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Abstract

While agentic AI systems perform impressively on emerging capability benchmarks,1

existing performance evaluation suites focus on non-agentic workloads, leaving a2

critical gap in understanding system efficiency for multi-step, tool-using agents.3

We present the Agentic Bridge Framework for extracting actionable performance4

insights from capability evaluations through trace-level telemetry. Applying this5

framework to a multi-agent system on GAIA validation, we reveal that: (1) pass@N6

strategies provide diminishing accuracy returns; (2) search agents dominate to-7

ken usage and latency, identifying web data gathering as the primary bottleneck;8

(3) reasoning models spend more tokens on context preservation than actual rea-9

soning, highlighting costly inter-agent communication overhead. These findings10

inform critical design choices—context engineering, tool-use optimization, and11

phase-aware resource allocation—and illustrate how agent traces can inform repro-12

ducible performance workloads, bridging capability achievements with systems13

optimization for efficient agentic AI.14

1 Introduction15

The landscape of AI systems is rapidly evolving from single-turn chat completions to complex agentic16

workflows that autonomously plan, invoke tools, and execute multi-step tasks [1–7]. This shift17

has spawned capability benchmarks—GAIA [8], WebArena [9], AgentBench [10], and PaperBench18

[11]—that evaluate agents on multi-turn tasks requiring reasoning, decision-making, and sophisticated19

tool use. Yet a critical disconnect exists: performance benchmarks like MLPerf [12, 13] and Artificial20

Analysis [14] remain anchored to non-agentic workloads (text-to-image generation, MMLU-Pro [15],21

GPQA Diamond [16], LiveCodeBench [17]), measuring cost and latency for tasks that bear little22

resemblance to the iterative, tool-heavy patterns of modern agents.23

This gap has practical consequences. Without performance benchmarks that capture agentic behaviors,24

critical questions remain unanswered: What fraction of latency stems from tool calls versus reasoning?25

How do inter-agent handoffs impact token efficiency? When do best-of-N sampling strategies justify26

their computational cost? Current understanding relies on anecdotal evidence rather than systematic27

measurement, hindering both research progress and production deployment of agentic systems.28

We introduce the Agentic Bridge Framework (Figure 1) to transform capability evaluations into29

actionable performance insights. Our framework provides a structured approach to instrument agent30

systems, collect trace-level telemetry, and extract optimization opportunities. Through a concrete31

implementation on GAIA, we show how this framework reveals bottlenecks—search operations32
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Figure 1: The Agentic Bridge Framework from Capability Tasks to Performance Insights.

dominating compute, context preservation exceeding reasoning costs—that inform both immediate33

optimizations and longer-term research directions.34

2 The Agentic Bridge Framework35

The Agentic Bridge Framework (Figure 1) provides a structured approach for extracting performance36

insights from capability-oriented agent evaluations. The framework consists of three layers that37

progressively transform high-level agent tasks into actionable system optimizations.38

Service Architecture This layer captures the design decisions that define agent workloads and their39

implementation.40

(a) Agent Use Cases: The choice of workload fundamentally shapes performance characteristics.41

Agents can execute established capability benchmarks (GAIA [8], PaperBench [11]) that stress multi-42

step reasoning and tool use, or simpler test patterns from frameworks like OpenAI Agents SDK [18].43

Key configuration parameters significantly impact both accuracy and cost: (i) Pass@N strategies:44

Running workflows multiple times increases accuracy but multiplies computational cost; (ii) Model45

selection: Backend choice affects task completion patterns due to differences in model capabilities,46

tool-use pretraining, instruction following, and zero-shot prompt adaptation; (iii) Workload intensity:47

Single-user latency optimization differs fundamentally from multi-tenant throughput optimization.48

(b) Agent Framework: Framework choice determines critical trade-offs between flexibility, devel-49

opment speed, and observability. OpenAI Agents SDK [18] exemplifies the integrated approach:50

built-in tracing (OpenTelemetry [19] spans for LLM/tool/handoffs [20]), native tool support (web51

search, MCP), and tight API integration enable rapid deployment but lock users to OpenAI models.52

In contrast, frameworks like CrewAI [21] provide granular control over agent modules and support53

diverse model backends, but require manual implementation of tracing, routing, and guardrails. A54

middle path exists through OpenAI-compatible API endpoints that enable OSS model integration,55

though developers must still implement custom tools or wrestle with inter-framework compatibility56

issues. This tension between ease-of-use and flexibility directly impacts performance measurement:57

frameworks with rich telemetry simplify optimization but constrain architectural choices, while58

flexible frameworks enable novel optimizations but complicate systematic evaluation.59

Discover Optimization Insights. This layer reveals performance bottlenecks and optimization60

opportunities through systematic telemetry collection and analysis.61

(c) Serving Platform: Serving infrastructure choices create fundamental trade-offs between control62

and convenience. Model-as-a-Service (MaaS) endpoints provide immediate deployment with per-63

token pricing but constrain model selection and telemetry access. Self-served deployments (e.g.64

GPU rental + vLLM) enable arbitrary open-source model selection and fine-grained monitoring,65

with hourly pricing that favors continuous workloads and potentially offers cost advantages at high66
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Figure 2: Multi-agent system example for GAIA. Solid arrows show the primary flow:
task→planning→parallel search→evaluation→parallel writing→consensus. Dashed arrows indicate
re-evaluation loops when consensus fails or more information is needed.

utilization. The serving choice cascades through the stack: MaaS limits telemetry to API-provided67

metrics, while self-hosting enables access to internal model states critical for optimization.68

(d) Telemetry Collection: The depth of observable system behavior depends on serving architecture.69

API-based frameworks (OpenAI Agents SDK, LangChain [22]) provide OpenTelemetry (OTel)70

traces [19] capturing LLM inputs/outputs, tool calls, handoffs, exceptions, token usage, and span71

timing. Self-hosted deployments unlock richer telemetry: per-token logits/logprobs, layer activations,72

attention scores, KV cache states, MoE routing decisions, and RAG similarity scores. This granularity73

gap has practical implications—API traces suffice for identifying high-level bottlenecks, while74

diagnosing root causes requires low-level signals.75

Understand Opportunity. This layer transforms telemetry into actionable optimizations.76

(e) Analytics: Telemetry analysis operates at two levels. High-level OpenTelemetry traces identify77

macro-patterns: which agents dominate costs, tool-selection accuracy, planning effectiveness. These78

patterns can reveal which components dominate resource consumption and where context accumulates79

in multi-agent workflows. Low-level telemetry enables micro-optimizations: declining KV cache80

hit rates during tool calls indicate memory pressure; logit entropy spikes reveal model uncertainty81

requiring specialized prompting. Beyond debugging, telemetry enables workload characterization for82

system design. Sparse autoencoders [23] can classify execution phases (planning/tool-use/reasoning)83

from hidden states, informing phase-aware resource allocation strategies such as dynamic batch84

sizing, adaptive KV cache allocation, and precision tuning.85

(f) Insight Extraction: Analytics crystallize into workload characterizations that bridge capability86

and performance evaluation. From telemetry patterns, we extract reproducible performance profiles:87

token distribution across agent roles, latency breakdowns by phase, accuracy-cost Pareto frontiers88

for pass@N strategies. These profiles enable systematic optimization—for instance, batching tool89

calls could reduce latency despite token overhead, while aggressive caching might cut redundant API90

calls. More importantly, these insights define performance benchmarks for agentic systems: QoS91

metrics (P90/95/99 latencies under multi-tenant load), scaling characteristics (throughput degradation92

with concurrent agents), and system-level trade-offs (time-to-first-token versus end-to-end latency).93

This transformation—from agent traces to performance workloads—provides the foundation for94

MLPerf-style evaluation of agentic systems, finally closing the gap between what agents can do and95

how efficiently they do it.96

3 Case Study: Agent System For GAIA97

We instantiate our framework on GAIA validation set as a proof-of-concept, chosen for its diverse task98

types (reasoning, tool-use, and file handling). We use a multi-agent system (Figure 2) implemented99

with OpenAI Agents SDK and Pydantic Logfire [24] telemetry. The system employs model spe-100

cialization: o4-mini for orchestration (Planner, Evaluator, Judge), gpt-4.1 for information gathering101

(Search Agents), and o3 for synthesis (dual Writer Agents). The workflow processes GAIA’s diverse102

file formats, decomposes questions into parallel searches, and enforces answer consensus through103
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Figure 3: Token and latency distribution across GAIA validation set (165 tasks)

independent writers. We evaluate on the GAIA validation set containing 165 tasks (53 Level-1, 86104

Level-2, 26 Level-3), running each task once for pass@1 and twice for pass@2 measurements.105

4 Evaluation106

Our GAIA validation results reveal critical insights about agentic system performance. The system107

achieves 52.12% accuracy (pass@1, 86/165 tasks) and 55.67% (pass@2, 92/165 tasks)—a modest108

3.55% gain at doubled computational cost. Interestingly, pass@2 provides uniform absolute im-109

provement across difficulty levels (+2 tasks each): L1: 66.04%→69.81% (+3.77%, 35→37 tasks),110

L2: 51.16%→53.49% (+2.33%, 44→46 tasks), L3: 26.92%→34.62% (+7.69%, 7→9 tasks). These111

results highlight that simply increasing N offers diminishing returns, underscoring the need for112

architectural and system-level optimizations beyond repeated sampling.113

Figure 3 exposes two fundamental bottlenecks. First, search agents dominate resource consumption114

(60-80% of tokens and latency across all levels), identifying web data gathering as the primary115

optimization target—explaining the emergence of specialized tools like Tavily [25] and browser-use116

[26]. Second, reasoning models spend more tokens on context than reasoning itself: non-reasoning117

tokens exceed reasoning tokens by about 2x for L1-L2 and 1.5x for L3 (Figure 3c). This overhead118

stems from inter-agent handoffs where aggregated search results must be passed wholesale to119

downstream agents, presenting a stark trade-off: preserve full context at high token cost or risk120

information loss through summarization.121

The economic implications are striking: our validation costs $67.06 via OpenAI APIs ($0.60/task),122

with total runtime of 2,931 minutes yielding $1.37/hour effective rate—comparable to Lambda’s123

$1.49/hour on-demand GH200 (96GB) pricing [27]. However, this cost parity masks performance124

disparities: a self-hosted GH200 + Llama-3.1-70B could potentially reduce latency through dedicated125

compute and optimized batching, eliminating the 2-15 second compounding queuing delays we126

observed in API calls due to GPU multiplexing across users. These findings suggest a hybrid strategy:127

leverage APIs for o3-level reasoning (Writers) while self-hosting search agents where speed matters128

more than sophistication—especially for continuous evaluation, which benefits from per-hour pricing.129

5 Limitations and Future Work130

Limitations. Our results face three constraints: (1) temporal instability—web content and API131

latencies drift across runs, limiting reproducibility; (2) observability gaps—MaaS endpoints provide132

only OpenTelemetry traces, hiding low-level signals (KV-cache states, attention patterns) critical for133

micro-optimizations; (3) limited ablations—infinite multi-agent system design space and compute134

quotas restrict exploration of agent topologies and pass@N scaling beyond N=2.135

Future work. The framework points to concrete optimizations: Serving—implement phase-aware136

resource allocation (larger KV cache during reasoning, reduced precision during handoffs) and137

heterogeneous model routing. Telemetry—standardize minimal agentic schemas combining OTel138

spans with critical latents (logit entropy, cache hit rates). Analytics—build phase detectors to enable139

real-time budgeting. Insights—develop context-engineering policies (intelligent summarization140

before handoffs) and search result caching. These optimizations, suggested by our telemetry patterns,141

warrant investigation for their potential to reduce token usage while maintaining accuracy.142
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