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Abstract

While agentic Al systems perform impressively on emerging capability benchmarks,
existing performance evaluation suites focus on non-agentic workloads, leaving a
critical gap in understanding system efficiency for multi-step, tool-using agents.
We present the Agentic Bridge Framework for extracting actionable performance
insights from capability evaluations through trace-level telemetry. Applying this
framework to a multi-agent system on GAIA validation, we reveal that: (1) pass@N
strategies provide diminishing accuracy returns; (2) search agents dominate to-
ken usage and latency, identifying web data gathering as the primary bottleneck;
(3) reasoning models spend more tokens on context preservation than actual rea-
soning, highlighting costly inter-agent communication overhead. These findings
inform critical design choices—context engineering, tool-use optimization, and
phase-aware resource allocation—and illustrate how agent traces can inform repro-
ducible performance workloads, bridging capability achievements with systems
optimization for efficient agentic Al

1 Introduction

The landscape of Al systems is rapidly evolving from single-turn chat completions to complex agentic
workflows that autonomously plan, invoke tools, and execute multi-step tasks [1H7]. This shift
has spawned capability benchmarks—GAIA [8], WebArena [9]], AgentBench [[10], and PaperBench
[L1]—that evaluate agents on multi-turn tasks requiring reasoning, decision-making, and sophisticated
tool use. Yet a critical disconnect exists: performance benchmarks like MLPerf [12}13]] and Artificial
Analysis [14] remain anchored to non-agentic workloads (text-to-image generation, MMLU-Pro [15]],
GPQA Diamond [[16], LiveCodeBench [17]), measuring cost and latency for tasks that bear little
resemblance to the iterative, tool-heavy patterns of modern agents.

This gap has practical consequences. Without performance benchmarks that capture agentic behaviors,
critical questions remain unanswered: What fraction of latency stems from tool calls versus reasoning?
How do inter-agent handoffs impact token efficiency? When do best-of-N sampling strategies justify
their computational cost? Current understanding relies on anecdotal evidence rather than systematic
measurement, hindering both research progress and production deployment of agentic systems.

We introduce the Agentic Bridge Framework (Figure [I)) to transform capability evaluations into
actionable performance insights. Our framework provides a structured approach to instrument agent
systems, collect trace-level telemetry, and extract optimization opportunities. Through a concrete
implementation on GAIA, we show how this framework reveals bottlenecks—search operations

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



33
34

35

36
37
38

39
40

41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59

60
61

62
63
64
65
66

1. Service Architecture

! (a) Agent Use Cases | [Bgigmla'tisj [Test Cases] ( Configs J

' (b) Agent Framework; [ OpenAl j [Go‘;gll;:DKj [ CrewAl ]

2. Discover Optimization Insights
!,(c) Serving Platform En':;'s(fiits Self-host

: (d) Telemetry Collection] [OTeI (text)] L Latent ]

Variables

U Al o Telemetry LLM
| (e) Analytics ! [ Mining Explainability}

1 (f) Insight Extraction | E/isualizatiorﬂ [ Sparsity ]

Figure 1: The Agentic Bridge Framework from Capability Tasks to Performance Insights.

dominating compute, context preservation exceeding reasoning costs—that inform both immediate
optimizations and longer-term research directions.

2 The Agentic Bridge Framework

The Agentic Bridge Framework (Figure |l provides a structured approach for extracting performance
insights from capability-oriented agent evaluations. The framework consists of three layers that
progressively transform high-level agent tasks into actionable system optimizations.

Service Architecture This layer captures the design decisions that define agent workloads and their
implementation.

(a) Agent Use Cases: The choice of workload fundamentally shapes performance characteristics.
Agents can execute established capability benchmarks (GAIA [8]], PaperBench [11]]) that stress multi-
step reasoning and tool use, or simpler test patterns from frameworks like OpenAl Agents SDK [18]].
Key configuration parameters significantly impact both accuracy and cost: (i) Pass@N strategies:
Running workflows multiple times increases accuracy but multiplies computational cost; (ii) Model
selection: Backend choice affects task completion patterns due to differences in model capabilities,
tool-use pretraining, instruction following, and zero-shot prompt adaptation; (iii) Workload intensity:
Single-user latency optimization differs fundamentally from multi-tenant throughput optimization.

(b) Agent Framework: Framework choice determines critical trade-offs between flexibility, devel-
opment speed, and observability. OpenAl Agents SDK [18] exemplifies the integrated approach:
built-in tracing (OpenTelemetry [19] spans for LLM/tool/handoffs [20]), native tool support (web
search, MCP), and tight API integration enable rapid deployment but lock users to OpenAl models.
In contrast, frameworks like CrewAl [21]] provide granular control over agent modules and support
diverse model backends, but require manual implementation of tracing, routing, and guardrails. A
middle path exists through OpenAl-compatible API endpoints that enable OSS model integration,
though developers must still implement custom tools or wrestle with inter-framework compatibility
issues. This tension between ease-of-use and flexibility directly impacts performance measurement:
frameworks with rich telemetry simplify optimization but constrain architectural choices, while
flexible frameworks enable novel optimizations but complicate systematic evaluation.

Discover Optimization Insights. This layer reveals performance bottlenecks and optimization
opportunities through systematic telemetry collection and analysis.

(c) Serving Platform: Serving infrastructure choices create fundamental trade-offs between control
and convenience. Model-as-a-Service (MaaS) endpoints provide immediate deployment with per-
token pricing but constrain model selection and telemetry access. Self-served deployments (e.g.
GPU rental + vLLM) enable arbitrary open-source model selection and fine-grained monitoring,
with hourly pricing that favors continuous workloads and potentially offers cost advantages at high
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Figure 2: Multi-agent system example for GAIA. Solid arrows show the primary flow:
task—planning—parallel search—evaluation—parallel writing—consensus. Dashed arrows indicate
re-evaluation loops when consensus fails or more information is needed.

utilization. The serving choice cascades through the stack: MaaS limits telemetry to API-provided
metrics, while self-hosting enables access to internal model states critical for optimization.

(d) Telemetry Collection: The depth of observable system behavior depends on serving architecture.
API-based frameworks (OpenAl Agents SDK, LangChain [22]) provide OpenTelemetry (OTel)
traces [19]] capturing LLM inputs/outputs, tool calls, handoffs, exceptions, token usage, and span
timing. Self-hosted deployments unlock richer telemetry: per-token logits/logprobs, layer activations,
attention scores, KV cache states, MoE routing decisions, and RAG similarity scores. This granularity
gap has practical implications—API traces suffice for identifying high-level bottlenecks, while
diagnosing root causes requires low-level signals.

Understand Opportunity. This layer transforms telemetry into actionable optimizations.

(e) Analytics: Telemetry analysis operates at two levels. High-level OpenTelemetry traces identify
macro-patterns: which agents dominate costs, tool-selection accuracy, planning effectiveness. These
patterns can reveal which components dominate resource consumption and where context accumulates
in multi-agent workflows. Low-level telemetry enables micro-optimizations: declining KV cache
hit rates during tool calls indicate memory pressure; logit entropy spikes reveal model uncertainty
requiring specialized prompting. Beyond debugging, telemetry enables workload characterization for
system design. Sparse autoencoders [23]] can classify execution phases (planning/tool-use/reasoning)
from hidden states, informing phase-aware resource allocation strategies such as dynamic batch
sizing, adaptive KV cache allocation, and precision tuning.

(f) Insight Extraction: Analytics crystallize into workload characterizations that bridge capability
and performance evaluation. From telemetry patterns, we extract reproducible performance profiles:
token distribution across agent roles, latency breakdowns by phase, accuracy-cost Pareto frontiers
for pass@N strategies. These profiles enable systematic optimization—for instance, batching tool
calls could reduce latency despite token overhead, while aggressive caching might cut redundant API
calls. More importantly, these insights define performance benchmarks for agentic systems: QoS
metrics (P90/95/99 latencies under multi-tenant load), scaling characteristics (throughput degradation
with concurrent agents), and system-level trade-offs (time-to-first-token versus end-to-end latency).
This transformation—from agent traces to performance workloads—provides the foundation for
MLPerf-style evaluation of agentic systems, finally closing the gap between what agents can do and
how efficiently they do it.

3 Case Study: Agent System For GAIA

We instantiate our framework on GAIA validation set as a proof-of-concept, chosen for its diverse task
types (reasoning, tool-use, and file handling). We use a multi-agent system (Figure [2)) implemented
with OpenAl Agents SDK and Pydantic Logfire [24] telemetry. The system employs model spe-
cialization: o4-mini for orchestration (Planner, Evaluator, Judge), gpt-4.1 for information gathering
(Search Agents), and 03 for synthesis (dual Writer Agents). The workflow processes GAIA’s diverse
file formats, decomposes questions into parallel searches, and enforces answer consensus through
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Figure 3: Token and latency distribution across GAIA validation set (165 tasks)

independent writers. We evaluate on the GAIA validation set containing 165 tasks (53 Level-1, 86
Level-2, 26 Level-3), running each task once for pass@1 and twice for pass @2 measurements.

4 Evaluation

Our GAIA validation results reveal critical insights about agentic system performance. The system
achieves 52.12% accuracy (pass@1, 86/165 tasks) and 55.67% (pass@2, 92/165 tasks)—a modest
3.55% gain at doubled computational cost. Interestingly, pass@2 provides uniform absolute im-
provement across difficulty levels (+2 tasks each): L1: 66.04%—69.81% (+3.77%, 35—37 tasks),
L2: 51.16%—53.49% (+2.33%, 44—46 tasks), L3: 26.92%—34.62% (+7.69%, 7—9 tasks). These
results highlight that simply increasing N offers diminishing returns, underscoring the need for
architectural and system-level optimizations beyond repeated sampling.

Figure 3| exposes two fundamental bottlenecks. First, search agents dominate resource consumption
(60-80% of tokens and latency across all levels), identifying web data gathering as the primary
optimization target—explaining the emergence of specialized tools like Tavily [25] and browser-use
[26]. Second, reasoning models spend more tokens on context than reasoning itself: non-reasoning
tokens exceed reasoning tokens by about 2x for L1-L2 and 1.5x for L3 (Figure[3c). This overhead
stems from inter-agent handoffs where aggregated search results must be passed wholesale to
downstream agents, presenting a stark trade-off: preserve full context at high token cost or risk
information loss through summarization.

The economic implications are striking: our validation costs $67.06 via OpenAl APIs ($0.60/task),
with total runtime of 2,931 minutes yielding $1.37/hour effective rate—comparable to Lambda’s
$1.49/hour on-demand GH200 (96GB) pricing [27]. However, this cost parity masks performance
disparities: a self-hosted GH200 + Llama-3.1-70B could potentially reduce latency through dedicated
compute and optimized batching, eliminating the 2-15 second compounding queuing delays we
observed in API calls due to GPU multiplexing across users. These findings suggest a hybrid strategy:
leverage APIs for o3-level reasoning (Writers) while self-hosting search agents where speed matters
more than sophistication—especially for continuous evaluation, which benefits from per-hour pricing.

5 Limitations and Future Work

Limitations. Our results face three constraints: (1) temporal instability—web content and API
latencies drift across runs, limiting reproducibility; (2) observability gaps—MaaS endpoints provide
only OpenTelemetry traces, hiding low-level signals (KV-cache states, attention patterns) critical for
micro-optimizations; (3) limited ablations—infinite multi-agent system design space and compute
quotas restrict exploration of agent topologies and pass@N scaling beyond N=2.

Future work. The framework points to concrete optimizations: Serving—implement phase-aware
resource allocation (larger KV cache during reasoning, reduced precision during handoffs) and
heterogeneous model routing. Telemetry—standardize minimal agentic schemas combining OTel
spans with critical latents (logit entropy, cache hit rates). Analytics—build phase detectors to enable
real-time budgeting. Insights—develop context-engineering policies (intelligent summarization
before handoffs) and search result caching. These optimizations, suggested by our telemetry patterns,
warrant investigation for their potential to reduce token usage while maintaining accuracy.
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