© O N O O A~ W N =

Agentic Bridge Framework: Closing the Gap Between
Agentic Capability and Performance Benchmarks

Yun Du Rubens Lacouture Qizheng Zhang
Stanford University Stanford University Stanford University
yundu27@stanford.edu rubensl@stanford.edu qizhengz@stanford.edu
Genghan Zhang Tian Zhao Kunle Olukotun
Stanford University Classie Al Stanford University
zgh230@stanford.edu tian@classie.ai kunle@stanford.edu
Abstract

While agentic Al systems perform impressively on emerging capability benchmarks,
existing performance evaluation suites focus on non-agentic workloads, leaving a
critical gap in understanding system efficiency for multi-step, tool-using agents.
We present the Agentic Bridge Framework for extracting actionable performance
insights from capability evaluations through trace-level telemetry. Applying this
framework to a multi-agent system on GAIA validation, we reveal that: (1) pass@N
strategies provide diminishing accuracy returns; (2) search agents dominate to-
ken usage and latency, identifying web data gathering as the primary bottleneck;
(3) reasoning models spend more tokens on context preservation than actual rea-
soning, highlighting costly inter-agent communication overhead. These findings
inform critical design choices—context engineering, tool-use optimization, and
phase-aware resource allocation—and illustrate how agent traces can inform repro-
ducible performance workloads, bridging capability achievements with systems
optimization for efficient agentic Al

1 Introduction

The landscape of Al systems is rapidly evolving from single-turn chat completions to complex agentic
workflows that autonomously plan, invoke tools, and execute multi-step tasks [1H7]. This shift
has spawned capability benchmarks—GAIA [8], WebArena [9]], AgentBench [[10], and PaperBench
[L1]—that evaluate agents on multi-turn tasks requiring reasoning, decision-making, and sophisticated
tool use. Yet a critical disconnect exists: performance benchmarks like MLPerf [12}13]] and Artificial
Analysis [14] remain anchored to non-agentic workloads (text-to-image generation, MMLU-Pro [15]],
GPQA Diamond [[16], LiveCodeBench [17]), measuring cost and latency for tasks that bear little
resemblance to the iterative, tool-heavy patterns of modern agents.

This gap has practical consequences. Without performance benchmarks that capture agentic behaviors,
critical questions remain unanswered: What fraction of latency stems from tool calls versus reasoning?
How do inter-agent handoffs impact token efficiency? When do best-of-N sampling strategies justify
their computational cost? Current understanding relies on anecdotal evidence rather than systematic
measurement, hindering both research progress and production deployment of agentic systems.

We introduce the Agentic Bridge Framework (Figure [I)) to transform capability evaluations into
actionable performance insights. Our framework provides a structured approach to instrument agent
systems, collect trace-level telemetry, and extract optimization opportunities. Through a concrete
implementation on GAIA, we show how this framework reveals bottlenecks—search operations

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

33
34

35

36
37
38

39
40

41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59

60
61

62
63
64
65
66

1. Service Architecture

! (a) Agent Use Cases | [Bgigmla'tisj [Test Cases] (Configs J

' (b) Agent Framework; [OpenAl j [Go‘;gll;:DKj [CrewAl]

2. Discover Optimization Insights
!,(c) Serving Platform En':;'s(fiits Self-host

: (d) Telemetry Collection] [OTeI (text)] L Latent]

Variables

U Al o Telemetry LLM
| (e) Analytics ! [Mining Explainability}

1 (f) Insight Extraction | E/isualizatiorﬂ [Sparsity]

Figure 1: The Agentic Bridge Framework from Capability Tasks to Performance Insights.

dominating compute, context preservation exceeding reasoning costs—that inform both immediate
optimizations and longer-term research directions.

2 The Agentic Bridge Framework

The Agentic Bridge Framework (Figure |l provides a structured approach for extracting performance
insights from capability-oriented agent evaluations. The framework consists of three layers that
progressively transform high-level agent tasks into actionable system optimizations.

Service Architecture This layer captures the design decisions that define agent workloads and their
implementation.

(a) Agent Use Cases: The choice of workload fundamentally shapes performance characteristics.
Agents can execute established capability benchmarks (GAIA [8]], PaperBench [11]]) that stress multi-
step reasoning and tool use, or simpler test patterns from frameworks like OpenAl Agents SDK [18]].
Key configuration parameters significantly impact both accuracy and cost: (i) Pass@N strategies:
Running workflows multiple times increases accuracy but multiplies computational cost; (ii) Model
selection: Backend choice affects task completion patterns due to differences in model capabilities,
tool-use pretraining, instruction following, and zero-shot prompt adaptation; (iii) Workload intensity:
Single-user latency optimization differs fundamentally from multi-tenant throughput optimization.

(b) Agent Framework: Framework choice determines critical trade-offs between flexibility, devel-
opment speed, and observability. OpenAl Agents SDK [18] exemplifies the integrated approach:
built-in tracing (OpenTelemetry [19] spans for LLM/tool/handoffs [20]), native tool support (web
search, MCP), and tight API integration enable rapid deployment but lock users to OpenAl models.
In contrast, frameworks like CrewAl [21]] provide granular control over agent modules and support
diverse model backends, but require manual implementation of tracing, routing, and guardrails. A
middle path exists through OpenAl-compatible API endpoints that enable OSS model integration,
though developers must still implement custom tools or wrestle with inter-framework compatibility
issues. This tension between ease-of-use and flexibility directly impacts performance measurement:
frameworks with rich telemetry simplify optimization but constrain architectural choices, while
flexible frameworks enable novel optimizations but complicate systematic evaluation.

Discover Optimization Insights. This layer reveals performance bottlenecks and optimization
opportunities through systematic telemetry collection and analysis.

(c) Serving Platform: Serving infrastructure choices create fundamental trade-offs between control
and convenience. Model-as-a-Service (MaaS) endpoints provide immediate deployment with per-
token pricing but constrain model selection and telemetry access. Self-served deployments (e.g.
GPU rental + vLLM) enable arbitrary open-source model selection and fine-grained monitoring,
with hourly pricing that favors continuous workloads and potentially offers cost advantages at high

67
68

69
70
71
72
73
74
75

76

77
78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95
96

97

98
99
100
101
102
103

GAIA files

e | DEEEEE
Sl

File processor

Identify file type
Extract file content

Final_answer.json

,,,,, (T
7 Writer Agent 1
Planner Agent Multiple Search Agents Evaluator Agent _ Judge Agent
=
, Hrter Agent 2
1
\ : (Compose answer]
---------------------------- oo (oo]
|
—_—

Figure 2: Multi-agent system example for GAIA. Solid arrows show the primary flow:
task—planning—parallel search—evaluation—parallel writing—consensus. Dashed arrows indicate
re-evaluation loops when consensus fails or more information is needed.

utilization. The serving choice cascades through the stack: MaaS limits telemetry to API-provided
metrics, while self-hosting enables access to internal model states critical for optimization.

(d) Telemetry Collection: The depth of observable system behavior depends on serving architecture.
API-based frameworks (OpenAl Agents SDK, LangChain [22]) provide OpenTelemetry (OTel)
traces [19]] capturing LLM inputs/outputs, tool calls, handoffs, exceptions, token usage, and span
timing. Self-hosted deployments unlock richer telemetry: per-token logits/logprobs, layer activations,
attention scores, KV cache states, MoE routing decisions, and RAG similarity scores. This granularity
gap has practical implications—API traces suffice for identifying high-level bottlenecks, while
diagnosing root causes requires low-level signals.

Understand Opportunity. This layer transforms telemetry into actionable optimizations.

(e) Analytics: Telemetry analysis operates at two levels. High-level OpenTelemetry traces identify
macro-patterns: which agents dominate costs, tool-selection accuracy, planning effectiveness. These
patterns can reveal which components dominate resource consumption and where context accumulates
in multi-agent workflows. Low-level telemetry enables micro-optimizations: declining KV cache
hit rates during tool calls indicate memory pressure; logit entropy spikes reveal model uncertainty
requiring specialized prompting. Beyond debugging, telemetry enables workload characterization for
system design. Sparse autoencoders [23]] can classify execution phases (planning/tool-use/reasoning)
from hidden states, informing phase-aware resource allocation strategies such as dynamic batch
sizing, adaptive KV cache allocation, and precision tuning.

(f) Insight Extraction: Analytics crystallize into workload characterizations that bridge capability
and performance evaluation. From telemetry patterns, we extract reproducible performance profiles:
token distribution across agent roles, latency breakdowns by phase, accuracy-cost Pareto frontiers
for pass@N strategies. These profiles enable systematic optimization—for instance, batching tool
calls could reduce latency despite token overhead, while aggressive caching might cut redundant API
calls. More importantly, these insights define performance benchmarks for agentic systems: QoS
metrics (P90/95/99 latencies under multi-tenant load), scaling characteristics (throughput degradation
with concurrent agents), and system-level trade-offs (time-to-first-token versus end-to-end latency).
This transformation—from agent traces to performance workloads—provides the foundation for
MLPerf-style evaluation of agentic systems, finally closing the gap between what agents can do and
how efficiently they do it.

3 Case Study: Agent System For GAIA

We instantiate our framework on GAIA validation set as a proof-of-concept, chosen for its diverse task
types (reasoning, tool-use, and file handling). We use a multi-agent system (Figure [2)) implemented
with OpenAl Agents SDK and Pydantic Logfire [24] telemetry. The system employs model spe-
cialization: o4-mini for orchestration (Planner, Evaluator, Judge), gpt-4.1 for information gathering
(Search Agents), and 03 for synthesis (dual Writer Agents). The workflow processes GAIA’s diverse
file formats, decomposes questions into parallel searches, and enforces answer consensus through

104
105

106

107
108
109
110
111
112
113

114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129

130

131
132

134
135

137
138
139
140
141
142

100% 66,7
oo 9 L 1,200,000 e
Z{\/ . < 80%
- 80% © 1,000,000
g = 0
2 6o% = o0% £ 800,000
C’% n ~ S 630,398
. S 600,000 577,813
B 40% 2 40% =
E Z 400,000
g 209
Hc 20% E 20% 200,000
0% L1 L2 L3 0% L1 L2 L3 0 L1 L2 L3
Question Level Question Level Question Level
planner 9 search B evaluator W8 writer judge planner Wscarch ¥ cvaluator WS writer © judge non-reasoning | reasoning
(a) Tokens share by agent per level (b) Latency share by agent per level (c) Reasoning tokens usage

Figure 3: Token and latency distribution across GAIA validation set (165 tasks)

independent writers. We evaluate on the GAIA validation set containing 165 tasks (53 Level-1, 86
Level-2, 26 Level-3), running each task once for pass@1 and twice for pass @2 measurements.

4 Evaluation

Our GAIA validation results reveal critical insights about agentic system performance. The system
achieves 52.12% accuracy (pass@1, 86/165 tasks) and 55.67% (pass@2, 92/165 tasks)—a modest
3.55% gain at doubled computational cost. Interestingly, pass@2 provides uniform absolute im-
provement across difficulty levels (+2 tasks each): L1: 66.04%—69.81% (+3.77%, 35—37 tasks),
L2: 51.16%—53.49% (+2.33%, 44—46 tasks), L3: 26.92%—34.62% (+7.69%, 7—9 tasks). These
results highlight that simply increasing N offers diminishing returns, underscoring the need for
architectural and system-level optimizations beyond repeated sampling.

Figure 3| exposes two fundamental bottlenecks. First, search agents dominate resource consumption
(60-80% of tokens and latency across all levels), identifying web data gathering as the primary
optimization target—explaining the emergence of specialized tools like Tavily [25] and browser-use
[26]. Second, reasoning models spend more tokens on context than reasoning itself: non-reasoning
tokens exceed reasoning tokens by about 2x for L1-L2 and 1.5x for L3 (Figure[3c). This overhead
stems from inter-agent handoffs where aggregated search results must be passed wholesale to
downstream agents, presenting a stark trade-off: preserve full context at high token cost or risk
information loss through summarization.

The economic implications are striking: our validation costs $67.06 via OpenAl APIs ($0.60/task),
with total runtime of 2,931 minutes yielding $1.37/hour effective rate—comparable to Lambda’s
$1.49/hour on-demand GH200 (96GB) pricing [27]. However, this cost parity masks performance
disparities: a self-hosted GH200 + Llama-3.1-70B could potentially reduce latency through dedicated
compute and optimized batching, eliminating the 2-15 second compounding queuing delays we
observed in API calls due to GPU multiplexing across users. These findings suggest a hybrid strategy:
leverage APIs for o3-level reasoning (Writers) while self-hosting search agents where speed matters
more than sophistication—especially for continuous evaluation, which benefits from per-hour pricing.

5 Limitations and Future Work

Limitations. Our results face three constraints: (1) temporal instability—web content and API
latencies drift across runs, limiting reproducibility; (2) observability gaps—MaaS endpoints provide
only OpenTelemetry traces, hiding low-level signals (KV-cache states, attention patterns) critical for
micro-optimizations; (3) limited ablations—infinite multi-agent system design space and compute
quotas restrict exploration of agent topologies and pass@N scaling beyond N=2.

Future work. The framework points to concrete optimizations: Serving—implement phase-aware
resource allocation (larger KV cache during reasoning, reduced precision during handoffs) and
heterogeneous model routing. Telemetry—standardize minimal agentic schemas combining OTel
spans with critical latents (logit entropy, cache hit rates). Analytics—build phase detectors to enable
real-time budgeting. Insights—develop context-engineering policies (intelligent summarization
before handoffs) and search result caching. These optimizations, suggested by our telemetry patterns,
warrant investigation for their potential to reduce token usage while maintaining accuracy.

143

144
145
146

147
148
149

150
151
152

153
154

155
156

157
158

159
160

161
162
163

164
165
166
167

168
169
170
171
172

173
174
175
176

177
178
179
180
181

182
183
184
185

186
187

188
189
190
191
192

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. arXiv:2210.03629, 2022.
URL https://arxiv.org/abs/2210.03629.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach them-
selves to use tools. arXiv:2302.04761, 2023. URL https://arxiv.org/abs/2302.04761,

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in hugging face. arXiv:2303.17580,
2023. URL https://arxiv.org/abs/2303.17580.

OpenAl. Introducing chatgpt agent: bridging research and action. https://openai.com/
index/introducing-chatgpt-agent/, 2025. Accessed Aug 14, 2025.

OpenAl. Introducing operator. https://openai.com/index/introducing-operator/,
2025. Accessed Aug 14, 2025.

OpenAl Introducing deep research. https://openai.com/index/
introducing-deep-research/, 2025. Accessed Aug 14, 2025.

OpenAl. Introducing codex. https://openai.com/index/introducing-codex/, 2025.
Accessed Aug 14, 2025.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: A benchmark for general ai assistants. arXiv preprint arXiv:2311.12983, 2023.
URL https://arxiv.org/abs/2311.12983,

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents. arXiv preprint arXiv:2307.13854, 2023.
URL https://arxiv.org/abs/2307.13854,

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang
Ding, Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du,
Chenhui Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong,
and Jie Tang. Agentbench: Evaluating llms as agents. In International Conference on Learning
Representations (ICLR), 2024. URL https://openreview.net/forum?id=zAdUB0aCTQ.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin,
Rachel Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia
Glaese, and Tejal Patwardhan. Paperbench: Evaluating ai’s ability to replicate ai research, 2025.
URL https://arxiv.org/abs/2504.01848,

Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevi-
cius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, et al. Mlperf
training benchmark. In Proceedings of Machine Learning and Systems (MLSys),
2020. URL https://proceedings.mlsys.org/paper_files/paper/2020/hash/
411e39b117e885341f25efb8912945f7-Abstract.html.

Vijay Janapa Reddi, Christine Cheng, David Kanter, et al. Mlperf inference benchmark. In
Proceedings of the 47th Annual International Symposium on Computer Architecture (ISCA),
2020. doi: 10.1109/ISCA45697.2020.00045. URL https://dl.acm.org/doi/10.1109/
ISCA45697.2020.00045.

Artificial Analysis. Artificial analysis: Ai model & api providers analysis. https://
artificialanalysis.ai/, 2025. Accessed Aug 14, 2025.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex
Zhuang, Rongqi Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark, 2024. URL https://arxiv.org/abs/2406!
01574.

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2303.17580
https://openai.com/index/introducing-chatgpt-agent/
https://openai.com/index/introducing-chatgpt-agent/
https://openai.com/index/introducing-chatgpt-agent/
https://openai.com/index/introducing-operator/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-codex/
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2307.13854
https://openreview.net/forum?id=zAdUB0aCTQ
https://arxiv.org/abs/2504.01848
https://proceedings.mlsys.org/paper_files/paper/2020/hash/411e39b117e885341f25efb8912945f7-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/411e39b117e885341f25efb8912945f7-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/411e39b117e885341f25efb8912945f7-Abstract.html
https://dl.acm.org/doi/10.1109/ISCA45697.2020.00045
https://dl.acm.org/doi/10.1109/ISCA45697.2020.00045
https://dl.acm.org/doi/10.1109/ISCA45697.2020.00045
https://artificialanalysis.ai/
https://artificialanalysis.ai/
https://artificialanalysis.ai/
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574

193
194
195

196
197
198
199

200
201

202
203

204
205

206
207

208

210
211

212
213

214

215
216

217

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022,

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

OpenAl. Openai agents sdk (python) — documentation. https://openai.github.io/
openai-agents-python/, 2025. Accessed Aug 2025.

OpenTelemetry. Opentelemetry concepts: Traces. https://opentelemetry.io/docs/
concepts/signals/traces/, 2025. Accessed Aug 12, 2025.

OpenAl. Openai agents sdk: Tracing. https://openai.github.io/
openai-agents-python/tracing/, 2025. Accessed Aug 12, 2025.

crewAl Inc. crewai. https://github.com/crewAIInc/crewAI, 2025. GitHub repository;
accessed Aug 15, 2025.

Harrison Chase. Langchain, 2022. URL https://github.com/langchain-ai/langchain!

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024. URL
https://arxiv.org/abs/2406.04093|

Pydantic Team. Pydantic logfire. https://pydantic.dev/logfire, 2024. Accessed: 2025-
08-16.

Tavily. Tavily search api. https://docs.tavily.com, 2025. Accessed: 2025-08-17.

browser-use contributors. browser-use: Autonomous web browsing for 1lm agents. https!
//github.com/browser-use/browser-use, 2025. Accessed: 2025-08-17.

Lambda. Ai cloud pricing, 2025. URL https://lambda.ai/pricing. Accessed 2025-08-18.

https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://openai.github.io/openai-agents-python/
https://openai.github.io/openai-agents-python/
https://openai.github.io/openai-agents-python/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://openai.github.io/openai-agents-python/tracing/
https://openai.github.io/openai-agents-python/tracing/
https://openai.github.io/openai-agents-python/tracing/
https://github.com/crewAIInc/crewAI
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2406.04093
https://pydantic.dev/logfire
https://docs.tavily.com
https://github.com/browser-use/browser-use
https://github.com/browser-use/browser-use
https://github.com/browser-use/browser-use
https://lambda.ai/pricing

	Introduction
	The Agentic Bridge Framework
	Case Study: Agent System For GAIA
	Evaluation
	Limitations and Future Work

