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ABSTRACT

Concept Bottleneck Models (CBMs) have garnered much attention for their ability
to elucidate the prediction process through a human-understandable concept layer.
However, most previous studies focused on cases where the data, including con-
cepts, are clean. In many scenarios, we always need to remove/insert some training
data or new concepts from trained CBMs due to different reasons, such as privacy
concerns, data mislabelling, spurious concepts, and concept annotation errors. Thus,
the challenge of deriving efficient editable CBMs without retraining from scratch
persists, particularly in large-scale applications. To address these challenges, we
propose Editable Concept Bottleneck Models (ECBMs). Specifically, ECBMs
support three different levels of data removal: concept-label-level, concept-level,
and data-level. ECBMs enjoy mathematically rigorous closed-form approximations
derived from influence functions that obviate the need for re-training. Experimental
results demonstrate the efficiency and effectiveness of our ECBMs, affirming their
adaptability within the realm of CBMs.

1 INTRODUCTION

Modern deep learning models, such as large language models (Zhao et al.|[2023} |Yang et al.|[2024afb;
Xu et al.,[2023}; [Yang et al., [2024c) and large multimodal (Yin et al.,|2023; |Ali et al., 20245 |Cheng
et al.| [2024), often exhibit intricate non-linear architectures, posing challenges for end-users seeking
to comprehend and trust their decisions. This lack of interpretability presents a significant barrier
to adoption, particularly in critical domains such as healthcare (Ahmad et al.| 2018} [Yu et al., 2018)
and finance (Cao, |2022)), where transparency is paramount. To address this demand, explainable
artificial intelligence (XAI) models (Das & Rad, 2020; Hu et al., 2023bja) have emerged, offering
explanations for their behavior and insights into their internal mechanisms. Among these, Concept
Bottleneck Models (CBMs) (Koh et al.,[2020) have gained prominence for explaining the prediction
process of end-to-end Al models. CBMs add a bottleneck layer for placing human-understandable
concepts. In the prediction process, CBMs first predict the concept labels using the original input and
then predict the final classification label using the predicted concept in the bottleneck layer, which
provides a self-explained decision to users.

Existing research on CBMs predominantly addresses two primary concerns: Firstly, CBMs heavily
rely on laborious dataset annotation. Researchers have explored solutions to these challenges in
unlabeled settings (Oikarinen et al., 2023} [Yuksekgonul et al.l [2023} [Lai et al.| [2023). Secondly,
the performance of CBMs often lags behind that of original models lacking the concept bottleneck
layer, attributed to incomplete information extraction from original data to bottleneck features.
Researchers aim to bridge this utility gap (Sheth & Ebrahimi Kahoul [2023} [Yuksekgonul et al.|
2023; Espinosa Zarlenga et al.,2022). However, few of them considered the adaptivity or editability
of CBMs, crucial aspects encompassing annotation errors, data privacy considerations, or concept
updates. Actually, these demands are increasingly pertinent in the era of large models. We delineate
the editable setting into three key aspects (illustrated in Figure|I)):

* Concept-label-level: In most scenarios, concept labels are annotated by humans or experts.
Thus, it is unavoidable that there are some annotation errors, indicating that there is a need
to correct some concept labels in a trained CBM.

» Concept-level: In CBMs, the concept set is pre-defined by LLMs or experts. However, in
many cases, evolving situations demand concept updates, as evidenced by discoveries such
as chronic obstructive pulmonary disease as a risk factor for lung cancer, and doctors have
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Figure 1: An illustration of Editable Concept Bottleneck Models with three settings.

the requirements to add related concepts. For another example, recent research found a new
factor, obesity (Sattar et al., 2020)) are risky for severe COVID-19 and factors (e.g., older
age, male gender, Asian race) are risk associated with COVID-19 infection (Rozenfeld et al.|
2020). On the other hand, one may also want to remove some spurious or unrelated concepts
for the task. This demand is even more urgent in some rapidly evolving domains like the
pandemic.

* Data-level: Data issues can arise in CBMs when training data is erroneous or poisoned. For
example, if a doctor identifies a case as erroneous or poisoned, this data sample becomes
unsuitable for training. Therefore, it is essential to have the capability to completely delete
such data from the learned models. We need such an editable model that can interact
effectively with doctors.

The most direct way to address the above three problems is retraining from scratch on the data after
correction. However, retraining models in such cases prove prohibitively expensive, especially in
large models, which is resource-intensive and time-consuming. Therefore, developing an efficient
method to approximate prediction changes becomes paramount. Providing users with an adaptive
and editable CBM is both crucial and urgent.

We propose Editable Concept Bottleneck Models (ECBMs) to tackle these challenges. Specifically,
compared to retraining, ECBMs provide a mathematically rigorous closed-form approximation for
the above three settings to address editability within CBMs efficiently. Leveraging the influence
function (Cookl, 2000; |Cook & Weisbergl [1980), we quantify the impact of individual data points,
individual concept labels, and the concept for all data on model parameters. Despite the growing
attention and utility of influence functions in machine learning (Koh & Liang| [2017)), their appli-
cation in CBMs remains largely unexplored due to their composite structure, i.e., the intermediate
representation layer.

To the best of our knowledge, we are the first to work to fill this gap by demonstrating the effectiveness
of influence functions in elucidating the behavior of CBMs, especially in identifying mislabeled data
and discerning the data influence. Comprehensive experiments on benchmark datasets show that our
ECBMs are efficient and effective. Our contributions are summarized as follows.

* We delineate three different settings that need various levels of data or concept removal in
CBMs: concept-label-level, concept-level, and data-level. To the best of our knowledge, our
research marks the first exploration of data removal issues within CBMs.

* To make CBMs able to remove data or concept influence without retraining, we propose
the Editable Concept Bottleneck Models (ECBMs). Our approach in ECBMs offers a math-
ematically rigorous closed-form approximation. Furthermore, to improve computational
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efficiency, we present streamlined versions integrating Eigenvalue-corrected Kronecker-
Factored Approximate Curvature (EK-FAC).

* To showcase the effectiveness and efficiency of our ECBMs, we conduct comprehensive
experiments across various benchmark datasets to demonstrate our superior performance.

2 RELATED WORK

Concept Bottleneck Models. CBM (Koh et al.| 2020) stands out as an innovative deep-learning
approach for image classification and visual reasoning. It introduces a concept bottleneck layer
into deep neural networks, enhancing model generalization and interpretability by learning specific
concepts. However, CBM faces two primary challenges: its performance often lags behind that of
original models lacking the concept bottleneck layer, attributed to incomplete information extraction
from the original data to bottleneck features. Additionally, CBM relies on laborious dataset annotation.
Researchers have explored solutions to these challenges. (Chauhan et al.| (2023) extend CBM into
interactive prediction settings, introducing an interaction policy to determine which concepts to label,
thereby improving final predictions. (Oikarinen et al.|(2023)) address CBM limitations and propose a
novel framework called Label-free CBM. This innovative approach enables the transformation of any
neural network into an interpretable CBM without requiring labeled concept data, all while maintain-
ing high accuracy. Post-hoc Concept Bottleneck models (Yuksekgonul et al.,|2023)) can be applied
to various neural networks without compromising model performance, preserving interpretability
advantages. CBMs work on the image field also includes the works of [Havasi et al.|(2022),Kim et al.
(2023)/Keser et al.|(2023),Sawada & Nakamura|(2022) and|Sheth & Kahou|(2023). Despite many
works on CBMs, we are the first to investigate the interactive influence between concepts through
influence functions. Our research endeavors to bridge this gap by utilizing influence functions in
CBMs, thereby deciphering the interaction of concept models and providing an adaptive solution to
concept editing. For more related work, please refer to Appendix [l

3 PRELIMINARIES

Concept Bottleneck Models. In this paper, we consider the original CBM, and we adopt the
notations used by [Koh et al.| (2020). We consider a classification task with a concept set denoted
as ¢ = {p1,--- ,pr} with each p; is a concept given by experts or LLMs, and a training dataset
represented as D = {z;}7,, where z; = (z;,¥;,¢;). Here, for ¢ € [n], x; € R™ represents the
feature vector, y; € R% denotes the label (with d, corresponding to the number of classes), and
c; = (ct,---,cF) € R¥ represents the concept vector. In this context, c] represents the weight of

7
the concept p;. In CBMs, our goal is to learn two representations: one called concept predictor that
transforms the input space to the concept space, denoted as g : R™ — R¥, and another called label
predictor that maps the concept space to the prediction space, denoted as f : R¥ — R9=. Usually,
here the map f is linear. For each training sample z; = (x;, y;, ¢;), we consider two empirical loss
functions: one is from the input space to concept space, and the other is from concept space to output
space:

k n k n
g=argmin > Lo(g'(w:),¢]) = argminy Y Lo, (9(w:), ¢4), 0
9 j=1i=1 9 j=14i=1
f= arg min > Ly (f(3(x)),vi) = arg min > Lvi(f,9), ©)
i=1 i=1

where g7 (x;) is the j-th concept predictor with z;, Lo and Ly are loss functionsSee the notation
table in Appendix[2}. We treat g as a collection of k concept predictors and separate different columns
as a vector g/ (z;) for simplicity. Furthermore, in this paper, we primarily focus on the scenarios
where the label predictor f is a linear transformation.

For any input x, we aim to ensure that its predicted concept vector ¢ = g(z) and prediction
9 = f(g(z)) are close to their underlying counterparts, thus capturing the essence of the original
CBMs.
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Influence function. The influence function is a measure of the dependence of the estimator on the

value of any one of the points in the sample. Consider a neural network § = arg miny Yo U(z;0)
with loss function ¢ and dataset D = {z;}"_;. If we remove a point z,, from the training dataset, the

parameters become f_, = argming ) _, 2mt (2i;0). Influence function gives us an efficient approx-

imation for §_

Zm

by defining a response function as HAF"_ZM = argminl 3" | L(2;;6) + €L(2;6).
e)

Perform first-order Taylor expansion on the gradient of the objective function corresponding to the
arg min process of the response function, we can obtain the influence function defined by

—etm = —H N Vpl(zms 0),
e=0

which can evaluate the influence of z,, on the parameters. When the loss function £ is twice-
differentiable and strongly convex in 6, the Hessian Hj is positive definite and thus the influ-
ence function is well-defined. For non-convex loss, [Bartlett| (1953) proposed that the Hessian
Hy, can be replaced by H = Gy + M where G is the Fisher information matrix defined by
nTE Y Vel(z;0)Vel(2i;0)T, X is a small damping term used to ensure the positive definite-
ness of . We can employ the Eigenvalue-corrected Kronecker-Factored Approximate Curvature
(EK-FAC) method to further accelerate the computation. See Appendix [C|for details.

4 EDITABLE CONCEPT BOTTLENECK MODELS

In this section, we introduce our EBCMs for the three settings mentioned in the introduction by
leveraging the influence function. Specifically, for the concept-label level, we will calculate the
influence of a set of data sample’s different concept labels; for the concept level, we will calculate the
influence of several concepts; for the data level, we will calculate the influence of several samples.

4.1 CONCEPT LABEL-LEVEL EDITABLE CBM

In many cases, several data samples possess erroneous annotations for certain concepts, yet we
may opt to preserve their other information, particularly considering the high cost associated with
acquiring data in specific domains like medical imaging. In such scenarios, it is common practice to
correct such erroneous concepts instead of removing the whole data point from the dataset. Estimating
the changes in the parameters of the retraining model holds significance in this context. We name this
case as concept label-level editable CBM.

Mathematically, we have a set of erroneous data D, and its associated index set S. C [n] x [k] such
that for each (w, ) € S,, we have (24, Yw, Cw) € D, with ¢}, is mislabeled and ¢, is its corrected
concept label. Thus, our goal is to approximate the new CBM without retraining. The retrained
concept predictor and label predictor will be represented in the following manner.

ge=argmin | Y Lo (¢@).cd)+ Y Lo (9@.d)]. ©)

g (1,7)¢Se (i,7)€Se
fe= afg]{nin D Ly (f (G () i) - 4)
i=1

For simple neural networks, we can use the influence function approach directly to estimate the
retrained model. However, for CBM architecture, if we intervene with the true concepts, the concept
predictor g fluctuates to g. accordingly. Observing that the input data of the label predictor is the
output of the concept predictor, which is also changing. Therefore, we need to adopt a two-stage
editing approach. Here we consider the influence function for equation [3|and equation [4] separately.

We first edit the concept predictor from § to g., and then edit from f to f, based on our approximated
concept predictor, by the following two theorems.

Theorem 4.1. The retrained concept predictor §. defined by (3) can be approximated by:

Gemge2g—Hy' Y (ViLo (9 (2w),&,) = ViLe (37 (@), ) s ©)
(w,r)eSe

where Hy = V?] > Le (9 (), cZ ) is the Hessian matrix of the loss function with respect to g.

4
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Theorem 4.2. The retrained label predictor fe defined by equationcan be approximated by:
n n
P} 1 N —1 Fo=
for fom FHGN V3 L (f.9) - H; VeI (f.9.).

where H P V?@ Sy Lyi( f ,§) is the Hessian matrix of the loss function with respect to f,
Ly, (f, J) £ Ly(f(g(xi)), Yi), and ge is given in Theorem

Difference with test-time intervention. The ability to intervene in CBMs enables human users to
interact with the model in the prediction process, for example, a medical expert can substitute the
erroneous predicted concept value ¢ directly, and then observe its effect on the final prediction 7.
However, the fundamental flaws in the concept predictor have not been thoroughly rectified, and
similar errors may persist when applied to new test data. While under the editable CBM framework,
not only can test-time intervention be performed, but the concept predictor of the CBM can also
undergo secondary editing based on the test data that repeatedly yields errors. This process extends
the rectification from the data level to the model level.

4.2 CONCEPT-LEVEL EDITABLE CBM

In this case, a set of concepts is removed due to incorrect attribution or spurious concepts, termed
concept-level edit. E]Speciﬁcally, for the concept set, denote the erroneous concept index set as
M C [k], we aim to delete these concept labels in all training samples. We aim to investigate the
impact of updating the concept set within the training data on the model’s predictions. It is notable
that compared to the above concept label case, the dimension of output (input) of the retrained concept
predictor (label predictor) will change. If we delete ¢ concepts from the dataset, then g becomes
g :R™ — RF~* and f becomes f’ : RF~* — R?:. More specifically, if we retrain the CBM with
the revised dataset, the corresponding concept predictor becomes:

n
—py = argmin Z L¢; = argmin Z ZLC(g’j (zi),c)). (6)
g/ ’

i¢M I jgMi=1

The variation of the parameters in dimension renders the application of influence function-based
editing challenging for the concept predictor. This is because the influence function implements
the editorial predictor by approximate parameter change from the original base after e-weighting
the corresponding loss for a given sample, and thus, it is unable to deal with changes in parameter
dimensions.

To overcome the challenge, our strategy is to develop some transformations that need to be performed
on §_p,, to align its dimension with g so that we can apply the influence function to edit the CBM.
We achieve this by mapping §—p,, to §*,, £ P(g—p,, )» Which has the same amount of parameters
as ¢ and has the same predicted concepts §* , (j) as §—p,, (j) for all j € [k] — M. We achieve
this effect by inserting a zero row vector into the 7-th row of the matrix in the final layer of §_,,,
for r € M. Thus, we can see that the mapping P is one-to-one. Moreover, assume the parameter
space of g is T" and that of g* , ,Tp is the subset of T". Noting that is the optimal model of the
following objective function:

ok
9—pur

k n
9%y =argmin » > Le (g7 (1), ), %

9'€To janri=1

i.e., it is the optimal model of the concept predictor loss on the remaining concepts under the constraint
Ty. Now we can apply the influence function to edit g to approximate g, ~with the restriction on
the value of 0 for rows indexed by MM with the last layer of the neural network, denoted as g* , .
After that, we remove from gjipM the parameters initially inserted to fill in the dimensional difference,
which always equals 0 because of the restriction we applied in the editing stage, thus approximating
the true edited concept predictor g, . We now detail the editing process from g to g* , =~ using the
following theorem.

"For convenience, in this paper, we only consider concept removal; our method can directly extend to concept
insertion.
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Theorem 4.3. For the retrained concept predictor §_p,,, defined in equation @ we map itto g*,, =~ as

equationm And we can edit the initial g to g~ , = as:

n
G M Gopa 29— Hy' -V 3 D Loy (3w, o),
jeM i=1
where Hy = V2 DT >or 1 Lo, (G(w4), ¢i). Then, by removing all zero rows inserted during the
mapping phase, we can naturally approximate §_,,, ~ P~ (9 par)-

For the second stage of training, assume we aim to remove concept p, for r € M and the new

optimal model is f_,,,. We will encounter the same difficulty as in the first stage, i.e., the number of
parameters of the label predictor will change. To address the issue, our key observation is that in the
existing literature on CBMs, we always use linear transformation for the label predictor, meaning
that the dimensions of the input with values of 0 will have no contribution to the final prediction. To
leverage this property, we fill the missing values in the input of the updated predictor with 0, that is,

replacing g—p,, with g* , ~and consider pr:o defined by

Fon—=0 = arg;ninZLm (0" pur) - (8)

i=1
In total, we have the following lemma:

Lemma 4.4. In the CBM, if the label predictor utilizes linear transformations of the form f - c with
input ¢, then, for each v € M, we remove the r-th concept from ¢ and denote the new input as ¢'; set

the r-th concept to 0 and denote the new input as c°. Then we have f_,,, - ¢’ = pr —o - & for any
input c.

Lemma H demonstrates that the retrained f_p o
g% ., () respectively, yield identical outputs. Consequently, we can utilize f,,,—o as the editing

and fp =0, When given inputs §_,,, (z) and
target in place of f_,,,.
Theorem 4.5. For the revised retrained label predictor fp v =0 defined by equation we can edit the
initial label predictor f to fp w=0 by the following equation as a substitute for f,,,—o:

fPM:O ~ pr:O 2 f— Hftl ’ vaLYl (f’gipM> ’
=1

where H; = Vj; St Ly, (f,9). Deleting the r-th dimension of fpu—o forr € M, then we can

map it to f_p > Which is the approximation of the final edited label predictor f_p . under concept
level.

4.3 DATA-LEVEL EDITABLE CBM

In this scenario, we are more concerned about fully removing the influence of data samples on CBMs
due to different reasons, such as the training data involving poisoned or erroneous issues. Specifically,
we have a set of samples to be removed {(x;, y;, ¢;) }ieg With G C [n]. Then, we define the retrained
concept predictor as

E
§zo =argminy > Lg,(g(z:), i) ©
9 j=lien]-G
which can be evaluated by the following theorem:
Theorem 4.6. For dataset D = {(x;, y;, i)}, given a set of data z, = (Ty,Yr,¢r), ¥ € G to be
removed. Suppose the updated concept predictor §_ ., is defined by equation E’] then we have the
following approximation for §_

Joe R Goug 2 G+ H Y VLo, (4(2), ), (10)
reG

where Hy = V?] > Le; (¢7 (), c]) is the Hessian matrix of the loss function with respect to §.
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Based on §_ .., the label predictor becomes f,ZG which is defined by

fozo =argmin > Ly, (f,§-z0)- (11)

i€n]—G

Compared with the original loss before unlearning in equation [2} we can observe two changes in
equation First, we remove |G| data points in the loss function Ly . Secondly, the input for the loss
is also changed from g(x;) to §—... Therefore, it is difficult to estimate directly with an influence
function. Here we introduce an intermediate label predictor as

fozo =argmin >~ Ly(f,9), (12)

i€n]—-G

and split the estimate of f,ZG — finto f,zc - f,ZG and f,ZG — f
Theorem 4.7. For dataset D = {(x;, y;,¢;) 1, given a set of data z, = (Ty,Yr,Cr), ¥ € G t0 be

removed. The intermediate label predictor f_., is defined in equation Then we have

ffzc _f%Hle ) Z vaYI( Aag) £ Ac
i€[n]—-G

We denote the edited version Off_ZG as fiZG = f + Ag. Define Bg as

fﬁZG B fiZG ~ _H];ilzc vf Z (Lyl (szc’g*ZG) — Ly, (f_izcﬂg)) 2 Bg,
i€[n]—-G

where HfizG =Vs Zie[n%G Ly, (fizG , g) is the Hessian matrix concerning fsz. Combining

the above two-stage approximation, then, the final edited label predictor f_zG can be obtained by
fore =froy +Bo=f+Ac+ Ba. (13)

Acceleration via EK-FAC. As we mentioned in Section 3} as the loss function in CBMs is non-
convex, the Hessian matrices in all our theorems may not be well-defined. We can use the EK-FAC
approach, i.e., using Hy =G+ M to approximate the Hessian, where Gy is the Fisher information
matrix of model 6, and X is a small damping term used to ensure the positive definiteness. See
Appendix for using EK-FAC to CBMs. Also, see Algorithm [6}f8]in the Appendix for the detailed
EK-FAC-based algorithms for our three levels, whose original (Hessian) versions are in Algorithm

[T}3] respectively.

5 EXPERIMENTS

In this section, we demonstrate our main experimental results on utility evaluation, edition efficiency,
and interpretability evaluation. Details and additional results are in Appendix [H]due to space limit.

5.1 EXPERIMENTAL SETTINGS

Dataset. We utilize three datasets: X-ray grading (OAI) (Nevitt et al., 20006), Bird identification
(CUB) (Wah et al., 2011) and Large-scale CelebFaces Attributes dataset (CelebA) (Liu et al., 2015).
OAL is a multi-center observational study of knee osteoarthritis, which comprises 36,369 data points.
Specifically, we configure n=10 concepts that characterize crucial osteoarthritis indicators such as
joint space narrowing, osteophytes, and calcification. Bird identification (CUBf] consists of 11,788
data points, which belong to 200 classes and include 112 binary attributes to describe detailed
visual features of birds. CelebA comprises 202,599 celebrity images, each annotated with 40 binary
attributes that detail facial features, such as hair color, eyeglasses, and smiling. As the dataset lacks
predefined classification tasks, following Espinosa Zarlenga et al.|(2022)), we designate 8 attributes as
labels and the remaining 32 attributes as concepts. For all the above datasets, we follow the same
network architecture and settings outlined in |Koh et al.|(2020).

2The original dataset is processed. Detailed explanation can be found in
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Ground Truth and Baselines. We use retrain as the ground truth method. Retrain: We retrain the
CBM from scratch by removing the samples, concept labels, or concepts from the training set. We
employ two baseline methods: CBM-IF, and ECBM. CBM-IF: This method is a direct implementation
of our previous theorems of model updates in the three settings. See Algorithms[T}{3]in Appendix
for details. ECBM: As we discussed above, all of our model updates can be further accelerated
via EK-FAC, ECBM corresponds to the EK-FAC accelerated version of Algorithms [T}f3] (refer to
Algorithms [6}f8]in Appendix).

Evaluation Metric. We utilize two primary evaluation metrics to assess our models: the F1 score
and runtime (RT). The FI score measures the model’s performance by balancing precision and recall.
Runtime, measured in seconds, evaluates the running time of each method to update the model.

Implementation Details. Our experiments utilized an Intel Xeon CPU and an RTX 3090 GPU. For
utility evaluation, at the concept level, one concept was randomly removed for the OAI dataset and
repeated while ten concepts were randomly removed for the CUB dataset, with five different seeds.
At the data level, 3% of the data points were randomly deleted and repeated 10 times with different
seeds. At the concept-label level, we randomly selected 3% of the data points and modified one
concept of each data randomly, repeating this 10 times for consistency across iterations.

5.2 EVALUATION OF UTILITY AND EDITING EFFICIENCY

Our experimental results, as illustrated in Table[I] demonstrate the effectiveness of ECBMs compared
to traditional retraining and CBM-IF, particularly emphasizing computational efficiency without
compromising accuracy. Specifically, ECBMs achieved F1 scores close to those of retraining (0.8808
vs. 0.8825) while significantly reducing the runtime from 31.44 seconds to 8.29 seconds. This pattern
is consistent in the CUB dataset, where the runtime was decreased from 27.88 seconds for retraining to
7.03 seconds for ECBMs, with a negligible difference in the F1 score (0.7971 to 0.7963). These results
highlight the potential of ECBMs to provide substantial time savings—approximately 22-30% of
the computational time required for retraining—while maintaining comparable accuracy. Compared
to CBM-IF, ECBM also showed a slight reduction in runtime and a significant improvement in F1
score. The former verifies the effective acceleration of our algorithm by EK-FAC. This efficiency is
particularly crucial in scenarios where frequent updates to model annotations are needed, confirming
the utility of ECBMs in dynamic environments where running time and accuracy are critical.

We can also see that the original version of ECBM, i.e., CBM-IF, also has a lower runtime than
retraining but a lower F1 score than ECBM. Such results may be due to different reasons. For example,
our original theorems depend on the inverse of the Hessian matrices, which may not be well-defined
for non-convex loss. Moreover, these Hessian matrices may be ill-conditioned or singular, which
makes calculating their inverse imprecise and unstable.

Table 1: Performance comparison of different methods on the three datasets.

EditLevel  Method oAl CuB CelebA
F1 score RT (second) F1 score RT (second) F1 score RT (second)
Retrain 0.8825+0.0054 31.44 0.7971+0.0066 27.88 0.3827+0.0272 57.60
Concept Label CBM-IF(Ours) 0.8639+0.0033 16.31 0.7699+0.0035 14.39 0.3561+0.0134 34.93
ECBM(Ours)  0.8808-:0.0039 8.29 0.7963+0.0050 7.03 0.3845-£0.0327 15.67
Retrain 0.8448+0.0191 27.33 0.7811+0.0047 28.41 0.3776+0.0350 68.94
Concept CBM-IF(Ours) 0.821440.0071 17.38 0.7579+0.0065 15.70 0.3609-£0.0202 35.56
ECBM(Ours) 0.8403+0.0090 8.30 0.7787+0.0058 6.43 0.3761+0.0280 15.99
Retrain 0.881140.0065 33.72 0.783840.0051 28.08 0.3797+0.0375 65.60
Data CBM-IF(Ours) 0.8472+0.0046 17.84 0.7623+0.0031 15.86 0.3536+£0.0166 40.08
ECBM(Ours) 0.8797+0.0038 8.81 0.7827+0.0088 7.11 0.3748+0.0347 16.75

Editing Multiple Samples. To comprehensively evaluate the editing capabilities of ECBM in various
scenarios, we conducted experiments on the performance with multiple samples that need to be
removed. Specifically, for the concept label/data levels, we consider the different ratios of samples
(1-10%) for edit, while for the concept level, we consider removing different numbers of concepts
€ {2,4,6,---,20}. We compared the performance of retraining, CBM-IF, and ECBM methods. As
shown in Figure[2] except for certain cases at the concept level, the F1 score of the ECBM method is
generally around 0.0025 lower than that of the retrain method, which is significantly better than the
corresponding results of the CBM-IF method. Recalling Table|l} the speed of ECBM is more than
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three times faster than that of retraining. Consequently, ECBM is an editing method that achieves a
trade-off between speed and effectiveness.
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Figure 2: Impact of edition ratio on three settings on CUB dataset.
5.3 RESULTS ON INTERPRETABILITY

Influence function in ECBM can measure the importance of concepts. The original motivation of
the influence function is to calculate the importance score of each sample. Here, we will show that
the influence function for the concept level in Theorem @.3]can be used to calculate the importance
of each concept in CBMs, which provides an explainable tool for CBMs. In detail, we conduct
our experiments on the CUB dataset. We first select 1-10 most influential and 1-10 least influential
concepts by our influence function. Then, we will remove these concepts and update the model via
retraining or our ECBM and analyze the change (F1 Score Difference) w.r.t. the original CBM before
removal.

The results in Figure[3aldemonstrate that when we remove the 1-10 most influential concepts identified
by the ECBM method, the F1 score decreases by more than 0.025 compared to the CBM before
removal. In contrast, Figure 3B shows that the change in the F1 score remains consistently below
0.005 when removing the least influential concepts. These findings strongly indicate that the influence
function in ECBM can successfully determine the importance of concepts. Furthermore, we observe
that the gap between the F1 score of retraining and ECBM is consistently smaller than 0.005, and
even smaller in the case of least important concepts. This further suggests that when ECBM edits
various concepts, its performance is very close to the ground truth.
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Number of Deletlons Number of Deletions
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(a) Results on the 1-10 most influential concepts (b) Results on the 1-10 least influential concepts

Figure 3: F1 score difference after removing most and least influential concepts given by our concept
level influence function.

ECBMs can erase data influence. For the data level, ECBMs aim to facilitate an efficient removal of
samples. We perform membership inference attacks (MIAs) to provide direct evidence that ECBMs
can indeed erase data influence. MIA is a privacy attack that aims to infer whether a specific data
sample was part of the training dataset used to train a model. The attacker exploits the model’s
behavior, such as overconfidence or overfitting, to distinguish between training (member) and non-
training (non-member) data points. In MIAs, the attacker typically queries the model with a data
sample and observes its prediction confidence or loss values, which tend to be higher for members of
the training set than non-members (Shokri et al.,[2017).

To quantify the success of these edits, we calculate the RMIA (Removed Membership Inference
Attack) score for each category. The RMIA score is defined as the model’s confidence in classifying



Under review as a conference paper at ICLR 2025

whether a given sample belongs to the training set. Lower RMIA values indicate that the sample
behaves more like a test set (non-member) sample Zarifzadeh et al|(2024). This metric is especially
crucial for edited samples, as a successful ECBM should make the removed members behave similarly
to non-members, reducing their membership vulnerability. See Appendix [H]for its definition.

We conducted experiments by randomly selecting 200 samples from the training set (members)
and 200 samples from the test set (non-members) of the CUB dataset. We calculated the RMIA
scores for these samples and plotted their frequency distributions, as shown in Figure fa] The
mean RMIA score for non-members was 0.049465, while members had a mean score of 0.063505.
Subsequently, we applied ECBMs to remove the 200 training samples from the model, updated the
model parameters, and then recalculated the RMIA scores. After editing, the mean RMIA score for
the removed-members decreased to 0.052105, significantly closer to the non-members’ mean score.
This shift in RMIA values demonstrates the effectiveness of ECBMs in editing the model, as the
removed members now exhibit behavior closer to that of non-members. The post-editing RMIA score
distributions are shown in Figure [#b] These results provide evidence of the effectiveness of ECBMs
in editing the model’s knowledge about specific samples.

Before Editing After Editing
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(a) RMIA Score Before Editing (b) RMIA Score After Editing

Figure 4: RMIA scores of data before and after removal.

Visualization. Since CBM is an explainable model, we aim to evaluate the interpretability of our
ECBM (compared to the retraining). We will present some visualization results for the concept-level
edit. Figure[5] presents the top 10 most influential concepts and their corresponding predicted concept
labels obtained by our ECBM and the retrain method after randomly deleting concepts for the CUB
dataset. Detailed explanation can be found in Appendix [H.4.T] Our ECBM can provide explanations
for which concepts are crucial and how they assist the prediction. Specifically, among the top 10 most
important concepts in the ground truth (retraining), ECBM can accurately recognize 9 within them.
For instance, we correctly identify "has_upperparts_color::orange", "has_upper_tail_color::red",
and "has_breast_color::black" as some of the most important concepts when predicting categories.
Additional visualization results under data level and concept-label level on OAI and CUB datasets
are included in Appendix [H.4.2]

Label Groove Billed Ani Retrain Label Retrain

Figure 5: Visualization of the Top 10 Most Influential Concepts for CBM(Identified by ECBM or
Retrain) Highlighted on an Extracted Image.

6 CONCLUSION

In this paper, we propose Editable Concept Bottleneck Models (ECBMs). ECBMs can address
issues of removing/inserting some training data or new concepts from trained CBMs for different
reasons, such as privacy concerns, data mislabelling, spurious concepts, and concept annotation errors
retraining from scratch. Furthermore, to improve computational efficiency, we present streamlined
versions integrating EK-FAC. Experimental results show our ECBMs are efficient and effective.

10
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A NOTATION TABLE

Symbol

Description

C:{pla"'vpk}

D={z}", Training dataset, where z; = (2;, i, ¢;).
z; € R™ Feature vector for the i-th sample.
Yi € R9- Label for the i-th sample, with d, being the number of classes.
¢ =(ck,... ch Concept vector for the i-th sample.
cr Corrected concept label for the w-th sample and r-th concept.
al Weight of the concept p; in the concept vector c;.
g:R™ = RF Concept predictor mapping input space to concept space.
f:RF - R% Label predictor mapping concept space to prediction space.
LC( g (z),c) Loss function for the j-th concept predictor.

c;(g(z), ) Loss function for the j-th concept predictor(for simplicity).

( (9(x)),y Loss function from concept space to output space.
Ly, (f,9) Loss function for the i-th input based on f, g(for simplicity).
H; Hessian matrix of the loss function with respect to 0.
Gy Fisher information matrix of model 6.
A Damping term for ensuring positive definiteness of the Hessian.
g Estimated concept predictor.
f Estimated label predictor.
Je Retrained concept predictor after correcting erroneous data.
fe Retrained label predictor after correcting erroneous data.
J—pur Retrained concept predictor after removing concepts indexed by M.
9 pu Mapped concept predictor with the same dimensionality as g.
9—pum Approximation of the retrained concept predictor §_,,,, .
przo Label predictor after setting the -th concept to zero for r € M.
for=o0 Approximation of the label predictor f,,,,—o.
Hy Hessian matrix of the loss function with respect to g.
H i Hessian matrix of the loss function with respect to f .
M C [K] Set of erroneous concept indices to be removed.
G C [n] Set of indices of samples to be removed from the dataset.
zr = (Tr, Yr, Cr Data sample to be removed, where r € G.
J—2¢ Retrained concept predictor after removing samples indexed by G.
J—zc Approximation of the retrained concept predictor §_ ;.
fee Intermediate label predictor.
o Final edited label predictor after removing samples indexed by G.

Set of concepts provided by experts or LLMs.

Table 2: Notation Table

INFLUENCE FUNCTION

Consider a neural network § = arg ming 7", £(z;, 0) with loss function L and dataset D = {z; }7_,.

That is # minimize the empirical risk

n

R(0) = L(z,0)

i=1

Assume R is strongly convex in 6. Then 6 is uniquely defined. If we remove a point z,, from
the training dataset, the parameters become G,Zm = argming ), “m L(z;,0). Up-weighting z,,

by € small enough, then the revised risk R(6 ) = L5 L(2:;6) + €L(zm;0) is still strongly

convex. Then the response function 95 e = R(G) is also uniquely defined. The parameter change
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is denoted as A, = éeﬁ_ 2 6. Since éeﬁ_ 2, 18 the minimizer of R(6) , we have the first-order
optimization condition as

Vé R(e) + € - Vé L(Zmaeé,—zm) - 0

€ —2Zm € —2Zm

Since ée,—zm — fase — 0, we perform a Taylor expansion of the right-hand side:
[VR( )+ €V L(zm, )} [sz( ) 4+ €V2L(zm, 6)]| Ac ~ 0

Noting €V2L(z,, 0) A, is o([| A ||) term, which is smaller than other parts, we drop it in the following
analysis. Then the Taylor expansion equation becomes

[VR(Q) eVL(zm, 9)} +V2R() - A, ~0

Solving for A., we obtain:

“ ~1—1
A= — [VZR(G) +eV2L(z, 0)}

[VR(é) +eVL(z, é)} :
Remember # minimizes R, then VR() = 0. Dropping o(e) term, we have
A= —eV2R(0)'VL(z,0).

_dA
T de

désy_zm,

e —H 1VL(Z 0) up,parama(z)

e=0

e=0

Besides, we can obtain the approximation of é,zm directly by é,zm ~0+ Tup.params(2)-

C ACCELERATION FOR INFLUENCE FUNCTION

EK-FAC. EK-FAC method relies on two approximations to the Fisher information matrix, equiva-
lent to G5 in our setting, which makes it feasible to compute the inverse of the matrix.

Firstly, assume that the derivatives of the weights in different layers are uncorrelated, which implies
that G5 has a block-diagonal structure. Suppose g can be denoted by go(2) = go, ©---0gg 00
9o, (z) where | € [L]. We fold the bias into the weights and vectorize the parameters in the [-th layer
into a vector §; € R%, d; € N is the number of I-th layer parameters. Then G can be reaplcaed

by <G1(é), e ,GL(é)), where G;(A) £ n~! S Vél&V(;lEZ»T. Denote h;, 0; as the output and
pre-activated output of [-th layer. Then GG;(6) can be approximated by

Gi(0) ~ Gi(0) £ = Zhl 1 (@) hiey ()" Zvole Vo T 20, 1,01
=1

Furthermore, in order to accelerate transpose operation and introduce the damping term, perform
eigenvalue decomposition of matrix €;_; and I'; and obtain the corresponding decomposition results

as QQAQQg and QFAFQ;. Then the inverse of H; (0) can be obtained by

. _ A -1 -1 T
H(0)™ ~ (Gz (9) + )szdl) = (Qa,, ®Qr,) (Aa,_, ®Ar, + Nilg,)  (Qo,_, ®Qr,)
Besides, |George et al.| (2018)) proposed a new method that corrects the error in equation['EZf] which sets

the i-th diagonal element of Ao, , ® Ar, as Aj; =n~" 37, ((Qa, , ® Qr,) Ve, 45); -

C.1 EK-FAC ForR CBMs

In our CBM model, the label predictor is a single linear layer, and Hessian computing costs are
affordable. However, the concept predictor is based on Resnet-18, which has many parameters.
Therefore, we perform EK-FAC for g.
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we define Hy = Vf} >i; Lo (g(xi), ¢i) as the Hessian matrix of the loss function with respect to
the parameters.

To this end, consider the I-th layer of § which takes as input a layer of activations {a;,} where
j€{1,2,...,J} indexes the input map and ¢t € T indexes the spatial location which is typically a
2-D grid. This layer is parameterized by a set of weights W = (w; ; 5) and biases b = (b;), where
i € {1,...,I} indexes the output map, and § € A indexes the spatial offset (from the center of the
filter).

The convolution layer computes a set of pre-activations as
[Si]it = it = E W; 5,505,t+5 + bs.
dEA

Denote the loss derivative with respect to s; ; as

which can be computed during backpropagation.

The activations are actually stored as A;_; of dimension | 7| x J. Similarly, the weights are stored as
an I x |A|J array W;. The straightforward implementation of convolution, though highly parallel
in theory, suffers from poor memory access patterns. Instead, efficient implementations typically
leverage what is known as the expansion operator [-]. For instance, [4;_1] isa |7| x J|A| matrix,
defined as

[[Al—lﬂt,j|A|+5 = [Al—l](t+5),j = Qj t4+6,

In order to fold the bias into the weights, we need to add a homogeneous coordinate (i.e. a column
of all 1°s) to the expanded activations [A;_1] and denote this as [A;_1]u. Concatenating the bias
vector to the weights matrix, then we have 6; = (b;, W}).

Then, the approximation for Hj is given as:

GV (y) =E [Dw; j sDwyr j1 5] = E

(Z aJEtHDSU) < Z aj’,t’+6/Dsi’,t’> 1

teT t'eT

~E [[Ai-1]f [Ai-1]u] ® [DS,'DS)| £ Q-1 ®T.

1
—R
T
Estimate the expectation using the mean of the training set,

(l)Aln i T A I~ (L paiTpai) & ¢ A
G (9) ~ Z ([A - In A Is) © - Z WDSI DS | =Y.
i=1 i=1
Furthermore, if the factors {;_; and I'; have eigen decomposition QoAq Qg and QrAr Qlf , respec-
tively, then the eigen decomposition of €2;_; ® I'; can be written as:

Qo1 @11 = QoAaQf, ® QrArQL
= (Qa®Qr) (Aa @ Ar) (Qa ® Qr) " .

Since subsequent inverse operations are required and the current approximation for G (§) is PSD,
we actually use a damped version as

Gl(g) - (Gl (g) + )\lldl)_l = (QQL—I ® QFZ) (AQl—l ® AF[ + /\lIdz)_l (Qsz1 ® QFl)?l4)

Besides, George et al.| (2018) proposed a new method that corrects the error in equation|[T4] which sets
the i-th diagonal element of Ag, , ® Ar, as

* . —1
A, =n

((QQZ—I ® QFL) Veléj)f .

v

1

J
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D PROOF OF CONCEPT-LABEL-LEVEL INFLUENCE

We have a set of erroneous data D, and its associated index set S, C [n] x [k] such that for each
(w,r) € Se, we have (4, Y, Cw) € D, with ¢l is mislabeled and ¢, is its corrected concept label.
Thus, our goal is to approximate the new CBM without retraining.

Proof Sketch. Our goal is to edit g and f to g. and fe. (i) First, we introduce new parameters e .
that minimize a modified loss function with a small perturbation e. (ii) Then, we perform a Newton
step around ¢ and obtain an estimate for g.. (iii) Then, we consider changing the concept predictor at

one data point (z;_, y;_, ¢;, ) and retraining the model to obtain a new label predictor f;_, obtain an
approximation for fzc (iv) Next, we iterate i, over 1,2, --- , n, sum all the equations together, and
perform a Newton step around f to obtain an approximation for ﬁ3 (v) Finally, we bring the estimate
of ¢ into the equation for fe to obtain the final approximation.

Theorem D.1. The retrained concept predictor §. defined by

Je = arg min Z L¢ <g7(xz),cf> + Z L¢e (g](xl),éf) ) (15)

(0,5)¢Se (,5)€Se
can be approximated by:
Gemge2g—H;' - D (VaLo(§(2w), &) — VoLe (37 (2w), ) (16)
(w,r)ES,

where Hy = Vg > Le (§7(x1), c]) is the Hessian matrix of the loss function respect to §.

Proof. For the index (w,r) € Se, indicating the r-th concept of the w-th data is wrong, we correct
this concept c;, to ¢;,. Rewrite g, as

ge =angmin |3 Lo (¢@) d) + Y Lolg@a)d) = Y Le(d (@a).cl)
i, (w,r)€S. (w,r)ESe
a7

To approximate this effect, define new parameters g, . as

gee Zargmin |3 Le (¢ @).cd) + Y e Lo(o@a).@) — Y. e Lo(g (wa).cl)

,J (w,r)ESe (w,r)€S.
(18)
Then, because g . minimizes equation T8} we have

Vid Lo (#u@). )+ Y eVilo (fowa) )~ S eVale (dlelwn) ) = 0.
4,3

(w,r)€Se. (w,r)€Se

Perform a Taylor expansion of the above equation at g,

V@ZLC(gj(xi)ng>+ > e VLo (9 (zw). ) = Y. € ViLe (5 (xw), )

(w,r)ES. (w,r)E€S.

+V22Lc( ) (Ge.e —9) = 0. (19)

Because of equation[I3] the first term of equation[T9]equals 0. Then we have

Jee—G=— > e H ' (VoLo (3 (w),&,) — VLo (§7 (w), ¢))
(w,r)eSe

18
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where

Hy = V2> Lo (§(w), ).
]

Then, we do a Newton step around g and obtain

Je & Je £ g— Hg_l ’ Z (VQLC (Qr(xw)vézu) - VQLC (gr(xw)vc:v)) . (20)
(w,r)€Se

Theorem D.2. The retrained label predictor fe defined by

i=1

fe = argmin [Z Ly (f (ge (2:)) »yz')l

can be approximated by:

Ly (f(§(:)), y:), and g. is given in Theorem

Proof. Now we come to deduce the edited label predictor towards fe.

First, we consider only changing the concept predictor at one data point (x;_, y;., ¢;,) and retrain the
model to obtain a new label predictor f;. .

fio =argmin | 3" Ly (£ (4 (21)) . 91) + Ly (f (Ge (21.)) 9.

i=1,izi,

We rewrite the above equation as follows:

fic = arg min

DLy (F(§().yi) + Ly (f Ge (i) wi.) = Ly (f (3§ (mic))’yic)l :

=1

We define fm as:

fe,i, = argmin

D Ly (F(§ (@), yi) + € Ly (f (e (2.)) ,9i.) — €+ Ly (f (§ (21,)) 7yic)] :

i=1

Derive with respect to f at both sides of the above equation. we have

VS Ly (Fose @) )+ Ly (Fone @ ) ) = s Ly (Foie 0@2) o) =0
i=1

Perform a Taylor expansion of the above equation at f ,
Vid oy (Fa @) w) +e ViLy (F e @) v,
i=1

— e ViLy (F@ (@) v.) + v’;‘»iLy (F@@))u) - (fos. — F) =0

19
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Then we have
feio = F =6 H7 5 Ly (£ e @) ow) = Ly (F @ @30 . ))

where Hffl = V? >, Ly (f (g (z:)) 7yi).
Iterate i, over 1,2, --- ,n, and sum all the equations together, we can obtain:

oo f e T (L (Flae @) ) - Ly (F @) n))
i=1
Perform a Newton step around f and we have
for ot 309, (L (£ @) o) — 2y (F@ @) ) ) @
i=1

Bringing the edited [20] of g into equation 2T} we have

ford =730 (2w (Fae @) oo) Ly (7 @) o))
i=1
2309 (L, (R0 - Ly (£.9))
i=1
PV Y Ly (£d) BV Y Ly (Foa) £
=1

i=1

E PROOF OF CONCEPT-LEVEL INFLUENCE

We address situations that delete p, for » € M concept removed dataset. Our goal is to estimate

J—pars f_p . » Which is the concept and label predictor trained on the p, for r € M concept removed
dataset.

Proof Sketch. The main ideas are as follows: (i) First, we define a new predictor gpM, which has
the same dimension as ¢ and the same output as §_,,,,. Then deduce an approximation for g, . (ii)

Then, we consider setting p, = 0 instead of removing it, we get fp =0, Which is equivalent to f_p o
according to lemmalE.T] We estimate this new predictor as a substitute. (iii) Next, we assume we only
use the updated concept predictor g, for one data (x;,,9i,,ci,.) and obtain a new label predictor

f,»,«, and obtain a one-step Newtonian iterative approximation of fi,n with respect to f . (iv) Finally,
we repeat the above process for all data points and combine the estimate of § in Theorem|[E.2] we

obtain a closed-form solution of the influence function for f .

First, we introduce our following lemma:

Lemma E.1. For the concept bottleneck model, if the label predictor utilizes linear transformations

of the form f c with input c,then, for each r € M, we remove the r-th concept from ¢ and denote

the new mput as . Set the r-th concept to 0 and denote the new input as c°. Then we have

f—IJM ) pr =0"C foranyc

Proof. Assume the parameter space of f,p . and fp u=0 are I and I'g, respectively, then there exists
a surjection P : T' — T'y. For any 6 € T, P(0) is the operation that removes the r-th row of 6 for
r € M. Then we have:

0)-¢ = 0lj]-cj] =Y O[tI{t ¢ M}c[t] =

t¢M
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Thus, the loss function Ly (6, ) = Ly (P(6), ¢') of both models is the same for every sample in the
second stage. Besides, by formula derivation, we have, for @’ € T, for any 6 in P~1(¢’),

OLy(0,°) 9Ly (P(0),c)
a0 - o0’

Thus, if the same initialization is performed, f,pM od = pr:o - Y for any c in the dataset. O

Theorem E.2. For the retrained concept predictor §_,,,, defined by
n . .
G—py, = argmin Z L¢, = argmin Z ZLc(g” (zi),¢)),
9 e 9 M=
wemapitio g-, —as

k n
% py, =argmin » > " Lo(g (wi), cl).

/
9'€lo  janri=1

) . o )
And we can edit the initial § to §*,,, = as:

(>

n
G BT 29— H V3 > Y Le(§ (1), ), (22)
jEM i=

1

where Hy =V, DIIPIY: iy Le(§? (), o).

Then, by removing all zero rows inserted during the mapping phase, we can naturally approximate
~ —1 (A%
G—p ®PTHIZ,,,)-

Proof. At this level, we consider the scenario that removes a set of mislabeled concepts or introduces
new ones. Because after removing concepts from all the data, the new concept predictor has a

different dimension from the original. We denote ¢/ (z;) as the j-th concept predictor with z;, and ¢’
as the j-th concept in data z;. For simplicity, we treat g as a collection of £ concept predictors and
separate different columns as a vector g7 (x;). Actually, the neural network gets g as a whole.

For the comparative purpose, we introduce a new notation g* , |

. Specifically, we define weights of §
and g* , ~for the last layer of the neural network as follows.

C1

1 .

w11 w12 T Wim T :
wa1 Wy o Wom a? P

J—pu (2) =
o : : : Crt1

Wk-1)1 Wk-1)2 - Wk-1)m ™ :

——
(k—1)xm mx1 Ck
—_———
(k—1)x1
1

w11 W12 T Wim r C1

—1 )
W11 Wer-1)2 " Wer—1)m x" Cr—1

Ak _ e . r =
G (@) = 0 0 0 3 0 ,

Wer+1)l Wer41)2 - Wertl)m "t Cri1

W1 Wk2 0 Wkm x™ Ck

kxm mx1 kx1

where r is an index from the index set M.
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Firstly, we want to edit to g*,, € Tp = {wfina = 0} C T based on g, where wﬁnal is the parameter

of the final layer of neural network. Let us take a look at the definition of g* , -

n
g*,,, = argmin Z ZLC(g” (zi),c)).
g'€To jgM i=1

Then, we separate the r-th concept-related item from the rest and rewrite g as the following form:

k n
g = argmin Z ZLC(gj )+ Z ZLC (x),cl)

9ET | iy o =1 reM i=1

Then, if the r-th concept part is up-weighted by some small e, this gives us the new parameters ge p,,
which we will abbreviate as g. below.

Je.pur £ arg min Z ZLC Z ZLC (i), cl)

9€T | jgm i=1 reM i=1

Obviously, when € — 0, ge — g~ ,,,,. We can obtain the minimization conditions from the definitions
above.

Ve, DY Ley(§t,,, (@),¢) =0. (23)

J¢M i=1

VQEZZLC Je(i),ci) +e- V!JGZZLC (9e(xi),ci) = 0.

j¢M i=1 reM i=1

Perform a first-order Taylor expansion of equation 23| with respect to g, then we get

Vg ZZLC g6 Cz +V2ZZLC ge 331 Cz) (gipM_ge)%o'

j¢M i=1 j&M i=1

Then we have

g*_PM - gE = _Hél ’ V!] Z ZLCj (ge(xi)vc’i)'

JEM i=1
Where Hy, = V3 D j¢M Yo Loy (ge(mi), ).
We can see that:
When € = 0,
g€ = g*—p]\/l’

Whene =1, g. = g,
Gy — 9 —H "V > > Loy (9
JEM i=1

where H; = V2 nggM Y L o, (9(z4), ;).

Then, an approximation of §* , ~is obtained.

ok o
Jpn 9~

Q)

ZZ S (§(x (24)
¢M i=1
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Theorem E.3. For the retrained label predictor f, defined as

Pm

f,pM = argfmlnz Ly = argfmmz Ly (' (G—pui (z3))s yi)s
i=1 =1

We can consider its equivalent version fy,,—o as:

pr —0 = arg manLy f g_pM) ,

which can be edited by
fore=0 % fpr=0 2 f = Hfl VY Ly, (f»?ipM) :
=1

where H ;= V? E?:l Ly, ( f , §) is the Hessian matrix of the loss function respect to is the Hessian

matrix of the loss function respect to f .

Proof. Now, we come to the approximation of f_p - Noticing that the input dimension of f
decreases to k — |M|. We consider setting p, = 0 for all data points in the training phase of the label

predlctor and get another optimal model fp v =0- From lemma , we know that for the same input z,
fp y=o(x) = f_p - And the values of the corresponding parameters in fp =0 and f_ are equal.

Now, let us consider how to edit the initial f to fp u=0- Firstly, assume we only use the updated
concept predictor g*, ~for one data (z;,, i, ¢;,) and obtain the following f;., which is denoted as

fir = arg;nin [Z Ly (f(9(z4)), i) + LY(f(QipM (zir))s yir) — Ly (f(g (xzr))vyir)‘| .

i=1

Then up-weight the ¢,.-th data by some small € and have the following new parameters:

fe,ir = arg;nin [Z LY(f(g(xz))vyz) +€- LY(f(f]ipM (l'ir))a yir) € LY(f( (xzr))’yir)] .

i=1

Deduce the minimized condition subsequently,

Vi Ly (fur(@@),v) + € Vi Ly (fir(§%, (@ir)), Gir) — € Ve Ly (fir (§(ir)), yir) = 0.
i=1

If we expand first term of f, which fim — f(e — 0), then

Vi 30 Ly (F@@) ) + € VrLy (F@ ., (@) i) = € ¥ Ly (F(@(w). )

Note that V¢ 37" | Ly (f(4(x:)), y:) = 0. Thus we have
fire = F = BT e (ViLy (F(3 oy @) or) = Vs Ly (F@lain) yir) ) -

‘We conclude that

dfé,ir
de

= H7' - (V4Ly (F3% 0, (i), ir) = V 5Ly (Fali0), )

e=0
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Perform a one-step Newtonian iteration at f and we get the approximation of fir.
fir e+ HE (V5 Ly (F(@10)), i) = V 2Ly (P, (210) i) ) -

Reconsider the definition of fi,,» we use the updated concept predictor g*, = for one data
(24, ,Yi,, ¢i,.). Now we carry out this operation for all the other data and estimate fp w=0- Combining
the minimization condition from the definition of f, we have

fPMZO zf"' Hftl : (VfZ:LY(f(g( Yi) f ZLY g—pM )),yﬂ)
=f+H]Z1' ( ZLY (9 p ( ))73/1’))
=f-H; 1Zv Ly (F(57 s (20)) ). (25)

Theorem |E.2| gives us the edited version of g~ , . Substitute it into equatlonn 25| and we get the final
closed-form edited label predictor under concept level:

prZO ~ prZO £ f - Hfjl : vaLYL (f?g*—pM> 5
=1

where H ; = V? S, Ly, (f, §) is the Hessian matrix of the loss function respect to is the Hessian

matrix of the loss function respect to f . O

F PROOF OF DATA-LEVEL INFLUENCE

We address situations that for dataset D = {(z;,v:, ¢;) }7- 4, given a set of data z, = (zr, Yy, ¢r),

r € G to be removed. Our goal is to estimate §_.,, f— .., which is the concept and label predictor
trained on the z, for r € G removed dataset.

Proof Sketch. (i) First, we estimate the retrained concept predictor §_, . (ii) Then, we define
a new label predictor f,zG and estimate f,ZG f (>iii) Next, in order to reduce computational
complexity, use the lemma method to obtain the approximation of the Hessian matrix of f,ZG @iv)
Next, we compute the difference f_ f_ZG as

~H7 (Vi (Fso(aosa@a)) v ) = Vily (Foso @), )) -

(v) Finally, we divide f,ZG - f, which we actually concerned with, into ( f,zc — f,zc) +

(Foum i),

Theorem F.1. For dataset D = {(x;, y;, ¢;) },, given a set of data z, = (Ty,Yr, cr), 1 € G to be
removed. Suppose the updated concept predictor §_ ., is defined by

Joze = arg min Z Z Lc, (9 ¢i)

jEK] i€[n]-G

where Lo (§(;),¢;) = Z?Zl Lc;(§(xi), ci). Then we have the following approximation for §_ .,

gfzc X G—zg £ g + Hg:l . Z ngC(g(xr)7 CT)7 (26)
reG

where Hy = V?] > Le (9 (), CZ) is the Hessian matrix of the loss function respect to §.
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Proof. Firstly, we rewrite §_ ., as

§-2c = argmin lz Lo(§(@i),e) = ) Lo(g(an)er) |

g i=1 re@ J

Then we up-weighted the 7-th data by some € and have a new predictor g_ ., ., which is abbreviated

as Je:
> Le(gla) e > Le(glan), e | - (27)

i=1 reG

~ A .
Je = argmin
g

Because g. minimizes the right side of equation 27| we have
Voo Y Ly (Ge(@i),ci) —€- V. > Ly (ge(ar), ;) = 0.
i=1 reG

When € — 0, ge — §. So we can perform a first-order Taylor expansion with respect to g, and we
have

VS Lol ) — ey X Lol en) + 923 Lo(i(e), ) - (6 — §) ~ 0. (28)
= reG 1=1

Recap the definition of g:

§=argmin Y Ly (g(x:),c:),

9 i=1
Then, the first term of equation@]equals 0. Let € — 0, then we have

=H,"- > VyLc(j(ar), ),

=0 reG

dge
de

where H;l = Vo 3y Ug(xi), c).

Remember when € — 0, g — §— . Perform a Newton step at g, then we obtain the method to edit
the original concept predictor under concept level:

gfzg G zg £ g + Hgl . Z ngC(g(xr)a CT)'
reG
O]

Theorem F.2. For dataset D = {(x;, y;, ;) }1'q, given a set of data z, = (Ty,Yr,cr), v € G t0 be
removed. The label predictor f_. ., trained on the revised dataset becomes

f- 2 = argmin Z Ly, (f,0-2c)- (29)
i€[n]—G

The intermediate label predictor f_zG is defined by
f*ZG = argmin Z LY;.(f? g)v

i€[n]—-G
Then f_zc — f can be approximated by
fooo—FrH' > Vily(f,9) % Ac. (30)

i€n]-G

We denote the edited version off,ZG as ffZG = f + Ag. And f,ZG — f,zG can be approximated by

f,ZG—f,ZG%—Hff;Z : Vf Z LYi (ijGMC_],ZG)—Vf Z LYi (f_izcag) éBGv
¢ i€n]—G i€[n]—G
(31)
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where Hf:zc = V5 Zie[n]_G Ly, (fsz,g) is the Hessian matrix of the loss function on the

intermediate dataset concerning f* o Then, the final edited label predictor fo 2 can be obtained
by
fozo = [+ Ba= [+ Ac + Be. (32)

Proof. We can see that there is a huge gap between f_zc and f . Thus, firstly, we define f_zc as

froo =argmin 3~ Ly (9@ 0) = 3 Ly (f(3(e).00).

i=1 reG

Then, we define ]‘L_ZG as follows to estimate f_ZG.

fe,—zc = arg;ninZLy (f(ﬁ(ﬂfz))ayz) —€- Z LY (f(g(xr))7yr) .

i=1 reG

From the minimization condition, we have

DN (Femsel@@)v) = € 3" Vily (Jemza (@), 0 ) = 0.
i=1

reG

Perform a first-order Taylor expansion at f ,

o Iy (FG) ) - e ¥, Y L (Faten). o)

reG

+ Vf;_znij (Fa@D.) - (Fomse = F) =0,

Then f_ 2 can be approximated by

oo f4HT Y ViLy (f(3@0)00) 2 Ac. (33)

reG
Then the edit version of f_zc is defined as
froe=1+4c (34)

Then we estimate the difference between f,ZG and f,ZG. Rewrite f,zc as

froo =argmin Y Ly (f(§(=:)), i), (35)
I des
where S £ [n] — G.

Compare equation With we still need to define an intermediary predictor f_zGﬂ-T as

fezgir =argmin | > Ly, (f,§(z:)) + Ly, (f,§-z¢)
f ies
Lii,.
= arg min > Ly (£:9) + Lyi, (f,0-25) — Ly,, (£,4)
Li€S
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Up-weight the ¢, data by some €, we define fe’,zc’ir as

ZLYi (fa g) +e- LYi'r' (f’ gfzc) — € LYW (f7 g)‘| .

feﬁfzc,ir = argmin
’ €S

We denote fQ_ZGM as fj in the following proof. Then, from the minimization condition, we have

Vf;“’i (fr.9) + e Vilv, (F9-2c) =€ Vv, (f.9(1,). (36)

When € — 0, f: — f_ 2¢- Then we perform a Taylor expansion at f_ 2¢ Of equationand have

VfZLYi (fizcvg) +e-Vily, (.ffzcvgfzg>

€S

— e ViLy, (Fues8) + V2D Ly, (Fonend) - (f2 = Foue) 0.
i€S

Organizing the above equation gives

fo—fom—c Hf_iG : (VfLm (f—zcvg—zc) —Vily, (f—zc?.(])) )

where Hy = Vfg Y ies Ly, (flzguel)'

Whene =1, f: = fsz,ip Then we perform a Newton iteration with step size 1 at f,zg,

frrgir=Fosom=H7 (Vv (Foaoiiose) = Vilv, (F-2:9))

Iterate i,. through set S, and we have

frso = Jooe = —H;' <VfZLm (flzcwgfzc) ~Vi> Ly, (fzc’g)> (37)

Foce
@ i€s i€s

The edited version of §_., has been deduced as §_., in theorem [F.1] substituting this approximation
into equation [37} then we have

frso = Fosom—Hj' - (v P Ly (Forandona) = V5D Ly, (f_zmg)) NETS)
€S €S
Noting that we cannot obtain f_zG and H 7 directly because we do not retrain the label predictor
e
but edit it to f*_ . as a substitute. Therefore, we approximate f_., with . . and H 7 with
o
Hp.  which is defined by:
F

zZG

2 £* ~
Hp.  =V3) Ly, ("...9)
€S
Then we define B¢ as

Bg = —H}ilzc : (VfZLYi (froerG20) = V> Ly, (fizmﬁ)) (39)

€S €S

Combining equation [34]and equation [39] then we deduce the final closed-form edited label predictor
as
foze =[2., +Bc=f+Ac+ Bc.

27



Under review as a conference paper at ICLR 2025

G

ALGORITHM

Algorithm 1 Concept-label-level ECBM

1:

2:
3:

7:

Input: Dataset D = {(z;,y;, ¢;) }I_,, original concept predictor f, and label predictor g, a set
of erroneous data D, and its associated index set S,.

For the index (w,r) in S,, correct ¢!, to the right label ¢,/ for the w-th data (2, Yu, Cuw)-
Compute the Hessian matrix of the loss function respect to §:

Hy=V3) Loy (¢ (2:),¢]).
‘7j

Update concept predictor g:

Gg=g—H,"- > (Voo (9" (xw).¢},') = VoLo, (§" (zw), c},)) -
(w,r)ESe

Compute the Hessian matrix of the loss function respect to f :
n A
H; = V}ZLM 4.
i=1
Update label predictor f:
Fofan;t v,y Ly (F @) w) —H7* -V, > (Lv (F@@).u))-

Return: f , 3.

Algorithm 2 Concept-level ECBM

1:

2:
3:

Input: Dataset D = {(x, y;, ¢;) }-_;, original concept predictor f. label predictor g and the to
be removed concept index set M.

For r € M, set p,, = 0 for all the data z € D.

Compute the Hessian matrix of the loss function respect to §:

Hg = Vg Z ZLCJ- (gj(xl)aCZ)

jEM i=1

Update concept predictor g*:

g* :g-H;l-Vg Z ZLCJ<§j(xi>7cg>'

EM i=1

Compute the Hessian matrix of the loss function respect to f :
H; = Vja > Ly (F(§(1), vi)-
i=1
Update label predictor f:

f= f-HJ;l.vaLY (f(ﬁ*(xz))»yz>~
=1

7: Map g* to g by removing the r-th row of the matrix in the final layer of g* for r € M.

Return: f, g.
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Algorithm 3 Data-level ECBM

1: Input: Dataset D = {(z;,y;, ;) } .., original concept predictor f, label predictor §, and the to
be removed data index set G.

2: For r € G, remove the r-th data (.., Y., ¢, ) from D and define the new dataset as S.

3: Compute the Hessian matrix of the loss function with respect to g:

H, V2ZLC (1), ¢)).
]

4: Update concept predictor g:

g=g+ Hg_l ’ Z ngC(g(xr)aCr)
reG

5. Update label predictor f . Compute the Hessian matrix of the loss function with respect to f :
Hy=V2Y Ly (f(a(w:), 9:)-
i=1

6: Compute A as:
A=n7 Y YLy (@), v)
i€[n]—G
7: Obtain f as

f=f+4

8: Compute the Hessian matrix of the loss function concerning f:

H-:V?f Z Ly (F(9(x:)), y:)-

i€n]—G

9: Compute B as

%

—H‘ Z Vi (Ly (F((:)), yi) — Ly (f((24)), 9i))

10: Update the label predictor f as: f = f + A+ B.
11: Return: f, g.

Algorithm 4 EK-FAC for Concept Predictor g

1: Input: Dataset D = {(x;,y;, ¢;)}}¥,, original concept predictor g.

2: for the [-th convolution layer of §: do

3:  Define the input activations {a; .}, weights W = (w; ; 5), and biases b = (b;) of this layer;
4:  Obtain the expanded activations [A;_1] as:

[Ai-1legia+s = [Ai-1] (116 ; = ajt+o,

5:  Compute the pre-activations:

[Silit = Sit = Z W; 5,505,t+5 + bi.
seA

6:  During the backpropagation process, obtain the Ds; ; as:

k n
9 Zj:l Zi:l Le;

DSZ‘ t =
’ 881'713

29



Under review as a conference paper at ICLR 2025

7:  Compute Ql,l and fl:
e 1¢ i i
97} = Z ([AI 1D AT ]n)

=1
1 & 1 T
I, == — DSt DSi
an;(m l l)

8:  Perform eigenvalue decomposition of (_1 and I';, obtain Qq, Mg, Qr, Ar, which satisfies

Q-1 = QoAoQf
[, = QrArQL

9:  Define a diagonal matrix A and compute the diagonal element as

A = n~! z ((Qﬂzq ® QFZ) V9LLCj)? :

j=1
10:  Compute H, ! as

Hl_l = (QQZ,I ® Ql"l) (A + /\lIdl)_l (QQl—l ® er)T

11: end for
12: Splice H; sequentially into large diagonal matrices
H? 0
b1
H " = o
0 H!

where d is the number of the convolution layer of the concept predictor.
13: Return: the inverse Hessian matrix 7 L

Algorithm 5 EK-FAC for Label Predictor f

1: Input: Dataset D = {(z;,y;, ¢;)} .., original label predictor f.
2: Denote the pre-activated output of f as f’, Compute A as

A= 3G gl
=1

3: Comput B as:
1 « s s T
B=_- > Ve Ly (f @), vi) - Ve Ly (f (G(x:)) i)
i=1
4: Perform eigenvalue decomposition of AA and BB, obtain Q 4, A 4, @, A, which satisfies

A=QaAaQ}
B =QpApQfL

5: Define a diagonal matrix A and compute the diagonal element as
2
i

Ay =n"" Z": ((QA ® @B) VfLyJ)
j=1
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6: Compute ﬁle as
=(Qa®Qp) A+ a)  (Qa®Qp)"

7: Return: the inverse Hessian matrix H ffl.

Algorithm 6 EK-FAC Concept-label-level ECBM

1: Input: Dataset D = {(x;,y;, ¢;)} .., original concept predictor f, label predictor §, and the to
be removed data index set (¢, and damping parameter .

2: Forr € G, remove the r-th data (.., y,., ¢,) from D and define the new dataset as S.

3. Use EK-FAC method in algorithm[d|to accelerate iHVP problem for § and obtain the inverse

Hessian matrix H -
4: Update concept predlctor g:

g=g-H,' > (ViLe, (§"(ww),c}') = Vile, (57 (xw),c})) -
(w,r)ESe

5: Use EK-FAC method in algorithm |5(to accelerate iHVP problem for f and obtain H le
6: Update label predictor f:

Fofem vfiLy (f @@, u) - H vfz (Lv (F @) u))-

7: Return: f,g

Algorithm 7 EK-FAC Concept-level ECBM

1: Input: Dataset D = {(x;, y;, ¢;) }-,, original concept predictor f , label predictor g and the to
be removed concept index set M, and damping parameter \.

2: Forr € M, set p,, = 0O for all the data z € D.

3: Use EK-FAC method in algorithm[d|to accelerate iHVP problem for § and obtain the inverse

Hessian matrix H !
4: Update concept predictor g:

J=9-H' VY Y Ley(§ (), d)).
JEM i=1
5: Use EK-FAC method in algorithm |5(to accelerate iHVP problem for f and obtain [ ffl
6: Update label predictor f :

Fefom szy( (@) .u1).

7: Map g* to g by removing the 7-th row of the matrix in the final layer of g* for r € M.
8: Return: f, g.

Algorithm 8 EK-FAC Data-level ECBM

1: Input: Dataset D = {(z;,y;, ¢;) }I"_,, original concept predictor f , and label predictor g, a set
of erroneous data D, and its associated index set S,, and damping parameter \.

2: For the index (w,r) in S, correct ¢, to the right label ¢, for the w-th data (2, Yu, Cuw)-

3: Use EK-FAC method in algorlthm[z_f]to accelerate 1HVP problem for g and obtain the inverse

Hessian matrix H -
4: Update concept predlctor g:

g=g-H" > (Vile, (§"(xw),ch') = VoL, (5" (xw). c})) -
(w,r)ESe
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5. Use EK-FAC method in algorithm |§| to accelerate iHVP problem for f and obtain H;l
Compute A as:
A=H;' S ViLy (f(3@0).v:)
i€[n]—-G
Obtain f as

f=f+4

6: Use EK-FAC method in algorithm |§| to accelerate iHVP problem for f and obtain H ffl
Compute B’ as

B = H' YV (L (F(@) ) — Ly (F(a). )
i€n]—-G

Update the label predictor f as: f = f + A+ B
7: Return: f, g.

H ADDITIONAL EXPERIMENTS

H.1 EXPERIMENTAL SETTING

Methodology for Processing CUB Dataset For CUB dataset, we follow the setting in |Koh et al.
(2020). We aggregate instance-level concept annotations into class-level concepts via majority voting:
e.g., if more than 50% of crows have black wings in the data, then we set all crows to have black
wings.

H.1.1 REVISED TIMING METHOD IN TABLE[]

We present another version of the runtime calculation method for Table [T} Note that the timing
method in Table [I]is based on the average time taken for each data point used during the update
process. In this version, we present another timing method, where RT represents the total runtime for
the updating. According to Table[3} when the timing method is changed to total runtime, the speed

Table 3: Performance comparison of different methods on the three datasets.

EditLevel  Method oAl CuB CelebA
F1 score RT (minute) F1 score RT (minute) F1 score RT (minute)
Retrain 0.8825+0.0054 297.77 0.7971+0.0066 85.56 0.3827+0.0272 304.71
Concept Label CBM-IF(Ours) 0.8639+0.0033 4.63 0.7699+0.0035 1.33 0.3561+0.0134 5.54
ECBM(Ours) 0.8808+0.0039 2.36 0.7963+0.0050 0.65 0.3845+0.0327 2.49
Retrain 0.8448+0.0191 258.84 0.7811+0.0047 87.21 0.3776+0.0350 355.85
Concept CBM-IF(Ours)  0.821440.0071 4.94 0.7579+0.0065 1.45 0.3609+0.0202 5.51
ECBM(Ours) 0.8403+0.0090 2.36 0.7787+0.0058 0.59 0.3761+0.0280 2.48
Retrain 0.8811+0.0065 319.37 0.7838+0.0051 86.20 0.3797+0.0375 325.62
Data CBM-IF(Ours)  0.8472+0.0046 5.07 0.7623+0.0031 1.46 0.3536+0.0166 597
ECBM(Ours) 0.8797+0.0038 2.50 0.7827+0.0088 0.65 0.3748+0.0347 2.49

of ECBM far exceeds that of retrain, being approximately 200 times faster. Even on the CelebA
dataset with 202,599 data points, ECBM can update the model in less than 3 minutes, with an F1
score deviation of only 0.0018 compared to retraining.

RMIA score. The RMIA score is computed as:

Pr(fo ()N (pa 2(2), 07 (2)) | Prlfo(2)IN (pa,(2), 07
Pr(fo(2)|N (pz.2(2), 0% . (2))) ~ Pr(fo(2)IN (1z,2(2), 07 .(2)))

where fp(x) represents the model’s output (logits) for the data point 2, A'(j1, %) denotes a Gaussian
distribution with mean p and variance o2, 11, () is the mean of the model’s outputs for = under

LRy(z,2) ~
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the assumption that = belongs to the training set, and ag’ () is the variance of the model’s outputs
for .. The likelihoods Pr(fo(z)|\') represent the probability that the model’s output fp(z) follows
the Gaussian distribution parameterized by x and o2, under the two different hypotheses: = being a
member of the training set versus not being a member.

H.2 IMPROVEMENT VIA HARMFUL DATA REMOVAL

We conducted addition experiments on CUB datasets with synthetically introduced noisy concepts
or labels. Firstly, we introduce noises under three levels. In concept level, we choose 10% of the
concepts and flip these concept labels for a portion of the data. In data level, we choose 10% of the
data and flip their labels. In concept-label level, we choose 10% of the total concepts and flip them.
Then we conduct the following experiments. We introduce noises into the three levels and train the
model. After that, we remove the noise and obtain the retrained mdoel, which is the ground truth(gt)
of this harmful data removal task. In contrast, we use ECBM to remove the harmful data.

080 Concept Level o080 Data Level . Concept Label Level
= Accuracy . Accuracy = Accuracy
= F1 Score == F1Score = F1 Score
0.795
0.79 0.79
0.790
0.78 0.78 0785
%] 1]
o @ ©
£ H 5 0780
& =1 =3
@ @
0.77 0.77
0775
0.770
0.76 0.76
0765
0.75 0.75 0.760
Before Removal Removal Before Removal Removal Before Removal Removal
Removal by Retrain by ECBM Removal by Retrain by ECBM Removal by Retrain by ECBM

Figure 6: Model performance after the removal of harmful data.

From Figure[6] it can be observed that the model performance improves across all three settings after
noise removal and subsequent retraining or ECBM editing. This confirms that the performance of
ECBM is nearly equivalent to retraining in various experimental scenarios, further providing evidence
of the robustness of our method.

H.3 PERIODIC EDITING PERFORMANCE

ECBM can perform periodic editing. To evalutae the multiple editing performance of ECBM, we
conduct the following experiments. Firstly, we introduce noises under three levels. In concept level,
we choose 10% of the concepts and flip these concept labels for a portion of the data. In data level,
we choose 10% of the data and flip their labels. In concept-label level, we choose 10% of the total
concepts and flip them. Then we conduct the following experiments.

In the concept level, we firstly remove 1% of the concepts, then retrain or use ECBM to edit and
repeat. In the data level, we firstly remove 1% of the data, then retrain or use ECBM to edit. In the
concept label level, we firstly remove one concept label from 1% of the data, then retrain or use
ECBM to edit. Note that when remove the next 1% of the concepts, ECBM edit the model based on
the last editing result. The results at each level are shown in Figure[7] [8]and 9]

From the above three levels, we can find that with the mislabeled information removed, the retrained
model achieves better performance in both accuracy and F1 score than the initial model. Furthermore,
the performance of the ECBM-edited model is similar to that of the retrained model, even after 10
rounds editing, which demonstrates the ability of our ECBM method to handle multiple edits.

H.4 MORE VISUALIZATION RESULTS AND EXPLANATION
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Figure 7: Accuracy and F1 score difference of the edited model compared with retrained at concept
level.
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Figure 8: Accuracy and F1 score difference of the edited model compared with retrained at data level.

H.4.1 EXPLANATION FOR VISUALIZATION RESULTS

At the concept level, we remove each concept one at a time and retrain the CBM, and subsequently
evaluate the model performance. We rank the concepts in descending order based on the model
performance loss. Concepts that, when removed, cause significant changes in model performance are
considered influential concepts. The top 10 concepts are shown in the retrain column as illustrated
in Figure 5| In contrast, we use our ECBM method instead of the retrain method, as outlined in
Algorithm[7] and the top 10 concepts are shown in the ECBM column of Figure[3}

To help readers connect the top 10 influential concepts with the input image, we provide visualizations
of the data and list the concept labels corresponding to the top 10 influential concepts, which are

shown in Figure [T}

For the other two levels and for additional datasets, we also conduct a similar procedure, and the
corresponding visualization results are presented in Figure [T2} [13] [T4] [T3] and [T6]

H.4.2 VISUALIZATION RESULTS

We provide our additional visualization results in Figure 10} [T} [12] [13] [T4] [15} and [T6]
I MORE RELATED WORK

Influence Function. The influence function, initially a staple in robust statistics 2000);

& Weisberg| (1980), has seen extensive adoption within machine learning since [Koh & Liang| (2017)
introduced it to the field. Its versatility spans various applications, including detecting mislabeled

data, interpreting models, addressing model bias, and facilitating machine unlearning tasks. Notable
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Figure 9: Accuracy and F1 score difference of the edited model compared with retrained at concept-
label level.

works in machine unlearning encompass unlearning features and labels [Warnecke et al.| (2023)),
minimax unlearning [Liu et al.| (2024)), forgetting a subset of image data for training deep neural
networks |Golatkar et al. (2020a; [202T)), graph unlearning involving nodes, edges, and features.
Recent advancements, such as the LiSSA method [Agarwal et al.| (2017)); Kwon et al.| (2023)) and
kNN-based techniques (2021), have been proposed to enhance computational efficiency.
Besides, various studies have applied influence functions to interpret models across different domains,

including natural language processing[Han et al.[ (2020) and image classification Basu et al.| (2021),
while also addressing biases in classification models|Wang et al.| (2019), word embeddings [Brunet

(2019), and finetuned models [Chen et al,| (2020). Despite numerous studies on influence
functions, we are the first to utilize them to construct the editable CBM. Moreover, compared to
traditional neural networks, CBMs are more complicated in their influence function. Because we
only need to change the predicted output in the traditional influence function. While in CBMs, we
should first remove the true concept, then we need to approximate the predicted concept in order to
approximate the output. Bridging the gap between the true and predicted concepts poses a significant
theoretical challenge in our proof.

Model Unlearning. Model unlearning has gained significant attention in recent years, with various
methods (Bourtoule et al.| 2021} Brophy & Lowd} [2021}; [Cao & Yang| [2015}; [Chen et al., 2022alb)
proposed to efficiently remove the influence of certain data from trained machine learning models.
Existing approaches can be broadly categorized into exact and approximate unlearning methods.
Exact unlearning methods aim to replicate the results of retraining by selectively updating only
a portion of the dataset, thereby avoiding the computational expense of retraining on the entire
dataset (Sekhari et al, 2021}, |Chowdhury et al} 2024). Approximate unlearning methods, on the
other hand, seek to adjust model parameters to approximately satisfy the optimality condition of
the objective function on the remaining data (Golatkar et al] [2020a} [Guo et al, 2019} [Tzzo et all
[2021). These methods are further divided into three subcategories: (1) Newton step-based updates
that leverage Hessian-related terms [22, 26, 31, 34, 40, 43, 49], often incorporating Gaussian noise to
mitigate residual data influence. To reduce computational costs, some works approximate the Hessian
using the Fisher information matrix (Golatkar et al.| 20204) or small Hessian blocks
[2022). (2) Neural tangent kernel (NTK)-based unlearning approximates training as a linear process,
either by treating it as a single linear change (Golatkar et al.| [2020b). (3) SGD path tracking methods,
such as DeltaGrad and unrolISGD (Thudi et al.| [2022), reverse the optimization
trajectory of stochastic gradient descent during training. Despite their advancements, these methods
fail to handle the special architecture of CBMs. Moreover, given the high cost of obtaining data,
we sometimes prefer to correct the data rather than remove it, which model unlearning is unable to
achieve.
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Label Black Footed Albatross ECBM Retrain
has_upperparts_color::orange 0 has_upperparts_color::orange
has_leg_color::orange 0 has_leg_color::orange
has_upper _tail_color::red 0 has_upper _tail_color::red
has_breast_color::black 0 has_breast_color::black
has_belly_color::red 0 has_belly_color::red
has_primary_color::black 0 has_primary_color::black
has_shape::perching-like 1 has_shape::perching-like
has_breast_color::grey 0 has_breast_color::grey
has_back_color::red 0 has_back_color::red
has_bill_shape::spatulate 0 has_bill_shape::spatulate

Label Crested Auklet ECBM Retrain

— = "- has_upperparts_color::orange 1 has_upperparts_color::orange
has_leg_color::orange 0 has_leg_color::orange
has_upper _tail_color::red 0 has_upper _tail_color::red
has_breast_color::black 0 has_breast_color::black
has_belly_color::red 0 has_belly_color::red
has_primary_color::black 0 has_primary_color::black
has_shape::perching-like 1 has_shape::perching-like
has_breast_color::grey 0 has_breast_color::grey
has_back_color::red 0 has_back_color::red
has_bill_shape::spatulate 0 has_bill_shape::spatulate

Label Least Auklet ECBM Retrain
has_upperparts_color::orange 1 has_upperparts_color::orange
has_leg_color::orange 0 has_leg_color::orange
has_upper _tail_color::red 0 has_upper _tail_color::red
has_breast_color::black 1 has_breast_color::black
has_belly_color::red 0 has_belly_color::red
has_primary_color::black 0 has_primary_color::black
has_shape::perching-like 0 has_shape::perching-like
has_breast_color::grey 0 has_breast_color::grey
has_back_color::red 0 has_back_color::red
has_bill_shape::spatulate 0 has_bill_shape::spatulate

Label Rhinoceros Auklet ECBM Retrain
has_upperparts_color::orange 1 has_upperparts_color::orange
has_leg_color::orange 0 has_leg_color::orange
has_upper _tail_color::red 0 has_upper _tail_color::red
has_breast_color::black 0 has_breast_color::black
has_belly_color::red 0 has_belly_color::red
has_primary_color::black 0 has_primary_color::black
has_shape::perching-like 1 has_shape::perching-like
has_breast_color::grey 0 has_breast_color::grey
has_back_color::red 1] has_back_color::red
has_bill_shape::spatulate 0 has_bill_shape::spatulate

Figure 10: Visualization of the top-10 most influential concepts for different classes in CUB.

J  LIMITATIONS AND BROADER IMPACTS

It is important to acknowledge that the ECBM approach is essentially an approximation of the
model that would be obtained by retraining with the edited data. However, results indicate that
this approximation is effective in real-world applications. Concept Bottleneck Models (CBMs)
have garnered much attention for their ability to elucidate the prediction process through a human-
understandable concept layer. However, most previous studies focused on cases where the data,
including concepts, are clean. In many scenarios, we always need to remove/insert some training
data or new concepts from trained CBMs due to different reasons, such as data mislabeling, spurious
concepts, and concept annotation errors. Thus, the challenge of deriving efficient editable CBMs
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Label

Brewer Blackbird

Label Red Winged Blackbird

Label Yellow Headed Blackbird

Figure 11: Visualization of the top-10 most influential concepts for different classes in CUB.

without retraining from scratch persists, particularly in large-scale applications. To address these
challenges, we propose Editable Concept Bottleneck Models (ECBMs). Specifically, ECBMs support
three different levels of data removal: concept-label-level, concept-level, and data-level. ECBMs
enjoy mathematically rigorous closed-form approximations derived from influence functions that
obviate the need for re-training. Experimental results demonstrate the efficiency and effectiveness of
our ECBMs, affirming their adaptability within the realm of CBMs. Our ECBM can be an interactive

ECBM
has_upperparts_color::orange
has_leg_color::orange
has_upper _tail_color::red
has_breast_color::black
has_belly_color::red
has_primary_color::black
has_shape::perching-like
has_breast_color::grey
has_back_color::red
has_bill_shape::spatulate

ECBM
has_upperparts_color::orange
has_leg_color::orange
has_upper _tail_color::red
has_breast_color::black
has_belly_color::red
has_primary_color::black
has_shape::perching-like
has_breast_color::grey
has_back_color::red
has_bill_shape::spatulate

ECBM
has_upperparts_color::orange
has_leg_color::orange
has_upper _tail_color::red
has_breast_color::black
has_belly_color::red
has_primary_color::black
has_shape::perching-like
has_breast_color::grey
has_back_color::red
has_bill_shape::spatulate

ECBM
has_upperparts_color::orange
has_leg_color::orange
has_upper _tail_color::red
has_breast_color::black
has_belly_color::red
has_primary_color::black
has_shape::perching-like
has_breast_color::grey
has_back_color::red
has_bill_shape::spatulate

-0 O O O O O O = = S O O = O OO0 O = = -0 O = O O O O = =

—_— O - - 0 0 0 O = -

Retrain
has_upperparts_color::orange
has_leg_color::orange
has_upper _tail_color::red
has_breast_color::black
has_belly_color::red
has_primary_color::black
has_shape::perching-like
has_breast_color::grey
has_back_color::red
has_bill_shape::spatulate

Retrain
has_upperparts_color::orange
has_leg_color::orange
has_upper _tail_color::red
has_breast_color::black
has_belly_color::red
has_primary_color::black
has_shape::perching-like
has_breast_color::grey
has_back_color::red
has_bill_shape::spatulate

Retrain
has_upperparts_color::orange
has_leg_color::orange
has_upper _tail_color::red
has_breast_color::black
has_belly_color::red
has_primary_color::black
has_shape::perching-like
has_breast_color::grey
has_back_color::red
has_bill_shape::spatulate

Retrain
has_upperparts_color::orange
has_leg_color::orange
has_upper _tail_color::red
has_breast_color::black
has_belly_color::red
has_primary_color::black
has_shape::perching-like
has_breast_color::grey
has_back_color::red
has_bill_shape::spatulate

model with doctors in the real world, which is an editable explanation tool.
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1998
1999
2000
2001
2002
2 q
oo Label Pine_Warbler
2004
2005 Concept Name Influence Score
2006 has_belly_color::grey 0.037985
2007 has_underparts_color::grey 0.037982
2008 has_breast_color::grey 0.03798
2009 has_bill_length::longer than_head 0.037946
2010 has_throat_color::grey 0.037901
2011 has_back_color::grey 0.037894
2012 has_crown_color::grey 0.037868
2013 has_primary_color::grey 0.037866
2014 has_shape::swallow-like 0.037811
2015
has_nape_color::grey 0.037763
2016
2017
2018
2019 Label Bewick_Wren
- Concept Name Influence Score

2020 has_wing_color::blue 0.04231
2021 has_crown_color::blue 0.042196
2022 has_forehead_color::blue 0.042055
2023 .

has_bill_shape::spatulate 0.041994
2024 .

has_under_tail_color::blue 0.041622
2025 .

has_head_pattern::unique_pattern 0.041412
2026

has_upper _tail_color::blue 0.041179
2027

has_nape_color::blue 0.040844
2028
2029 has_shape::swallow-like 0.040686
2030 has_tail_pattern::spotted 0.040507
2031
2032 Label Song_Sparrow
2033
2034 Concept Name Influence Score
2035 has_upperparts_color::blue 0.036309
2036 has_wing_color::blue 0.036304
2037 has_primary_color::blue 0.036271
2038 has_back_color::blue 0.036261
2039 has_crown_color::blue 0.036219
2040 has_breast_color::blue 0.036178
2041 has_underparts_color::blue 0.03616
2042 has_nape_color::blue 0.036104
2043 has_upper _tail_color::blue 0.036083
2044 has_forehead_color::blue 0.035959
2045
2046
2047 Figure 12: Visualization of the most influential concept label related to different data in CUB.
2048
2049
2050
2051
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2052
2053
2054
2055
2056
2057
2058 Label Brewer_Blackbird
2059 Concept Name Influence Score
2060 has_forehead_color::orange 0.042692
2061 has_breast_color::orange 0.042647
2062 has_crown_color::orange 0.042646
2063 has_throat_color::orange 0.042588
2064 has_upper _tail_color::orange 0.042574
2065 has_upperparts_color::orange 0.042569
2066 has_primary_color::orange 0.042546
2067 has_back_color::orange 0.042543
2068 has_nape_color::orange 0.042484
2069 has_belly_color::orange 0.042463
2070
2071
2072
2073 Concept Name Influence Score
2074 has_tail_pattern::multi-colored 0.053243
2075 has_bill_shape::needle 0.053006
2076 has_back_pattern::multi-colored 0.052768
2077 has_primary_color::orange 0.052117
2078 has_underparts_color::orange 0.051954
2079 has_under_tail_color::orange 0.051617
2080 has_crown_color::buff 0.050712
2081 has_head_pattern::eyering 0.049705
2082 has_shape::perching-like 0.049511
2083 has_forehead_color::orange 0.049194
2084
2085
2086
2087

Concept Name Influence Score
2uas has_eye_color::orange 0.04754
ggzi has_shape::swallow-like 0.047265
2091 has_bill_shape::spatulate 0.047145
2092 has_crown_color::rufous 0.047015
2093 has_tail_pattern::multi-colored 0.046809
2094 has_forehead_color::rufous 0.046604
2095 has_back_color::rufous 0.046068
2096 has_size::large (16_-_32_in) 0.045287
2097 has_nape_color::rufous 0.044857
2098 has_upperparts_color::rufous 0.043474
2099
2100
2101 Figure 13: Visualization of the most influential concept label related to different data in CUB.
2102
2103
2104
2105
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2106
2107 Label  Seaside_Sparrow
2108
Concept Name Influence Score
2109 has_bill_color::rufous 0.083579
2110 has_shape::swallow-like 0.08343
2111 has_nape_color::rufous 0.08309
2112 has_tail_pattern::multi-colored 0.081434
2113 has_bill_length::longer_than_head 0.079826
2114 has_size::large_(16_-_32_in) 0.078111
has_belly_color::buff 0.069643
2115 has_back_color::blue 0.067222
2116 has_eye_color::orange 0.063228
2117 has_upperparts_color::blue 0.057842
2118
2119
2120 Label Vesper_Sparmw Concept Name Influence Score
2121 has_wing_color::red 0.035092
2122 has_back_pattern::spotted 0.035083
2123 has_bill_color::red 0.035072
2124 has_breast_pattern::spotted 0.035042
has_bill_shape::all-purpose 0.03491
2125 .
has_upper _tail_color::blue 0.034787
2126 has_wing_pattern::spotted 0.034754
2127 has_back_color::red 0.034625
2128 has_nape_color::red 0.034548
2129 has_throat_color::black 0.034427
2130
2131
2132 Figure 14: Visualization of the most influential concept label related to different data in CUB.
2133
2134 Label  Vermilion_Flycatcher
2135
2136 Concept Name Influence Score
2137 has_bill_length::longer_than_head 0.082524
2138 has_size::large_(16_-_32_in) 0.082308
has_tail_pattern::multi-colored 0.079543
2139
has_leg_color::orange 0.079385
2140 has_shape::swallow-like 0.078894
2141 has_back_pattern::multi-colored 0.074584
2142 has_underparts_color::buff 0.073978
2143 has_bill_shape::all-purpose 0.063468
2144 has_tail_shape::rounded_tail 0.059044
2145 < has_shape::perching-like 0.053268
2146
2147
2148 Label Fox_Sparrow Concept Name Influence Score
& 3 has_breast_color::blue 0.041734
2149 -
® A N has_underparts_color::blue 0.04173
2150 has_belly_color::blue 0.041652
2151 has_upper_tail_color::blue 0.041646
2152 has_breast_pattern::spotted 0.041567
2153 has_crown_color::blue 0.041521
2154 has_nape_color::blue 0.041439
2155 has_back_color::blue 0.041307
2156 has_forehead_color::blue 0.041287
has_under _tail_color::blue 0.041208
2157
2158
2159 Figure 15: Visualization of the most influential concept label related to different data in CUB.

40



Under review as a conference paper at ICLR 2025

2160
2161
2162
2163
2164
2165 Concept Name Influence Score
2166 Joint space narrowing 0.3358
2167
2168 Joint space narrowing lateral 0.1622
2169 Sclerosis femur medial 0.1161
2170 Sclerosis femur lateral 0.0993
2171

Sclerosis tibia lateral 0.0878
2172
2173 Osteophytes tibia medial 0.0724
2174 Osteophytes femur lateral 0.047
2175 Osteophytes tibia lateral 0.031
2176

Osteophytes femur medial 0.0271
2177
2178 Sclerosis tibia medial 0.0213
2179
2180 Concept Name Influence Score
2181 Joint space narrowing 0.3506
2182 Osteophytes femur medial 0.1698
2183 Osteophytes tibia medial 0.0991
2184
2185 Osteophytes tibia lateral 0.0824
2186 Joint space narrowing lateral 0.0728
2187 Sclerosis tibia lateral 0.0674
2188 Osteophytes femur lateral 0.0595
2189
2190 Sclerosis femur lateral 0.0467
2191 Sclerosis femur medial 0.0272
2192 Sclerosis tibia medial 0.0245
2193
2194 Concept Name Influence Score
2195 Joint space narrowing 0.2978
o Joi ing 1 1 0.2018
2197 oint space narrowing lateral .
2198 Osteophytes femur lateral 0.1247
2199 Sclerosis tibia lateral 0.0949
2e00 Sclerosis tibia medial 0.0892
2201 .
2202 Osteophytes femur medial 0.055
2203 Sclerosis femur medial 0.0463
2204 Osteophytes tibia medial 0.0387
2205 Sclerosis femur lateral 0.0321
2206 o
2207 Osteophytes tibia lateral 0.0195
2208
2209 Figure 16: Visualization of the most influential concept label related to different data in OAL
2210
2211
2212
2213
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