DD 1178 2 284.32 715.66 89
NCI1 4110 2 29.87 32.30 37
PROTEINS 1113 2 39.06 72.82 3

S
O

C
IA

L

IMDB-BINARY 1000 2 19.77 96.53 -
IMDB-MULTI 1500 3 13.00 65.94 -
REDDIT-BINARY 2000 2 429.63 497.75 -
REDDIT-5K 4999 5 508.82 594.87 -
COLLAB 5000 3 74.49 2457.78 -

D SPEEDUP GAINS WITH FASTER INFERENCE

We compare the performances of the exact version of ICGMM against the faster implementation. As
we can see, the speedup increases for the datasets with larger average number of nodes (see Table 3).

Table 4: Approximate speedup between the exact ICGMM and the faster version on all datasets.

ICGMM ICGMMf

ref. min/max

C
H

E
M

. DD 1× 17.8×/30.8×
NCI1 1× 3.1×/5.1×
PROTEINS 1× 4.2×/5.7×

S
O

C
IA

L

IMDB-B 1× 2.4×/5.1×
IMDB-M 1× 1.6×/3.6×
REDDIT-B 1× 11.1×/45.6×
REDDIT-5K 1× 36.7×/60.6×
COLLAB 1× 3.1×/8.6×
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