
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EDITABLE CONCEPT BOTTLENECK MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Concept Bottleneck Models (CBMs) have garnered much attention for their ability
to elucidate the prediction process through a human-understandable concept layer.
However, most previous studies focused on cases where the data, including con-
cepts, are clean. In many scenarios, we always need to remove/insert some training
data or new concepts from trained CBMs due to different reasons, such as privacy
concerns, data mislabelling, spurious concepts, and concept annotation errors. Thus,
the challenge of deriving efficient editable CBMs without retraining from scratch
persists, particularly in large-scale applications. To address these challenges, we
propose Editable Concept Bottleneck Models (ECBMs). Specifically, ECBMs
support three different levels of data removal: concept-label-level, concept-level,
and data-level. ECBMs enjoy mathematically rigorous closed-form approximations
derived from influence functions that obviate the need for re-training. Experimental
results demonstrate the efficiency and effectiveness of our ECBMs, affirming their
adaptability within the realm of CBMs.

1 INTRODUCTION

Modern deep learning models, such as large language models (Zhao et al., 2023; Yang et al., 2024a;b;
Xu et al., 2023; Yang et al., 2024c) and large multimodal (Yin et al., 2023; Ali et al., 2024; Cheng
et al., 2024), often exhibit intricate non-linear architectures, posing challenges for end-users seeking
to comprehend and trust their decisions. This lack of interpretability presents a significant barrier
to adoption, particularly in critical domains such as healthcare (Ahmad et al., 2018; Yu et al., 2018)
and finance (Cao, 2022), where transparency is paramount. To address this demand, explainable
artificial intelligence (XAI) models (Das & Rad, 2020; Hu et al., 2023b;a) have emerged, offering
explanations for their behavior and insights into their internal mechanisms. Among these, Concept
Bottleneck Models (CBMs) (Koh et al., 2020) have gained prominence for explaining the prediction
process of end-to-end AI models. CBMs add a bottleneck layer for placing human-understandable
concepts. In the prediction process, CBMs first predict the concept labels using the original input and
then predict the final classification label using the predicted concept in the bottleneck layer, which
provides a self-explained decision to users.

Existing research on CBMs predominantly addresses two primary concerns: Firstly, CBMs heavily
rely on laborious dataset annotation. Researchers have explored solutions to these challenges in
unlabeled settings (Oikarinen et al., 2023; Yuksekgonul et al., 2023; Lai et al., 2023). Secondly,
the performance of CBMs often lags behind that of original models lacking the concept bottleneck
layer, attributed to incomplete information extraction from original data to bottleneck features.
Researchers aim to bridge this utility gap (Sheth & Ebrahimi Kahou, 2023; Yuksekgonul et al.,
2023; Espinosa Zarlenga et al., 2022). However, few of them considered the adaptivity or editability
of CBMs, crucial aspects encompassing annotation errors, data privacy considerations, or concept
updates. Actually, these demands are increasingly pertinent in the era of large models. We delineate
the editable setting into three key aspects (illustrated in Figure 1):

• Concept-label-level: In most scenarios, concept labels are annotated by humans or experts.
Thus, it is unavoidable that there are some annotation errors, indicating that there is a need
to correct some concept labels in a trained CBM.

• Concept-level: In CBMs, the concept set is pre-defined by LLMs or experts. However, in
many cases, evolving situations demand concept updates, as evidenced by discoveries such
as chronic obstructive pulmonary disease as a risk factor for lung cancer, and doctors have

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Delete 𝑝𝓇 ∈ 𝒸

Input 𝓍𝒾
CNN

Concept 𝒸

wing
color

undert‐
ail color

…beak
length

incorrect

wing
color

beak
length

…

Edited 𝒸′

Concept‐level Data‐level

Dataset 𝐷 ൌ ሼሺ𝓍𝑐, 𝑦, ሻሽୀଵே

Remove data
ሺ𝓍𝒾, 𝒸𝒾, 𝑦𝒾)

𝓍ଵ 𝑐ଵ 𝑦ଵ

incorrect 𝑐 𝑦𝓍୧

…

…

𝓍୬ 𝑐 𝑦

…
𝓍ଵ 𝑐ଵ 𝑦ଵ

Dataset 𝐷′ ൌ ሼሺ𝓍𝑐, 𝑦, ሻሽୀଵேିଵ

…

𝓍୬ିଵ 𝑐ିଵ 𝑦ିଵ

Concept label‐level

𝑐𝓍𝒾 𝑦

Data ሺ𝓍𝒾, 𝒸𝒾, 𝑦𝒾)

wing
color

undert‐
ail color

…

incorrect

bird
spec
‐ies

Delete/Correct 𝒸𝒾

Data ሺ𝓍𝒾, 𝒸𝒾′, 𝑦𝒾)

𝑐𝓍𝒾 𝑦

beak
length

wing
color

…

beak
length

bird
spec
‐ies

Figure 1: An illustration of Editable Concept Bottleneck Models with three settings.

the requirements to add related concepts. For another example, recent research found a new
factor, obesity (Sattar et al., 2020) are risky for severe COVID-19 and factors (e.g., older
age, male gender, Asian race) are risk associated with COVID-19 infection (Rozenfeld et al.,
2020). On the other hand, one may also want to remove some spurious or unrelated concepts
for the task. This demand is even more urgent in some rapidly evolving domains like the
pandemic.

• Data-level: Data issues can arise in CBMs when training data is erroneous or poisoned. For
example, if a doctor identifies a case as erroneous or poisoned, this data sample becomes
unsuitable for training. Therefore, it is essential to have the capability to completely delete
such data from the learned models. We need such an editable model that can interact
effectively with doctors.

The most direct way to address the above three problems is retraining from scratch on the data after
correction. However, retraining models in such cases prove prohibitively expensive, especially in
large models, which is resource-intensive and time-consuming. Therefore, developing an efficient
method to approximate prediction changes becomes paramount. Providing users with an adaptive
and editable CBM is both crucial and urgent.

We propose Editable Concept Bottleneck Models (ECBMs) to tackle these challenges. Specifically,
compared to retraining, ECBMs provide a mathematically rigorous closed-form approximation for
the above three settings to address editability within CBMs efficiently. Leveraging the influence
function (Cook, 2000; Cook & Weisberg, 1980), we quantify the impact of individual data points,
individual concept labels, and the concept for all data on model parameters. Despite the growing
attention and utility of influence functions in machine learning (Koh & Liang, 2017), their appli-
cation in CBMs remains largely unexplored due to their composite structure, i.e., the intermediate
representation layer.

To the best of our knowledge, we are the first to work to fill this gap by demonstrating the effectiveness
of influence functions in elucidating the behavior of CBMs, especially in identifying mislabeled data
and discerning the data influence. Comprehensive experiments on benchmark datasets show that our
ECBMs are efficient and effective. Our contributions are summarized as follows.

• We delineate three different settings that need various levels of data or concept removal in
CBMs: concept-label-level, concept-level, and data-level. To the best of our knowledge, our
research marks the first exploration of data removal issues within CBMs.

• To make CBMs able to remove data or concept influence without retraining, we propose
the Editable Concept Bottleneck Models (ECBMs). Our approach in ECBMs offers a math-
ematically rigorous closed-form approximation. Furthermore, to improve computational

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

efficiency, we present streamlined versions integrating Eigenvalue-corrected Kronecker-
Factored Approximate Curvature (EK-FAC).

• To showcase the effectiveness and efficiency of our ECBMs, we conduct comprehensive
experiments across various benchmark datasets to demonstrate our superior performance.

2 RELATED WORK

Concept Bottleneck Models. CBM (Koh et al., 2020) stands out as an innovative deep-learning
approach for image classification and visual reasoning. It introduces a concept bottleneck layer
into deep neural networks, enhancing model generalization and interpretability by learning specific
concepts. However, CBM faces two primary challenges: its performance often lags behind that of
original models lacking the concept bottleneck layer, attributed to incomplete information extraction
from the original data to bottleneck features. Additionally, CBM relies on laborious dataset annotation.
Researchers have explored solutions to these challenges. Chauhan et al. (2023) extend CBM into
interactive prediction settings, introducing an interaction policy to determine which concepts to label,
thereby improving final predictions. Oikarinen et al. (2023) address CBM limitations and propose a
novel framework called Label-free CBM. This innovative approach enables the transformation of any
neural network into an interpretable CBM without requiring labeled concept data, all while maintain-
ing high accuracy. Post-hoc Concept Bottleneck models (Yuksekgonul et al., 2023) can be applied
to various neural networks without compromising model performance, preserving interpretability
advantages. CBMs work on the image field also includes the works of Havasi et al. (2022),Kim et al.
(2023),Keser et al. (2023),Sawada & Nakamura (2022) and Sheth & Kahou (2023). Despite many
works on CBMs, we are the first to investigate the interactive influence between concepts through
influence functions. Our research endeavors to bridge this gap by utilizing influence functions in
CBMs, thereby deciphering the interaction of concept models and providing an adaptive solution to
concept editing. For more related work, please refer to Appendix I.

3 PRELIMINARIES

Concept Bottleneck Models. In this paper, we consider the original CBM, and we adopt the
notations used by Koh et al. (2020). We consider a classification task with a concept set denoted
as c = {p1, · · · , pk} with each pi is a concept given by experts or LLMs, and a training dataset
represented as D = {zi}ni=1, where zi = (xi, yi, ci). Here, for i ∈ [n], xi ∈ Rm represents the
feature vector, yi ∈ Rdz denotes the label (with dz corresponding to the number of classes), and
ci = (c1i , · · · , cki) ∈ Rk represents the concept vector. In this context, cji represents the weight of
the concept pj . In CBMs, our goal is to learn two representations: one called concept predictor that
transforms the input space to the concept space, denoted as g : Rm → Rk, and another called label
predictor that maps the concept space to the prediction space, denoted as f : Rk → Rdz . Usually,
here the map f is linear. For each training sample zi = (xi, yi, ci), we consider two empirical loss
functions: one is from the input space to concept space, and the other is from concept space to output
space:

ĝ = argmin
g

k∑
j=1

n∑
i=1

LC(g
j(xi), c

j
i) = argmin

g

k∑
j=1

n∑
i=1

LCj
(g(xi), ci), (1)

f̂ = argmin
f

n∑
i=1

LY (f(ĝ(xi)), yi) = argmin
f

n∑
i=1

LYi
(f, ĝ), (2)

where gj(xi) is the j-th concept predictor with xi, LC and LY are loss functionsSee the notation
table in Appendix 2.. We treat g as a collection of k concept predictors and separate different columns
as a vector gj(xi) for simplicity. Furthermore, in this paper, we primarily focus on the scenarios
where the label predictor f is a linear transformation.

For any input x, we aim to ensure that its predicted concept vector ĉ = g(x) and prediction
ŷ = f(ĝ(x)) are close to their underlying counterparts, thus capturing the essence of the original
CBMs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Influence function. The influence function is a measure of the dependence of the estimator on the
value of any one of the points in the sample. Consider a neural network θ̂ = argminθ

∑n
i=1 ℓ(zi; θ)

with loss function ℓ and dataset D = {zi}ni=1. If we remove a point zm from the training dataset, the
parameters become θ̂−zm = argminθ

∑
i ̸=m ℓ(zi; θ). Influence function gives us an efficient approx-

imation for θ̂−zm by defining a response function as θ̂ϵ,−zm = argmin
θ∈Θ

1
n

∑n
i=1 L(zi; θ)+ ϵL(zm; θ).

Perform first-order Taylor expansion on the gradient of the objective function corresponding to the
argmin process of the response function, we can obtain the influence function defined by

Iθ̂ (zm) ≜
dθ̂ϵ,−zm

dϵ

∣∣∣∣∣
ϵ=0

= −H−1

θ̂
· ∇θℓ(zm; θ̂),

which can evaluate the influence of zm on the parameters. When the loss function ℓ is twice-
differentiable and strongly convex in θ, the Hessian Hθ̂ is positive definite and thus the influ-
ence function is well-defined. For non-convex loss, Bartlett (1953) proposed that the Hessian
Hθ̂ can be replaced by Ĥ = Gθ̂ + λI where Gθ̂ is the Fisher information matrix defined by
n−1

∑n
i=1 ∇θℓ(zi; θ)∇θℓ(zi; θ)

T, λ is a small damping term used to ensure the positive definite-
ness of Ĥ . We can employ the Eigenvalue-corrected Kronecker-Factored Approximate Curvature
(EK-FAC) method to further accelerate the computation. See Appendix C for details.

4 EDITABLE CONCEPT BOTTLENECK MODELS

In this section, we introduce our EBCMs for the three settings mentioned in the introduction by
leveraging the influence function. Specifically, for the concept-label level, we will calculate the
influence of a set of data sample’s different concept labels; for the concept level, we will calculate the
influence of several concepts; for the data level, we will calculate the influence of several samples.

4.1 CONCEPT LABEL-LEVEL EDITABLE CBM
In many cases, several data samples possess erroneous annotations for certain concepts, yet we
may opt to preserve their other information, particularly considering the high cost associated with
acquiring data in specific domains like medical imaging. In such scenarios, it is common practice to
correct such erroneous concepts instead of removing the whole data point from the dataset. Estimating
the changes in the parameters of the retraining model holds significance in this context. We name this
case as concept label-level editable CBM.

Mathematically, we have a set of erroneous data De and its associated index set Se ⊆ [n]× [k] such
that for each (w, r) ∈ Se, we have (xw, yw, cw) ∈ De with crw is mislabeled and c̃rw is its corrected
concept label. Thus, our goal is to approximate the new CBM without retraining. The retrained
concept predictor and label predictor will be represented in the following manner.

ĝe = argmin
g

 ∑
(i,j)/∈Se

LC

(
gj(xi), c

j
i

)
+

∑
(i,j)∈Se

LC

(
gj(xi), c̃

j
i

) , (3)

f̂e = argmin
f

n∑
i=1

LY (f (ĝe (xi)) , yi) . (4)

For simple neural networks, we can use the influence function approach directly to estimate the
retrained model. However, for CBM architecture, if we intervene with the true concepts, the concept
predictor ĝ fluctuates to ĝe accordingly. Observing that the input data of the label predictor is the
output of the concept predictor, which is also changing. Therefore, we need to adopt a two-stage
editing approach. Here we consider the influence function for equation 3 and equation 4 separately.
We first edit the concept predictor from ĝ to ḡe, and then edit from f̂ to f̄e based on our approximated
concept predictor, by the following two theorems.
Theorem 4.1. The retrained concept predictor ĝe defined by (3) can be approximated by:

ĝe ≈ ḡe ≜ ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(∇ĝLC (ĝr(xw), c̃
r
w)−∇ĝLC (ĝr(xw), c

r
w)) , (5)

where Hĝ = ∇2
ĝ

∑
i,j LC(ĝ

j(xi), c
j
i) is the Hessian matrix of the loss function with respect to ĝ.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Theorem 4.2. The retrained label predictor f̂e defined by equation 4 can be approximated by:

f̂e ≈ f̄e = f̂ +H−1

f̂
· ∇f

n∑
i=1

LYi

(
f̂ , ĝ
)
−H−1

f̂
· ∇f

n∑
i=1

LYi

(
f̂ , ḡe

)
,

where Hf̂ = ∇2
f̂

∑n
i=1 LYi

(f̂ , ĝ) is the Hessian matrix of the loss function with respect to f̂ ,

LYi
(f̂ , ĝ) ≜ LY (f̂(ĝ(xi)), yi), and ḡe is given in Theorem 4.1.

Difference with test-time intervention. The ability to intervene in CBMs enables human users to
interact with the model in the prediction process, for example, a medical expert can substitute the
erroneous predicted concept value ĉ directly, and then observe its effect on the final prediction ŷ.
However, the fundamental flaws in the concept predictor have not been thoroughly rectified, and
similar errors may persist when applied to new test data. While under the editable CBM framework,
not only can test-time intervention be performed, but the concept predictor of the CBM can also
undergo secondary editing based on the test data that repeatedly yields errors. This process extends
the rectification from the data level to the model level.

4.2 CONCEPT-LEVEL EDITABLE CBM

In this case, a set of concepts is removed due to incorrect attribution or spurious concepts, termed
concept-level edit. 1Specifically, for the concept set, denote the erroneous concept index set as
M ⊂ [k], we aim to delete these concept labels in all training samples. We aim to investigate the
impact of updating the concept set within the training data on the model’s predictions. It is notable
that compared to the above concept label case, the dimension of output (input) of the retrained concept
predictor (label predictor) will change. If we delete t concepts from the dataset, then g becomes
g′ : Rm → Rk−t and f becomes f ′ : Rk−t → Rdz . More specifically, if we retrain the CBM with
the revised dataset, the corresponding concept predictor becomes:

ĝ−pM
= argmin

g′

∑
j /∈M

LCj = argmin
g′

∑
j /∈M

n∑
i=1

LC(g
′j(xi), c

j
i). (6)

The variation of the parameters in dimension renders the application of influence function-based
editing challenging for the concept predictor. This is because the influence function implements
the editorial predictor by approximate parameter change from the original base after ϵ-weighting
the corresponding loss for a given sample, and thus, it is unable to deal with changes in parameter
dimensions.

To overcome the challenge, our strategy is to develop some transformations that need to be performed
on ĝ−pM

to align its dimension with ĝ so that we can apply the influence function to edit the CBM.
We achieve this by mapping ĝ−pM

to ĝ∗−pM
≜ P(ĝ−pM

), which has the same amount of parameters
as ĝ and has the same predicted concepts ĝ∗−pM

(j) as ĝ−pM
(j) for all j ∈ [k] − M . We achieve

this effect by inserting a zero row vector into the r-th row of the matrix in the final layer of ĝ−pM

for r ∈ M . Thus, we can see that the mapping P is one-to-one. Moreover, assume the parameter
space of ĝ is T and that of ĝ∗−pM

, T0 is the subset of T . Noting that ĝ∗−pM
is the optimal model of the

following objective function:

ĝ∗−pM
= argmin

g′∈T0

k∑
j /∈M

n∑
i=1

LCj
(g′j(xi), c

j
i), (7)

i.e., it is the optimal model of the concept predictor loss on the remaining concepts under the constraint
T0. Now we can apply the influence function to edit ĝ to approximate ĝ∗−pM

with the restriction on
the value of 0 for rows indexed by MM with the last layer of the neural network, denoted as ḡ∗−pM

.
After that, we remove from ḡ∗−pM

the parameters initially inserted to fill in the dimensional difference,
which always equals 0 because of the restriction we applied in the editing stage, thus approximating
the true edited concept predictor ĝ−pM

. We now detail the editing process from ĝ to ĝ∗−pM
using the

following theorem.
1For convenience, in this paper, we only consider concept removal; our method can directly extend to concept

insertion.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 4.3. For the retrained concept predictor ĝ−pM
defined in equation 6, we map it to ĝ∗−pM

as
equation 7. And we can edit the initial ĝ to ĝ∗−pM

as:

ĝ∗−pM
≈ ḡ∗−pM

≜ ĝ −H−1
ĝ · ∇ĝ

∑
j /∈M

n∑
i=1

LCj
(ĝ(xi), ci),

where Hĝ = ∇2
g

∑
j /∈M

∑n
i=1 LCj

(ĝ(xi), ci). Then, by removing all zero rows inserted during the
mapping phase, we can naturally approximate ĝ−pM

≈ P−1(ĝ∗−pM
).

For the second stage of training, assume we aim to remove concept pr for r ∈ M and the new
optimal model is f̂−pM

. We will encounter the same difficulty as in the first stage, i.e., the number of
parameters of the label predictor will change. To address the issue, our key observation is that in the
existing literature on CBMs, we always use linear transformation for the label predictor, meaning
that the dimensions of the input with values of 0 will have no contribution to the final prediction. To
leverage this property, we fill the missing values in the input of the updated predictor with 0, that is,
replacing ĝ−pM

with ĝ∗−pM
and consider f̂pM=0 defined by

f̂pM=0 = argmin
f

n∑
i=1

LYi

(
f, ĝ∗−pM

)
. (8)

In total, we have the following lemma:

Lemma 4.4. In the CBM, if the label predictor utilizes linear transformations of the form f̂ · c with
input c, then, for each r ∈ M , we remove the r-th concept from c and denote the new input as c′; set
the r-th concept to 0 and denote the new input as c0. Then we have f̂−pM

· c′ = f̂pM=0 · c0 for any
input c.

Lemma 4.4 demonstrates that the retrained f̂−pM
and f̂pM=0, when given inputs ĝ−pM

(x) and
ĝ∗−pM

(x) respectively, yield identical outputs. Consequently, we can utilize f̂pM=0 as the editing
target in place of f̂−pM

.

Theorem 4.5. For the revised retrained label predictor f̂pM=0 defined by equation 8, we can edit the
initial label predictor f̂ to f̄pM=0 by the following equation as a substitute for f̂pM=0:

f̂pM=0 ≈ f̄pM=0 ≜ f̂ −H−1

f̂
· ∇f̂

n∑
l=1

LYl

(
f̂ , ḡ∗−pM

)
,

where Hf̂ = ∇2
f̂

∑n
i=1 LYi(f̂ , ĝ). Deleting the r-th dimension of f̄pM=0 for r ∈ M , then we can

map it to f̄−pM
, which is the approximation of the final edited label predictor f̂−pM

under concept
level.

4.3 DATA-LEVEL EDITABLE CBM

In this scenario, we are more concerned about fully removing the influence of data samples on CBMs
due to different reasons, such as the training data involving poisoned or erroneous issues. Specifically,
we have a set of samples to be removed {(xi, yi, ci)}i∈G with G ⊂ [n]. Then, we define the retrained
concept predictor as

ĝ−zG = argmin
g

k∑
j=1

∑
i∈[n]−G

LCj
(g(xi), ci) (9)

which can be evaluated by the following theorem:
Theorem 4.6. For dataset D = {(xi, yi, ci)}ni=1, given a set of data zr = (xr, yr, cr), r ∈ G to be
removed. Suppose the updated concept predictor ĝ−zG is defined by equation 9, then we have the
following approximation for ĝ−zG

ĝ−zG ≈ ḡ−zG ≜ ĝ +H−1
ĝ ·

∑
r∈G

∇gLCr
(ĝ(xr), cr), (10)

where Hĝ = ∇2
ĝ

∑
i,j LCj (ĝ

j(xi), c
j
i) is the Hessian matrix of the loss function with respect to ĝ.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Based on ĝ−zG , the label predictor becomes f̂−zG which is defined by

f̂−zG = argmin
f

∑
i∈[n]−G

LYi
(f, ĝ−zG). (11)

Compared with the original loss before unlearning in equation 2, we can observe two changes in
equation 11. First, we remove |G| data points in the loss function LY . Secondly, the input for the loss
is also changed from ĝ(xi) to ĝ−zG . Therefore, it is difficult to estimate directly with an influence
function. Here we introduce an intermediate label predictor as

f̃−zG = argmin
∑

i∈[n]−G

LYi(f, ĝ), (12)

and split the estimate of f̂−zG − f̂ into f̂−zG − f̃−zG and f̃−zG − f̂ .
Theorem 4.7. For dataset D = {(xi, yi, ci)}ni=1, given a set of data zr = (xr, yr, cr), r ∈ G to be
removed. The intermediate label predictor f̃−zG is defined in equation 12. Then we have

f̃−zG − f̂ ≈ H−1

f̂
·
∑

i∈[n]−G

∇f̂LYi
(f̂ , ĝ) ≜ AG.

We denote the edited version of f̃−zG as f̄∗
−zG ≜ f̂ +AG. Define BG as

f̂−zG − f̃−zG ≈ −H−1
f̄∗
−zG

· ∇f̂

∑
i∈[n]−G

(
LYi

(
f̄∗
−zG , ḡ−zG

)
− LYi

(
f̄∗
−zG , ĝ

))
≜ BG,

where Hf̄∗
−zG

= ∇f̄

∑
i∈[n]−G LYi

(
f̄∗
−zG , ĝ

)
is the Hessian matrix concerning f̄∗

−zG . Combining

the above two-stage approximation, then, the final edited label predictor f̄−zG can be obtained by

f̄−zG = f̄∗
−zG +BG = f̂ +AG +BG. (13)

Acceleration via EK-FAC. As we mentioned in Section 3, as the loss function in CBMs is non-
convex, the Hessian matrices in all our theorems may not be well-defined. We can use the EK-FAC
approach, i.e., using Ĥθ = Gθ + λI to approximate the Hessian, where Gθ is the Fisher information
matrix of model θ, and λ is a small damping term used to ensure the positive definiteness. See
Appendix C.1 for using EK-FAC to CBMs. Also, see Algorithm 6-8 in the Appendix for the detailed
EK-FAC-based algorithms for our three levels, whose original (Hessian) versions are in Algorithm
1-3, respectively.

5 EXPERIMENTS

In this section, we demonstrate our main experimental results on utility evaluation, edition efficiency,
and interpretability evaluation. Details and additional results are in Appendix H due to space limit.

5.1 EXPERIMENTAL SETTINGS

Dataset. We utilize three datasets: X-ray grading (OAI) (Nevitt et al., 2006), Bird identification
(CUB) (Wah et al., 2011) and Large-scale CelebFaces Attributes dataset (CelebA) (Liu et al., 2015).
OAI is a multi-center observational study of knee osteoarthritis, which comprises 36,369 data points.
Specifically, we configure n=10 concepts that characterize crucial osteoarthritis indicators such as
joint space narrowing, osteophytes, and calcification. Bird identification (CUB)2 consists of 11,788
data points, which belong to 200 classes and include 112 binary attributes to describe detailed
visual features of birds. CelebA comprises 202,599 celebrity images, each annotated with 40 binary
attributes that detail facial features, such as hair color, eyeglasses, and smiling. As the dataset lacks
predefined classification tasks, following Espinosa Zarlenga et al. (2022), we designate 8 attributes as
labels and the remaining 32 attributes as concepts. For all the above datasets, we follow the same
network architecture and settings outlined in Koh et al. (2020).

2The original dataset is processed. Detailed explanation can be found in H.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Ground Truth and Baselines. We use retrain as the ground truth method. Retrain: We retrain the
CBM from scratch by removing the samples, concept labels, or concepts from the training set. We
employ two baseline methods: CBM-IF, and ECBM. CBM-IF: This method is a direct implementation
of our previous theorems of model updates in the three settings. See Algorithms 1-3 in Appendix
for details. ECBM: As we discussed above, all of our model updates can be further accelerated
via EK-FAC, ECBM corresponds to the EK-FAC accelerated version of Algorithms 1-3 (refer to
Algorithms 6-8 in Appendix).

Evaluation Metric. We utilize two primary evaluation metrics to assess our models: the F1 score
and runtime (RT). The F1 score measures the model’s performance by balancing precision and recall.
Runtime, measured in seconds, evaluates the running time of each method to update the model.

Implementation Details. Our experiments utilized an Intel Xeon CPU and an RTX 3090 GPU. For
utility evaluation, at the concept level, one concept was randomly removed for the OAI dataset and
repeated while ten concepts were randomly removed for the CUB dataset, with five different seeds.
At the data level, 3% of the data points were randomly deleted and repeated 10 times with different
seeds. At the concept-label level, we randomly selected 3% of the data points and modified one
concept of each data randomly, repeating this 10 times for consistency across iterations.

5.2 EVALUATION OF UTILITY AND EDITING EFFICIENCY

Our experimental results, as illustrated in Table 1, demonstrate the effectiveness of ECBMs compared
to traditional retraining and CBM-IF, particularly emphasizing computational efficiency without
compromising accuracy. Specifically, ECBMs achieved F1 scores close to those of retraining (0.8808
vs. 0.8825) while significantly reducing the runtime from 31.44 seconds to 8.29 seconds. This pattern
is consistent in the CUB dataset, where the runtime was decreased from 27.88 seconds for retraining to
7.03 seconds for ECBMs, with a negligible difference in the F1 score (0.7971 to 0.7963). These results
highlight the potential of ECBMs to provide substantial time savings—approximately 22-30% of
the computational time required for retraining—while maintaining comparable accuracy. Compared
to CBM-IF, ECBM also showed a slight reduction in runtime and a significant improvement in F1
score. The former verifies the effective acceleration of our algorithm by EK-FAC. This efficiency is
particularly crucial in scenarios where frequent updates to model annotations are needed, confirming
the utility of ECBMs in dynamic environments where running time and accuracy are critical.

We can also see that the original version of ECBM, i.e., CBM-IF, also has a lower runtime than
retraining but a lower F1 score than ECBM. Such results may be due to different reasons. For example,
our original theorems depend on the inverse of the Hessian matrices, which may not be well-defined
for non-convex loss. Moreover, these Hessian matrices may be ill-conditioned or singular, which
makes calculating their inverse imprecise and unstable.

Table 1: Performance comparison of different methods on the three datasets.

Edit Level Method OAI CUB CelebA
F1 score RT (second) F1 score RT (second) F1 score RT (second)

Concept Label
Retrain 0.8825±0.0054 31.44 0.7971±0.0066 27.88 0.3827±0.0272 57.60
CBM-IF(Ours) 0.8639±0.0033 16.31 0.7699±0.0035 14.39 0.3561±0.0134 34.93
ECBM(Ours) 0.8808±0.0039 8.29 0.7963±0.0050 7.03 0.3845±0.0327 15.67

Concept
Retrain 0.8448±0.0191 27.33 0.7811±0.0047 28.41 0.3776±0.0350 68.94
CBM-IF(Ours) 0.8214±0.0071 17.38 0.7579±0.0065 15.70 0.3609±0.0202 35.56
ECBM(Ours) 0.8403±0.0090 8.30 0.7787±0.0058 6.43 0.3761±0.0280 15.99

Data
Retrain 0.8811±0.0065 33.72 0.7838±0.0051 28.08 0.3797±0.0375 65.60
CBM-IF(Ours) 0.8472±0.0046 17.84 0.7623±0.0031 15.86 0.3536±0.0166 40.08
ECBM(Ours) 0.8797±0.0038 8.81 0.7827±0.0088 7.11 0.3748±0.0347 16.75

Editing Multiple Samples. To comprehensively evaluate the editing capabilities of ECBM in various
scenarios, we conducted experiments on the performance with multiple samples that need to be
removed. Specifically, for the concept label/data levels, we consider the different ratios of samples
(1-10%) for edit, while for the concept level, we consider removing different numbers of concepts
∈ {2, 4, 6, · · · , 20}. We compared the performance of retraining, CBM-IF, and ECBM methods. As
shown in Figure 2, except for certain cases at the concept level, the F1 score of the ECBM method is
generally around 0.0025 lower than that of the retrain method, which is significantly better than the
corresponding results of the CBM-IF method. Recalling Table 1, the speed of ECBM is more than

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

three times faster than that of retraining. Consequently, ECBM is an editing method that achieves a
trade-off between speed and effectiveness.

2 4 6 8 10
Ratio of Edition

0.770

0.775

0.780

0.785

0.790

0.795

0.800
F1

 S
co

re
Concept-label-level

Strategy
Retrain
CBM-IF
ECBMs

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of Deletion

0.755

0.760

0.765

0.770

0.775

0.780

0.785

0.790

F1
 S

co
re

Concept-level
Strategy

Retrain
CBM-IF
ECBMs

2 4 6 8 10
Ratio of Deletion

0.755

0.760

0.765

0.770

0.775

0.780

0.785

0.790

F1
 S

co
re

Data-level
Strategy

Retrain
CBM-IF
ECBMs

Figure 2: Impact of edition ratio on three settings on CUB dataset.
5.3 RESULTS ON INTERPRETABILITY

Influence function in ECBM can measure the importance of concepts. The original motivation of
the influence function is to calculate the importance score of each sample. Here, we will show that
the influence function for the concept level in Theorem 4.3 can be used to calculate the importance
of each concept in CBMs, which provides an explainable tool for CBMs. In detail, we conduct
our experiments on the CUB dataset. We first select 1-10 most influential and 1-10 least influential
concepts by our influence function. Then, we will remove these concepts and update the model via
retraining or our ECBM and analyze the change (F1 Score Difference) w.r.t. the original CBM before
removal.

The results in Figure 3a demonstrate that when we remove the 1-10 most influential concepts identified
by the ECBM method, the F1 score decreases by more than 0.025 compared to the CBM before
removal. In contrast, Figure 3b shows that the change in the F1 score remains consistently below
0.005 when removing the least influential concepts. These findings strongly indicate that the influence
function in ECBM can successfully determine the importance of concepts. Furthermore, we observe
that the gap between the F1 score of retraining and ECBM is consistently smaller than 0.005, and
even smaller in the case of least important concepts. This further suggests that when ECBM edits
various concepts, its performance is very close to the ground truth.

1 2 3 4 5 6 7 8 9 10

Number of Deletions

0.025

0.020

0.015

0.010

0.005

0.000

F1
 S

co
re

 D
iff

er
en

ce

Strategy
Retrain
ECBMs

(a) Results on the 1-10 most influential concepts

1 2 3 4 5 6 7 8 9 10

Number of Deletions
0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

F1
 S

co
re

 D
iff

er
en

ce

Strategy
Retrain
ECBMs

(b) Results on the 1-10 least influential concepts

Figure 3: F1 score difference after removing most and least influential concepts given by our concept
level influence function.
ECBMs can erase data influence. For the data level, ECBMs aim to facilitate an efficient removal of
samples. We perform membership inference attacks (MIAs) to provide direct evidence that ECBMs
can indeed erase data influence. MIA is a privacy attack that aims to infer whether a specific data
sample was part of the training dataset used to train a model. The attacker exploits the model’s
behavior, such as overconfidence or overfitting, to distinguish between training (member) and non-
training (non-member) data points. In MIAs, the attacker typically queries the model with a data
sample and observes its prediction confidence or loss values, which tend to be higher for members of
the training set than non-members (Shokri et al., 2017).

To quantify the success of these edits, we calculate the RMIA (Removed Membership Inference
Attack) score for each category. The RMIA score is defined as the model’s confidence in classifying

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

whether a given sample belongs to the training set. Lower RMIA values indicate that the sample
behaves more like a test set (non-member) sample Zarifzadeh et al. (2024). This metric is especially
crucial for edited samples, as a successful ECBM should make the removed members behave similarly
to non-members, reducing their membership vulnerability. See Appendix H for its definition.

We conducted experiments by randomly selecting 200 samples from the training set (members)
and 200 samples from the test set (non-members) of the CUB dataset. We calculated the RMIA
scores for these samples and plotted their frequency distributions, as shown in Figure 4a. The
mean RMIA score for non-members was 0.049465, while members had a mean score of 0.063505.
Subsequently, we applied ECBMs to remove the 200 training samples from the model, updated the
model parameters, and then recalculated the RMIA scores. After editing, the mean RMIA score for
the removed-members decreased to 0.052105, significantly closer to the non-members’ mean score.
This shift in RMIA values demonstrates the effectiveness of ECBMs in editing the model, as the
removed members now exhibit behavior closer to that of non-members. The post-editing RMIA score
distributions are shown in Figure 4b. These results provide evidence of the effectiveness of ECBMs
in editing the model’s knowledge about specific samples.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
RMIA

0

20

40

60

80

100

Fr
eq

ue
nc

y

Before Editing
Normal Distribution of Non-Members' RMIA
Normal Distribution of Members' RMIA
non-members
members

(a) RMIA Score Before Editing

0.01 0.02 0.03 0.04 0.05 0.06 0.07
RMIA

0

20

40

60

80

100

After Editing
Normal Distribution of Non-Members' RMIA
Normal Distribution of Removed-members' RMIA
non-members
removed-members

(b) RMIA Score After Editing

Figure 4: RMIA scores of data before and after removal.

Visualization. Since CBM is an explainable model, we aim to evaluate the interpretability of our
ECBM (compared to the retraining). We will present some visualization results for the concept-level
edit. Figure 5 presents the top 10 most influential concepts and their corresponding predicted concept
labels obtained by our ECBM and the retrain method after randomly deleting concepts for the CUB
dataset. Detailed explanation can be found in Appendix H.4.1. Our ECBM can provide explanations
for which concepts are crucial and how they assist the prediction. Specifically, among the top 10 most
important concepts in the ground truth (retraining), ECBM can accurately recognize 9 within them.
For instance, we correctly identify "has_upperparts_color::orange", "has_upper_tail_color::red",
and "has_breast_color::black" as some of the most important concepts when predicting categories.
Additional visualization results under data level and concept-label level on OAI and CUB datasets
are included in Appendix H.4.2.

Figure 5: Visualization of the Top 10 Most Influential Concepts for CBM(Identified by ECBM or
Retrain) Highlighted on an Extracted Image.

6 CONCLUSION
In this paper, we propose Editable Concept Bottleneck Models (ECBMs). ECBMs can address
issues of removing/inserting some training data or new concepts from trained CBMs for different
reasons, such as privacy concerns, data mislabelling, spurious concepts, and concept annotation errors
retraining from scratch. Furthermore, to improve computational efficiency, we present streamlined
versions integrating EK-FAC. Experimental results show our ECBMs are efficient and effective.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine
learning in linear time. Journal of Machine Learning Research, 18(116):1–40, 2017.

Muhammad Aurangzeb Ahmad, Carly Eckert, and Ankur Teredesai. Interpretable machine learning
in healthcare. In Proceedings of the 2018 ACM international conference on bioinformatics,
computational biology, and health informatics, pp. 559–560, 2018.

Muhammad Asif Ali, Zhengping Li, Shu Yang, Keyuan Cheng, Yang Cao, Tianhao Huang, Lijie
Hu, Lu Yu, and Di Wang. Prompt-saw: Leveraging relation-aware graphs for textual prompt
compression. arXiv preprint arXiv:2404.00489, 2024.

MS Bartlett. Approximate confidence intervals. Biometrika, 40(1/2):12–19, 1953.

S Basu, P Pope, and S Feizi. Influence functions in deep learning are fragile. In International
Conference on Learning Representations (ICLR), 2021.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium
on Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In International
Conference on Machine Learning, pp. 1092–1104. PMLR, 2021.

Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ashton Anderson, and Richard Zemel. Understand-
ing the origins of bias in word embeddings. In International conference on machine learning, pp.
803–811. PMLR, 2019.

Longbing Cao. Ai in finance: challenges, techniques, and opportunities. ACM Computing Surveys
(CSUR), 55(3):1–38, 2022.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463–480. IEEE, 2015.

Kushal Chauhan, Rishabh Tiwari, Jan Freyberg, Pradeep Shenoy, and Krishnamurthy Dvijotham.
Interactive concept bottleneck models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37(5), pp. 5948–5955, 2023.

Chong Chen, Fei Sun, Min Zhang, and Bolin Ding. Recommendation unlearning. In Proceedings of
the ACM Web Conference 2022, pp. 2768–2777, 2022a.

Hongge Chen, Si Si, Yang Li, Ciprian Chelba, Sanjiv Kumar, Duane Boning, and Cho-Jui Hsieh.
Multi-stage influence function. Advances in Neural Information Processing Systems, 33:12732–
12742, 2020.

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang. Graph
unlearning. In Proceedings of the 2022 ACM SIGSAC conference on computer and communications
security, pp. 499–513, 2022b.

Keyuan Cheng, Gang Lin, Haoyang Fei, Lu Yu, Muhammad Asif Ali, Lijie Hu, Di Wang, et al. Multi-
hop question answering under temporal knowledge editing. arXiv preprint arXiv:2404.00492,
2024.

Somnath Basu Roy Chowdhury, Krzysztof Choromanski, Arijit Sehanobish, Avinava Dubey, and
Snigdha Chaturvedi. Towards scalable exact machine unlearning using parameter-efficient fine-
tuning. arXiv preprint arXiv:2406.16257, 2024.

R Dennis Cook. Detection of influential observation in linear regression. Technometrics, 42(1):65–68,
2000.

R Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function for
detecting influential cases in regression. Technometrics, 22(4):495–508, 1980.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Arun Das and Paul Rad. Opportunities and challenges in explainable artificial intelligence (xai): A
survey. arXiv preprint arXiv:2006.11371, 2020.

Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna, Giuseppe Marra, Francesco Giannini,
Michelangelo Diligenti, Zohreh Shams, Frederic Precioso, Stefano Melacci, Adrian Weller, Pietro
Lió, and Mateja Jamnik. Concept embedding models: Beyond the accuracy-explainability trade-off.
In Advances in Neural Information Processing Systems, volume 35, 2022.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a kronecker factored eigenbasis. Advances in Neural
Information Processing Systems, 31, 2018.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020a.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside the box: Scrubbing deep
networks of information accessible from input-output observations. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX 16,
pp. 383–398. Springer, 2020b.

Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.
Mixed-privacy forgetting in deep networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 792–801, 2021.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. arXiv preprint arXiv:1911.03030, 2019.

Han Guo, Nazneen Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. Fastif: Scalable influence
functions for efficient model interpretation and debugging. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pp. 10333–10350, 2021.

Xiaochuang Han, Byron C Wallace, and Yulia Tsvetkov. Explaining black box predictions and
unveiling data artifacts through influence functions. arXiv preprint arXiv:2005.06676, 2020.

Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. Addressing leakage in concept bottleneck
models. Advances in Neural Information Processing Systems, 35:23386–23397, 2022.

Lijie Hu, Yixin Liu, Ninghao Liu, Mengdi Huai, Lichao Sun, and Di Wang. Improving faithfulness
for vision transformers. arXiv preprint arXiv:2311.17983, 2023a.

Lijie Hu, Yixin Liu, Ninghao Liu, Mengdi Huai, Lichao Sun, and Di Wang. Seat: stable and
explainable attention. In Proceedings of the AAAI Conference on Artificial Intelligence, volume
37(11), pp. 12907–12915, 2023b.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion
from machine learning models. In International Conference on Artificial Intelligence and Statistics,
pp. 2008–2016. PMLR, 2021.

Mert Keser, Gesina Schwalbe, Azarm Nowzad, and Alois Knoll. Interpretable model-agnostic
plausibility verification for 2d object detectors using domain-invariant concept bottleneck models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3890–3899, 2023.

Eunji Kim, Dahuin Jung, Sangha Park, Siwon Kim, and Sungroh Yoon. Probabilistic concept
bottleneck models. arXiv preprint arXiv:2306.01574, 2023.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International conference on machine learning, pp.
5338–5348. PMLR, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
in lora-tuned llms and diffusion models. In The Twelfth International Conference on Learning
Representations, 2023.

Songning Lai, Lijie Hu, Junxiao Wang, Laure Berti-Equille, and Di Wang. Faithful vision-language
interpretation via concept bottleneck models. In The Twelfth International Conference on Learning
Representations, 2023.

Jiaqi Liu, Jian Lou, Zhan Qin, and Kui Ren. Certified minimax unlearning with generalization rates
and deletion capacity. Advances in Neural Information Processing Systems, 36, 2024.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N Ravi. Deep unlearning via randomized
conditionally independent hessians. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10422–10431, 2022.

Michael Nevitt, David Felson, and Gayle Lester. The osteoarthritis initiative. Protocol for the cohort
study, 1:2, 2006.

Tuomas Oikarinen, Subhro Das, Lam Nguyen, and Lily Weng. Label-free concept bottleneck models.
In International Conference on Learning Representations, 2023.

Yelena Rozenfeld, Jennifer Beam, Haley Maier, Whitney Haggerson, Karen Boudreau, Jamie Carlson,
and Rhonda Medows. A model of disparities: risk factors associated with covid-19 infection.
International journal for equity in health, 19(1):126, 2020.

Naveed Sattar, Iain B McInnes, and John JV McMurray. Obesity is a risk factor for severe covid-19
infection: multiple potential mechanisms. Circulation, 142(1):4–6, 2020.

Yoshihide Sawada and Keigo Nakamura. Concept bottleneck model with additional unsupervised
concepts. IEEE Access, 10:41758–41765, 2022.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember
what you want to forget: Algorithms for machine unlearning. Advances in Neural Information
Processing Systems, 34:18075–18086, 2021.

Ivaxi Sheth and Samira Ebrahimi Kahou. Auxiliary losses for learning generalizable concept-based
models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances
in Neural Information Processing Systems, volume 36, pp. 26966–26990, 2023.

Ivaxi Sheth and Samira Ebrahimi Kahou. Auxiliary losses for learning generalizable concept-based
models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pp. 3–18.
IEEE, 2017.

Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd: Under-
standing factors influencing machine unlearning. In 2022 IEEE 7th European Symposium on
Security and Privacy (EuroS&P), pp. 303–319. IEEE, 2022.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. California Institute of Technology, 2011.

Hao Wang, Berk Ustun, and Flavio Calmon. Repairing without retraining: Avoiding disparate
impact with counterfactual distributions. In International Conference on Machine Learning, pp.
6618–6627. PMLR, 2019.

Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning
of features and labels. Network and Distributed System Security (NDSS) Symposium, 2023.

Yinjun Wu, Edgar Dobriban, and Susan Davidson. Deltagrad: Rapid retraining of machine learning
models. In International Conference on Machine Learning, pp. 10355–10366. PMLR, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xilie Xu, Keyi Kong, Ning Liu, Lizhen Cui, Di Wang, Jingfeng Zhang, and Mohan Kankanhalli. An
llm can fool itself: A prompt-based adversarial attack. arXiv preprint arXiv:2310.13345, 2023.

Shu Yang, Muhammad Asif Ali, Cheng-Long Wang, Lijie Hu, and Di Wang. Moral: Moe augmented
lora for llms’ lifelong learning. arXiv preprint arXiv:2402.11260, 2024a.

Shu Yang, Lijie Hu, Lu Yu, Muhammad Asif Ali, and Di Wang. Human-ai interactions in the
communication era: Autophagy makes large models achieving local optima. arXiv preprint
arXiv:2402.11271, 2024b.

Shu Yang, Jiayuan Su, Han Jiang, Mengdi Li, Keyuan Cheng, Muhammad Asif Ali, Lijie Hu, and
Di Wang. Dialectical alignment: Resolving the tension of 3h and security threats of llms. arXiv
preprint arXiv:2404.00486, 2024c.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. arXiv preprint arXiv:2306.13549, 2023.

Kun-Hsing Yu, Andrew L Beam, and Isaac S Kohane. Artificial intelligence in healthcare. Nature
biomedical engineering, 2(10):719–731, 2018.

Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. In The
Eleventh International Conference on Learning Representations, 2023.

Sajjad Zarifzadeh, Philippe Liu, and Reza Shokri. Low-cost high-power membership inference
attacks. In Forty-first International Conference on Machine Learning, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A NOTATION TABLE

Symbol Description

c = {p1, . . . , pk} Set of concepts provided by experts or LLMs.
D = {zi}ni=1 Training dataset, where zi = (xi, yi, ci).
xi ∈ Rm Feature vector for the i-th sample.
yi ∈ Rdz Label for the i-th sample, with dz being the number of classes.
ci = (c1i , . . . , c

k
i) ∈ Rk Concept vector for the i-th sample.

c̃rw Corrected concept label for the w-th sample and r-th concept.
cji Weight of the concept pj in the concept vector ci.
g : Rm → Rk Concept predictor mapping input space to concept space.
f : Rk → Rdz Label predictor mapping concept space to prediction space.
LC(g

j(x), cj) Loss function for the j-th concept predictor.
LCj (g(x), c) Loss function for the j-th concept predictor(for simplicity).
LY (f(ĝ(x)), y) Loss function from concept space to output space.
LYi

(f, ĝ) Loss function for the i-th input based on f , ĝ(for simplicity).
Hθ̂ Hessian matrix of the loss function with respect to θ̂.
Gθ̂ Fisher information matrix of model θ̂.
λ Damping term for ensuring positive definiteness of the Hessian.
ĝ Estimated concept predictor.
f̂ Estimated label predictor.
ĝe Retrained concept predictor after correcting erroneous data.
f̂e Retrained label predictor after correcting erroneous data.
ĝ−pM

Retrained concept predictor after removing concepts indexed by M .
ĝ∗−pM

Mapped concept predictor with the same dimensionality as ĝ.
ḡ−pM

Approximation of the retrained concept predictor ĝ−pM
.

f̂pM=0 Label predictor after setting the r-th concept to zero for r ∈ M .
f̄pM=0 Approximation of the label predictor f̂pM=0.
Hĝ Hessian matrix of the loss function with respect to ĝ.
Hf̂ Hessian matrix of the loss function with respect to f̂ .
M ⊂ [k] Set of erroneous concept indices to be removed.
G ⊂ [n] Set of indices of samples to be removed from the dataset.
zr = (xr, yr, cr) Data sample to be removed, where r ∈ G.
ĝ−zG Retrained concept predictor after removing samples indexed by G.
ḡ−zG Approximation of the retrained concept predictor ĝ−zG .
f̃−zG Intermediate label predictor.
f̄−zG Final edited label predictor after removing samples indexed by G.

Table 2: Notation Table

B INFLUENCE FUNCTION

Consider a neural network θ̂ = argminθ
∑n

i=1 ℓ(zi, θ) with loss function L and dataset D = {zi}ni=1.
That is θ̂ minimize the empirical risk

R(θ) =

n∑
i=1

L(zi, θ)

Assume R is strongly convex in θ. Then θ is uniquely defined. If we remove a point zm from
the training dataset, the parameters become θ̂−zm = argminθ

∑
i ̸=m L(zi, θ). Up-weighting zm

by ϵ small enough, then the revised risk R(θ)
′
= 1

n

∑n
i=1 L(zi; θ) + ϵL(zm; θ) is still strongly

convex. Then the response function θ̂ϵ,−zm = R(θ)
′

is also uniquely defined. The parameter change

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

is denoted as ∆ϵ = θ̂ϵ,−zm − θ̂. Since θ̂ϵ,−zm is the minimizer of R(θ)
′
, we have the first-order

optimization condition as

∇θ̂ϵ,−zm
R(θ) + ϵ · ∇θ̂ϵ,−zm

L(zm, θ̂ϵ,−zm) = 0

Since θ̂ϵ,−zm → θ̂asϵ → 0, we perform a Taylor expansion of the right-hand side:[
∇R(θ̂) + ϵ∇L(zm, θ̂)

]
+
[
∇2R(θ̂) + ϵ∇2L(zm, θ̂)

]
∆ϵ ≈ 0

Noting ϵ∇2L(zm, θ̂)∆ϵ is o(∥∆ϵ∥) term, which is smaller than other parts, we drop it in the following
analysis. Then the Taylor expansion equation becomes[

∇R(θ̂) + ϵ∇L(zm, θ̂)
]
+∇2R(θ̂) ·∆ϵ ≈ 0

Solving for ∆ϵ, we obtain:

∆ϵ = −
[
∇2R(θ̂) + ϵ∇2L(z, θ̂)

]−1 [
∇R(θ̂) + ϵ∇L(z, θ̂)

]
.

Remember θ minimizes R, then ∇R(θ̂) = 0. Dropping o(ϵ) term, we have

∆ϵ = −ϵ∇2R(θ̂)−1∇L(z, θ̂).

dθ̂ϵ,−zm

dϵ

∣∣∣∣∣
ϵ=0

=
d∆ϵ

dϵ

∣∣∣∣
ϵ=0

= −H−1

θ̂
∇L(z, θ̂) ≡ Iup,params(z).

Besides, we can obtain the approximation of θ̂−zm directly by θ̂−zm ≈ θ̂ + Iup,params(z).

C ACCELERATION FOR INFLUENCE FUNCTION

EK-FAC. EK-FAC method relies on two approximations to the Fisher information matrix, equiva-
lent to Gθ̂ in our setting, which makes it feasible to compute the inverse of the matrix.

Firstly, assume that the derivatives of the weights in different layers are uncorrelated, which implies
that Gθ̂ has a block-diagonal structure. Suppose ĝθ can be denoted by ĝθ(x) = gθL ◦ · · · ◦ gθl ◦ · · · ◦
gθ1(x) where l ∈ [L]. We fold the bias into the weights and vectorize the parameters in the l-th layer
into a vector θl ∈ Rdl , dl ∈ N is the number of l-th layer parameters. Then Gθ̂ can be reaplcaed

by
(
G1(θ̂), · · · , GL(θ̂)

)
, where Gl(θ̂) ≜ n−1

∑n
i=1 ∇θ̂l

ℓi∇θlℓ
T
i . Denote hl, ol as the output and

pre-activated output of l-th layer. Then Gl(θ) can be approximated by

Gl(θ) ≈ Ĝl(θ) ≜
1

n

n∑
i=1

hl−1 (xi)hl−1 (xi)
T ⊗ 1

n

n∑
i=1

∇olℓi∇olℓ
T
i ≜ Ωl−1 ⊗ Γl.

Furthermore, in order to accelerate transpose operation and introduce the damping term, perform
eigenvalue decomposition of matrix Ωl−1 and Γl and obtain the corresponding decomposition results
as QΩΛΩQ

⊤
Ω and QΓΛΓQ

⊤
Γ . Then the inverse of Ĥl(θ) can be obtained by

Ĥl(θ)
−1 ≈

(
Ĝl (ĝ) + λlIdl

)−1

=
(
QΩl−1

⊗QΓl

) (
ΛΩl−1

⊗ ΛΓl
+ λlIdl

)−1 (
QΩl−1

⊗QΓl

)T
.

Besides, George et al. (2018) proposed a new method that corrects the error in equation 14 which sets
the i-th diagonal element of ΛΩl−1

⊗ ΛΓl
as Λ∗

ii = n−1
∑n

j=1

((
QΩl−1

⊗QΓl

)
∇θlℓj

)2
i
.

C.1 EK-FAC FOR CBMS

In our CBM model, the label predictor is a single linear layer, and Hessian computing costs are
affordable. However, the concept predictor is based on Resnet-18, which has many parameters.
Therefore, we perform EK-FAC for ĝ.

ĝ = argmin
g

k∑
j=1

LCj
= argmin

g

k∑
j=1

n∑
i=1

LC(g
j(xi), c

j
i),

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

we define Hĝ = ∇2
ĝ

∑
i,j LCj

(g(xi), ci) as the Hessian matrix of the loss function with respect to
the parameters.

To this end, consider the l-th layer of ĝ which takes as input a layer of activations {aj,t} where
j ∈ {1, 2, . . . , J} indexes the input map and t ∈ T indexes the spatial location which is typically a
2-D grid. This layer is parameterized by a set of weights W = (wi,j,δ) and biases b = (bi), where
i ∈ {1, . . . , I} indexes the output map, and δ ∈ ∆ indexes the spatial offset (from the center of the
filter).

The convolution layer computes a set of pre-activations as

[Sl]i,t = si,t =
∑
δ∈∆

wi,j,δaj,t+δ + bi.

Denote the loss derivative with respect to si,t as

Dsi,t =
∂
∑

LCj

∂si,t
,

which can be computed during backpropagation.

The activations are actually stored as Al−1 of dimension |T | × J . Similarly, the weights are stored as
an I × |∆|J array Wl. The straightforward implementation of convolution, though highly parallel
in theory, suffers from poor memory access patterns. Instead, efficient implementations typically
leverage what is known as the expansion operator J·K. For instance, JAl−1K is a |T | × J |∆| matrix,
defined as

JAl−1Kt,j|∆|+δ = [Al−1](t+δ),j = aj,t+δ,

In order to fold the bias into the weights, we need to add a homogeneous coordinate (i.e. a column
of all 1’s) to the expanded activations JAl−1K and denote this as JAl−1KH. Concatenating the bias
vector to the weights matrix, then we have θl = (bl,Wl).

Then, the approximation for Hĝ is given as:

G(l)(ĝ) =E [Dwi,j,δDwi′,j′,δ′] = E

[(∑
t∈T

aj,t+δDsi,t

)(∑
t′∈T

aj′,t′+δ′Dsi′,t′

)]

≈E
[
JAl−1K⊤HJAl−1KH

]
⊗ 1

|T |
E
[
DS⊤

l DSl

]
≜ Ωl−1 ⊗ Γl.

Estimate the expectation using the mean of the training set,

G(l)(ĝ) ≈ 1

n

n∑
i=1

(
JAi

l−1K
⊤
HJAi

l−1KH
)
⊗ 1

n

n∑
i=1

(
1

|T |
DSi

l

⊤DSi
l

)
≜ Ω̂l−1 ⊗ Γ̂l.

Furthermore, if the factors Ω̂l−1 and Γ̂l have eigen decomposition QΩΛΩQ
⊤
Ω and QΓΛΓQ

⊤
Γ , respec-

tively, then the eigen decomposition of Ω̂l−1 ⊗ Γ̂l can be written as:

Ω̂l−1 ⊗ Γ̂l = QΩΛΩQ
⊤
Ω ⊗QΓΛΓQ

⊤
Γ

= (QΩ ⊗QΓ) (ΛΩ ⊗ ΛΓ) (QΩ ⊗QΓ)
⊤
.

Since subsequent inverse operations are required and the current approximation for G(l)(ĝ) is PSD,
we actually use a damped version as

Ĝl(ĝ)
−1

= (Gl (ĝ) + λlIdl
)
−1

=
(
QΩl−1

⊗QΓl

) (
ΛΩl−1

⊗ ΛΓl
+ λlIdl

)−1 (
QΩl−1

⊗QΓl

)T
.

(14)

Besides, George et al. (2018) proposed a new method that corrects the error in equation 14 which sets
the i-th diagonal element of ΛΩl−1

⊗ ΛΓl
as

Λ∗
ii = n−1

n∑
j=1

((
QΩl−1

⊗QΓl

)
∇θlℓj

)2
i
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D PROOF OF CONCEPT-LABEL-LEVEL INFLUENCE

We have a set of erroneous data De and its associated index set Se ⊆ [n] × [k] such that for each
(w, r) ∈ Se, we have (xw, yw, cw) ∈ De with crw is mislabeled and c̃rw is its corrected concept label.
Thus, our goal is to approximate the new CBM without retraining.

Proof Sketch. Our goal is to edit ĝ and f̂ to ĝe and f̂e. (i) First, we introduce new parameters ĝϵ,e
that minimize a modified loss function with a small perturbation ϵ. (ii) Then, we perform a Newton
step around ĝ and obtain an estimate for ĝe. (iii) Then, we consider changing the concept predictor at
one data point (xic , yic , cic) and retraining the model to obtain a new label predictor f̂ic , obtain an
approximation for f̂ic . (iv) Next, we iterate ic over 1, 2, · · · , n, sum all the equations together, and
perform a Newton step around f̂ to obtain an approximation for f̂e. (v) Finally, we bring the estimate
of ĝ into the equation for f̂e to obtain the final approximation.

Theorem D.1. The retrained concept predictor ĝe defined by

ĝe = argmin

 ∑
(i,j)/∈Se

LC

(
gj(xi), c

j
i

)
+

∑
(i,j)∈Se

LC

(
gj(xi), c̃

j
i

) , (15)

can be approximated by:

ĝe ≈ ḡe ≜ ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(∇ĝLC (ĝr(xw), c̃
r
w)−∇ĝLC (ĝr(xw), c

r
w)) , (16)

where Hĝ = ∇2
ĝ

∑
i,j LC(ĝ

j(xi), c
j
i) is the Hessian matrix of the loss function respect to ĝ.

Proof. For the index (w, r) ∈ Se, indicating the r-th concept of the w-th data is wrong, we correct
this concept crw to c̃rw. Rewrite ĝe as

ĝe = argmin

∑
i,j

LC

(
gj(xi), c

j
i

)
+

∑
(w,r)∈Se

LC (gr(xw), c̃
r
w)−

∑
(w,r)∈Se

LC (gr(xw), c
r
w)

 .

(17)

To approximate this effect, define new parameters ĝϵ,e as

ĝϵ,e ≜ argmin

∑
i,j

LC

(
gj(xi), c

j
i

)
+

∑
(w,r)∈Se

ϵ · LC (gr(xw), c̃
r
w)−

∑
(w,r)∈Se

ϵ · LC (gr(xw), c
r
w)

 .

(18)

Then, because ĝϵ,e minimizes equation 18, we have

∇ĝ

∑
i,j

LC

(
ĝjϵ,e(xi), c

j
i

)
+

∑
(w,r)∈Se

ϵ·∇ĝLC

(
ĝrϵ,e(xw), c̃

r
w

)
−

∑
(w,r)∈Se

ϵ·∇ĝLC

(
ĝrϵ,e(xw), c

r
w

)
= 0.

Perform a Taylor expansion of the above equation at ĝ,

∇ĝ

∑
i,j

LC

(
ĝj(xi), c

j
i

)
+

∑
(w,r)∈Se

ϵ · ∇ĝLC (ĝr(xw), c̃
r
w)−

∑
(w,r)∈Se

ϵ · ∇ĝLC (ĝr(xw), c
r
w)

+∇2
ĝ

∑
i,j

LC

(
ĝj(xi), c

j
i

)
· (ĝϵ,e − ĝ) ≈ 0. (19)

Because of equation 15, the first term of equation 19 equals 0. Then we have

ĝϵ,e − ĝ = −
∑

(w,r)∈Se

ϵ ·H−1
ĝ · (∇ĝLC (ĝr(xw), c̃

r
w)−∇ĝLC (ĝr(xw), c

r
w)) ,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where
Hĝ = ∇2

ĝ

∑
i,j

LC

(
ĝj(xi), c

j
i

)
.

Then, we do a Newton step around ĝ and obtain

ĝe ≈ ḡe ≜ ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(∇ĝLC (ĝr(xw), c̃
r
w)−∇ĝLC (ĝr(xw), c

r
w)) . (20)

Theorem D.2. The retrained label predictor f̂e defined by

f̂e = argmin

[
n∑

i=1

LY (f (ĝe (xi)) , yi)

]
can be approximated by:

f̂e ≈ f̄e = f̂ +H−1

f̂
· ∇f

n∑
i=1

LYi

(
f̂ , ĝ
)
−H−1

f̂
· ∇f

n∑
i=1

LYi

(
f̂ , ḡe

)
,

where Hf̂ = ∇2
f̂

∑n
i=1 LYi

(f̂ , ĝ) is the Hessian matrix of the loss function respect to f̂ , LYi
(f̂ , ĝ) ≜

LY (f̂(ĝ(xi)), yi), and ḡe is given in Theorem D.1.

Proof. Now we come to deduce the edited label predictor towards f̂e.

First, we consider only changing the concept predictor at one data point (xic , yic , cic) and retrain the
model to obtain a new label predictor f̂ic .

f̂ic = argmin

 n∑
i=1,i̸=ic

LY (f (ĝ (xi)) , yi) + LY (f (ĝe (xic)) , yic)

 .

We rewrite the above equation as follows:

f̂ic = argmin

[
n∑

i=1

LY (f (ĝ (xi)) , yi) + LY (f (ĝe (xic)) , yic)− LY (f (ĝ (xic)) , yic)

]
.

We define f̂ϵ,ic as:

f̂ϵ,ic = argmin

[
n∑

i=1

LY (f (ĝ (xi)) , yi) + ϵ · LY (f (ĝe (xic)) , yic)− ϵ · LY (f (ĝ (xic)) , yic)

]
.

Derive with respect to f at both sides of the above equation. we have

∇f̂

n∑
i=1

LY

(
f̂ϵ,ic (ĝ (xi)) , yi

)
+ϵ·∇f̂LY

(
f̂ϵ,ic (ĝe (xic)) , yic

)
−ϵ·∇f̂LY

(
f̂ϵ,ic (ĝ (xic)) , yic

)
= 0

Perform a Taylor expansion of the above equation at f̂ ,

∇f̂

n∑
i=1

LY

(
f̂ (ĝ (xi)) , yi

)
+ ϵ · ∇f̂LY

(
f̂ (ĝe (xic)) , yic

)
− ϵ · ∇f̂LY

(
f̂ (ĝ (xic)) , yic

)
+∇2

f̂

n∑
i=1

LY

(
f̂ (ĝ (xi)) , yi

)
·
(
f̂ϵ,ic − f̂

)
= 0

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Then we have

f̂ϵ,ic − f̂ ≈ −ϵ ·H−1

f̂
· ∇f

(
LY

(
f̂ (ĝe (xic)) , yic

)
− LY

(
f̂ (ĝ (xic)) , yic

))
,

where H−1

f̂
= ∇2

f̂

∑n
i=1 LY

(
f̂ (ĝ (xi)) , yi

)
.

Iterate ic over 1, 2, · · · , n, and sum all the equations together, we can obtain:

f̂ϵ,e − f̂ ≈ −ϵ ·H−1

f̂
·

n∑
i=1

∇f

(
LY

(
f̂ (ĝe (xi)) , yi

)
− LY

(
f̂ (ĝ (xi)) , yi

))
.

Perform a Newton step around f̂ and we have

f̂e ≈ f̂ −H−1

f̂
·

n∑
i=1

∇f

(
LY

(
f̂ (ĝe (xi)) , yi

)
− LY

(
f̂ (ĝ (xi)) , yi

))
. (21)

Bringing the edited 20 of g into equation 21, we have

f̂e ≈f̂ −H−1

f̂
·

n∑
i=1

∇f

(
LY

(
f̂ (ḡe (xi)) , yi

)
− LY

(
f̂ (ĝ (xi)) , yi

))
=f̂ −H−1

f̂
·

n∑
i=1

∇f

(
LYi

(
f̂ , ḡe

)
− LYi

(
f̂ , ĝ
))

=f̂ +H−1

f̂
· ∇f

n∑
i=1

LYi

(
f̂ , ĝ
)
−H−1

f̂
· ∇f

n∑
i=1

LYi

(
f̂ , ḡe

)
≜ f̄e.

E PROOF OF CONCEPT-LEVEL INFLUENCE

We address situations that delete pr for r ∈ M concept removed dataset. Our goal is to estimate
ĝ−pM

, f̂−pM
, which is the concept and label predictor trained on the pr for r ∈ M concept removed

dataset.

Proof Sketch. The main ideas are as follows: (i) First, we define a new predictor ĝ∗pM
, which has

the same dimension as ĝ and the same output as ĝ−pM
. Then deduce an approximation for ĝ∗pM

. (ii)
Then, we consider setting pr = 0 instead of removing it, we get f̂pM=0, which is equivalent to f̂−pM

according to lemma E.1. We estimate this new predictor as a substitute. (iii) Next, we assume we only
use the updated concept predictor ĝ∗pM

for one data (xir , yir , cir) and obtain a new label predictor
f̂ir, and obtain a one-step Newtonian iterative approximation of f̂ir with respect to f̂ . (iv) Finally,
we repeat the above process for all data points and combine the estimate of ĝ in Theorem E.2, we
obtain a closed-form solution of the influence function for f̂ .

First, we introduce our following lemma:
Lemma E.1. For the concept bottleneck model, if the label predictor utilizes linear transformations
of the form f̂ · c with input c,then, for each r ∈ M , we remove the r-th concept from c and denote
the new input as c′. Set the r-th concept to 0 and denote the new input as c0. Then we have
f̂−pM

· c′ = f̂pM=0 · c0 for any c.

Proof. Assume the parameter space of f̂−pM
and f̂pM=0 are Γ and Γ0, respectively, then there exists

a surjection P : Γ → Γ0. For any θ ∈ Γ, P (θ) is the operation that removes the r-th row of θ for
r ∈ M . Then we have:

P (θ) · c′ =
∑
t/∈M

θ[j] · c′[j] =
∑
t

θ[t]I{t /∈ M}c[t] = θ · c0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Thus, the loss function LY (θ, c
0) = LY (P (θ), c′) of both models is the same for every sample in the

second stage. Besides, by formula derivation, we have, for θ′ ∈ Γ0, for any θ in P−1(θ′),

∂LY (θ, c
0)

∂θ
=

∂LY (P (θ), c′)

∂θ′

Thus, if the same initialization is performed, f̂−pM
· c′ = f̂pM=0 · c0 for any c in the dataset.

Theorem E.2. For the retrained concept predictor ĝ−pM
defined by

ĝ−pM
= argmin

g′

∑
j /∈M

LCj = argmin
g′

∑
j /∈M

n∑
i=1

LC(g
′j(xi), c

j
i),

we map it to ĝ∗−pM
as

ĝ∗−pM
= argmin

g′∈Γ0

k∑
j /∈M

n∑
i=1

LC(g
′j(xi), c

j
i).

And we can edit the initial ĝ to ĝ∗−pM
as:

ĝ∗−pM
≈ ḡ∗−pM

≜ ĝ −H−1
ĝ · ∇ĝ

∑
j /∈M

n∑
i=1

LC(ĝ
j(xi), c

j
i), (22)

where Hĝ = ∇2
g

∑
j /∈M

∑n
i=1 LC(ĝ

j(xi), c
j
i).

Then, by removing all zero rows inserted during the mapping phase, we can naturally approximate
ĝ−pM

≈ P−1(ĝ∗−pM
).

Proof. At this level, we consider the scenario that removes a set of mislabeled concepts or introduces
new ones. Because after removing concepts from all the data, the new concept predictor has a
different dimension from the original. We denote gj(xi) as the j-th concept predictor with xi, and cji
as the j-th concept in data zi. For simplicity, we treat g as a collection of k concept predictors and
separate different columns as a vector gj(xi). Actually, the neural network gets g as a whole.

For the comparative purpose, we introduce a new notation ĝ∗−pM
. Specifically, we define weights of ĝ

and ĝ∗−pM
for the last layer of the neural network as follows.

ĝ−pM
(x) =

w11 w12 · · · w1m

w21 w22 · · · w2m

...
...

...
w(k−1)1 w(k−1)2 · · · w(k−1)m

︸ ︷︷ ︸

(k−1)×m

·

x1

x2

...
xm

︸ ︷︷ ︸

m×1

=

c1
...

cr−1

cr+1

...
ck

︸ ︷︷ ︸

(k−1)×1

ĝ∗−pM
(x) =

w11 w12 · · · w1m

...
...

...
w(r−1)1 w(r−1)2 · · · w(r−1)m

0 0 · · · 0
w(r+1)1 w(r+1)2 · · · w(r+1)m

...
...

...
wk1 wk2 · · · wkm

︸ ︷︷ ︸

k×m

·

x1

...
xr−1

xr

xr+1

...
xm

︸ ︷︷ ︸

m×1

=

c1
...

cr−1

0
cr+1

...
ck

︸ ︷︷ ︸

k×1

,

where r is an index from the index set M .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Firstly, we want to edit to ĝ∗−pM
∈ T0 = {wfinal = 0} ⊆ T based on ĝ, where wfinal is the parameter

of the final layer of neural network. Let us take a look at the definition of ĝ∗−pM
:

ĝ∗−pM
= argmin

g′∈T0

∑
j /∈M

n∑
i=1

LC(g
′j(xi), c

j
i).

Then, we separate the r-th concept-related item from the rest and rewrite ĝ as the following form:

ĝ = argmin
g∈T

 k∑
j=1,j ̸=r

n∑
i=1

LC(g
j(xi), c

j
i) +

∑
r∈M

n∑
i=1

LC(g
r(xi), c

r
i)

 .

Then, if the r-th concept part is up-weighted by some small ϵ, this gives us the new parameters ĝϵ,pM
,

which we will abbreviate as ĝϵ below.

ĝϵ,pM
≜ argmin

g∈T

∑
j /∈M

n∑
i=1

LC(g
j(xi), c

j
i) + ϵ ·

∑
r∈M

n∑
i=1

LC(g
r(xi), c

r
i)

 .

Obviously, when ϵ → 0, ĝϵ → ĝ∗−pM
. We can obtain the minimization conditions from the definitions

above.

∇ĝ∗
−pM

∑
j /∈M

n∑
i=1

LCj (ĝ
∗
−pM

(xi), ci) = 0. (23)

∇ĝϵ

∑
j /∈M

n∑
i=1

LCj (ĝϵ(xi), ci) + ϵ · ∇ĝϵ

∑
r∈M

n∑
i=1

LCr (ĝϵ(xi), ci) = 0.

Perform a first-order Taylor expansion of equation 23 with respect to ĝϵ, then we get

∇g

∑
j /∈M

n∑
i=1

LCj
(ĝϵ(xi), ci) +∇2

g

∑
j /∈M

n∑
i=1

LCj
(ĝϵ(xi), ci) · (ĝ∗−pM

− ĝϵ) ≈ 0.

Then we have

ĝ∗−pM
− ĝϵ = −H−1

ĝϵ
· ∇g

∑
j /∈M

n∑
i=1

LCj
(ĝϵ(xi), ci).

Where Hĝϵ = ∇2
g

∑
j /∈M

∑n
i=1 LCj

(ĝϵ(xi), ci).

We can see that:

When ϵ = 0,
ĝϵ = ĝ∗−pM

,

When ϵ = 1, ĝϵ = ĝ,

ĝ∗−pM
− ĝ ≈ −H−1

ĝ · ∇g

∑
j /∈M

n∑
i=1

LCj (ĝ(xi), ci),

where Hĝ = ∇2
g

∑
j /∈M

∑n
i=1 LCj

(ĝ(xi), ci).

Then, an approximation of ĝ∗−pM
is obtained.

ĝ∗−pM
≈ ĝ −H−1

ĝ · ∇g

∑
j /∈M

n∑
i=1

LCj
(ĝ(xi), ci). (24)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Theorem E.3. For the retrained label predictor f̂−pM
defined as

f̂−pM
= argmin

f ′

n∑
i=1

LY = argmin
f ′

n∑
i=1

LY (f
′(ĝ−pM

(xi)), yi),

We can consider its equivalent version f̂pM=0 as:

f̂pM=0 = argmin
f

n∑
i=1

LYi

(
f, ĝ∗−pM

)
,

which can be edited by

f̂pM=0 ≈ f̄pM=0 ≜ f̂ −H−1

f̂
· ∇f̂

n∑
l=1

LYl

(
f̂ , ḡ∗−pM

)
,

where Hf̂ = ∇2
f̂

∑n
i=1 LYi

(f̂ , ĝ) is the Hessian matrix of the loss function respect to is the Hessian

matrix of the loss function respect to f̂ .

Proof. Now, we come to the approximation of f̂−pM
. Noticing that the input dimension of f

decreases to k − |M |. We consider setting pr = 0 for all data points in the training phase of the label
predictor and get another optimal model f̂pM=0. From lemma E.1, we know that for the same input x,
f̂pM=0(x) = f̂−pM

. And the values of the corresponding parameters in f̂pM=0 and f̂−pM
are equal.

Now, let us consider how to edit the initial f̂ to f̂pM=0. Firstly, assume we only use the updated
concept predictor ĝ∗−pM

for one data (xir , yir , cir) and obtain the following f̂ir, which is denoted as

f̂ir = argmin
f

[
n∑

i=1

LY (f(ĝ(xi)), yi) + LY (f(ĝ
∗
−pM

(xir)), yir)− LY (f(ĝ(xir)), yir)

]
.

Then up-weight the ir-th data by some small ϵ and have the following new parameters:

f̂ϵ,ir = argmin
f

[
n∑

i=1

LY (f(ĝ(xi)), yi) + ϵ · LY (f(ĝ
∗
−pM

(xir)), yir)− ϵ · LY (f(ĝ(xir)), yir)

]
.

Deduce the minimized condition subsequently,

∇f

n∑
i=1

LY (f̂ir(ĝ(xi)), yi) + ϵ · ∇fLY (f̂ir(ĝ
∗
−pM

(xir)), yir)− ϵ · ∇fLY (f̂ir(ĝ(xir)), yir) = 0.

If we expand first term of f̂ , which f̂ir,ϵ → f̂(ϵ → 0), then

∇f

n∑
i=1

LY

(
f̂(ĝ(xi)), yi

)
+ ϵ · ∇fLY (f̂(ĝ

∗
−pM

(xir)), yir)− ϵ · ∇fLY (f̂(ĝ(xir)), yir)

+

(
∇2

f

n∑
i=1

LY

(
f̂(ĝ(xi)), yi

))
· (f̂ir,ϵ − f̂) = 0.

Note that ∇f

∑n
i=1 LY (f̂(ĝ(xi)), yi) = 0. Thus we have

f̂ir,ϵ − f̂ = H−1

f̂
· ϵ
(
∇fLY (f̂(ĝ

∗
−pM

(xir)), yir)−∇fLY (f̂(ĝ(xir)), yir)
)
.

We conclude that

df̂ϵ,ir
dϵ

∣∣∣∣∣
ϵ=0

= H−1

f̂
·
(
∇f̂LY (f̂(ĝ

∗
−pM

(xir)), yir)−∇f̂LY (f̂(ĝ(xir)), yir)
)
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Perform a one-step Newtonian iteration at f̂ and we get the approximation of f̂ir .

f̂ir ≈ f̂ +H−1

f̂
·
(
∇f̂LY (f̂(ĝ(xir)), yir)−∇f̂LY (f̂(ĝ

∗
−pM

(xir)), yir)
)
.

Reconsider the definition of f̂ir , we use the updated concept predictor ĝ∗−pM
for one data

(xir , yir , cir). Now we carry out this operation for all the other data and estimate f̂pM=0. Combining
the minimization condition from the definition of f̂ , we have

f̂pM=0 ≈f̂ +H−1

f̂
·

(
∇f̂

n∑
i=1

LY (f̂(ĝ(xi)), yi)−∇f̂

n∑
i=1

LY (f̂(ĝ
∗
−pM

(xi)), yi)

)

=f̂ +H−1

f̂
·

(
−∇f̂

n∑
i=1

LY (f̂(ĝ
∗
−pM

(xi)), yi)

)

=f̂ −H−1

f̂

n∑
l=1

∇f̂LY (f̂(ĝ
∗
−pM

(xl)), yl). (25)

Theorem E.2 gives us the edited version of ĝ∗−pM
. Substitute it into equation 25, and we get the final

closed-form edited label predictor under concept level:

f̂pM=0 ≈ f̄pM=0 ≜ f̂ −H−1

f̂
· ∇f̂

n∑
l=1

LYl

(
f̂ , ḡ∗−pM

)
,

where Hf̂ = ∇2
f̂

∑n
i=1 LYi(f̂ , ĝ) is the Hessian matrix of the loss function respect to is the Hessian

matrix of the loss function respect to f̂ .

F PROOF OF DATA-LEVEL INFLUENCE

We address situations that for dataset D = {(xi, yi, ci)}ni=1, given a set of data zr = (xr, yr, cr),
r ∈ G to be removed. Our goal is to estimate ĝ−zG , f̂−zG , which is the concept and label predictor
trained on the zr for r ∈ G removed dataset.

Proof Sketch. (i) First, we estimate the retrained concept predictor ĝ−zG . (ii) Then, we define
a new label predictor f̃−zG and estimate f̃−zG − f̂ . (iii) Next, in order to reduce computational
complexity, use the lemma method to obtain the approximation of the Hessian matrix of f̃−zG . (iv)
Next, we compute the difference f̂−zG − f̃−zG as

−H−1

f̃−zG

·
(
∇f̂LY

(
f̃−zG(ĝ−zG(xir)), yir

)
−∇f̂LY

(
f̃−zG(ĝ(xir)), yir

))
.

(v) Finally, we divide f̂−zG − f̂ , which we actually concerned with, into
(
f̂−zG − f̃−zG

)
+(

f̃−zG − f̂
)

.

Theorem F.1. For dataset D = {(xi, yi, ci)}ni=1, given a set of data zr = (xr, yr, cr), r ∈ G to be
removed. Suppose the updated concept predictor ĝ−zG is defined by

ĝ−zG = argmin
g

∑
j∈[k]

∑
i∈[n]−G

LCj
(ĝ(xi), ci)

where LC(ĝ(xi), ci) ≜
∑k

j=1 LCj
(ĝ(xi), ci). Then we have the following approximation for ĝ−zG

ĝ−zG ≈ ḡ−zG ≜ ĝ +H−1
ĝ ·

∑
r∈G

∇gLC(ĝ(xr), cr), (26)

where Hĝ = ∇2
ĝ

∑
i,j LC(ĝ

j(xi), c
j
i) is the Hessian matrix of the loss function respect to ĝ.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Proof. Firstly, we rewrite ĝ−zG as

ĝ−zG = argmin
g

[
n∑

i=1

LC(ĝ(xi), ci)−
∑
r∈G

LC(g(xr), cr)

]
,

Then we up-weighted the r-th data by some ϵ and have a new predictor ĝ−zG,ϵ, which is abbreviated
as ĝϵ:

ĝϵ ≜ argmin
g

[
n∑

i=1

LC(g(xi), ci)− ϵ ·
∑
r∈G

LC(g(xr), cr)

]
. (27)

Because ĝϵ minimizes the right side of equation 27, we have

∇ĝϵ

n∑
i=1

LY (ĝϵ(xi), ci)− ϵ · ∇ĝϵ

∑
r∈G

LY (ĝϵ(xr), cr) = 0.

When ϵ → 0, ĝϵ → ĝ. So we can perform a first-order Taylor expansion with respect to ĝ, and we
have

∇g

n∑
i=1

LC(ĝ(xi), ci)− ϵ · ∇g

∑
r∈G

LC(ĝ(xr), cr) +∇2
g

n∑
i=1

LC(ĝ(xi), ci) · (ĝϵ − ĝ) ≈ 0. (28)

Recap the definition of ĝ:

ĝ = argmin
g

n∑
i=1

LY (g(xi), ci),

Then, the first term of equation 28 equals 0. Let ϵ → 0, then we have

dĝϵ
dϵ

∣∣∣∣
ϵ=0

= H−1
ĝ ·

∑
r∈G

∇gLC(ĝ(xr), cr),

where H−1
ĝ = ∇2

g

∑n
i=1 ℓ(ĝ(xi), ci).

Remember when ϵ → 0, ĝϵ → ĝ−zG . Perform a Newton step at ĝ, then we obtain the method to edit
the original concept predictor under concept level:

ĝ−zG ≈ ḡ−zG ≜ ĝ +H−1
ĝ ·

∑
r∈G

∇gLC(ĝ(xr), cr).

Theorem F.2. For dataset D = {(xi, yi, ci)}ni=1, given a set of data zr = (xr, yr, cr), r ∈ G to be
removed. The label predictor f̂−zG trained on the revised dataset becomes

f̂−zG = argmin
f

∑
i∈[n]−G

LYi(f, ĝ−zG). (29)

The intermediate label predictor f̃−zG is defined by

f̃−zG = argmin
∑

i∈[n]−G

LYi
(f, ĝ),

Then f̃−zG − f̂ can be approximated by

f̃−zG − f̂ ≈ H−1

f̂
·
∑

i∈[n]−G

∇f̂LYi
(f̂ , ĝ) ≜ AG. (30)

We denote the edited version of f̃−zG as f̄∗
−zG ≜ f̂ +AG. And f̂−zG − f̃−zG can be approximated by

f̂−zG − f̃−zG ≈−H−1
f̄∗
−zG

·

∇f̂

∑
i∈[n]−G

LYi

(
f̄∗
−zG , ḡ−zG

)
−∇f̂

∑
i∈[n]−G

LYi

(
f̄∗
−zG , ĝ

) ≜ BG,

(31)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

where Hf̄∗
−zG

= ∇f̄

∑
i∈[n]−G LYi

(
f̄∗
−zG , ĝ

)
is the Hessian matrix of the loss function on the

intermediate dataset concerning f̄∗
−zG . Then, the final edited label predictor f̄−zG can be obtained

by
f̄−zG = f̄∗

−zG +BG = f̂ +AG +BG. (32)

Proof. We can see that there is a huge gap between f̂−zG and f̂ . Thus, firstly, we define f̃−zG as

f̃−zG = argmin
f

n∑
i=1

LY (f(ĝ(xi)), yi)−
∑
r∈G

LY (f(ĝ(xr)), yr) .

Then, we define f̃ϵ,−zG as follows to estimate f̃−zG .

f̃ϵ,−zG = argmin
f

n∑
i=1

LY (f(ĝ(xi)), yi)− ϵ ·
∑
r∈G

LY (f(ĝ(xr)), yr) .

From the minimization condition, we have

∇f̃

n∑
i=1

LY

(
f̃ϵ,−zG(ĝ(xi)), yi

)
− ϵ ·

∑
r∈G

∇f̃LY

(
f̃ϵ,−zG(ĝ(xr)), yr

)
= 0.

Perform a first-order Taylor expansion at f̂ ,

∇f̂

n∑
i=1

LY

(
f̂(ĝ(xi)), yi

)
− ϵ · ∇f̂

∑
r∈G

LY

(
f̂(ĝ(xr)), yr

)
+∇2

f̂

n∑
i=1

LY

(
f̂(ĝ(xi)), yi

)
·
(
f̃ϵ,−zG − f̂

)
= 0.

Then f̃−zG can be approximated by

f̃−zG ≈ f̂ +H−1

f̂
·
∑
r∈G

∇f̂LY

(
f̂(ĝ(xr)), yr

)
≜ AG. (33)

Then the edit version of f̃−zG is defined as

f̄∗
−zG = f̂ +AG (34)

Then we estimate the difference between f̂−zG and f̃−zG . Rewrite f̃−zG as

f̃−zG = argmin
f

n∑
i∈S

LY (f(ĝ(xi)), yi) , (35)

where S ≜ [n]−G.

Compare equation 29 with 35, we still need to define an intermediary predictor f̂−zG,ir as

f̂−zG,ir = argmin
f

∑
i∈S
i ̸=ir

LYi
(f, ĝ(xi)) + LYir

(f, ĝ−zG)

= argmin

f

[∑
i∈S

LYi (f, ĝ) + LYir (f, ĝ−zG)− LYir (f, ĝ)

]
.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Up-weight the ir data by some ϵ, we define f̂ϵ,−zG,ir as

f̂ϵ,−zG,ir = argmin
f

[∑
i∈S

LYi
(f, ĝ) + ϵ · LYir

(f, ĝ−zG)− ϵ · LYir
(f, ĝ)

]
.

We denote f̂ϵ,−zG,ir as f̂∗
ϵ in the following proof. Then, from the minimization condition, we have

∇f̂

∑
i∈S

LYi

(
f̂∗
ϵ , ĝ
)
+ ϵ · ∇f̂LYir

(
f̂∗
ϵ , ĝ−zG

)
− ϵ · ∇f̂LYir

(
f̂∗
ϵ , ĝ(xir

)
. (36)

When ϵ → 0, f̂∗
ϵ → f̃−zG . Then we perform a Taylor expansion at f̃−zG of equation 36 and have

∇f̂

∑
i∈S

LYi

(
f̃−zG , ĝ

)
+ ϵ · ∇f̂LYir

(
f̃−zG , ĝ−zG

)
− ϵ · ∇f̂LYir

(
f̃−zG , ĝ

)
+∇2

f̂

∑
i∈S

LYi

(
f̃−zG , ĝ

)
· (f̂∗

ϵ − f̃−zG) ≈ 0.

Organizing the above equation gives

f̂∗
ϵ − f̃−zG ≈ −ϵ ·H−1

f̃−zG

·
(
∇f̂LYir

(
f̃−zG , ĝ−zG

)
−∇f̂LYir

(
f̃−zG , ĝ

))
,

where Hf̃−zG
= ∇2

f̂

∑
i∈S LYi

(
f̃−zG , ĝ

)
.

When ϵ = 1, f̂∗
ϵ = f̂−zG,ir. Then we perform a Newton iteration with step size 1 at f̃−zG ,

f̂−zG,ir − f̃−zG ≈ −H−1

f̃−zG

·
(
∇f̂LYir

(
f̃−zG , ĝ−zG

)
−∇f̂LYir

(
f̃−zG , ĝ

))
Iterate ir through set S, and we have

f̂−zG − f̃−zG ≈ −H−1

f̃−zG

·

(
∇f̂

∑
i∈S

LYi

(
f̃−zG , ĝ−zG

)
−∇f̂

∑
i∈S

LYi

(
f̃−zG , ĝ

))
(37)

The edited version of ĝ−zG has been deduced as ḡ−zG in theorem F.1, substituting this approximation
into equation 37, then we have

f̂−zG − f̃−zG ≈ −H−1

f̃−zG

·

(
∇f̂

∑
i∈S

LYi

(
f̃−zG , ḡ−zG

)
−∇f̂

∑
i∈S

LYi

(
f̃−zG , ĝ

))
. (38)

Noting that we cannot obtain f̂−zG and Hf̃−zG
directly because we do not retrain the label predictor

but edit it to f̄∗
−zG as a substitute. Therefore, we approximate f̂−zG with f̄∗

−zG and Hf̃−zG
with

Hf̄∗
−zG

which is defined by:

Hf̄∗
−zG

= ∇2
f̂

∑
i∈S

LYi

(
f̄∗
−zG , ĝ

)
Then we define BG as

BG ≜ −H−1
f̄∗
−zG

·

(
∇f̂

∑
i∈S

LYi

(
f̄∗
−zG , ḡ−zG

)
−∇f̂

∑
i∈S

LYi

(
f̄∗
−zG , ĝ

))
(39)

Combining equation 34 and equation 39, then we deduce the final closed-form edited label predictor
as

f̄−zG = f̄∗
−zG +BG = f̂ +AG +BG.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

G ALGORITHM

Algorithm 1 Concept-label-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}ni=1, original concept predictor f̂ , and label predictor ĝ, a set
of erroneous data De and its associated index set Se.

2: For the index (w, r) in Se, correct crw to the right label crw
′ for the w-th data (xw, yw, cw).

3: Compute the Hessian matrix of the loss function respect to ĝ:

Hĝ = ∇2
ĝ

∑
i,j

LCj
(ĝj(xi), c

j
i).

4: Update concept predictor g̃:

g̃ = ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(
∇ĝLCr

(
ĝr(xw), c

r
w
′)−∇ĝLCr

(ĝr(xw), c
r
w)
)
.

5: Compute the Hessian matrix of the loss function respect to f̂ :

Hf̂ = ∇2
f̂

n∑
i=1

LYi
(f̂ , ĝ).

6: Update label predictor f̃ :

f̃ = f̂ +H−1

f̂
· ∇f

n∑
i=1

LY

(
f̂ (ĝ(xi)) , yi

)
−H−1

f̂
· ∇f

n∑
l=1

(
LY

(
f̂ (g̃(xl)) , yl

))
.

7: Return: f̃ , g̃.

Algorithm 2 Concept-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}ni=1, original concept predictor f̂ , label predictor ĝ and the to
be removed concept index set M .

2: For r ∈ M , set pr = 0 for all the data z ∈ D.
3: Compute the Hessian matrix of the loss function respect to ĝ:

Hĝ = ∇2
ĝ

∑
j /∈M

n∑
i=1

LCj (ĝ
j(xi), c

j
i).

4: Update concept predictor g̃∗:

g̃∗ = ĝ −H−1
ĝ · ∇ĝ

∑
j /∈M

n∑
i=1

LCj
(ĝj(xi), c

j
i).

5: Compute the Hessian matrix of the loss function respect to f̂ :

Hf̂ = ∇2
f̂

n∑
i=1

LY (f̂(ĝ(xi), yi).

6: Update label predictor f̃ :

f̃ = f̂ −H−1

f̂
· ∇f̂

n∑
l=1

LY

(
f̂ (g̃∗(xl)) , yl

)
.

7: Map g̃∗ to g̃ by removing the r-th row of the matrix in the final layer of g̃∗ for r ∈ M .
8: Return:f̃ , g̃.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Algorithm 3 Data-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}Ni=1, original concept predictor f̂ , label predictor ĝ, and the to
be removed data index set G.

2: For r ∈ G, remove the r-th data (xr, yr, cr) from D and define the new dataset as S.
3: Compute the Hessian matrix of the loss function with respect to ĝ:

Hĝ = ∇2
ĝ

∑
i,j

LCj (ĝ
j(xi), c

j
i).

4: Update concept predictor g̃:

g̃ = ĝ +H−1
ĝ ·

∑
r∈G

∇gLC(ĝ(xr), cr)

5: Update label predictor f̃ . Compute the Hessian matrix of the loss function with respect to f̂ :

Hf̂ = ∇2
f̂

n∑
i=1

LY (f̂(ĝ(xi), yi).

6: Compute A as:
A = H−1

f̂
·
∑

i∈[n]−G

∇f̂LY

(
f̂(ĝ(xi)), yi

)
7: Obtain f̄ as

f̄ = f̂ +A

8: Compute the Hessian matrix of the loss function concerning f̄ :

Hf̄ = ∇2
f̄

∑
i∈[n]−G

LY (f̄(ĝ(xi)), yi).

9: Compute B as

B = −H−1
f̄

·
∑

i∈[n]−G

∇f̂

(
LY (f̄(g̃(xi)), yi)− LY (f̄(ĝ(xi)), yi)

)
10: Update the label predictor f̃ as: f̃ = f̂ +A+B.
11: Return: f̃ , g̃.

Algorithm 4 EK-FAC for Concept Predictor g

1: Input: Dataset D = {(xi, yi, ci)}Ni=1, original concept predictor ĝ.
2: for the l-th convolution layer of ĝ: do
3: Define the input activations {aj,t}, weights W = (wi,j,δ), and biases b = (bi) of this layer;
4: Obtain the expanded activations JAl−1K as:

JAl−1Kt,j|∆|+δ = [Al−1](t+δ),j = aj,t+δ,

5: Compute the pre-activations:

[Sl]i,t = si,t =
∑
δ∈∆

wi,j,δaj,t+δ + bi.

6: During the backpropagation process, obtain the Dsi,t as:

Dsi,t =
∂
∑k

j=1

∑n
i=1 LCj

∂si,t

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

7: Compute Ω̂l−1 and Γ̂l:

Ω̂l−1 =
1

n

n∑
i=1

(
JAi

l−1K
⊤
HJAi

l−1KH
)

Γ̂l =
1

n

n∑
i=1

(
1

|T |
DSi

l

⊤DSi
l

)
8: Perform eigenvalue decomposition of Ω̂l−1 and Γ̂l, obtain QΩ,ΛΩ, QΓ,ΛΓ, which satisfies

Ω̂l−1 = QΩΛΩQ
⊤
Ω

Γ̂l = QΓΛΓQ
⊤
Γ

9: Define a diagonal matrix Λ and compute the diagonal element as

Λ∗
ii = n−1

n∑
j=1

((
QΩl−1

⊗QΓl

)
∇θlLCj

)2
i
.

10: Compute Ĥ−1
l as

Ĥ−1
l =

(
QΩl−1

⊗QΓl

)
(Λ + λlIdl

)
−1 (

QΩl−1
⊗QΓl

)T
11: end for
12: Splice Hl sequentially into large diagonal matrices

Ĥ−1
ĝ =

 Ĥ−1
1 0

. . .
0 Ĥ−1

d

where d is the number of the convolution layer of the concept predictor.

13: Return: the inverse Hessian matrix Ĥ−1
ĝ .

Algorithm 5 EK-FAC for Label Predictor f

1: Input: Dataset D = {(xi, yi, ci)}Ni=1, original label predictor f̂ .
2: Denote the pre-activated output of f̂ as f ′, Compute A as

A =
1

n
·

n∑
i=1

ĝ(xi) · ĝ(xi)
T

3: Comput B as:

B =
1

n
·

n∑
i=1

∇f ′LY (f̂ (ĝ(xi)) , yi) · ∇f ′LY (f̂ (ĝ(xi)) , yi)
T

4: Perform eigenvalue decomposition of AA and BB, obtain QA,ΛA, QB ,ΛB , which satisfies

A = QAΛAQ
⊤
A

B = QBΛBQ
⊤
B

5: Define a diagonal matrix Λ and compute the diagonal element as

Λ∗
ii = n−1

n∑
j=1

(
(QA ⊗QB)∇f̂LYj

)2
i
.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

6: Compute Ĥ−1

f̂
as

Ĥ−1

f̂
= (QA ⊗QB) (Λ + λId)

−1
(QA ⊗QB)

T

7: Return: the inverse Hessian matrix Ĥ−1

f̂
.

Algorithm 6 EK-FAC Concept-label-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}Ni=1, original concept predictor f̂ , label predictor ĝ, and the to
be removed data index set G, and damping parameter λ.

2: For r ∈ G, remove the r-th data (xr, yr, cr) from D and define the new dataset as S.
3: Use EK-FAC method in algorithm 4 to accelerate iHVP problem for ĝ and obtain the inverse

Hessian matrix Ĥ−1
ĝ

4: Update concept predictor g̃:

g̃ = ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(
∇ĝLCr

(
ĝr(xw), c

r
w
′)−∇ĝLCr

(ĝr(xw), c
r
w)
)
.

5: Use EK-FAC method in algorithm 5 to accelerate iHVP problem for f̂ and obtain Ĥ−1

f̂

6: Update label predictor f̃ :

f̃ = f̂ +H−1

f̂
· ∇f

n∑
i=1

LY

(
f̂ (ĝ(xi)) , yi

)
−H−1

f̂
· ∇f

n∑
l=1

(
LY

(
f̂ (g̃(xl)) , yl

))
.

7: Return: f̃ , g̃.

Algorithm 7 EK-FAC Concept-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}ni=1, original concept predictor f̂ , label predictor ĝ and the to
be removed concept index set M , and damping parameter λ.

2: For r ∈ M , set pr = 0 for all the data z ∈ D.
3: Use EK-FAC method in algorithm 4 to accelerate iHVP problem for ĝ and obtain the inverse

Hessian matrix Ĥ−1
ĝ

4: Update concept predictor g̃:

g̃∗ = ĝ −H−1
ĝ · ∇ĝ

∑
j /∈M

n∑
i=1

LCj (ĝ
j(xi), c

j
i).

5: Use EK-FAC method in algorithm 5 to accelerate iHVP problem for f̂ and obtain Ĥ−1

f̂

6: Update label predictor f̃ :

f̃ = f̂ −H−1

f̂
· ∇f̂

n∑
l=1

LY

(
f̂ (g̃∗(xl)) , yl

)
.

7: Map g̃∗ to g̃ by removing the r-th row of the matrix in the final layer of g̃∗ for r ∈ M .
8: Return: f̃ , g̃.

Algorithm 8 EK-FAC Data-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}ni=1, original concept predictor f̂ , and label predictor ĝ, a set
of erroneous data De and its associated index set Se, and damping parameter λ.

2: For the index (w, r) in Se, correct crw to the right label crw
′ for the w-th data (xw, yw, cw).

3: Use EK-FAC method in algorithm 4 to accelerate iHVP problem for ĝ and obtain the inverse
Hessian matrix Ĥ−1

ĝ

4: Update concept predictor g̃:

g̃ = ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(
∇ĝLCr

(
ĝr(xw), c

r
w
′)−∇ĝLCr

(ĝr(xw), c
r
w)
)
.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

5: Use EK-FAC method in algorithm 5 to accelerate iHVP problem for f̂ and obtain H−1

f̂

Compute A as:
A = H−1

f̂
·
∑

i∈[n]−G

∇f̂LY

(
f̂(ĝ(xi)), yi

)
Obtain f̄ as

f̄ = f̂ +A

6: Use EK-FAC method in algorithm 5 to accelerate iHVP problem for f̄ and obtain H−1
f̄

Compute B′ as

B′ = −H−1
f̄

·
∑

i∈[n]−G

∇f̂

(
LY (f̄(g̃(xi)), yi)− LY (f̄(ĝ(xi)), yi)

)
Update the label predictor f̃ as: f̃ = f̂ +A+B′.

7: Return: f̃ , g̃.

H ADDITIONAL EXPERIMENTS

H.1 EXPERIMENTAL SETTING

Methodology for Processing CUB Dataset For CUB dataset, we follow the setting in Koh et al.
(2020). We aggregate instance-level concept annotations into class-level concepts via majority voting:
e.g., if more than 50% of crows have black wings in the data, then we set all crows to have black
wings.

H.1.1 REVISED TIMING METHOD IN TABLE 1

We present another version of the runtime calculation method for Table 1. Note that the timing
method in Table 1 is based on the average time taken for each data point used during the update
process. In this version, we present another timing method, where RT represents the total runtime for
the updating. According to Table 3, when the timing method is changed to total runtime, the speed

Table 3: Performance comparison of different methods on the three datasets.

Edit Level Method OAI CUB CelebA
F1 score RT (minute) F1 score RT (minute) F1 score RT (minute)

Concept Label
Retrain 0.8825±0.0054 297.77 0.7971±0.0066 85.56 0.3827±0.0272 304.71
CBM-IF(Ours) 0.8639±0.0033 4.63 0.7699±0.0035 1.33 0.3561±0.0134 5.54
ECBM(Ours) 0.8808±0.0039 2.36 0.7963±0.0050 0.65 0.3845±0.0327 2.49

Concept
Retrain 0.8448±0.0191 258.84 0.7811±0.0047 87.21 0.3776±0.0350 355.85
CBM-IF(Ours) 0.8214±0.0071 4.94 0.7579±0.0065 1.45 0.3609±0.0202 5.51
ECBM(Ours) 0.8403±0.0090 2.36 0.7787±0.0058 0.59 0.3761±0.0280 2.48

Data
Retrain 0.8811±0.0065 319.37 0.7838±0.0051 86.20 0.3797±0.0375 325.62
CBM-IF(Ours) 0.8472±0.0046 5.07 0.7623±0.0031 1.46 0.3536±0.0166 5.97
ECBM(Ours) 0.8797±0.0038 2.50 0.7827±0.0088 0.65 0.3748±0.0347 2.49

of ECBM far exceeds that of retrain, being approximately 200 times faster. Even on the CelebA
dataset with 202,599 data points, ECBM can update the model in less than 3 minutes, with an F1
score deviation of only 0.0018 compared to retraining.

RMIA score. The RMIA score is computed as:

LRθ(x, z) ≈
Pr(fθ(x)|N (µx,z̄(x), σ

2
x,z̄(x)))

Pr(fθ(x)|N (µx̄,z(x), σ2
x̄,z(x)))

×
Pr(fθ(z)|N (µx,z̄(z), σ

2
x,z̄(z)))

Pr(fθ(z)|N (µx̄,z(z), σ2
x̄,z(z)))

where fθ(x) represents the model’s output (logits) for the data point x, N (µ, σ2) denotes a Gaussian
distribution with mean µ and variance σ2, µx,z̄(x) is the mean of the model’s outputs for x under

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

the assumption that x belongs to the training set, and σ2
x,z̄(x) is the variance of the model’s outputs

for x. The likelihoods Pr(fθ(x)|N) represent the probability that the model’s output fθ(x) follows
the Gaussian distribution parameterized by µ and σ2, under the two different hypotheses: x being a
member of the training set versus not being a member.

H.2 IMPROVEMENT VIA HARMFUL DATA REMOVAL

We conducted addition experiments on CUB datasets with synthetically introduced noisy concepts
or labels. Firstly, we introduce noises under three levels. In concept level, we choose 10% of the
concepts and flip these concept labels for a portion of the data. In data level, we choose 10% of the
data and flip their labels. In concept-label level, we choose 10% of the total concepts and flip them.
Then we conduct the following experiments. We introduce noises into the three levels and train the
model. After that, we remove the noise and obtain the retrained mdoel, which is the ground truth(gt)
of this harmful data removal task. In contrast, we use ECBM to remove the harmful data.

Figure 6: Model performance after the removal of harmful data.

From Figure 6, it can be observed that the model performance improves across all three settings after
noise removal and subsequent retraining or ECBM editing. This confirms that the performance of
ECBM is nearly equivalent to retraining in various experimental scenarios, further providing evidence
of the robustness of our method.

H.3 PERIODIC EDITING PERFORMANCE

ECBM can perform periodic editing. To evalutae the multiple editing performance of ECBM, we
conduct the following experiments. Firstly, we introduce noises under three levels. In concept level,
we choose 10% of the concepts and flip these concept labels for a portion of the data. In data level,
we choose 10% of the data and flip their labels. In concept-label level, we choose 10% of the total
concepts and flip them. Then we conduct the following experiments.

In the concept level, we firstly remove 1% of the concepts, then retrain or use ECBM to edit and
repeat. In the data level, we firstly remove 1% of the data, then retrain or use ECBM to edit. In the
concept label level, we firstly remove one concept label from 1% of the data, then retrain or use
ECBM to edit. Note that when remove the next 1% of the concepts, ECBM edit the model based on
the last editing result. The results at each level are shown in Figure 7, 8 and 9.

From the above three levels, we can find that with the mislabeled information removed, the retrained
model achieves better performance in both accuracy and F1 score than the initial model. Furthermore,
the performance of the ECBM-edited model is similar to that of the retrained model, even after 10
rounds editing, which demonstrates the ability of our ECBM method to handle multiple edits.

H.4 MORE VISUALIZATION RESULTS AND EXPLANATION

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

10% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0%

Mislabeled Concept

0.790

0.792

0.794

0.796

0.798

A
cc

ur
ac

y

Accuracy Comparison (Concept Level)
Accuracy Strategy

Retrain Acc
ECBM Acc

(a) The accuracy of the edited model compared
with retrained.

10% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0%

Mislabeled Concept

0.776

0.778

0.780

0.782

0.784

0.786

0.788

0.790

F1
 S

co
re

F1 Score Comparison (Concept Level)
F1 Score Strategy

Retrain F1
ECBM F1

(b) The F1 score of the edited model compared
with retrained.

Figure 7: Accuracy and F1 score difference of the edited model compared with retrained at concept
level.

10% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0%

Data (%)

0.770

0.775

0.780

0.785

0.790

0.795

A
cc

ur
ac

y

Accuracy Comparison (Data Level)
Accuracy Strategy

Retrain Acc
ECBM Acc

(a) The accuracy of the edited model compared
with retrained.

10% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0%

Data (%)

0.770

0.775

0.780

0.785

0.790

F1
 S

co
re

F1 Score Comparison (Data Level)
F1 Score Strategy

Retrain F1
ECBM F1

(b) The F1 score of the edited model compared
with retrained.

Figure 8: Accuracy and F1 score difference of the edited model compared with retrained at data level.

H.4.1 EXPLANATION FOR VISUALIZATION RESULTS

At the concept level, we remove each concept one at a time and retrain the CBM, and subsequently
evaluate the model performance. We rank the concepts in descending order based on the model
performance loss. Concepts that, when removed, cause significant changes in model performance are
considered influential concepts. The top 10 concepts are shown in the retrain column as illustrated
in Figure 5. In contrast, we use our ECBM method instead of the retrain method, as outlined in
Algorithm 7, and the top 10 concepts are shown in the ECBM column of Figure 5.

To help readers connect the top 10 influential concepts with the input image, we provide visualizations
of the data and list the concept labels corresponding to the top 10 influential concepts, which are
shown in Figure 5,10, 11.

For the other two levels and for additional datasets, we also conduct a similar procedure, and the
corresponding visualization results are presented in Figure 12, 13, 14, 15, and 16.

H.4.2 VISUALIZATION RESULTS

We provide our additional visualization results in Figure 10, 11, 12, 13, 14, 15, and 16.

I MORE RELATED WORK

Influence Function. The influence function, initially a staple in robust statistics Cook (2000); Cook
& Weisberg (1980), has seen extensive adoption within machine learning since Koh & Liang (2017)
introduced it to the field. Its versatility spans various applications, including detecting mislabeled
data, interpreting models, addressing model bias, and facilitating machine unlearning tasks. Notable

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

10% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0%

Concept Label (%)

0.788

0.790

0.792

0.794

0.796

0.798

A
cc

ur
ac

y

Accuracy Comparison (Concept-label Level)
Accuracy Strategy

Retrain Acc
ECBM Acc

(a) The accuracy of the edited model compared
with retrained.

10% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0%

Concept Label (%)

0.780

0.782

0.784

0.786

0.788

0.790

F1
 S

co
re

F1 Score Comparison (Concept-label Level)
F1 Score Strategy

Retrain F1
ECBM F1

(b) The F1 score of the edited model compared
with retrained.

Figure 9: Accuracy and F1 score difference of the edited model compared with retrained at concept-
label level.

works in machine unlearning encompass unlearning features and labels Warnecke et al. (2023),
minimax unlearning Liu et al. (2024), forgetting a subset of image data for training deep neural
networks Golatkar et al. (2020a; 2021), graph unlearning involving nodes, edges, and features.
Recent advancements, such as the LiSSA method Agarwal et al. (2017); Kwon et al. (2023) and
kNN-based techniques Guo et al. (2021), have been proposed to enhance computational efficiency.
Besides, various studies have applied influence functions to interpret models across different domains,
including natural language processing Han et al. (2020) and image classification Basu et al. (2021),
while also addressing biases in classification models Wang et al. (2019), word embeddings Brunet
et al. (2019), and finetuned models Chen et al. (2020). Despite numerous studies on influence
functions, we are the first to utilize them to construct the editable CBM. Moreover, compared to
traditional neural networks, CBMs are more complicated in their influence function. Because we
only need to change the predicted output in the traditional influence function. While in CBMs, we
should first remove the true concept, then we need to approximate the predicted concept in order to
approximate the output. Bridging the gap between the true and predicted concepts poses a significant
theoretical challenge in our proof.

Model Unlearning. Model unlearning has gained significant attention in recent years, with various
methods (Bourtoule et al., 2021; Brophy & Lowd, 2021; Cao & Yang, 2015; Chen et al., 2022a;b)
proposed to efficiently remove the influence of certain data from trained machine learning models.
Existing approaches can be broadly categorized into exact and approximate unlearning methods.
Exact unlearning methods aim to replicate the results of retraining by selectively updating only
a portion of the dataset, thereby avoiding the computational expense of retraining on the entire
dataset (Sekhari et al., 2021; Chowdhury et al., 2024). Approximate unlearning methods, on the
other hand, seek to adjust model parameters to approximately satisfy the optimality condition of
the objective function on the remaining data (Golatkar et al., 2020a; Guo et al., 2019; Izzo et al.,
2021). These methods are further divided into three subcategories: (1) Newton step-based updates
that leverage Hessian-related terms [22, 26, 31, 34, 40, 43, 49], often incorporating Gaussian noise to
mitigate residual data influence. To reduce computational costs, some works approximate the Hessian
using the Fisher information matrix (Golatkar et al., 2020a) or small Hessian blocks (Mehta et al.,
2022). (2) Neural tangent kernel (NTK)-based unlearning approximates training as a linear process,
either by treating it as a single linear change (Golatkar et al., 2020b). (3) SGD path tracking methods,
such as DeltaGrad (Wu et al., 2020) and unrollSGD (Thudi et al., 2022), reverse the optimization
trajectory of stochastic gradient descent during training. Despite their advancements, these methods
fail to handle the special architecture of CBMs. Moreover, given the high cost of obtaining data,
we sometimes prefer to correct the data rather than remove it, which model unlearning is unable to
achieve.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure 10: Visualization of the top-10 most influential concepts for different classes in CUB.

J LIMITATIONS AND BROADER IMPACTS

It is important to acknowledge that the ECBM approach is essentially an approximation of the
model that would be obtained by retraining with the edited data. However, results indicate that
this approximation is effective in real-world applications. Concept Bottleneck Models (CBMs)
have garnered much attention for their ability to elucidate the prediction process through a human-
understandable concept layer. However, most previous studies focused on cases where the data,
including concepts, are clean. In many scenarios, we always need to remove/insert some training
data or new concepts from trained CBMs due to different reasons, such as data mislabeling, spurious
concepts, and concept annotation errors. Thus, the challenge of deriving efficient editable CBMs

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Figure 11: Visualization of the top-10 most influential concepts for different classes in CUB.

without retraining from scratch persists, particularly in large-scale applications. To address these
challenges, we propose Editable Concept Bottleneck Models (ECBMs). Specifically, ECBMs support
three different levels of data removal: concept-label-level, concept-level, and data-level. ECBMs
enjoy mathematically rigorous closed-form approximations derived from influence functions that
obviate the need for re-training. Experimental results demonstrate the efficiency and effectiveness of
our ECBMs, affirming their adaptability within the realm of CBMs. Our ECBM can be an interactive
model with doctors in the real world, which is an editable explanation tool.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Figure 12: Visualization of the most influential concept label related to different data in CUB.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Figure 13: Visualization of the most influential concept label related to different data in CUB.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Figure 14: Visualization of the most influential concept label related to different data in CUB.

Figure 15: Visualization of the most influential concept label related to different data in CUB.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Figure 16: Visualization of the most influential concept label related to different data in OAI.

41

	Introduction
	Related Work
	Preliminaries
	Editable Concept Bottleneck Models
	Concept Label-level Editable CBM
	Concept-level Editable CBM
	Data-level Editable CBM

	Experiments
	Experimental Settings
	Evaluation of Utility and Editing Efficiency
	Results on Interpretability

	Conclusion
	Notation Table
	Influence Function
	Acceleration for Influence Function
	EK-FAC for CBMs

	Proof of Concept-label-level Influence
	Proof of Concept-level Influence
	Proof of Data-level Influence
	Algorithm
	Additional Experiments
	Experimental Setting
	Revised Timing Method in Table 1

	Improvement via Harmful Data Removal
	Periodic Editing Performance
	More Visualization Results and Explanation
	Explanation for Visualization Results
	Visualization Results

	More Related Work
	Limitations and Broader Impacts

