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Abstract

Foundation models (FMs) have shown impressive performance in medical image analysis
tasks, but their deployment in real-world clinical settings, especially across diverse patient
populations such as adult and pediatric cases, remains challenging. Key open questions in-
clude optimal prompting techniques and strategies for model adaptation or fine-tuning for
clinical use. In this study, we evaluated different approaches for deploying FMs in clinical
scenarios for diverse patient populations. We use the lightweight, embedding-based vision-
language FM MedImageInsight to predict pneumonia from chest X-rays, a condition com-
mon in both adult and pediatric patients. We observed large variation in model predictive
performance depending on the chosen prompt design, highlighting the importance of text
prompt design for successful zero-shot (ZS) application. On in-domain datasets, we found
performance differences of up to 46% in Matthews correlation coefficient (MCC) and 56%
in true positive rates across different text prompts. By introducing text and vision embed-
ding ensembles, we achieved substantial ZS improvements, outperforming training-based
methods (fine-tuning, Linear Probe) in low-data scenarios by up to 43% for adults and 35%
for pediatric populations (MCC). This ensembling strategy also promotes resource-efficient
equitable clinical use by supporting diverse demographic subgroups, achieving MCC im-
provements of 6% by sex, 17% by age, and 10% by race compared to Linear Probe.

Keywords: multimodal foundation model, bias, zero-shot, pneumonia, ensembles

1. Introduction

Foundation Models (FMs) that have been trained on extensive web-based datasets have
demonstrated great promise and remarkable generalizability across a variety of tasks in dif-
ferent domains, including natural language processing, computer vision, and text and image
generation (Brown et al., 2020; Radford et al., 2021). Similarly, their medical counterparts,
trained on domain-specific datasets such as PubMed, electronic health records, and med-
ical imaging, have shown significant potential to advance healthcare applications (Zhang
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et al., 2022; Singhal et al., 2023). However, their reliable implementation in clinical settings
without further adjustments remains challenging due to severe consequences of incorrect
diagnoses or treatment plans (Huang et al., 2023). While an increasing number of FMs are
developed using medical data (Blankemeier et al., 2024; Chen et al., 2024; Zhang et al.,
2023), their clinical application often experiences performance drops on out-of-distribution
data, such as in new patient populations (e.g., transitioning from adult to pediatric cases)
(Huang et al., 2024).

Moreover, since many FMs are trained to derive predictions from vision-language sim-
ilarities, their effective training-free, zero-shot (ZS) application depends not only on the
input image but also on the given text prompt. Determining an optimal text prompt to
achieve the best ZS performance in various environments, particularly in new distributions,
still poses a major challenge.

A common strategy for applying vision-language FMs in clinical settings relies on adapt-
ing and fine-tuning image encoders (Chambon et al., 2022; Hu et al., 2021). However, this
approach requires additional diverse and labeled data, which is expensive and difficult to
acquire. Furthermore, most FMs are based on large transformer models, which require
significant computational resources to fine-tune. As many healthcare facilities lack the nec-
essary infrastructure, these approaches are unsuitable for integration into clinical workflows.

Our study aims to address these challenges by identifying effective strategies for the suc-
cessful clinical application of FMs, focusing on the state-of-the-art, open-source, lightweight,
embedding-based vision-language FM,MedImageInsight (Codella et al., 2024) which showed
superior performance and suitability across multiple tasks and domains. Since MedIm-
ageInsight was predominantly trained on adult data, this study examines the prediction
of pneumonia from chest X-rays in adult (in-domain) and pediatric (out-of-domain) cases
using training-free ZS and training-based approaches.

The key contributions of our work include:

• Identification of effective deployment strategies in clinical settings by exploring ZS
prediction, lightweight adapters (Linear Probe, kNN), and image encoder fine-tuning.

• Enhancing ZS prediction by introducing text and vision ensembles for medical tasks.
• A multi-site evaluation using MIMIC-CXR (in-domain, adults, part of training data),
CheXpert (external data, adults) and VinDr-PCXR (out-of-domain, pediatric) datasets.

• Bias assessment of ZS and training-based methods across sex, age, and race subgroups.

An overview of related works is provided in Appendix Section A.

2. Methods

We evaluated the FM MedImageInsight for pneumonia detection in three different domains
by assessing its ZS capability using nine different prompt types and enhanced prompt and
vision ensembles (Figure 1) as well as by exploring training-based methods.

MedImageInsight (Codella et al., 2024) comprises three parts: an image encoder (360M
parameters), a text encoder (250M parameters), and an optional text decoder (70M param-
eters). We excluded the text decoder, resulting in a lightweight FM with 610M parameters.
The model was trained on image-text pairs from 14 modalities, including adult chest X-rays,
along with radiology reports from MIMIC-CXR database (Johnson et al., 2019), and image-
label pairs from NIH-CXR-LT (Holste et al., 2022) and Mass General Brigham database.
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Figure 1: Overview of our Beyond-the-prompt pipeline using a zero-shot ensemble method.
(top) Text embeddings are averaged over prompt templates and radiology reports
and (bottom) compared to image ensembles generated by augmented views. A
confidence-score filter is applied to select the most reliable image embeddings.
Cosine similarity between text and image ensembles defines predicted classes.

2.1. Zero-shot Evaluation

Embedding-based contrastive vision-language FMs compute the cosine-similarity between
an image embedding and multiple text embeddings to perform training-free ZS classification.

2.1.1. Prompt input

Templates as prompt. A common approach of constructing a prompt in ZS classification
involves a combination of a text-prompt template plus a placeholder, {class}, that represents
the class names, (here: No Finding or Pneumonia). The image is assigned to the class of
the closest text prompt in the embedding space. We evaluated the FM’s performance
in predicting pneumonia using the following text prompts: 1) {class}, 2) chest+{class},
3) X-ray+{class}, 4) chest X-ray+{class}, 5) X-ray chest anteroposterior+{class}.

Radiology reports as prompt. Since MedImageInsight is trained on radiology reports,
we additionally evaluate our model by generating text embeddings using textual information
extracted from the following parts of the radiology reports: 6) findings section, 7) impression
section, 8) both, findings and impression sections, or 9) full radiology reports. We randomly
sample ten reports from each class in the training set and compute the distance between the
text embeddings generated from these reports and an image embedding from the test set.
The predicted class is determined based on the majority of the five closest text embeddings.

Template and radiology report ensembles as prompt. As introduced by (Rad-
ford et al., 2021), generating averaged text embeddings can enhance ZS results and reduce
computational complexity, as a general text ensemble is created once and reused during in-
ference. An averaged text embedding tc =

1
P

∑P
p=1 tcp is computed for each class c using all

P prompt embeddings t. Most medical FMs are trained on template prompts and radiology
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Figure 2: (left) Chest X-ray examples of ’No Finding’ and ’Pneumonia’ cases across adult
(MIMIC, CheXpert) and pediatric (VinDr-PCXR) domains (right) Comparison
of X-ray embeddings of MedImageInsight across the three domains using t-SNE.
Embeddings of the test set and separated by classes are attached in Appendix C.

reports. Hence, merely averaging the template prompts may not be sufficient. Therefore,
we propose an extension by generating: 10) averaged template-based embeddings using the
templates (1-5), 11) report-based embeddings using ten reports per class of each report type
(6-9), and 12) embeddings that incorporates both template- and report-embeddings (1-9).

2.1.2. Vision input

Original X-ray as vision input. The most common approach to generate an input
embedding is to use the original image, which, in our case, represents a chest X-ray.

Vision ensemble as vision input. By augmenting an input image B times and creat-
ing B image embeddings, a single, representative embedding can be generated by averaging
these B embeddings. This embedding is compared to a given text embedding (Shu et al.,
2022; Döbler et al., 2024). This method aims to enhance the robustness and diversity of
the image embeddings, potentially improving the alignment with text representations. We
chose B = 64 as in (Shu et al., 2022) and applied a random selection of the following
augmentation techniques: random rotation within a range of ±10◦, random affine transfor-
mations with translation up to 10% of the image dimensions, color jittering (brightness=0.2,
contrast=0.2), Gaussian blurring (kernel size = 5), and automatic contrast enhancement.

Confidence score filtered (CF) vision ensemble as vision input. In addition to
averaging all augmented views, we implement a CF method as in (Shu et al., 2022). This
approach identifies the N most confident augmented images using entropy-based confidence
filtering by determining the 10% of samples with the lowest entropy.

2.2. Training-based adaption

To compare the training-free ZS methods, we investigate training-based adaptation strate-
gies that leverage the image encoder by adding lightweight adapters as well as performing
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Figure 3: (left) Mean MCC for ZS experiments across different prompt types: (1-5) Tem-
plate, (6-9) Report, and most effective Ensemble using (12) Template and Report
(MIMIC, CheXpert); (10) Templates (VinDr-PCXR) compared to fine-tuning.
(right) Bias Assessment: Absolute mean MCC across subgroups: sex (Male, Fe-
male), age (≤62,>62 years), race (White, Asian, Black). (*ZS: Zero-shot)

full fine-tuning of the image encoder. Unless stated otherwise, we used cross entropy loss
and AdamW (Loshchilov, 2017) optimizer with a learning rate of 3 × 10−4. If validation
performance did not improve for five epochs, the learning rate was reduced by factor of 0.1.

Lightweight adapter training. In adapter training, the image encoder remains frozen
while the image embeddings are further processed using subsequent lightweight adapter
heads. We applied Linear Probing (R1024×2) and k-nearest neighbor (kNN) (k = 5).

Fine-tuning using Low-Rank Adaptation (LoRA). The parameters of the image
encoder are adapted using LoRA (Hu et al., 2021), which modifies the parameters with a
low intrinsic rank updates (rank= 8).

Baseline Model. We used the DenseNet-121, which is based on a convolutional neu-
ral network architecture as a baseline model (Huang et al., 2017). With 8M parame-
ters, DenseNet-121 is almost 98% smaller than the image encoder of MedImageInsight,
but showed competitive results in various medical applications (Singh et al., 2024).

2.3. Datasets

We used three publicly available chest X-ray datasets to evaluate pneumonia prediction in
three different environments. Figure 2 (left) shows representative examples for each dataset.
To ensure consistency and fairness during training under varying amounts of training data,
we balanced all training datasets using 744 samples. We also balanced all test datasets.

• MIMIC-CXR (in-domain, adults) (Johnson et al., 2019) was part of the FM
training. Our test set included 8,186 X-rays with labels and radiology reports.

• CheXpert (external validation, adults) (Irvin et al., 2019) was not part of the
training set forMedImageInsight, but comprises adult subjects, similar to MIMIC. Our
balanced test set contains 2,508 samples. We also generated balanced test sets for the
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Figure 4: Comparison of ZS (Ensemble) and training-based methods across (left) MIMIC,
(middle) CheXpert, (right) VinDr-PCXR using varying amount of training data.
ZS (Ensemble) shows competitive performance, especially in low-data regimes.

demographic subgroups: sex (male/female - 1151 samples per group), age (young:< 62
years/old: > 62 years - 1128 samples per group), and race (White/Asian/Black - 171
samples per group) to assess biased prediction differences.

• VinDr-PCXR (new domain, pediatrics) (Pham et al., 2022) represents a new
domain, as it exclusively contains pediatric cases, which were not part of the training
of MedImageInsight. The balanced test set contains 178 samples.

3. Results and Discussion

3.1. Zero-shot Evaluation

As highlighted in Figure 3 (left), the ZS performance of MedImageInsight highly depends
on the specific text prompt to which a given X-ray is compared. The detailed evaluation of
all prompt types and metrics is depicted in Table 1.

Template as prompt. Among our five types of prompt templates, we obtained the high-
est Acc on all adult and pediatric datasets by using the prompt template (2) chest+{class}.
Most other templates resulted even in either TPR or TNR below 50%.

Radiology reports as prompt. Comparing the image embeddings to parts of the radiol-
ogy reports revealed notable performance boosts for the adult datasets. MIMIC performed
best using (5) Findings as prompt (Acc = 78.0%, MCC = 0.57). CheXpert performed
slightly better using (6) Impression (Acc = 80.5%, MCC = 0.62). While MIMIC and
CheXpert achieved comparable results using either (5) Findings or (6) Impression, operat-
ing on full reports led to performance drops of up to 7% in Acc. In contrast, when comparing
pediatric cases, VinDr-PCXR, to any part of MIMIC reports, TPR were consistently < 20%.

Prompt Ensembles. Using prompt ensembles further improved ZS performance. For
adult datasets, using prompt ensembles of (11) Reports or (12) Templates + Reports was
most effective. Although, for MIMIC, using the simple (6) Findings prompt yielded slightly
higher Acc and MCC, using prompt ensembles enhanced the TPR by up to 5.4% while
maintaining a strong TNR. On VinDr-PCXR, significant improvements were observed using
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Table 1: ZS performance for different text and vision prompts across adult (MIMIC, CheX-
pert), and pediatric (VinDr-PCXR) datasets. (Acc, TNR, TPR in [%].)

Prompt Vision MIMIC CheXpert VinDr-PCXR
Ens.+ Acc TNR TPR MCC Acc TNR TPR MCC Acc TNR TPR MCC

T
e
m
p
la
te

1

-

59.9 98.5 21.4 0.31 62.9 99.3 26.6 0.38 60.1 80.9 39.3 0.22
2 chest 74.8 88.9 60.7 0.52 76.4 97.2 55.6 0.58 69.1 85.4 52.8 0.40
3 X-ray 67.8 96.5 39.1 0.43 65.5 99.1 31.8 0.42 68.0 94.4 41.6 0.42
4 x. c.* 61.3 98.4 24.1 0.34 66.2 99.0 33.5 0.43 61.8 100 23.6 0.37
5 x. c. a.* 51.2 3.0 99.7 0.1 70.3 84.7 55.8 0.42 50.0 0 100 0

R
e
p
o
rt

6 Findings (F)

-

78.0 83.8 72.2 0.57 80.1 87.9 72.4 0.61 58.0 98.7 17.2 0.27
7 Impression (I) 77.7 83.7 71.8 0.56 80.5 88.0 72.9 0.62 58.1 98.9 17.3 0.28
8 F+I 74.6 84.7 64.5 0.50 73.6 90.3 56.9 0.50 53.3 100 7.0 0.19
9 Full Report 74.7 84.8 64.5 0.50 73.5 90.3 56.6 0.50 53.9 100 8.0 0.2

P
ro

m
p
t
E
n
se
m
b
le

10 Templates
-

64.2 97.5 30.8 0.38 73.7 98.3 48.5 0.54 63.5 66.9 60.1 0.27
11 Reports 74.4 71.2 77.6 0.49 82.4 85.4 79.5 0.65 55.9 25.8 86.0 0.15
12 Both 76.3 80.4 72.2 0.53 82.8 89.0 76.6 0.66 56.2 28.1 84.3 0.15
10 Templates All 64.3 97.6 31.0 0.38 70.1 99.2 40.1 0.49 66.9 77.5 56.2 0.35
11 Reports All 75.0 73.2 76.7 0.5 82.9 83.8 82.0 0.66 53.9 18.0 90.0 0.11
12 Both All 76.5 81.8 71.3 0.53 83.7 89.0 78.3 0.68 54.8 21.9 87.6 0.12
10 Templates CF++ 65.5 97.3 33.6 0.40 71.5 99.0 44.1 0.51 66.3 74.2 58.4 0.33
11 Report CF++ 75.1 74.3 76.0 0.50 82.7 83.9 81.6 0.65 55.6 18.0 93.2 0.17
12 Both CF++ 76.8 82.3 71.1 0.54 83.4 88.8 78.0 0.67 54.5 20.2 88.8 0.12

*x.=X-ray, c.=chest, a.=anteroposterior; +Ens.= Ensemble; ++CF=confidence-score filter

(10) Template ensembles, resulting in a TPR increase of 7.3% compared to the best valid
TPR of (2) chest+{class}.

Prompt and Vision Ensembles. By additionally generating vision ensembles with aug-
mented views, slight improvements in Acc were achieved for MIMIC and CheXpert. Specif-
ically, for the new adult domain, CheXpert, TPR was further improved by up to 2.5%. For
the pediatric dataset, TPR slightly dropped when using vision ensembles.

Discussion. We found that using prompt ensembles is highly valuable and improves
performance when applying FMs in ZS settings. Overall, we achieved best performance
on CheXpert, followed by MIMIC, and the pediatric dataset (VinDr-PCXR). Our results
showed that if a given X-ray image belongs to a distribution similar to training (i.e. MIMIC
and CheXpert; Figure 2), prompt ensembles that include radiology reports enhance ZS
performance. In this case, using vision ensembles further improved performance as more
variability was added, better reflecting the known distribution. For new domains (e.g.,
VinDr-PCXR), where X-ray embeddings deviated from the learned distribution (Figure 2),
and X-rays do not align with known radiology reports of adults, results were more reliable
when using Template ensembles without report information. Similarly, image ensembles did
not improve the results, as the augmented views failed to align with the known distribution.

3.2. Comparing training-based methods to ZS ensemble method

In Figure 4, we compare the MCC of the best ZS ensemble method against various training-
based methods across all three datasets. For a detailed comparison of TPR and TNR, please
refer to Figure 6 in Appendix E.

MIMIC. In low-data regimes, with only 1% of training data available, ZS ensembling
performed best. With more training data, Linear Probe and LORA achieved higher MCC.
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CheXpert. The ZS ensemble method performed best when less than 10% training data
was available. If 50% of training data was available, Linear Probe outperformed the ZS
approach by 2% in MCC. Using LoRA, 80% of training data was necessary to outperform
the ZS approach by 1% in MCC. DenseNet and kNN performed worse than the ZS ensemble
method regardless of the amount of training data.

VinDr-PCXR. While Linear Probe achieved the highest MCC with 1% of training data,
its TPR remained < 40%, indicating that it failed to reliably predict pneumonia. Hence,
with only 1% training data, the ZS ensemble method still performed better than other
methods. In general, LoRA fine-tuning achieved highest Acc with 86.6% using 50% data.

Discussion. In low data regimes, the training-free ZS ensemble method led to best per-
formance in all domains. It remained competitive even with increasing amount of training
data, especially on the adult datasets. With >10% annotated training data, Linear Probe
further improved performance, highlighting the strength of MedImageInsight in capturing
clinically meaningful features. On adult data, fine-tuning the image encoder caused catas-
trophic forgetting in low-data regimes and yielded only marginal improvements compared to
the ZS ensemble method with more training data. In contrast, for pediatric cases, which are
from an entirely new domain, fine-tuning with > 50% of training data captured the distribu-
tion shift from adults to pediatrics and outperformed other methods. The baseline model,
DenseNet-121, failed to reliably learn pneumonia-related features from the adult datasets,
as it consistently performed below the ZS ensemble. Only on VinDr, with > 80% training
data, DenseNet-121 achieved a TPR and TNR > 50%, and MCC exceeding the results of
ZS ensemble. However, fine-tuning with LoRA still performed better than DenseNet-121.

3.3. Bias Assessment

Figure 3 (right) illustrates the absolute MCC differences across the demographic subgroups,
sex, age, and race, in the CheXpert dataset. All evaluated methods exhibited varying levels
of bias, reflected in performance differences across subgroups. However, ZS ensembling
demonstrated a notable bias reduction compared to Linear Probe across all variables. For
Linear Probe, differences ranged from 10% for sex, 14% for race, and up to 24% for age. In
contrast, the ZS ensemble method achieved considerably lower bias levels, with the highest
observed difference of 10% for race, while bias for sex and age remained below 5%. Although
the ZS performance method demonstrated improved fairness compared to the Linear Probe,
methods such as LORA and KNN exhibited even smaller differences across all variables.

4. Conclusion

In this work, we evaluated strategies for an effective application of a state-of-the-art vision-
language FM in clinical settings based on pneumonia prediction across diverse populations.
By applying text and vision ensembles for ZS prediction, we achieved up to 43% improve-
ment in MCC in adults and 35% in pediatrics compared to training-based methods in low-
data scenarios. Also, we reduced biases related to sex, age, and race by 6%-17% (MCC)
compared to Linear Probe. This work supports the effective and resource-efficient integra-
tion of FMs into clinical workflows and enables equitable and accessible solutions for diverse
patient populations.
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Appendix A. Related Work

The applied FM,MedImageInsight, builds upon large-scale contrastive multimodal pretrain-
ing, which includes 14 different domains, including chest X-rays. Compared to other FMs
such as (Zhang et al., 2023; Hyland et al., 2023; Bannur et al., 2024), MedImageInsight is
trained on images, text, and labels, enabling adaptation to diverse distributions, such as
adult and pediatric cases. While some Large Language Models (LLMs), like Med-Gemini
(Saab et al., 2024) or Med-PaLM-M (Tu et al., 2024), are trained on text and labels, they
are more than 10 times larger compared to MedImageInsight.

Foundation models trained in a contrastive manner generalize well on zero-shot (ZS)
tasks by aligning image and text embeddings without task-specific training. However, the
success of ZS performance depends on the quality of the text prompt. Radford et al.
(Radford et al., 2021) highlighted the sensitivity of ZS performance to text prompts in
general natural tasks and, therefore, introduced the idea of text prompt ensembles using up
to 80 different templates and averaging them over the embedding space. They demonstrated
improvements of almost 5% on the natural image dataset ImageNet (Deng et al., 2009).

To this end, Shu et al. (Shu et al., 2022) introduced Test-time Prompt Tuning (TPT),
which generates image embedding ensembles on the fly based on multiple augmented ver-
sions of one input image. To exclude noisy augmentations, they added a confidence-based
filter. Döbler et al. (Döbler et al., 2024) combined both approaches, creating text ensembles
from templates and vision ensembles from augmented images, and tested them on general
domains. However, their effectiveness in medical contexts, particularly for diverse patient
populations, remains unexplored.

The application of FMs in clinical studies has revealed significant biases in their feature
embeddings (Glocker et al., 2023; Santomartino et al., 2024). Glocker et al. (Glocker et al.,
2023) found that FMs often encode demographic factors, which might lead to performance
differences across subgroups. Mitigation strategies include adversarial training (Ganin et al.,
2016), fairness-aware loss functions (Zafar et al., 2017), or the reduction of shortcut learning
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(Fay et al., 2023). In medical tasks, such biases are particularly concerning and need to be
addressed to provide fair healthcare (Larrazabal et al., 2020).

Pneumonia detection from chest X-rays was studied for various model architectures in
(Singh et al., 2024). They presented that different types of convolutional-based models,
such as VGGs (Simonyan and Zisserman, 2014), ResNets (He et al., 2016), InceptionV3
(Szegedy et al., 2016), and DenseNets (Huang et al., 2017), perform worse than Vision
Transformers (ViTs) (Alexey, 2020). However, in comparison, a Vision Transformer (ViT)
has more than 85B trainable parameters, while the convolutional-based models have fewer
than 200M. Likewise, the image encoder of MedImageInsight operates on 360M trainable
parameters, offering a balance between efficiency and accuracy.

Appendix B. Limitations

While our study demonstrates promising approaches for deploying embedding-based vision-
language FMs in clinical settings, this study does not explore other types of FMs, such as
instruction-tuned FMs (e.g., (Chen et al., 2024)), which may require alternative strategies
for adaptation and performance improvement. Moreover, we evaluated a variety of text
prompts and ensemble strategies; however, it is possible that more effective templates or
more complex prompt designs might further improve performance. Especially, the lack of
pediatric-specific radiology reports likely constrained the performance on pediatric cases.
Incorporating such domain-specific reports might yield better alignment and performance
in pediatric populations. We limited our work to the prediction of pneumonia from chest
X-rays, as this condition appears in both adult and pediatric patients. However, exploring
further diseases as well as modalities could provide broader insights and reliability regarding
the application of FMs in clinical settings. Finally, although our work explores the FM
in three different environments, this may not fully reflect the heterogeneity of real-world
clinical populations. In our upcoming work, we aim to address these limitations, especially
by exploring more complex prompting strategies, as well as different domains and modalities,
to enable a reliable and fair application of FMs in clinical workflows.

Appendix C. Extended Dataset

In Figure 5 (top), we show in addition to Figure 2 (right) the image embeddings of our
balanced test datasets. Moreover, in Figure 5 (middle/bottom), the distributions of train-
ing/test dataset separated by the investigated classes No Finding and Pneumonia are shown
as t-SNE plots across the adult datasets, MIMIC (left) and CheXpert (middle), as well as
in the pediatric dataset, VinDr-PCXR (right).

Appendix D. Evaluation Metrics

In our experiments, all test datasets are balanced to ensure fair evaluation of pneumonia
prediction. We evaluate the performance focusing on accuracy (Acc), true-negative rate
(TNR), true-positive rate (TPR), and Matthews correlation coefficient (MCC).
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Figure 5: (Top) Comparison of X-ray embeddings of MedImageInsight across the test
datasets of MIMIC (adults), CheXpert (adults), VinDr-PCXR (pediatrics) us-
ing t-SNE. (Middle) Comparison of the X-ray embeddings distribution of No
Finding and Pneumonia across the training datasets of MIMIC (left), CheXpert
(middle), VinDr-PCXR (right). (Bottom) Comparison for all test datasets.

Appendix E. Extended Results

In this section, we provide additional results of the experiment shown in Section 3.2. In
Figure 6, we show Acc, TNR, and TPR of the training-based methods using a varying
amount of training data compared to our ZS (Ensemble) Method.
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Figure 6: Comparison of Acc, TNR, TPR of ZS ensemble and training-based method across
MIMIC, CheXpert, and VinDr-PCXR dataset.
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