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ABSTRACT

Federated learning (FL) allows participants jointly training a model without direct
data sharing. In such a process, participants rather than the central server perform
local updates of stochastic gradient descent (SGD) and the central server aggregates
the gradients from the participants to update the global model. However, the non-
iid training data in participants significantly impact global model convergence.
Most of existing studies addressed this issue by utilizing variance reduction or
regularization. However, these studies focusing on specific datasets lack theoretical
guarantee for efficient model training. In this paper, we provide a novel perspective
on the non-iid issue by optimizing Gradient Signal to Noise Ratio (GSNR) during
model training. In each participant, we decompose local gradients calculated on the
non-iid training data into the signal and noise components and then speed up the
model convergence by maximizing GSNR. We prove that GSNR can be maximized
by using the optimal number of local updates. Subsequently, we develop FedGSNR
to compute the optimal number of local updates for each participant, which can be
applied to existing gradient calculation algorithms to accelerate the global model
convergence. Moreover, according to the positive correlation between GSNR
and the quality of shared information, FedGSNR allows the server to accurately
evaluate contributions of different participants (i.e., the quality of local datasets) by
utilizing GSNR. Extensive experimental evaluations demonstrate that FedGSNR
achieves on average a 1.69× speedup with comparable accuracy.

1 INTRODUCTION

Federated learning (FL) McMahan et al. (2017) focuses on a practical scenario with multiple partici-
pants to collaboratively train a model without direct data sharing. Different from the typical central-
ized optimization problem, FL decomposes the optimization problem into several sub-optimization
problems, and distributes them to different participants to be solved separately with the corresponding
local datasets. Moreover, these local datasets often follow non-iid distributions in reality. During
the training phase, each participant solves the sub-problem via stochastic gradient decent (SGD),
and sends back the corresponding results for aggregation. One of the most popular FL algorithms is
FedAvg McMahan et al. (2017), and it typically accelerates global model convergence through multi-
ple local updates. Although it has shown great performance in many practical applications, there’re
still mysteries in this area, especially in non-iid cases, and many previous literatures Haddadpour &
Mahdavi (2019); Khaled et al. (2020); Li et al. (2020b) make efforts to analyze the convergency or
even to accelerate it.

One of the key challenges in FL is how a model can be well trained on non-iid data in different
participants. On the one hand, such imbalance breaks the unbiased optimization procedure when we
utilize multiple local updates. While on the other hand, due to the differences between different local
datasets, non-iid information distribution makes it difficult to evaluate the contribution of different
participants. The former slows down the FL-based model convergence, i.e., a key factor of the
efficiency. The latter is associated with contribution evaluation involving malicious data tampering
detection, contribution-based profit distribution, incentive mechanism design, etc. Especially in the
current data-driven age Sim et al. (2020), contribution evaluation is particularly important. In addition
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to separately pursuing the two goals of accelerating model convergence and improving contribution
evaluation accuracy, these two goals even conflict with each other.

To solve above challenges, we propose a novel approach that speedups model training by maximizing
Gradient Signal to Noise Ratio (GSNR). The intuitions behind the design are two-fold. First, there is
always a global optimal solution no matter how the data is distributed. For each local dataset, we can
obtain an optimal optimization direction, i.e., the global gradient. Second, based on the information
theory, GSNR determines the channel capacity, i.e., Shannon’s formula: C = W · log(1 + SNR),
and a larger GSNR means we can get more information with identical communication rounds, which
can accelerate the model convergence. Thus, we can decompose the local optimization direction (i.e.,
the local gradient) into mutually orthogonal signal vector and noise vector. We find that if we can
obtain the global gradient, the signal vector is parallel to the global gradient, while the noise vector is
orthogonal to it. Fig. 1 shows a typical example of orthogonal decomposition of two participants.
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Figure 1: An example of Gradient Signal to
Noise Ratio (GSNR). A local step can be de-
composed into two components: signal and
noise, the former parallels to the update with
global data, and the latter orthogonal to it.

We prove that the number of local updates can
control the GSNR value and we can maximize
GSNR by computing the optimal number of
local updates. To maximize GSNR, we uti-
lize the gradients uploaded by the participants
to estimate the global gradient, and propose a
FedGSNR algorithm to compute the optimal
number of local updates according to the esti-
mated global gradient. Moreover, based on the
GSNR perspective, we also develop a specific
method to compute the GSNR for each dataset,
which allow the server to evaluate each partici-
pant’s contribution.

In addition to personalizing the number of lo-
cal updates to optimize model convergence ef-
ficiency, the newly proposed GSNR strategy
FedGSNR is orthogonal to existing methods,
which mostly depends on modifying gradients
calculating. Hence, FedGSNR can be combined with these methods so as to further improve them.

In summary, our contributions in this paper are as follows:

• We prove that the optimal local updates decides the maximal GSNR, which leads to faster
and more stable convergence.

• We analyze existing FL algorithms with the perspective of GSNR. Moreover, based on
the viewpoint of GSNR maximization, we propose an algorithm FedGSNR, which can be
combined with most of current FL algorithms to calculate its optimal local updates.

• We derive a function r(w) to calculate GSNR, which can be utilized to evaluate the local
contributions of different participants.

• We confirm our theoretical results on CIFAR-10 and CIFAR-100 datasets, and experiments
indicate that FedGSNR can achieve on average a 1.69× speedup over its original when the
information unevenly distributed among all participants, and r(w) is a reasonable metric for
local contributions.

Related Work. There has been a lot of literatures devoted to improving FL, including convergence
Karimireddy et al. (2020); Li et al. (2020b); Wang et al. (2020a); Reddi et al. (2021) robustness
Mohri et al. (2019); Fang et al. (2020); Li et al. (2021), and data privacy Melis et al. (2019); Zhu
et al. (2019); Bagdasaryan et al. (2018). Regarding GSNR, Rainforth et al. (2018); Liu et al. (2020)
try to analyze the generalization and variational bounds with such a concept. In this work, we focus
on the relationship between GSNR and the optimal local updates in FL scenarios. To control the
noise component (client drift), Karimireddy et al. (2020) proposes a specific gradient calculating
method based on variance reduction. Li et al. (2020a) indicates that under non-iid FL conditions, a
large number of local updates lead to divergence or instability. While Wang et al. (2020b) tries to
stabilize the training procedure with a new average strategy. On the other hand, Wang et al. (2019)
proposes a practical optimization problem with resources constraints, and it determines the number
of local updates for each participant according to the corresponding constraints.
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A similar work Khaled et al. (2020) derives an upper bound of local updates by total iterations T and
the number of participants M , which proposes a theoretical analysis of local updates. But, they treat
each participant equally, and fail to propose a method to calculate the optimal number of local updates
directly from the heterogeneous data. More discussion of related work can be found in Appendix A.

2 PRELIMINARY

2.1 FEDERATED AVERAGING (FEDAVG)

In this work, we consider the following federated optimization problem:

min
w

F (w) := Eξ[F (w, ξ)] = EC [Eξ[F (w, ξ)] | C] =

K∑
k=1

P (C = Ck) · Eξ[F (w, ξ|Ck)], (1)

where F (w, · ) is a specified loss function with model w, K is the number of participants, and P (C)
is a discrete probability distribution correlated to the importance of different datasets. Usually, P (C)
is a uniform distribution or proportional to the local data quantity, and ξ|Ck is a random sample
drawn from the dataset of k-th participant, i.e., ξ|Ck ∼ p(x|Ck).

Regarding traditional machine learning, the global dataset is gathered from all participants, and the
goal is to minimize

F (w) = Eξ[F (w, ξ)], (2)
where ξ is a random sample of global dataset, i.e., the gathered data. However, in most cases, due to
the privacy requests, we cannot gather data from different participants. Thus, we separate the target
function as Eq. (1), and send the initial model w1 to each participant, then they do the optimization
locally, and send back the corresponding results. We finally obtain the results by Eq. (1).

If each participant does only one step optimization, according to the property of conditional expecta-
tion, minimizing Eq. (1) is equivalent to minimizing Eq. (2). But this procedure puts a lot of pressure
on communication, so researchers propose to do more local updates for efficiency. Hence, for the
k-th participant, the optimization procedure of a typical round can be formalized as

wk
i+1 ← wk

i − ηEξ|Ck
[∇wF (wk

i , ξ|Ck)], i = 1, · · · , n.

Then the central server aggregates local models w1
n+1, · · · ,wK

n+1 to update the global model by

w =

K∑
k=1

pkw
k
n+1, (3)

where we denote pk for P (C = Ck) for convenience.

2.2 WASSERSTEIN DISTANCE

Wasserstein distance (Villani (2009)) is a metric in probabilistic space inspired by the problem of
optimal transport. It is a distance between probability distributions that takes geometric information
into account. The general wasserstein distance is defined as

Wp(µ,ν) = inf
γ∈Γ(µ,ν)

E(x,y)∼γ [∥x− y∥p],

which is difficult to find a closed form solution. However, if we chose 2-norm as the geometric
measure and simplify the problem to Gaussian distribution, the distance has an analytic solution

d2 = ∥µ1 − µ2∥22 + tr((Σ
1
2
1 −Σ

1
2
2 )

2), (4)

where we define d := W2(N (µ1,Σ1),N (µ2,Σ2)).

3 MAXIMIZE GSNR WITH OPTIMAL LOCAL UPDATES

In this section, we investigate the relationship between GSNR and the local updates, then we propose
a method to calculate the optimal number of local updates. As Section 4 will introduce, GSNR can be
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calculated by the ratio between the norm of global gradient, which is a constant for all participants,
and the distance between global and local gradients. Therefore, to maximize GSNR is equivalent
to minimize the distance between the distributions of global and local gradients. Furthermore, the
minimal distance, i.e., the maximum GSNR, is decided by the optimal local updates.

On the other hand, as mentioned in Section 2.1, our target is to gather data so as to optimize Eq. (2)
centralizedly. But in practice, due to some real restrictions, we can just optimize Eq. (1) distributedly.
Thus, we treat the former procedure as an ideal optimization process. Based upon this idea, for
accelerating convergence, our practical optimization problem also requires to minimize the distance
between practical and ideal optimization path, which is determined by the corresponding gradients.

The distance between practical and ideal optimization path, which are denoted by the distributions of
pw(w) and pwg (w) respectively1, can be formalized as

D = W2(pw(w), pwg
(w)), (5)

According to Eq. (3), due to the conditional independence of the data from different participants, the
random vector w is a convex combination of a set of independent random vectors, hence pw(w) is
identified by the convolution of corresponding local distribution functions, and such a distribution
contains all details of each participant. Intuitively, if a specific participant attempts to minimize
Eq. (5), it has to gather all information from others, which violates the privacy requests. Then we
need to derive an upper bound of Eq. (5) as

D = W2(pw(w), pwg
(w)) = inf

γ∈Γ(pw,pwg )
E(x,y)∼γ [∥x− y∥2]

≤
K∑

k=1

pk inf
γk∈Γ(p

wk
n+1

,pwg )
E(x,y)∼γk

[∥x− y∥2], (6)

where we split ∥x − y∥2 as ∥
∑K

k=1 pk(xk − y)∥2, and each pair (xk,y) is supported on
Γ(pwk

n+1
, pwg ). Then the inequality depends on triangle inequality and the fact that wk

n+1 is mutual
independent. The upper bound is obvious, since by optimal transport, comprehensively considering
all mounds is better than the sum of separate consideration.

By upper bound (6), the distance between practical and ideal optimization path is upper bounded. In
other words, while minimizing upper bound (6), the target distance (5) is approximately minimized.
Specifically, the target gap vanishes as the upper bound approaches to 0. Regarding Eq. (6), it is the
sum of the distance between each independent local distribution pwk

n+1
and the global distribution

pwg
, then due to the rotating symmetry, we can minimize upper bound (6) separately for each

participant. Hence, without loss of generality, we just consider a specific participant in federated
learning in the rest of this paper.

Based on former analysis, for maximizing GSNR, each participant needs to greedily optimize its local
gradient distribution to minimize the distance W2(pwk

n+1
(w), pwg (w)). As the initial parameters,

i.e., wk
1 , for all participants are identical, the main target is to estimate the gradient distribution of

different participants. Then we have the following assumption.
Assumption 3.1. (Bounded variance) The variance of stochastic gradients are uniformly bounded,
i.e., Eξ|Ci

∥∇wF (w, ξ|Ci)− µi∥2 ≤ σ2, ∀i, w, where µi := Eξ|Ci
[∇wF (w, ξ|Ci)].

Under such an assumption, the mini-batch stochastic gradient descent converges to joint normal
distribution. The detailed proofs can be found in Appendix B.
Lemma 3.2. With Assumption 3.1, let {ξi,b | 1 ≤ i ≤ n; 1 ≤ b ≤ B} be a set of iid sam-
ples of a specific dataset, g = (g1, · · · , gn) be a finite dimensional gradient vector, where
gi = 1

B

∑B
b=1∇wF (wi, ξi,b), i ∈ {1, · · · , n}, then

√
B(g − E[g]) converges to multivariate

normal distribution.
Remark 3.3. Let S =

√
B(g − E[g]) and Z ∼ N (0,Σ), where Σ is the covariance matrix of S,

then based on Berry–Esseen theorem, for all convex sets U ⊆ Rd, we have |Pr(S ∈ U)− Pr(Z ∈
U)| ≤ C rank(Σ)1/4

B1/2 , where C is a constant, which provides an upper bound of estimation error for
Lemma 3.2.

1wg is the ideal optimization path based on the global data distribution, i.e., the ideal distribution of data
gathered from all participants, while w is the corresponding practical path defined by Eq. (3).
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Lemma 3.2 implies that, with mini-batch stochastic gradient descent, the sum of local updates
converges to a Gaussian distribution, i.e., ḡ = wn+1 −w1 =

∑n
i=1 gi = 1Tg, where ḡ is a linear

transformation of a joint Gaussian vector. Thus, with a finite batch size B, it can be approximated by
Gaussian distribution. Then we need to calculate the mean vector and the covariance matrix. For
such a purpose, we have another assumption of smoothness.
Assumption 3.4. (Smoothness) The target function F (w, · ): Rm → R is twice differentiable, and
the expected matrix norm of hessian matrix H(F (w, · )) is bounded, i.e., Eξ∥H(F (w, ξ))∥2 ≤ L2,
where ξ is randomly sampled from a specific dataset.

Note that Assumption 3.4 is weaker than L-smooth Assumption, since if a function F (w, · ) is
L-smooth, it conforms to Assumption 3.4, but not vice versa.

Assumption 3.4 always holds for typical machine learning tasks, e.g., logistic regression, soft-max
classification and so on. With these assumptions, we have the following lemma.
Lemma 3.5. If Assumption 3.1 and 3.4 hold, let {ηr}+∞

r=1 be a sequence of real number such
that lim

r→+∞
ηr = 0, and {εr}+∞

r=1 be a sequence of random vectors, where εr = ĝ − ḡ, and

ĝ =
∑n

i=1∇wF (w1, ξi), ḡ =
∑n

i=1∇wF (wi, ξi) with wi = wi−1 − ηrgi−1, i ∈ {2, · · · , n}
respectively, then we have εr

L→ 0, which implies ĝ L→ ḡ.
Remark 3.6. Based on the proof of Lemma 3.5 in appendix, the estimation error is E∥ḡ − ĝ∥ ≤
n(n− 1)ηrLG, which implies that if we consider learning rate decay2, then

∀ϵ, lim
r→+∞

Pr(∥ḡ − ĝ∥ > ϵ) = 0. (7)

In a typical communication round r, the optimization process implies that wn+1 −w1 = ηrḡ. While
based on Eq. (7), we can use ηrĝ = ηr

∑n
i=1∇wF (w1, ξi) to estimate ηrḡ. Moreover, if we

multiply Eq. (7) by ηr, the estimation error becomes O((nηr)2LG).

Specifically, since w1 is a constant vector and ξi is iid sampled from the dataset in different
local steps, {∇wF (w1, ξi)|i ∈ {1, · · · , n}} are also iid random vectors. Therefore, based
on the sum of independent random variables, we have µ = E[ηrĝ] = nηrEξ[F (w1, ξ)], and
Σ = Cov(ηrĝ, ηrĝ) = nη2rΣ1.

Additionally, Σ is a second order term. To simplify the analysis, we need to convert coefficient n to
n2. As mentioned before, Σ1 is the covariance matrix of a mean vector distribution, hence it depends
on the batch size B. Let B = B̂/n, then we obtain Σ = n2η2Σ1/B̂.

For convenience, in the rest of our work, we use µ∗ and Σ∗ to denote the corresponding mean vector
and covariance matrix of gradients estimated by a specific dataset. Similarly, as we can change the
local batch size for simplifying computation, we ignore the differences between B and B̂.

According to Lemma 3.2 and 3.5, we can estimate the parameter distributions of one global step and
n local steps by N (ηrµg, η

2
r
Σg

B ) and N (nηrµl, n
2η2r

Σl

B ) respectively. Then the optimal number of
local updates to maximize GSNR is implied by following theorem.
Theorem 3.7. The minimal Wasserstein distance between two multivariate Gaussian distribution
denoted by N (ηrµg, η

2
r
Σg

B ) and N (nηrµl, n
2η2r

Σl

B ) with variable n is achieved when n is

nopt
1 = max(0,

µT
l µg +

tr((ΣlΣg)
1
2 )

B

∥µl∥2 + tr(Σl)
B

),

and the minimum distance is (∆opt
1 )2 = η2r∆

2,

∆2 = ∥µg∥2 +
tr(Σg)

B
−

(
µT

l µg +
tr((ΣlΣg)

1
2 )

B

)2

∥µl∥2 + tr(Σl)
B

.

Corollary 3.8. For N (mηrµg,m
2η2rΣg) and N (nηrµl, n

2η2rΣl), where m is a constant, the
optimal n to minimize the Wasserstein distance is nopt

m = m · nopt
1 and the minimal distance is

(∆opt
m )2 = m2 · (∆opt

1 )2.
2For example, ηr = η0α

r refers to a widely used learning rate decay method with a decay rate α < 1.
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Algorithm 1 Example of FedGSNR in conjunction with FedAvg
Input: initial model w1, learning rate η0, sample size B, and chosen global steps M
for r = 1 to R do

Sample clients S ⊆ {1, · · · ,K}
Server: send w1 and ηr to each client i ∈ S

On each active client i in parallel: initialize local model wi ← w1, compute g̃i and
diag(Σ̃i), and send them to the server
Server: compute nopt

1,i with Theorem 3.7 for each client i, and send it to each client i

On each active client i in parallel:
for k = 1 to M · nopt

1,i do
wi ← wi − ηrḡi

end for

Server: w1 ←
∑|S̃|

i=1 p̃iw
i, where S̃ = {i|i ∈ S, nopt

1,i > 0}, and p̃i is the corre-
sponding probability ratio, i.e., pi/

∑
k∈S̃ pk

end for

Based on Corollary 3.8, if m is a constant, the minimum Wasserstein distance is achieved when
n = m ∗ nopt

1 , which is the optimal number of local updates for maximizing GSNR, leading to a
maximal channel capacity for information communication.

To estimate the optimal local updates, we need to compute the mean vectors and covariance matrix
for both local distribution and global distribution by the samples from each participant. In practice,
we use sample mean vector and sample covariance matrix to estimate the parameters of local
distribution, i.e., for participant k with model w1, the corresponding statistics are g̃k = 1

B

∑B
b=1 gk,b

and Σ̃k = 1
B

∑B
b=1(gk,b − g̃k)(gk,b − g̃k)

T , where gb,k = ∇wF (w1, ξb|Ck). While for the server,
based on the theorem of conditional random variables, the corresponding global statistics are

g̃ = EC [g̃|C] =

K∑
k=1

pkg̃k, (8)

Σ̃ = EC [Σ̃|C] + CovC(g̃|C) =

K∑
k=1

pkΣ̃k +

K∑
k=1

pk[(g̃k − g̃)(g̃k − g̃)T ]. (9)

In practice, as the covariance matrix increases the communication traffic and the calculation of matrix
introduces lots of computation, we need to simplify the procedure. Specifically, in Theorem 3.7, we
mainly need the trace of covariance matrix. Meanwhile, according to Balduzzi et al. (2017), we know
that the covariance matrix of gradients is a sparse matrix and the estimate error can be scaled by the
batch size B. Therefore, we can instead utilize the principal diagonal element of Σ̃k for efficiency.
Based on former analysis, we propose an algorithm FedGSNR to calculate the optimal number of
local updates, and Algorithm 1 is a typical example of FedGSNR in conjunction with FedAvg3.

Partial participation. In federated scenarios, the active participants are usually not 100%, so we
cannot obtain perfect information of global gradient. However, we claim that FedGSNR can also
adapt to this situation, because such imperfect information encourages us to transform Eq. (5) with
triangle inequality to

W2(pw̄(w), pwg
(w)) ≤W2(pw̄(w), pŵ(w)) +W2(pŵ(w), pwg

(w)),

where ŵ is the average parameters of active clients (i.e., a subset of total clients). With a specific
client set S, δ = W2(pŵ(w), pwg (w)) is a constant, and W2(pw̄(w), pŵ(w)) can be bounded by
inequality (6). Thus, with some tolerance δ, we can similarly minimize Eq. (5) with the new upper
bound, but the performance decreases as the ratio of active clients declines.

3Note that our proposed FedGSNR is a compatible method, and the referred FedAvg can also be replaced by
other methods (e.g., FedProx).
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Convergence analysis. FedGSNR is a convergent algorithm, since we just change the number of
local updates. Moreover, we can transform the convergence analysis of FedGSNR to its original
version by the inequality 1 ≤ Emin ≤ Ei,r ≤ Emax. We provide an example of convergence
analysis for FedGSNR with FedAvg in Appendix E.

4 CALCULATE GSNR BY LOCAL GRADIENTS

In this section, we first analyze the optimal local updates as well as the optimal distance between the
local gradient distribution and the global gradient distribution, and then derive a method to calculate
GSNR by the optimal distance. However, due to the limited space, the detailed analysis between
GSNR and the optimization procedure can be found in Appendix C.

𝜽

𝜼𝟐𝚫𝟐

Local Steps

Global Step

Figure 2: An overview for GSNR: the
GSNR can be calculated by the statistics
of global gradient distribution and local
gradient distribution.

Regarding the optimal number of local updates nopt
1

and the corresponding optimal distance (∆)2, let

L = ∥µg∥2 +
tr(Σg)

B , M = µT
l µg +

tr((ΣlΣg)
1
2 )

B ,
and N = ∥µl∥2 + tr(Σl)

B , we can rewrite nopt
1 =

max(0, M
N ) and (∆)2 = L− M2

N .

Then we define a matrix as follows:

R∗ =


u1
∗

u2
∗

. . .
ut
∗ (

1
BΣ∗

) 1
2


where µi

∗ is the component of µ∗ = (µ1
∗, · · · , µt

∗).

On the one hand, L = ∥Rg∥2F is correlated to the global distribution, which is a constant for all
participants.4 On the other hand, N = ∥Rl∥2F depends on local distribution, thus it is a normalization
coefficient. Hence, the two variables nopt

1 and (∆)2 mainly depend on the value of M , the inner
product of two matrixes, i.e., < Rl,Rg >F , which represents the similarity of them.

Based on former analysis, we derive a method to calculate GSNR as Definition 4.1.
Definition 4.1. Gradient Signal to Noise Ratio (GSNR). For a local dataset Dl and a global dataset
Dg , with a loss function F (w, · ), the GSNR is a function of w defined as

r(w) = max(0,
< Rl,Rg >F√

∥Rl∥2F ∥Rg∥2F− < Rl,Rg >2
F

).

Specifically, Fig. 2 illustrates an example for Definition 4.1. In Fig. 2, we imagine a similar case in
Euclid space. In this case, angle θ can be viewed as the similarity between global and local gradient
vectors. In Euclid space, the minimum distance from a point to a line is the segment vertical to the line,
thus the black dash line is orthogonal to local gradient vector. Hence, η2(∥µg∥2+tr(Σg)/B)

η2∆2 = csc2θ.
As for GSNR, defined as the magnitude ratio between the parallel component and the orthogonal
component, it can be viewed as the cot θ. Then according to trigonometric transformation, i.e.,
cot2 θ = csc2 θ − 1, we can obtain Definition 4.1.

5 EXPERIMENT

We run our experiments on the well known real world datasets CIFAR-10 and CIFAR-100 mentioned
in Krizhevsky et al. (2009) to validate our design.

Setup. For non-iid settings, we utilize 3 methods for data partition. First, we follow the settings in
Hsu et al. (2019) to generate non-iid data across different participants by Dirichlet distribution, where

4∥ · ∥F and < ·, · >F are Frobenius inner product and Frobenius norm respectively.
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α is a parameter represents the level of non-iid. Second, we propose NonBalance and Pareto for
imbalanced partition, which simulates the imbalanced distributed information in practical scenario.
Due to the limited space, the details of different methods can be found in Appendix D. For all
experiments, we use LeNet for CIFAR-10 and VGG-16 for CIFAR-100.

Table 1: Communication rounds to reach 0.5 accuracy and corresponding speedup5 of FedGSNR on
CIFAR10. We distributed the data among 30 clients, utilize batch size of 64, and set Econst = 20.

Algorithms α = 0.5 α = 0.1 Label 2 NonBalance Pareto

FedAvg 170 (1.0×) 355 (1.0×) 470 (1.0×) 210 (1.0×) 550 (1.0×)
FedGSNR with FedAvg 115 (1.5×) 285 (1.3×) 340 (1.4×) 155 (1.4×) 170 (3.2×)

FedProx 185 (1.0×) 430 (1.0×) 500 (1.0×) 220 (1.0×) 385 (1.0×)
FedGSNR with FedProx 140 (1.3×) 300 (1.4×) 405 (1.2×) 180 (1.2×) 210 (1.8×)

Scaffold 385 (1.0×) 770 (1.0×) 870 (1.0×) 390 (1.0×) >1K
FedGSNR with Scaffold 140 (2.7×) 425 (1.8×) 770 (1.1×) 170 (2.3×) >1K

To ensure all methods are comparable, we need to set the total computation, i.e., local updates,
to be equal. So in FedGSNR, we set the local updates for different participants to be Ek =

NEconst
nopt
1,k∑K

i=1 nopt
1,i

, where N and Econst represent the active participants and the local updates of

baseline algorithms respectively. Note that Ek is a redistribution of local steps.

The necessity of optimal local updates. To understand the necessity of optimal local updates, we

Figure 3: The entropy of lo-
cal steps for different parti-
tion methods.

Figure 4: Test accuracy of
different algorithms with dif-
ferent local steps.

calculate the entropy of the local steps,
i.e., H =

∑K
k=1 p(Ck) log p(Ck),

where p(Ck) =
nopt
1,k∑K

i=1 nopt
1,i

, and the re-

sults are illustrated in Fig. 3. Specifi-
cally, the dashed blue line on the top is
the uniform distribution of local updates,
which is the maximum entropy distribu-
tion of discrete variables, and it repre-
sents the equal local updates among all
participants. Moreover, when the degree
of non-iid increases, the computation
is allocated more concentrated, i.e., a
smaller entropy. On the contrary, the entropy converges to its maximum when the distributed data is
closer to iid. Additionally, the corresponding convergence rate is illustrated in Table 1, which indicates
that the re-allocation of local updates based on FedGSNR accelerates the model convergence.

The impatct on test accuracy. Versus its original, FedGSNR achieves comparable test accuracy and
even outperform its original when the non-iid degree increases. For example, in Pareto scenario, the
accuracy of FedGSNR with FedProx achieves an increase of 6.43%. More detailed results can be
found in Appendix D.2.

(a) Test accuracy (b) GSNR

Figure 5: An imbalanced scenario with Pareto
partition on CIFAR-100 dataset.

(a) IID (b) NonBalance

Figure 6: The variation of GSNR when we change
the labels of a specific participant.

Model convergence of FedGSNR. During experiments, we set µ = 0.01 for FedProx, and compare
the performance of different algorithms to its combination with FedGSNR. Then according to Table

5Speedup Karimireddy et al. (2020), i.e., S = Told
Tnew

, measures the relative performance of two methods.

8
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Table 2: Communication rounds to reach 0.5 test accuracy for classification on NonBalance CIFAR-10
of 100 participants as we vary the number of active clients.

10% 20% 100%

FedAvg 210 (1.0×) 140 (1.0×) 100 (1.0×)
FedNova 235 (0.9×) 140 (1.0×) 80 (1.2×)
Scaffold 230 (0.9×) - -
FedGSNR with FedAvg 150 (1.4×) 80 (1.7×) 55 (1.8×)

1, FedGSNR with different algorithms achieve faster convergence versus its original, and it reaches
a 1.69× speedup on average with comparable accuracy. The corresponding accuracy can be found
in Appendix D.2. Besides, Fig. 4 illustrates the accuracy when we set different number of Econst,
and FedGSNR with FedAvg converges faster and achieves better accuracy with different local steps
(Scaffold fails to work when we set Econst = 25). Moreover, in practice, Pareto’s Law is a common
principle, which means a small number of participants possess a large number of information. Fig.
5(a) indicates that FedGSNR with different algorithms converge faster and reaches comparable
accuracy. Meanwhile, the GSNR of different participants are resemble to their label distribution (the
histogram on the bottom of Fig. 5(b)), which demonstrates GSNR can distinguish the information
quality between different local datasets. Furthermore, Table 2 indicates that the growth of active
clients speeds up the convergence of different algorithms. Particularly, FedGSNR gains more benefit
from global information as its speedup increases from 1.4× to 1.8× when active clients grows.

(a) IID (b) Dirichlet(1.0) (c) Dirichlet(0.5) (d) Label 2

Figure 7: The GSNR of different clients. We observe that GSNR is larger and almost the same among
all participants when data is iid distributed, then it gets smaller and heterogeneous as the non-iid level
grows. Finally, when data partition method is Label 2, GSNR is small but similar to each other again,
which probably indicates that data is distributed with some symmetries in regard to the information.

Evaluate local contributions with GSNR. Fig. 7 displays the variation of GSNR when we utilize
Dirichlet method with different α. And the results demonstrate that when the level of non-iid grows,
GSNR of different clients vary dramatically, which represents the contributions of different clients are
different. Moreover, combined GSNR with the results in Table 1, the model convergence is faster than
its opponents when we considerate such differences. Further more, to investigate the performance of
data evaluation, we change the labels l of client 0 to be (l + k)mod 10. So that the client provides a
label flipping attack as Hitaj et al. (2017). Fig. 6 illustrates the changes of GSNR when we change
the labels, and the red dashed line box represents the original GSNR when the labels are unchanged.
Specifically, we observe that the GSNR dramatically decreases when we make a malicious change to
the labels. Additionally, we instead change the data points to be sampled from a uniform distribution,
and observe a similar phenomenon. For both of malicious changes, we observe FedGSNR is more
robust. Due to the limited space, we send these experiments to Appendix D.

6 CONCLUSION

In this paper, we have investigated the FL problem via a new perspective, i.e., GSNR. Our theoretical
analysis indicates that under non-iid scenarios, the local updates can be decomposed into signal
and noise components, and we can maximize GSNR with the optimal local updates. Based on
theoretical analysis, we further propose an algorithm FedGSNR to calculate the optimal local updates
for different FL algorithms, which achieves faster global model convergence. Additionally, we derive
a method to calculate GSNR directly from the local datasets, which can be utilized to evaluate the
local contributions of different participants. Finally, extensive experimental results demonstrate the
beneficial effect of optimizing FL from the new perspective of GSNR, and also open up a promising
new direction for follow-up research.
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A RELATED WORK

Gradient Diversity. Gradient diversity is a key ingredient of federated learning, which captures
the differences between the datasets possessed by different participants. Yin et al. (2018) employs
gradient diversity to investigate the relationship between batch size and the convergence rate in
parallel SGD. Yu et al. (2019) analyzes why periodical model averaging is suitable for deep learning,
and provides a deep understanding of model averaging. Haddadpour et al. (2019) tries to mitigate
gradient diversity through sharing a small batch of data among all participants, but it also introduces
a higher privacy risk. Acar et al. (2021) introduces a dynamic regularization term to resolve the
problem of gradient divergence. However, most of previous literatures try to solve gradient diversity
through gradient calculating, such as gradient prediction, regularization, personalized target function
and so on. However, the influence of local updates gains less attention. In this paper, we propose a
new perspective to analyze the optimization procedure by Gradient Signal to Noise Ratio, it reduces
the required communication rounds via an elaborate configuration of local updates and propose a
method to evaluate the contributions of different participants.

Personalization in federated learning. Another important problem in federated learning is personal-
ization. Formally, personalization transform the optimization problem from global distribution p(ξ)
to a specific local distribution p(ξ |Ci) on client i, it scarifies the global performance in order to gain
more benefit in local scenario. Kulkarni et al. (2020) reviews the investigations of personalization, and
the situations are divided into three categories: device heterogeneity, data heterogeneity and model
heterogeneity, while the last one is the motivation of personalization. Mansour et al. (2020) proposes
three methods to achieve personalization, these methods try to balance the model performance on
global data distribution as well as local data distribution. Sim et al. (2019) proposes a method to
optimize global model and local model separately in order to make local model more personalized.
Jiang et al. (2019) proposes three objectives to make personalization easily. However, personalization
is an important topic in federated learning since different participants confront different problems,
but if we greedily utilize global information for personalization, there is likely to appear Prisoner’s
Dilemma, the collective benefit for all participants is not optimal and therefore, the profit for each
participant can probably be futher improved. Hence, cooperation is also an important problem,
and a better goal of personalization is to search optimum on conditional data distribution p(ξ |Ci)
combined with cooperation.

B PROOFS OF LEMMA AND THEOREM

B.1 PROOF OF LEMMA 3.2

Proof. For any constant n, gradient vector g can be rewritten as

g =
1

B

B∑
b=1

(∇wF (w1, ξ1,b), · · · ,∇wF (wn, ξn,b)),

let g̃b = (∇wF (w1, ξ1,b)), · · · ,∇wF (wn, ξn,b))), we further have

g =
1

B

B∑
b=1

g̃b,

then with Assumption 3.1 and n is a constant, g̃b is subject to some complex distribution with
bounded covariance matrix. As ξi,b is iid sampled from a specific dataset, g is the mean vector of
g̃1, · · · , g̃B , which are iid random vectors.
Therefore, based on the classical Central Limit Theory, with B growing large,

√
B(g − E[g])

converges to N (0,Σ) in distribution, where Σ is the covariance matrix of g.

B.2 PROOF OF LEMMA 3.5

Proof. First, we prove lim
r→+∞

E∥εr∥ = 0.
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Regarding the gradient gi, i ∈ {1, · · · , n}, due to the smoothness of∇wF (wi, ξ), we can expand gi
based on Lagrange’s mean value theorem as

gi = ∇wF (wi, ξi) = ∇wF (w1, ξi)+H(F (w̃i, ξi ))(wi−w1) = g1,i+H(F (w̃i, ξi ))(wi−w1),
(10)

where w̃ := λwi + (1 − λ)w1, λ ∈ [0, 1], and g1,i represents the gradient at w1 with sample ξi,
which is an unbiased estimator of g1. Note that when i ̸= j, g1,i is independent of g1,j . Then

E∥gi − g1,i∥ = E∥H(F (w̃i, ξi ))(wi −w1)∥
(a)

≤ E∥H(F (w̃i, ξi ))∥∥(wi −w1)∥ (11)

(b)

≤
√

E∥H(F (w̃i, ξi ))∥2E∥wi −w1∥2
(c)

≤ L ·

√√√√E∥ηr
i−1∑
j=1

gj∥2

(d)

≤ L2 · ηr

√√√√(i− 1)

i−1∑
j=1

E∥gj∥2
(e)

≤ (i− 1)ηrLG,

where (a) follows from sub-multiplicative property of matrix norm, (b) is based on Cauchy–Schwarz
inequality, (c) is an immediate consequence of Assumption 3.4 and the local optimization process,
(d) comes from the fact ∥

∑n
i=1 ai∥2 ≤ n

∑n
i=1 ∥ai∥2, and (e) is based on Assumption 3.1, where

G2 := σ2 + µ2, µ = max({∥µi∥}i∈{1,··· ,n}). Hence,

E∥εr∥ = E∥ĝ − ḡ∥ = E∥
n∑

i=1

(gi − g1,i)∥ ≤
n∑
1

E∥gi − g1,i∥

≤ (

n∑
i=1

(i− 1))ηrLG =
n(n− 1)

2
ηrLG

where the first inequality follows from the triangle inequality, and the second inequality is based on
Eq. (11).

As n represents the number of local steps, which is a constant, E∥εr∥ is upper bounded by ηr ·M ,
where M is a bounded value. Therefore,

0 ≤ lim
r→+∞

E∥εr∥ ≤ lim
r→+∞

ηr ·M = 0. (12)

Formula (12) implies εr converge to 0 in mean, i.e., εr
L→ 0, which immediately completes the proof.

B.3 PROOF OF THEOREM 3.7

Proof. According to Eq. (4), to minimize the distance between N (ηrµg, η
2
r
Σg

B ) and
N (nηrµl, n

2η2r
Σl

B ), we can build an optimization problem as

min
n

d2 = ∥ηrµg − nηrµl∥2 + tr(M2) (13)

s.t. M =

(
η2rΣg

B

) 1
2

−
(
n2η2rΣl

B

) 1
2

n ≥ 0.

Note that Eq. (13) is a quadratic function of n, which immediately completes the proof.
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B.4 PROOF OF COROLLARY 3.8

Proof. In this case, we change the distribution N (ηrµg, η
2
r
Σg

B ) to N (mηrµg,mη2r
Σg

B ), and refor-
mulate problem (13) as

min
n

d2 = m2(∥ηrµg −
n

m
ηrµl∥2 + tr(M2))

s.t. M =

(
η2rΣg

B

) 1
2

−

((
n
m

)2
η2rΣl

B

) 1
2

n ≥ 0,

let d̃ = d
m and ñ = n

m , then the new problem reduces to problem (13), which concludes the proof
immediately.

C DETAIL ANALYSIS OF GSNR

Local Steps

𝐹∗(𝒘, 𝝃)

Global Steps

Optimal distance

Figure 8: A similar case in Euclid space: as
the ideal optimization path is discrete, there
is an optimal distance between global updates
and multiple local updates. Further more,
when global updates converge to the optimum,
the local updates converge to the nearest point
to the optimum.

𝒘𝟏

𝒘𝟐

𝒘𝟐
′

𝐹∗(𝒘, 𝝃 | C𝟐)

𝐹∗(𝒘, 𝝃 | C𝟏)

𝐹∗(𝒘, 𝝃)

Figure 9: A representative scenario of
GSNR: r(w) is a random variable with re-
gard to w. If we get closer to the optimum
of C2, GSNR of C1 will increase and the
GSNR of C2 will decrease. While if we get
closer to the optimum of C1, the situation
changes in the opposite way.

According to Fig. 8, the stochastic gradient descent algorithm converges to the ϵ-neighborhood of
optimum after a constant steps (usually more than O( 1ϵ ) Nesterov (1998)). For convenience, we refer
such a constant as the optimal mopt. In practice, as Fig. 8 indicates, with determined differences
between global distribution and local distribution, i.e., maximal GSNR is a constant during a specific
round, set the target global steps as mopt is an optimal choice. However, a large number of m leads to
a large error of gradient estimation, which is determined by O(η2n2). Hence, in practice, in order to
decide m, we need to trade off between the estimation error and the corresponding convergence rate.

Then we focus on Definition 4.1, the function to calculate GSNR. Specifically, Cauchy-Schwarz
inequality implies that ∆2 ≥ 0, and the equality holds when local distribution is the same as the global
distribution, i.e., the data is iid distributed among all participants. With ∆2 decreases, which implies
local data distribution approaches the global data distribution, nopt

1 gradually increases. Moreover,
when ∆2 reaches its minimum 0, nopt

1 attains its maximum value 1. Based on the analysis, we can
conclude that the more similarity between local dataset and the global dataset, i.e., the larger GSNR
the local dataset achieves, the more local updates we need for optimization procedure, which is
heuristically experimented in Li et al. (2020b).

To calculate GSNR, we derive r(w) as Definition 4.1, and r(w) is positive related to nopt
1 . On the

one hand, when nopt
1 = 0, from its definition, we know that < Rl,Rg >F= 0, hence the optimal

distance ∆2 achieves its maximum ∥Rg∥2F , and r(w) attains its minimum 0. On the other hand,
when local distribution is the same as the global distribution, i.e., ∆2 = 0, r(w)→ +∞, we treat this
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scenario as a noiseless optimization procedure, and the data is iid distributed among each participant.
Therefore, r(w) ∈ (0,+∞).

With former analysis, we know r(w) ∈ (0,+∞). On the one hand, as the data is iid distributed
among all participants, i.e., GSNR goes to +∞, the distributed optimization is a noiseless procedure,
which means the local updates is unbiased. On the other hand, when GSNR is 0, which means
< Rl,Rg >F≤ 0, the angle between local gradient and the global gradient is greater than 90◦. In
other words, for current optimization, local data distribution is independent of global data distribution,
thus for global optimization, it is no better than a random guess, then its signal component will be set
to 0, which leads GSNR to be 0.

As for the relationship between GSNR and the parameters w, Fig. 9 displays a representative scenario.
Due to the randomness of SGD, the new parameters after w1 with another aggregation can be either
w2 or w

′

2. On the one hand, if the parameters is w2, which means we get closer to the optimum of
client C2, there are different changes of the GSNR for different clients: for C1, the GSNR increases,
while for C2, the vector is almost orthogonal to global optimization vector, which implies its GSNR
is closer to 0. On the other hand, if the parameters is w

′

2, which is closer to optimum of C1, the
phenomenon is slightly different: the GSNR of C1 decreases and the GSNR of C2 increases. Hence,
during the training process, r(w) is a random variable correlated to the random process w, and if
we tend to use GSNR to evaluate the contribution of different participants, we need to observe its
statistics, i.e., mean or median.

D DETAILS OF EXPERIMENTS

D.1 DIFFERENT METHODS OF DATA PARTITION

Dirichlet partition. we follow the settings in Hsu et al. (2019) to generate non-iid data across
different participants by Dirichlet distribution. Specifically, the prior distribution is set to be Uniform,
and then the parameter α represents the level of concentration. With α→ +∞, the data distributions
of all participants tend to be identical, hence the data is iid distributed among all clients. While
α → 0, each participant only possesses data chosen from just one class, i.e., one label for each
participant. As for Label 2., it is a specific partition method in Hsu et al. (2019), and each client
owns the data sampled from 2 classes.

NonBalance partition. For NonBalance partition, we tend to simulate the practical scenario of
imbalanced information distribution. Specifically, We divide all participants into three categories:
abundant information, medium information and less information, which represent the clients possess
data chosen from different number of labels. First, for clients with abundant information, we random
chose data from all labels, and the number of them is 10% of total clients. Second, for the clients with
medium information, we random chose 50% classes for each client, then distribute data randomly
according to their chosen labels, and the ratio of them is 40%. Finally, for the clients with less
information, the number of labels reduces to 20%, and the ratio of them raises to 50%.

Pareto partition. In practice, Pareto distribution is a common scenario. It represents the long tailed
distribution of practical scenario such as the degree of nodes in complex network, the distribution of
social wealth, the distribution of followers in social network, etc. Hence, we design Pareto partition
to simulate the so called Two-Eight distribution in practice. First, we sample N points from Pareto
distribution,

p(x) =

{
k·xk

min

xk+1 , if x ≥ xmin

0, otherwise.

Where N represents the number of clients. Denote the corresponding samples as X = {xi}Ni=1, and
we normalize xi with x̃i = xi/max(X) to guarantee all data distributed in [0, 1]. Finally, we use
x̃i as the ratio of classes possessed by different clients for random sampling, and set the minimum
number of labels among all clients to be 1.

D.2 ADDITIONAL EXPERIMENTS

Fig. 10 displays the change of GSNR and corresponding test accuracy when we apply different
malicious change to a client. Interestingly, compare Fig. 10(a) and 10(b) with Fig. 10(c) and
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(a) GSNR on IID CIFAR-
10 with Label change.

(b) GSNR on NonBal-
ance CIFAR-10 with Label
change.

(c) GSNR on IID CIFAR-
10 with Random input.

(d) GSNR on NonBalance
CIFAR-10 with Random in-
put.

(e) Test accuracy on IID
CIFAR-10 with Label
change.

(f) Test accuracy on Non-
Balance CIFAR-10 with
Label change.

(g) Test accuracy on IID
CIFAR-10 with Random in-
put.

(h) Test accuracy on Non-
Balance CIFAR-10 with
Random input.

Figure 10: We make different malicious changes to client 0 in different partition methods. In (a) and
(b), we change the labels l of client 0 to l+ 3. While in (c) and (d), the labels remain unchanged, and
we change the input data to be a uniform distribution U(−1, 1). (e)-(h) are the corresponding test
accuracy of different scenarios.

10(d), we can discover that the decrease of GSNR for random input is larger than label changing.
Specifically, it is consistent with our intuition, since malicious attack of label changing contains more
information than random input. Simply put, after label changing, the model still gets the information
that such data belong to a same class. For example, if we change all labels of ‘cat’ to ‘dog’, we
still know the data of ‘cat’ belongs to a same class, though we call them ‘dog’. On the contrary, the
change of random input cannot provide this information.

Table 3: Best test accuracy on CIFAR-10. We distributed the data among 30 clients, utilize batch size
of 64, and set local steps Econst = 20 for different algorithms.

Algorithms α = 0.5 α = 0.1 Label 2 NonBalance Pareto

FedAvg 67.06% 57.44% 58.25% 65.48% 57.23%
FedGSNR with FedAvg 66.23% 61.41% 57.69% 66.42% 63.38%

FedProx 63.14% 57.80% 58.84% 63.87% 56.96%
FedGSNR with FedProx 63.5% 59.39% 58.39% 68.17% 63.39%

Scaffold 62.05% 53.98% 50.38% 62.79% 40.73%
FedGSNR with Scaffold 63.53% 58.95% 55.48% 64.96% 39.83%

Table 3 displays the corresponding test accuracy of different algorithms aforementioned in Table 1,
and it indicates that FedGSNR not only converges faster, but also achieves a comparable accuracy than
its opponents. As for the accuracy drop in Table 3, it’s possibly because FedGSNR is a gradient-based
algorithm, if the basic method introduces gradient estimation (i.e., Scaffold), the performance of
FedGSNR will be correlated to the precision of such an estimation, and a relatively low precision
leads to the corresponding accuracy drop. Meanwhile, as we have illustrated in Fig. 7, the method of
Label 2 distributes the data with some symmetries in regard to the information, i.e., the GSNR of
each participant are similar to each other, then it’s naturally compatible to identical local updates,
hence the test accuracy between FedGSNR and its opponents are close to each other.
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E AN EXAMPLE OF CONVERGENCE ANALYSIS

As defined in Sec. 4, we have

R∗ =


u1
∗

u2
∗

. . .
ut
∗ (

1
BΣ∗

) 1
2


where µ∗ and Σ∗ are the corresponding mean vector and covariance matrix calculated by the samples
sampled from D∗ respectively, and µi

∗ is the component of µ∗ = (µ1
∗, · · · , µt

∗). Then we have
following lemmas.

Lemma E.1. ∥R∗∥2 ≥ 1
BEξ[∥g∗∥2], where B ≥ 1.

Proof. First, we have

µT
∗ µ∗ = Eξ[g∗]

TEξ[g∗] = tr(Eξ[g∗]Eξ[g∗]
T ),

Note that B ≥ 1, hence

∥R∗∥2 = µT
∗ µ∗ +

tr(Σ∗)

B
≥ µT

∗ µ∗ + tr(Σ∗)

B
=

tr(Eξ[g∗]Eξ[g∗]
T +Σ∗)

B

=
Eξ[tr(g∗g

T
∗ )]

B
=

1

B
Eξ[∥g∗∥2],

which concludes the proof.

Lemma E.2. If Assumption 3.1 holds, then ∥R∗∥2 ≤ G2, where G2 is the upper bound of Eξ[∥g∗∥2].

Proof. Similarly,

∥R∗∥2 = µT
∗ µ∗ +

tr(Σ∗)

B
≤ µT

∗ µ∗ + tr(Σ∗) = tr(Eξ[g∗]Eξ[g∗]
T +Σ∗)

= Eξ[tr(g∗g
T
∗ )] = Eξ[∥g∗∥2] ≤ G2,

which concludes the proof.

Then we analyze the convergence of FedGSNR with FedAvg based on the proofs of Li et al. (2020b).
For the analysis, we make additional assumptions.

Assumption E.3. The functions Fk are all L-smooth: for all w and v, Fk(v) ≤ Fk(w) + (v −
w)T∇Fk(w) + L

2 ∥v −w∥22.

Assumption E.4. The functions Fk are all u-strongly convex: for all w and v, Fk(v) ≥ Fk(w) +
(v −w)T∇Fk(w) + µ

2 ∥v −w∥22.

Assumption E.5. ∀k, k ∈ {1, · · · ,K}, Eξ[∥∇Fk(w)∥2] ≤ G2.

Where Fk(w) is short for F (w; ξ|Ck).

The Lemma 1 and 2 in Li et al. (2020b) implies the bound for one step SGD and the bound for the
variance of gradients, as they are independent of the number of local steps, we can use them directly.

Lemma E.6. (Results of one step SGD). Assume Assumption E.3 and E.4 hold. If ηt ≤ 1
4L , we have

E∥vt+1 −w∗∥2 ≤ (1− ηtµ)E∥w̄t −w∗∥2 + η2tE∥gt − ḡt∥2 + 6Lη2tΓ + 2E[
K∑

k=1

pk∥w̄t −wt
k∥],

where Γ = F ∗ −
∑K

k=1 pkF
∗
k ≥ 0.
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Lemma E.7. (Bounding the variance). Assume Assumption 3.1 holds, then we have

E∥gt − ḡt∥ ≤
K∑

k=1

p2kσ
2
k ≤ σ2.

We focus on Lemma 3 in Li et al. (2020b), which is related to the number of local steps, and we prove
that when we apply our method to decide the number of local steps, the lemma still holds.
Lemma E.8. (Bounding the divergence of wk

t when we use FedGSNR to decide the number of local
updates). Assume the assumptions hold, then we have

E[
K∑

k=1

pk∥w̄t −wt
k∥2] ≤

4η2tE
2
constBG2L

µ
.

where w̄t = pkw
t
k.

Proof. Since based on our strategy, the local steps is individually decided by Ek,r = nopt
1,k,r ∗Econst,

where Econst is a constant. Hence we define the local optimization process as

wt+1
k =

{
wt

k −∇wF (wt
k), 0 ≤ t− t0 < Ek,r

wt
k, Ek,r ≤ t− t0 < Emax,

(14)

where wk
t0 = w̄t0 represents the aggregation step, and without loss of generality, t0 is the initial

time of communication round r, Emax = max{Ek,r | 1 ≤ k ≤ K, 1 ≤ r ≤ R}. Then the situation
becomes an identical number of local steps, and we prove that the upper bound is independent of
Emax. We use the fact t− t0 < Emax, where t0 represents the last aggregation step before t, ηt is
non-increasing and ηt0 ≤ 2ηt for all t− t0 ≤ Emax, we have

E[
K∑

k=1

pk∥w̄t −wt
k∥2] = E[

K∑
k=1

pk∥(wt
k − w̄t0)− (w̄t − w̄t0)∥2]

(1)

≤ E[
K∑

k=1

pk∥(wt
k − w̄t0)∥2]

(2)
=

K∑
k=1

pkE[∥
min{t,t0+Ek,r−1}∑

s=t0

η2s∇wF (ws
k)∥2]

(3)

≤
K∑

k=1

pkE[
t0+Ek,r−1∑

s=t0

Ek,rη
2
s∥∇wF (ws

k)∥2]

(4)

≤
K∑

k=1

pkη
2
t0E[

t0+Ek,r−1∑
s=t0

Econst

∥Rt0
g ∥

∥Rt0
k ∥
∥∇wF (ws

k)∥2]

(5)

≤
K∑

k=1

pkη
2
t0EconstE[

t0+Ek,r−1∑
s=t0

√
BG√

E[∥F (wt0
k )∥2]

∥∇wF (ws
k)∥2]

︸ ︷︷ ︸
A1

,

where inequality (1) depends on w̄t = pkw
t
k and the fact ∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2). Inequality (2)

is based on the local optimization process Eq. (14). Inequality (3) is a consequence of ∥
∑n

i=1 ai∥2 ≤
n
∑n

i=1 ∥ai∥2. Inequality (4) depends on the Cauchy-Schwarz inequality, i.e., nopt
1 ≤ ∥Rg∥∥Rl∥

∥Rl∥2 =
∥Rg∥
∥Rl∥ , and inequality (5) is an immediate consequence of Lemma E.1 and E.2. Then based on the
L-Smoothness, we have

∥∇wF (ws
k)∥2 ≤ 2L(F (ws

k)− F (w∗)),

similarly, according to the µ-strong convexity, we have

∥∇wF (ws
k)∥2 ≥ 2µ(F (ws

k)− F (w∗)).
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Hence, we can further bound A1 as

A1 ≤
K∑

k=1

pkη
2
t0Econst

t0+Ek,r−1∑
s=t0

√
BG√

2µ(F (wt0
k )− F (w∗))

(2L(F (ws
k)− F (w∗)))

≤
K∑

k=1

pkη
2
t0Econst

t0+Ek,r−1∑
s=t0

√
BG√

2µ(F (wt0
k )− F (w∗))

(2L(F (wt0
k )− F (w∗)))

≤
K∑

k=1

pkη
2
t0E

2
const

BG2

2µ(F (wt0
k )− F (w∗))

(2L(F (wt0
k )− F (w∗)))

≤ 4η2tE
2
constBG2L

µ
,

where the second inequality depends on F (w∗) = minw F (w), and the fact that F (wt+1
k ) ≤ F (wt

k),
∀t ∈ {t0, · · · , t0 + Ek,r − 1} (i.e., the process is a non-increasing sequence). The third inequality
depends on the upper bound of Ek,r, and the last inequality is a consequence of ηt0 ≤ 2ηt.

Hence, we have

E[
K∑

k=1

pk∥w̄t −wt
k∥2] ≤

4η2tE
2
constBG2L

µ
,

which is related to a constant Econst.

Then we can prove the Thm. 1 in Li et al. (2020b) by the substitution for the upper bound of
E[
∑K

k=1 pk∥w̄t −wt
k∥2].

Theorem E.9. Let the assumptions hold, and L, µ, G, σ defined therein, if we choose κ = L
µ ,

γ ≥ max{8κ− 1, Emax} and the learning rate ηt =
2

µ(γ+t) . Then FedGSNR with FedAvg satisfies

E[F (wT )]− F ∗ ≤ 2κ

γ + T
(
M

µ
+ 2L∥w0 −w∗∥), (15)

where

M = σ2 + 6LΓ +
8E2

constBG2L

µ
.
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