
COSMOS: Compressed and Smooth Latent Space for
Text Diffusion Modeling

Viacheslav Meshchaninov*
HSE University

Constructor University
vmeshchaninov@hse.ru

Egor Chimbulatov
HSE University

echimbulatov@hse.ru

Alexander Shabalin
HSE University

Constructor University
amshabalin@hse.ru

Aleksandr Abramov
SaluteDevices

andril772@gmail.com

Dmitry Vetrov
Constructor University

dvetrov@constructor.university

Abstract

Autoregressive language models dominate modern text generation, yet their se-
quential nature introduces fundamental limitations: decoding is slow, and main-
taining global coherence remains challenging. Diffusion models offer a promising
alternative by enabling parallel generation and flexible control; however, their
application to text generation is hindered by the high dimensionality of token-level
representations. We introduce COSMOS, a novel approach to text generation that
operates entirely in a compressed, smooth latent space tailored specifically for
diffusion. This space is learned using an autoencoder trained simultaneously for
token-level reconstruction and alignment with frozen activations from a pretrained
language encoder, providing robust semantic grounding and enabling effective
perturbation-based augmentations. Empirically, we demonstrate that text rep-
resentations can be compressed up to 8× while maintaining generation quality
comparable to token-level diffusion models. Furthermore, increasing the latent se-
quence length allows COSMOS to surpass both diffusion-based and autoregressive
baselines. We evaluate COSMOS on four diverse generative tasks including story
generation, question generation, summarization, and detoxification and compare
it with various generative paradigms. COSMOS achieves comparable or superior
generation quality while offering more than 2× faster inference. Code is released
at GitHub.

1 Introduction

Autoregressive (AR) language models are a de facto gold standard for text generation [29, 30, 6].
By factorizing the probability of a sequence into a product of conditional token probabilities, they
transform the global generation task into a series of local next-token prediction tasks that can be
optimized efficiently via teacher forcing [42].

The same sequential factorization, however, creates several structural bottlenecks. First, decoding is
inherently sequential: the time to produce a sequence grows linearly with its length because each
token must await the completion of its predecessor. Second, the process suffers from exposure bias: a
single early mistake contaminates the context for all subsequent predictions and cannot be corrected
without restarting generation [32, 2, 11]. Third, maximizing local log-likelihood encourages the

Corresponding author: vmeshchaninov@hse.ru

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/MeshchaninovViacheslav/cosmos
mailto:vmeshchaninov@hse.ru

model to privilege fluency over factual accuracy, resulting in the well-documented phenomenon
of hallucination [21, 13]. Finally, because decisions are made token-by-token, the model lacks an
explicit global plan and therefore struggles to maintain long-range logical or narrative coherence
[44].

In stark contrast, computer vision has been reshaped by diffusion models [12, 27], particularly by la-
tent diffusion [33, 5, 4], which first compresses a high-resolution image or video into a compact latent
representation and then performs the diffusion process in that space. Operating in a low-dimensional
latent manifold reduces computational cost by orders of magnitude and enables breathtaking advances
in image and video synthesis. Yet recent works [14, 37] also show that diffusion is highly sensitive to
the geometry of the latent space: poorly designed latent representations can destabilize training and
degrade sample quality, underscoring the need for principled mechanisms to construct diffusable1

representations.

Motivated by these insights, we revisit the foundations of text representation. We hypothesize that
the token-level encoding used in contemporary language models is heavily overparameterized for the
purpose of sequence generation. Building on the successes of latent diffusion in vision, we pose the
following question: How far can we compress textual information into a compact latent space while
still matching or even exceeding the generative fidelity of conventional token-level representations?

To answer this question, we develop an autoencoder that maps text into a lower-dimensional space
and then train a diffusion model directly in that space. We show empirically that naively minimizing
token-reconstruction loss yields a brittle latent geometry that hampers diffusion, whereas introducing
robustness- and smoothness-oriented objectives produces a well-behaved manifold conducive to
high-quality diffusion synthesis. Our experiments demonstrate that with the right training regime,
latent diffusion not only rivals but in several settings surpasses traditional token-level baselines.

These findings challenge the prevailing assumption that token-level autoregression is indispensable
for language generation and position latent-space diffusion as a powerful alternative paradigm for
future large-scale language models. Our key contributions are as follows:

• We propose COSMOS — a training recipe for a COmpressed and SMOoth latent Space, that allows
to train a diffusion model in more compact latent space while matching the quality of token-level
diffusion baselines.

• We demonstrate that modestly scaling the number of latent vectors enables latent-space diffusion to
surpass both token-level diffusion and autoregressive models on an unconditional text generation
task.

• On standard text-generation benchmarks, the proposed latent diffusion achieves up to 2× faster
sampling than conventional token-level diffusion models, while matching or slightly exceeding
them in quality and diversity.

2 Related work

Early efforts to bring latent diffusion models into natural language generation treat the diffusion
module mainly as a pre-processor that supplies conditioning vectors for an autoregressive decoder.
LD4LG [19] trains a diffusion model on compressed hidden states from BART, then feeds the
generated latent vectors into the BART decoder to produce text. PLANNER [47] adopts a similar
two-stage recipe: a fine-tuned BERT encoder produces a 16-token variational latent code, a diffusion
model refines that code, and a GPT-2 decoder generates text from this code. While both systems
improve controllability, their heavy reliance on powerful autoregressive decoders makes it difficult to
isolate and evaluate the intrinsic generative capacity of the latent-space diffusion itself.

A complementary line of work applies diffusion directly to the continuous embeddings of pretrained
encoders. TEncDM [36] demonstrates that full-length BERT representations can be modeled with
Gaussian diffusion and decoded into coherent text without an intermediate autoregressive step.
Crucially, however, TEncDM retains the original sequence dimensionality, leaving open a question:
How aggressively can such representations be compressed before generation quality collapses?

Our study closes this gap. We devise a training procedure that shrinks BERT-level representations by
up to 8× while preserving, and in some cases enhancing, their suitability for latent-space diffusion.

1Diffusable representations refer to latent spaces that permit effective modeling by a diffusion process.

2

Our study builds upon the approaches reviewed here. For additional context and a discussion of
related topics please see Appendix B.

3 Preliminary

Diffusion models [12, 27] learn a data distribution by reversing a progressive noising process. Given
a clean sample z0 ∼ pdata, the forward dynamic corrupts the input with Gaussian noise whose
magnitude is controlled by a continuous time index t ∈ [0, 1]:

zt =
√
αt z0 +

√
1− αt ε, ε ∼ N (0, I), (1)

where the noise schedule αt is monotonically decreasing with α0 = 1 and α1 ≈ 0. A neural
denoiser zθ(zt, t) with learnable parameters θ is trained to invert this corruption by minimising the
denoising–score–matching objective

LDM = Ez0∼pdata, t∼U [0,1], ε∼N (0,I)

[∥∥z0 − zθ(zt, t)
∥∥2
2

]
. (2)

At inference time the model is applied iteratively from t = 1 to t = 0, gradually transforming pure
noise into a realistic sample.

3.1 Latent diffusion

Latent Diffusion Models (LDMs) [33, 4] improve both compute efficiency and quality by learning the
diffusion process in a compact latent space rather than in pixel or token space. An autoencoder with en-
coder E and decoder D is first trained to achieve high-fidelity reconstruction, ŵ = D

(
E(w)

)
≈ w,

where z = E(w) denotes the low-dimensional latent. Eqs. (1)–(2) yield a diffusion model trained in
latent space whose network can be shallower, and faster than a counterpart operating in the original
space, yet still achieves comparable perceptual quality after decoding D(z).

In the remainder of the paper we adopt this framework for textual data: we compress contextualised
text representations into the latent space, and train a diffusion model that operates within this space.

4 Methodology

4.1 Overview

Frozen text encoder. We initialise the pipeline with a pretrained contextual encoder Etext (BERT-
base [7] by default) that remains frozen during all subsequent training stages. For an input sequence of
L tokens w = (w1, . . . , wL), the encoder produces a matrix of hidden states h = Etext(w) ∈ RL×d,
where d = 768. Each row supplies a semantically rich representation of its corresponding token [38].
These representations provide a high-fidelity starting point for the compression stage.

Compressor. To distill the variable-length hidden states into a compact set of latents, we employ a
Perceiver Resampler architecture [1]. It is a 12-layer transformer [39] in which every block replaces
self-attention with cross-attention. Concretely, let u ∈ RN×d be a set of learnable vectors initialized
randomly and kept at a fixed length N≪L. In each block, these vectors act as queries (Q = uWQ),
while keys and values are formed by projecting a concatenation of u with the text encoder outputs
(K,V = [u;h]WK,V). Cross-attention therefore allows every vector ui gather information from the
entire sequence of hidden states and from other vectors u, gradually refining u into a semantically
organized compressed representation. After the final block we obtain a fixed-length latent matrix
z ∈ RN×d, which composes latent space for the diffusion process. For better interpretability of
results we compress only along the sequence axis. Altering the embedding dimension d would require
architectural changes in the diffusion network itself, conflating encoder effects with diffusion capacity
and obscuring the variables we aim to isolate.

Latent normalization. Before starting the Gaussian diffusion process, we estimate global mean
and standard deviation (µ,σ) ∈ RN×d on a held-out corpus, and normalize each latent feature so that
it has zero mean and unit variance, z← (z− µ)/σ. This step allows us to run variance-preserving
diffusion process.

3

Figure 1: Overview of our training pipeline. A frozen BERT encoder extracts features, which are
augmented before compression. A lightweight compressor–decompressor pair is trained with both
token reconstruction (CE) and MSE objectives to produce compact and perturbation-resilient latent
representations.

Latent diffusion model. We train a Gaussian diffusion model is space formed by z, following
Eqs. (1)–(2). Because N is small, the diffusion model runs faster in this space.

Decompressor. Decompressor mirrors compressor in terms of architecture. It expands the fixed-
length latent back to a sequence of L vectors ĥ ∈ RL×d, capped at Lmax = 512 by default.

Token predictor. Finally, a linear projection followed by softmax converts each vector in ĥ into a
probability distribution over the vocabulary, yielding the generated text.

In our work, we refer to the combination of the text encoder and compressor as the encoder, while
the decompressor together with the token predictor constitutes the decoder.

4.2 Learning a compact text latent space

The previous Section 4.1 outlined our end-to-end pipeline: a frozen contextual encoder supplies token
representations, a compressor distils them into a fixed-length latent matrix, and a diffusion model
operates solely in this latent space. We now zoom in on the compression and decompression stages.

4.2.1 How compact can text latents be?

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of Latent Vectors (N)

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy 32× lossless

 text compression

Figure 2: Token-level reconstruc-
tion accuracy on WIKIPEDIA (512
tokens) as a function of N .

Figure 2 reports token-level reconstruction accuracy on
WIKIPEDIA dataset as a function of the latent sequence
length N . The compressor outlined in §4.1 is trained using a
token-level cross-entropy objective. Remarkably, a lightweight
compressor equipped with only 12 transformer blocks is able
to encode 512-token sequences into only N = 16 latents with
100% reconstruction accuracy, achieving a 32× compression
relative to initial 512 hidden states produced by BERT.

These results paint an encouraging picture: if such a compact
latent manifold can be modeled generatively, text generation
could proceed in a space whose dimensionality is much smaller
than that of the original token embeddings, promising dramatic
speed-ups. However, as we show further, high reconstruction accuracy by itself does not imply that
the latent manifold is suitable for generative modeling.

4.2.2 Learning robust compact text representations

The reconstruction study (§4.2.1) reveals that aggressive text compression can be loss-free. However,
for a robust diffusion generation compressed space should satisfy additional requirements. Empiri-
cally, we observe that if the latent manifold lacks smoothness and robustness (Section 5), a Gaussian
diffusion model fails to sample latents that yield high-quality texts. To improve diffusability of

4

the latent space, we employ three complementary strategies to the autoencoder training. Figure 1
provides an overview of the proposed approach.

MSE regularisation on encoder activations. Alongside the cross-entropy loss between the original
tokens and their reconstructions, we add a mean-squared error penalty between the frozen text encoder
outputs h and their reconstructions ĥ. This auxiliary objective forces the compressor to preserve the
semantics carried by the contextual representations h.

Activation-space perturbations. In order to teach compressor to extract additional features from h
instead of just preserving its semantics, we apply perturb-and-recover training procedure. Concretely,
we sample an augmented view h′, pass it through the compressor–decompressor pipeline to obtain
a reconstructed representation ĥ′, and minimise MSE(h, ĥ′), forcing both compressor and decom-
pressor to remain invariant to the perturbation. Two perturbations are applied with equal probability
within every batch:

(a) Random masking: 30% of the vectors of h are set to zero, and
(b) Gaussian noise: after normalising h with the pre-computed statistics, we inject noise via

h′ = δ h+
√
1− δ2 ε with δ = 0.7 and ε ∼ N (0, I).

These augmentations force the autoencoder to tolerate partial information loss and promote smooth
interpolation between adjacent latents (see Section 5.1).

Latent-space augmentation. We also apply augmentation directly to the latent matrix z. Since the
number of latent vectors N can be an order of magnitude smaller than the token count L, masking
whole latent vectors would annihilate too much information. Instead, during training we randomly
zero out a fixed proportion p of the individual features inside each latent vector. This fine-grained
sparsification encourages neighbouring features within every latent vector to store redundant cues
about one another, so that the representation remains intelligible even when a subset of features is
excised, thereby making the manifold more robust to small latent perturbations..

5 Latent-space properties that facilitate diffusion training

This section embarks on an exploration of the text-latent manifold, asking which of its intrinsic
features govern the performance of a diffusion model. All experiments reported here employ
autoencoders that compress 128-token texts into 16 latent vectors. The autoencoders are trained on
the WIKIPEDIA dataset, whereas the diffusion models are optimised on the smaller yet high-quality
ROCSTORIES [23] dataset. Across all experiments, we generate 1 000 samples and report each
metric as the average over these samples. Our experiments spotlight two indispensable qualities —
manifold smoothness and resilience to perturbations. The remainder of the section introduces an
analysis that quantifies both attributes.

5.1 Smoothness of the latent manifold

Once the autoencoder has been trained, each text w corresponds to a set of latent vectors z that can
be decoded back into the original text, w = D(z). Nonetheless, the latent space is far from fully
charted: broad regions contain vectors to which no text has ever been assigned, leaving the behaviour
of the data density there unknown. Because our diffusion model captures the distribution of texts
via the distribution of these latents, yet observes only a finite subset during training, its ability to
generalize depends critically on how smoothly that density varies across the manifold. Put differently,
the degree to which a locally estimated score function extends to unexplored territory is dictated by
manifold smoothness. Inspired by PLANNER [47], we investigate this property by conducting the
following experiment, which simultaneously evaluates performance at points the model does not
encounter during training.

1. Select two random texts from the training corpus and encode them as latent vectors
z(1), z(2) ∈ RN×d.

2. Form a linear interpolation of the endpoints zµ = µ z(1) + (1 − µ) z(2), where µ ∈ [0, 1] and
mid–range µ values steer zµ into regions unseen during training.

5

3. Apply diffusion noise (Equation (1)) to get zµt at different time steps t to measure how unseen
regions influence diffusion at different noise levels.

4. Predict a clean latent ẑ0 from zµt and decode into text ŵ.
5. Evaluate text plausibility with GPT–2 perplexity (PPL), averaged over 1 000 random endpoint

pairs.

0 0.3 0.4 0.5 0.6 0.7 1
0

200

400

PP
L

Time
0.0
0.1
0.2
0.3

CE Baseline
Cosmos

Figure 3: PPL of texts decoded from an
interpolation of two latents for COSMOS
and CE baseline.

By analysing how perplexity (PPL) evolves with the in-
terpolation coefficient µ and the diffusion timestep t, we
obtain a fine-grained picture of manifold smoothness and
model robustness far beyond the training support. Figure 3
shows that autoencoder trained only with cross-entropy
(CE) loss and our robustness-oriented alternative behave
identically when µ→ 0 or µ→ 1, confirming that both
models successfully reconstruct train-time input latents.
As we move away from the endpoints, perplexity rises for
both encoders, but it escalates far more rapidly for the CE
baseline — clear evidence that the latent manifold learned
by our autoencoder is markedly smoother.

5.2 Reducing the train–inference mismatch

We empirically observe that when a Gaussian diffusion model is trained in the text latent space, a
persistent train–inference mismatch often emerges: the latent vector ẑ produced at sampling time can
differ markedly from the latent vector the encoder would assign to its own decoded text, E

(
D(ẑ)

)
̸= ẑ.

This gap has two undesirable effects. First, the decoder becomes unreliable because it must interpret
latent vectors contaminated by the diffusion model. Second, the diffusion model repeatedly feeds
itself inputs it never saw during training, compounding errors over time. To enable high-quality
text generation under this mismatch, both the decoder and the diffusion model must be robust to
perturbations in the latent space. In the following sections, we demonstrate through experiments
how our training strategy (§4.2.2) fosters such robustness, effectively decreasing train–inference
mismatch.

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

BL
EU

CE(w, w)
+ MSE(h, h)
+ Activation aug.
+ Latent aug.

Figure 4: Decoder robustness to latent
noising with sequential addition of train-
ing modifications.

Decoder robustness. To assess how well the decoder
tolerates perturbations, we inject Gaussian noise into latent
vectors of real texts: znoised = z+σ ε, where ε ∼ N (0, I),
decode the perturbed vector to obtain ŵ, and measure its
BLEU score against the original text w. Figure 4 shows
that two components contribute most to decoder stabil-
ity: (i) an explicit MSE loss on the decompressor’s output
(§4.2.2), which prevents the final-layer norm from explod-
ing, a common effect observed when training solely with
cross-entropy loss [8], and (ii) latent masking (§4.2.2),
which forces the compressor to distribute information
more evenly among latent features and remain resilient to
partial dropout. Notably, the decoder supplemented with
described train-time modifications can reconstruct text almost perfectly even under substantial noise
(σ = 1).

0.10 0.15 0.20 0.25 0.30 0.35 0.40
t

10 4

10 3

10 2

M
SE

0.05
0.1
0.2
0.5

CE Baseline
Cosmos

Figure 5: Evaluating diffusion model ro-
bustness under mid-trajectory noise in-
jection.

Diffusion robustness during generation. Next, we test
the diffusion model’s sensitivity to small perturbations
introduced mid-trajectory. For a late generation step t,
chosen from the second half of the reverse process, where
latent representations are already semantically meaningful,
we add Gaussian noise with magnitude ν and continue
sampling. The deviation from the original trajectory is
quantified by the MSE between the final estimates, ∥ẑ−
ẑshifted∥22.

As illustrated in Figure 5, the diffusion model trained in
our latent space is visibly more stable.

6

Table 1: Train–inference mismatch for
different autoencoder objectives.

Configuration MSE
(
ẑ, E(D(ẑ))

)
CE(w, ŵ) 0.721

+ MSE(h, ĥ) 0.619
+ Activation aug. 0.582
+ Latent aug. 0.499

Direct mismatch measurement. Table 1 tracks the
train–inference mismatch, quantified as the MSE between
ẑ and E

(
D(ẑ)

)
. Each proposed refinement tightens the

gap. The consistent drop in error confirms that the en-
hanced training procedure makes the autoencoder more
resilient to diffusion perturbations. Together, these re-
sults demonstrate that our training recipe simultaneously
strengthens the decoder and the diffusion model, thereby
shrinking the train–inference gap.

6 Empirical study of latent representations for diffusion modeling

This section investigates how the design of autoencoder training strategies and the degree of latent
space compression influence the quality of text generation via diffusion.

6.1 Empirical analysis of autoencoder training regimes

In this part of our study we assess the contribution of each proposed latent space augmentation to
the final quality of the diffusion model. For the ablation study, we compress text from 128 BERT
representations down to 16 latent vectors. All autoencoders are trained on the WIKIPEDIA dataset,
while the diffusion models are trained on the ROCSTORIES [23] dataset.

Table 2: Comparison of autoencoder training
regimes on text generation quality. Features are
added cumulatively from top to bottom. The gray-
highlighted row indicates the selected configura-
tion used in the final model.

Configuration MAUVE ↑ PPL ↓ Div ↑
CE(w, ŵ) 0.294.036 71.5.9 0.298.001

+ MSE(h, ĥ) 0.464.024 57.1.7 0.344.002

+ Random masking (rate)
0.1 0.465.029 54.5.4 0.356.003
0.2 0.565.023 50.5.5 0.342.001
0.3 0.586.015 42.8.7 0.335.003
0.4 0.514.011 46.4.3 0.344.002
0.5 0.461.025 51.8.7 0.362.005

+ Gaussian noising (δ)
0.5 0.679.01 36.8.3 0.310.003
0.6 0.724.015 35.6.7 0.324.004
0.7 0.767.011 33.6.3 0.328.002
0.8 0.725.018 36.4.7 0.333.002
0.9 0.664.023 44.3.8 0.294.003

+ Latent dropout (rate)
0.1 0.771.014 33.9.7 0.325.004
0.2 0.781.029 32.6.8 0.322.004
0.3 0.812.012 31.9.5 0.328.003
0.4 0.836.009 30.2.5 0.322.004
0.5 0.724.012 34.8.4 0.320.002

Evaluation metrics. We evaluate the uncon-
ditional generation capacity of models with
three complementary metrics that, together, cap-
ture textual quality, lexical diversity, and dis-
tributional fidelity. First, we report perplex-
ity (PPL), computed with GPT-2 LARGE [30].
Second, we quantify diversity using the score
div(y) =

∏4
n=2

unique n-grams in y
#n-grams in y , where y de-

notes the set of generated texts. Their, to ensure
that the model does not reproduce the training
dataset during the generation we evaluate the
Memorization (MEM). Finally, because low per-
plexity can be achieved by simple or repetitive
texts, we also compute the MAUVE score [28],
which measures the distributional alignment be-
tween generated and reference texts and thus of-
fers a broader view of generation quality. For ev-
ery model we generate 1,000 samples and, when
calculating MAUVE, draw an equally sized ref-
erence subset from the held-out test split. The
entire evaluation procedure is repeated ten times
with different random seeds, and we report the
mean and standard deviation of the resulting
scores across runs.

Results. Table 2 demonstrates that each pro-
posed feature contributes significantly to the
model performance. Remarkably, adding MSE
penalty between the predicted and reference
BERT activations alone boosts all quality met-
rics by about 50%. Subsequent augmentation
of the BERT activations yields a further leap, underscoring the value of intermediate contextual,
semantically grounded representations. This stage rises MAUVE to 0.767, already achieving the
performance obtained when the diffusion model is trained on the full-length, uncompressed BERT
representations (0.767 vs. 0.762 for TEncDM [36]). Finally, dropping random features from la-

7

tent vectors pushes MAUVE beyond 0.83, lowers perplexity to 30.2, keeping diversity essentially
unchanged.

These results provide a clear answer to the question posed in the introduction of this study: text repre-
sentations can indeed be mapped into a more compact latent space, where a trained diffusion model
performs comparably to traditional token-level counterparts without sacrificing the text generation
quality. For all subsequent autoencoders we lock in the configuration highlighted in Table 2: the MSE
penalty is kept, the random-masking rate is fixed at 0.3, Gaussian noising is applied with δ = 0.7,
and latent masking rate is set to 0.4.

Additionally, we explore the use of a variational prior in the latent space and observe that it offers no
clear advantage. A thorough analysis is provided in Appendix D.1.

6.2 Impact of scaling the number of latent vectors

2 4 8 16 32 64 128
Number of Latent Vectors (N)

0.0

0.2

0.4

0.6

0.8

1.0

M
AU

VE

BERT Representations

CE Baseline
Cosmos

Figure 6: Impact of scaling N on diffu-
sion generation quality.

In this section, we examine how diffusion generation qual-
ity varies when varying the number of latent vectors N .
We keep the training pipeline fixed according to the hy-
perparameters detailed in Section 6.1. We do not modify
the embedding dimension d, because it would necessitate
architectural modifications to the diffusion model, making
it difficult to isolate the impact of latent space diffusability
from changes in model capacity and structure.

Figure 6 compares baseline cross-entropy compressor to
the robustness-oriented compressor introduced in Sec-
tion 4.2.2. We observe that for CE compressor decrease
of N leads to a rapid degradation in quality. In contrast, the proposed autoencoder maintains high
generation quality even under substantial compression. It achieves an 8× reduction in latent sequence
length while surpassing the quality of uncompressed representations.

Table 3: Impact of scaling the number of latent
vectors N on unconditional generation quality.

N MAUVE ↑ PPL ↓ Div ↑
Source 0.953 21.7 0.403

BERT repr. 0.762.043 29.1.9 0.295.002

2 0.172.018 109.5.9 0.344.004
4 0.197.016 70.1.8 0.354.003
8 0.403.007 51.9.7 0.327.002
16 0.836.009 30.2.5 0.322.004
32 0.901.008 27.3.4 0.346.004
64 0.923.009 26.7.2 0.347.003
128 0.940.011 26.3.4 0.346.004

Table 3 provides further insights by comparing
generation quality across different numbers of la-
tent vectors N . Although configuration N = 16
matches the quality of BERT representations
baseline, we observe a notable quality gap com-
pared to the configuration with N=128: the
MAUVE score decreases from 0.940 to 0.836,
while perplexity increases from 26.3 to 30.2.
However, adopting a less aggressive compres-
sion to N=32 (a 4× compression) results in
only minor quality degradation, still signifi-
cantly outperforming the baseline. Based on
these observations, together with results from
Section 7, we recommend limiting latent com-
pression to approximately 4× to optimally bal-
ance quality and computational efficiency.

7 Comparison across generative paradigms

We evaluate the performance of COSMOS on four distinct text generation tasks: unconditional story
generation (ROCStories [23]), text summarization (XSum [25]), detoxification (ParaDetox [17]),
and question generation (SQuAD2.0 [22]). For unconditional story generation we employ metrics
discussed in Section 6.1. For text summarization and question generation, we report BERTScore
(BS) [46]. The detoxification task is evaluated using BLEU-4 (BLEU). We further assess models’
efficiency by comparing inference time for unconditional generation on sequences with 128 and 512
tokens. Additional metrics and implementation details are provided in the Appendix D.2.

Baselines. We benchmark our proposed method against a diverse set of generative paradigms. These
include Gaussian diffusion on embeddings (DiffuSeq [10], SeqDiffuSeq [45], AR-Diffusion [43]),

8

Table 4: Comparison with autoregressive and diffusion baselines across four generative tasks. Infer-
ence time (in seconds) is reported for sequence lengths of 128 and 512 tokens. The best-performing
scores are shown in bold, while the second-best scores are underlined.

ROCStories XSum ParaDetox SQuAD2.0 Time (s)

Method MAUVE ↑ PPL ↓ Div ↑ Mem ↓ BS ↑ BLEU ↑ BS ↑ L = 128 L = 512

Source text 0.953 21.7 0.403 0.365 — — — — —

GPT2 0.789 20.5 0.252 0.455 0.690 0.677 0.680 1.2.1 42.8.1
GPT Neo 0.720 19.9 0.258 0.469 0.621 0.610 0.665 2.6.1 45.2.2

AR-Diffusion 0.066 41.8 0.101 0.540 0.568 0.647 0.569 226.4.2 6022.1
DiffuSeq 0.086 50.5 0.124 0.516 0.588 0.679 0.563 215.91.2 1565.7
SeqDiffuSeq 0.103 29.3 0.137 0.663 0.617 0.688 0.574 100.5 601.5
TESS 0.061 22.4 0.163 0.550 0.627 0.693 0.667 1441.2 5984.0
SEDD 0.598 70.8 0.336 0.325 0.576 0.666 0.443 15.01.1 60.31.0
LD4LG 0.716 30.6 0.331 0.432 0.702 0.708 0.641 27.9.5 102.2
TEncDM 0.762 29.1 0.295 0.438 0.699 0.619 0.703 29.6.1 180.3

COSMOSN=16 0.836 30.2 0.322 0.394 — 0.654 — 5.8.1 —
COSMOSN=128 0.940 26.3 0.346 0.383 0.704 0.694 0.708 35.1.1 36.6.1

simplex-based diffusion (TESS [20]), masked diffusion (SEDD [18]), alternative latent diffusion
baselines (LD4LG [19], TEncDM [36]), and autoregressive models (GPT-2 [30] and GPT-Neo [3]).
All models operate within a comparable parameter scale, ranging from approximately 100M to 200M.
To ensure fairness, all baselines were faithfully reimplemented and trained on generative tasks using
training protocols closely aligned with those described by their original authors.

Autoencoder setup across tasks. To perform latent-space diffusion, we begin by training au-
toencoders on WIKIPEDIA dataset, varying the input sequence length. For tasks with relatively
short input, such as unconditional story generation and text detoxification, we design two variants
of the autoencoder that map 128-token input into either 16 or 128 latent vectors, resulting in the
COSMOSN = 16 and COSMOSN = 128 configurations, respectively. In contrast, conditional generation
tasks such as summarization and question generation require substantially longer input contexts. For
these settings, we employ a third autoencoder configured to compress 512-token sequences into 128
latent vectors. Accordingly, we do not report results for long-context tasks for COSMOSN = 16, as
sych aggressive compression fails to yield plausible outputs in these long-context scenarios. We adopt
N=128 (4× compression) for long-context tasks as it strikes a favorable balance between generation
quality and computational efficiency, as demonstrated in the scaling analysis in Section 6.2.

Results. As shown in Table 9, COSMOSN = 16 achieves strong performance relative to its closest
latent diffusion baseline, TEncDM. It consistently outperforms TEncDM across most evaluation
metrics, with the exception of unconditional perplexity, while offering significantly faster generation.
Scaling up to a bigger latent representation, COSMOSN = 128 further advances generation quality. On
ROCStories, it achieves a MAUVE score of 0.940, closely approaching the human reference score of
0.953, and substantially outperforming the best autoregressive baseline (GPT2), which reaches only
0.789. Although COSMOSN = 128 lags behind GPT2 in perplexity, this gap reflects an evaluation
bias: perplexity inherently favors autoregressive models, particularly when assessed using the same
decoding objective they were trained on.

In generation tasks that involve longer input contexts, COSMOSN = 128 consistently matches or
slightly exceeds the performance of both diffusion-based and autoregressive baselines, while sub-
stantially reducing inference time. This efficiency stems from a core advantage of latent diffusion:
unlike autoregressive decoding, where inference time grows linearly with sequence length, diffusion
models operate with a fixed number of sampling steps. Although this cost is less favorable for short
sequences, the benefits become increasingly pronounced as input length grows. This favorable scaling
behavior makes latent diffusion as a promising direction for future research.

9

8 Experiments on OpenWebText

In this section, we present an empirical evaluation of our proposed method on the large-scale
OpenWebText (OWT) [9] dataset.

8.1 Impact of Diffusion Model Depth

Table 5: Scaling results on OpenWebText for 128-token
generation. Increasing the number of layers in the dif-
fusion model transformer improves generation quality
and diversity. Best results in bold.

Model Size MAUVE ↑ PPL ↓ Div ↑ Mem ↓
0.12 B 0.849 97.6 0.492 0.135
0.25 B 0.914 91.2 0.546 0.124
0.5 B 0.923 89.7 0.554 0.125

We train three diffusion models with vary-
ing depths of 12, 24, and 48 layers, which
correspond to approximately 0.12B, 0.25B,
and 0.5B parameters, respectively. For
these experiments, the autoencoder and la-
tent space configuration are held constant.
We selected our best-performing autoen-
coder from preliminary experiments, which
utilizes the largest latent space of 128 vec-
tors for 128-token sequences.

The results presented in Table 5 clearly indicate a positive scaling trend. As the number of layers in
the diffusion model increases, both generation quality and diversity improve. This demonstrates that
increasing the capacity of the diffusion component is an effective strategy for enhancing performance,
even when the autoencoder’s architecture remains fixed.

8.2 Comparison on Long-Sequence Generation

Table 6: Comparison with the GIDD masked diffusion
model on OpenWebText for 512-token generation. Our
model (COSMOSN=512) shows significantly better qual-
ity and coherence.

Model MAUVE ↑ PPL ↓ Div ↑ Mem ↓
Source text 0.968 23.2 0.465 0.036
GIDD 0.286 228.3 0.588 0.112
TEncDM 0.228 118.6 0.324 0.102
COSMOSN=256 0.263 84.3 0.368 0.156
COSMOSN=512 0.702 55.0 0.319 0.180

We further assess our model’s capabilities
on the challenging task of generating 512-
token sequences. We compare our model,
COSMOS, in two configurations: without
compression (N = 512 latent vectors) and
with 2x compression (N = 256). These
are benchmarked against TEncDM [36], a
latent diffusion baseline, and GIDD [40],
a strong discrete diffusion model. The re-
sults, presented in Table 6, offer several
key insights into the advantages of our ap-
proach.

First, our primary model, COSMOSN=512, demonstrates a significant performance gap over the
discrete diffusion paradigm. It outperforms GIDD by a large margin, achieving a MAUVE score that
is nearly three times higher (0.792 vs. 0.286) and a perplexity that is almost four times lower (55.0 vs.
228.3), indicating superior text quality and coherence.

Second, the results confirm the expected trade-off between compression and generation fidelity.
While our compressed model, COSMOSN=256, shows a degradation in performance compared to
its uncompressed counterpart, it still outperforms TEncDM, a baseline that works with full-length,
uncompressed textual representations. This result powerfully highlights the efficiency of our latent
diffusion framework for text generation.

9 Conclusion

In this paper, we present COSMOS, a novel approach to text generation that shifts the focus from
high-dimensional token-level representations to a compact latent space tailored for diffusion modeling.
By learning a compressed and smooth latent representation through carefully designed autoencoder
objectives, COSMOS enables high-quality generation while reducing inference time. Our empirical
results show that, COSMOS matches or outperforms traditional token-level diffusion and autoregres-
sive baselines across diverse tasks. Our findings challenge the dominance of token-level models and
highlight latent diffusion as a promising direction for building fast, high-quality language models.

10

Acknowledgements

The work was supported by the grant for research centers in the field of AI provided by the
Ministry of Economic Development of the Russian Federation in accordance with the agreement
000000C313925P4E0002 and the agreement with HSE University № 139-15-2025-009. This research
was supported in part through computational resources of HPC facilities at HSE University.

References
[1] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,

M. Reynolds, R. Ring, E. Rutherford, S. Cabi, T. Han, Z. Gong, S. Samangooei, M. Monteiro,
J. Menick, S. Borgeaud, A. Brock, A. Nematzadeh, S. Sharifzadeh, M. Binkowski, R. Barreira,
O. Vinyals, A. Zisserman, and K. Simonyan. Flamingo: a visual language model for few-shot
learning, 2022.

[2] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence predic-
tion with recurrent neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2015.

[3] S. Black, L. Gao, P. Wang, C. Leahy, and S. Biderman. GPT-Neo: Large Scale Autoregressive
Language Modeling with Mesh-Tensorflow, Mar. 2021.

[4] A. Blattmann et al. Align your latents: High-resolution video synthesis with latent diffusion
models. 2023.

[5] A. Blattmann et al. Stable video diffusion: Scaling latent video diffusion models to large
datasets. 2023.

[6] T. B. Brown, B. Mann, N. Ryder, and et al. Language models are few-shot learners. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 conference of the North
American chapter of the association for computational linguistics: human language technolo-
gies, volume 1 (long and short papers), pages 4171–4186, 2019.

[8] T. Gao, X. Yao, and D. Chen. Simcse: Simple contrastive learning of sentence embeddings.
arXiv preprint arXiv:2104.08821, 2021.

[9] A. Gokaslan and V. Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

[10] S. Gong, M. Li, J. Feng, Z. Wu, and L. Kong. Diffuseq: Sequence to sequence text generation
with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

[11] T. He, J. Zhang, Z. Zhou, and J. Glass. Exposure bias versus self-recovery: Are distortions
really incremental for autoregressive text generation? arXiv preprint arXiv:1905.10617, 2019.

[12] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[13] Z. Ji, G. Wang, B. Wang, and et al. Survey of hallucination in natural language generation.
ACM Computing Surveys, 2023. to appear.

[14] T. Kouzelis, I. Kakogeorgiou, S. Gidaris, and N. Komodakis. Eq-vae: Equivariance regularized
latent space for improved generative image modeling. arXiv preprint arXiv:2502.09509, 2025.

[15] H. Laurençon, L. Saulnier, T. Wang, C. Akiki, A. Villanova del Moral, T. Le Scao, L. Von Werra,
C. Mou, E. González Ponferrada, H. Nguyen, et al. The bigscience roots corpus: A 1.6 tb
composite multilingual dataset. Advances in Neural Information Processing Systems, 35:31809–
31826, 2022.

[16] C.-Y. Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pages 74–81, 2004.

11

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

[17] V. Logacheva, D. Dementieva, S. Ustyantsev, D. Moskovskiy, D. Dale, I. Krotova, N. Semenov,
and A. Panchenko. ParaDetox: Detoxification with parallel data. In S. Muresan, P. Nakov,
and A. Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 6804–6818, Dublin, Ireland, May
2022. Association for Computational Linguistics.

[18] A. Lou, C. Meng, and S. Ermon. Discrete diffusion modeling by estimating the ratios of the
data distribution. arXiv preprint arXiv:2310.16834, 2023.

[19] J. Lovelace, V. Kishore, C. Wan, E. Shekhtman, and K. Q. Weinberger. Latent diffusion for
language generation. Advances in Neural Information Processing Systems, 36:56998–57025,
2023.

[20] R. K. Mahabadi, H. Ivison, J. Tae, J. Henderson, I. Beltagy, M. E. Peters, and A. Cohan. Tess:
Text-to-text self-conditioned simplex diffusion. arXiv preprint arXiv:2305.08379, 2023.

[21] J. Maynez, S. Narayan, B. Bohnet, and R. McDonald. On faithfulness and factuality in
abstractive summarization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 1906–1919, 2020.

[22] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao. Deep learning–
based text classification: a comprehensive review. ACM computing surveys (CSUR), 54(3):1–40,
2021.

[23] N. Mostafazadeh, N. Chambers, X. He, D. Parikh, D. Batra, L. Vanderwende, P. Kohli, and
J. Allen. A corpus and cloze evaluation for deeper understanding of commonsense stories. In
Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 839–849, 2016.

[24] N. Mostafazadeh, N. Chambers, X. He, D. Parikh, D. Batra, L. Vanderwende, P. Kohli, and
J. Allen. A corpus and cloze evaluation for deeper understanding of commonsense stories. In
K. Knight, A. Nenkova, and O. Rambow, editors, Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 839–849, San Diego, California, June 2016. Association for Computational
Linguistics.

[25] S. Narayan, S. B. Cohen, and M. Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

[26] S. Narayan, S. B. Cohen, and M. Lapata. Don’t give me the details, just the summary! Topic-
aware convolutional neural networks for extreme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018.

[27] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Interna-
tional Conference on Machine Learning (ICML), 2021.

[28] K. Pillutla, S. Swayamdipta, R. Zellers, J. Thickstun, S. Welleck, Y. Choi, and Z. Harchaoui.
Mauve: Measuring the gap between neural text and human text using divergence frontiers.
Advances in Neural Information Processing Systems, 34:4816–4828, 2021.

[29] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

[30] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[31] P. Rajpurkar, R. Jia, and P. Liang. Know what you don‘t know: Unanswerable questions
for SQuAD. In I. Gurevych and Y. Miyao, editors, Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia, July 2018. Association for Computational Linguistics.

[32] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence level training with recurrent neural
networks. In International Conference on Learning Representations (ICLR), 2016.

12

[33] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image
synthesis with latent diffusion models. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

[34] S. S. Sahoo, M. Arriola, A. Gokaslan, E. M. Marroquin, A. M. Rush, Y. Schiff, J. T. Chiu, and
V. Kuleshov. Simple and effective masked diffusion language models. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

[35] Y. Schiff, S. S. Sahoo, H. Phung, G. Wang, S. Boshar, H. Dalla-torre, B. P. de Almeida, A. Rush,
T. Pierrot, and V. Kuleshov. Simple guidance mechanisms for discrete diffusion models. arXiv
preprint arXiv:2412.10193, 2024.

[36] A. Shabalin, V. Meshchaninov, E. Chimbulatov, V. Lapikov, R. Kim, G. Bartosh, D. Molchanov,
S. Markov, and D. Vetrov. Tencdm: Understanding the properties of the diffusion model in
the space of language model encodings. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pages 25110–25118, 2025.

[37] I. Skorokhodov, S. Girish, B. Hu, W. Menapace, Y. Li, R. Abdal, S. Tulyakov, and A. Siarohin.
Improving the diffusability of autoencoders. arXiv preprint arXiv:2502.14831, 2025.

[38] I. Tenney, D. Das, and E. Pavlick. BERT rediscovers the classical NLP pipeline. In A. Korhonen,
D. Traum, and L. Màrquez, editors, Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4593–4601, Florence, Italy, July 2019. Association for
Computational Linguistics.

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[40] D. von Rütte, J. Fluri, Y. Ding, A. Orvieto, B. Schölkopf, and T. Hofmann. Generalized
interpolating discrete diffusion. arXiv preprint arXiv:2503.04482, 2025.

[41] G. Wang, Y. Schiff, S. S. Sahoo, and V. Kuleshov. Remasking discrete diffusion models
with inference-time scaling. In ICLR 2025 Workshop on Deep Generative Model in Machine
Learning: Theory, Principle and Efficacy.

[42] R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural Computation, 1(2):270–280, 1989.

[43] T. Wu, Z. Fan, X. Liu, H.-T. Zheng, Y. Gong, J. Jiao, J. Li, J. Guo, N. Duan, W. Chen, et al. Ar-
diffusion: Auto-regressive diffusion model for text generation. Advances in Neural Information
Processing Systems, 36:39957–39974, 2023.

[44] J. Ye, J. Gao, S. Gong, L. Zheng, X. Jiang, Z. Li, and L. Kong. Beyond autoregression: Discrete
diffusion for complex reasoning and planning. arXiv preprint arXiv:2410.14157, 2024.

[45] H. Yuan, Z. Yuan, C. Tan, F. Huang, and S. Huang. Seqdiffuseq: Text diffusion with encoder-
decoder transformers. arXiv preprint arXiv:2212.10325, 2022.

[46] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. Bertscore: Evaluating text
generation with bert. arXiv preprint arXiv:1904.09675, 2019.

[47] Y. Zhang, J. Gu, Z. Wu, S. Zhai, J. Susskind, and N. Jaitly. Planner: Generating diversified
paragraph via latent language diffusion model. Advances in Neural Information Processing
Systems, 36:80178–80190, 2023.

13

Appendix

A Dataset descriptions . 15

B Additional Related Work . 15
B.1 Gaussian Diffusion on Embeddings . 15
B.2 Simplex-Based Diffusion . 15
B.3 Masked Diffusion . 15
B.4 Latent Diffusion . 16

C Implementation details . 16
C.1 Latent diffusion pipeline . 16
C.2 Training and inference configuration . 16
C.3 Inference time benchmarking configuration . 16

D Additional autoencoder training analysis . 16
D.1 Marginal utility of variational prior in text autoencoder 16
D.2 Additional details of comparison across generative paradigms 18

E Limitations . 18

F Societal Impact . 18

G Generation examples . 18

14

A Dataset descriptions

ROCStories This dataset [24] consists of five-sentence stories and serves as a well-established,
small-scale, unconditional benchmark in language diffusion research. It contains a total of 98,161
instances, of which 88,161 are used for training, 10,000 for validation.

Wikipedia For large-scale experiments, we use the English Wikipedia subset from the ROOTS
corpus [15]. The resulting dataset comprises 8.6 million sequences, with 50,000 held out for
validation.

XSum This dataset [26] is used for abstractive summarization and comprises 204,000 BBC news
articles paired with summaries covering diverse topics (e.g., sports, politics). It includes 204,045
training instances, 11,332 validation instances, and 11,334 test instances. We truncate input articles
to 512 tokens and limit reference summaries to 50 tokens.

SQuAD2.0 This question-answering dataset [31] requires identifying the text span that answers
a given question or indicating that no answer is possible from the provided context. For generative
modeling, we reverse the task: given a context and an answer, the model generates the corresponding
question. The dataset contains 130,319 training and 11,873 test instances. Contexts are truncated to
512 tokens.

ParaDetox For small-scale conditional generation experiments, we use the ParaDetox dataset [17],
which comprises 19,766 pairs of toxic and neutral comments. Both context and target sequences are
truncated to 40 tokens.

B Additional Related Work

In addition to the works discussed in the main paper, a significant body of research has explored
diffusion models for text generation. These can be broadly categorized as follows.

B.1 Gaussian Diffusion on Embeddings

One line of work focuses on applying Gaussian diffusion directly to word embeddings. Models
like DiffuSeq [10] and SeqDiffuSeq [45] are designed for sequence-to-sequence text generation
tasks. DiffuSeq employs a partial noising strategy and is trained end-to-end in a classifier-free
manner. SeqDiffuSeq utilizes an encoder-decoder Transformer architecture and incorporates self-
conditioning and an adaptive noise schedule to enhance performance. AR-Diffusion [43] integrates
autoregressive principles into the diffusion process to better capture the sequential dependencies in
language, allowing tokens on the right to depend on the generated tokens on the left. This is achieved
by using a dynamic number of denoising steps that varies with the token’s position.

B.2 Simplex-Based Diffusion

Another direction explores alternative spaces for the diffusion process. TESS [20], for instance,
applies a fully non-autoregressive diffusion process on the logit simplex space. This approach,
combined with a novel self-conditioning technique, demonstrates strong performance on various
natural language generation tasks while requiring fewer diffusion steps.

B.3 Masked Diffusion

Masked-token diffusion models adopt a BERT-style prediction objective with iterative unmasking,
enabling fast and parallel generation. For natural language, SEDD [18] established a connection
between score-based models and ELBO maximization, demonstrating the effectiveness of the ap-
proach. Subsequent work, such as simple absorbing-mask diffusion with a clean training recipe, has
successfully narrowed the perplexity gap to autoregressive language models and supports flexible
semi-autoregressive decoding [34]. The quality of generation is also significantly boosted by various
inference-time techniques. These include remasking for iterative correction [41], discrete guidance
for improved controllability [35], and hybrid methods that expand self-correction capabilities [40].

15

B.4 Latent Diffusion

In the realm of latent diffusion, several alternative baseline models have been proposed. LD4LG [19]
learns a continuous diffusion model in the latent space of a pretrained encoder-decoder model. This
method samples continuous latent representations which are then decoded into natural language,
proving effective for both unconditional and conditional text generation. Similarly, PLANNER [47]
adopts a two-stage recipe where a fine-tuned BERT encoder produces a variational latent code,
which is then refined by a diffusion model before being translated into text by a GPT-2 decoder.
TEncDM [36], on the other hand, operates in the space of pretrained language model encodings,
which, unlike embeddings, integrate contextual information.

C Implementation details

C.1 Latent diffusion pipeline

With a diffusable latent manifold in hand (§4.2.2), we now describe the diffusion model that operates
entirely within this space. Our setup follows Eq. (2): we train a denoiser that receives a noisy latent
zt at diffusion time t∈ [0, 1] and predicts the corresponding clean latent z0. The loss is the simple
mean-squared error ∥z0 − zθ(zt, t)∥22, where zθ shares parameters across all time-steps. In line with
earlier work [19, 36], we employ self-conditioning: on 50% of training updates the model is fed
its own previous estimate of z0 as an additional input. This iterative refinement enables the model,
at inference time, to reuse its past predictions, producing markedly crisper and more coherent text.
We adopt the noise schedule introduced by TEncDM [36]: αt =

1
1+tan(tπ/2)2·d2 , where parameter

d controls he rate at which noise is injected during the diffusion steps. At inference time we use
Euler solver with 200 uniform steps. The denoiser itself inherits the TEncDM [36] architecture. It
is a 12-layer Transformer with 12 attention heads and a hidden size of 768. In total, the network
comprises roughly ≈130M parameters.

Conditional generation. For sequence-to-sequence generation, we train a diffusion model in a
conditional setting. The model learns to reconstruct a noisy latent representation of the target text,
conditioned on the latent representation of the source text generated by our autoencoder. Consequently,
the source text’s vector representation is also leveraged in a compressed format, enhancing both
training and inference efficiency. The diffusion model is conditioned on the source latent, which is
first processed by a 12-layer transformer encoder. This encoder extracts relevant features and derives
a suitable conditioning representation from the source latent. These encoded source representations
are then injected into the diffusion model using cross-attention mechanisms. For conditional tasks, we
initiate the training of our diffusion model by initializing its denoiser weights with those pretrained
on an unconditional task.

C.2 Training and inference configuration

All models are trained on 8 NVIDIA A100 GPUs. Detailed training configurations and approximate
durations for both COSMOSN = 128 and COSMOSN = 16 are provided in Table 7.

C.3 Inference time benchmarking configuration

We measure the generation time for a batch of 512 samples per model on a single NVIDIA A100
GPU using the bfloat16 data type. Inference settings for all baseline models follow the default
configurations of their respective repositories, except for SEDD, where we adopt 32 diffusion steps
in accordance with the original paper’s setup for matching autoregressive quality. We report the mean
and standard deviation across five independent runs.

D Additional autoencoder training analysis

D.1 Marginal utility of variational prior in text autoencoder

In this section, we explain why incorporating a variational prior does not significantly enhance the
performance of our text autoencoder.

16

ROCStories Wikipedia XSum SQuAD2.0 Paradetox
Optimizer AdamW
Learning Rate 2e-4
(β1, β2) (0.9, 0.98)
Warmup Steps 1000
Learning Rate Schedule Constant
Weight Decay 0.01
Gradient Clipping 1
EMA Decay 0.9999
Batch Size 1024
Training Steps 200k 500k 100k 100k 10k
Max Seq Length 80 512 64 64 40
Max Context Length — — 512 512 40
Sampling steps 200
Schedule parameter 5 3 7 7 9
Autoencoder Training Time — 14h — — —
Diffusion Training Time 1d 5h 2d 12h 1d 1h 1d 9h 14h

Table 7: Training details for COSMOS across different datasets.

In a classical Variational Autoencoder (VAE), the encoder maps each input to the parameters of a
Gaussian latent distribution, i.e., a mean vector µ and a (diagonal) variance vector σ2. Training
minimises a reconstruction term together with the Kullback–Leibler (KL) divergence between the
encoder distribution and an isotropic prior N (0, I). For a latent matrix z ∈ RN×d, the KL term is

DKL

(
N (z;µ, σ2) ∥N (0, I)

)
= 1

2

N∑
i=1

d∑
j=1

(
µ2
ij + σ2

ij − log σ2
ij − 1

)
.

Our text autoencoder is trained with the following objective:

L = CE(w, ŵ) + MSE(h, ĥ) + β DKL

(
N (z;µ, σ2) ∥N (0, I)

)
,

where CE(w, ŵ) is the token-level cross-entropy, MSE(h, ĥ) matches reconstructed contextual
representations, and β≥0 balances reconstruction fidelity against latent regularisation.

During training, the decoder receives a stochastic latent sample

zs = µ+ σ ⊙ ε, ε ∼ N (0, I),

so that the KL term nudges (µ, σ) towards the prior. Increasing β strengthens this pressure, producing
a smoother latent geometry at the cost of higher reconstruction error; decreasing β does the opposite
as encoder tends to push latents away from each other.

In our experiments, we observed that the performance is highly sensitive to the choice of β. Table 8
presents the results for different values of β.

Table 8: Impact of the KL weight β on diffusion
generation quality. Arrows indicate the preferred
direction.

β MAUVE ↑ PPL ↓ DIV ↑
0 0.767 33.6 0.328

0.0001 0.733 39.6 0.329
0.001 0.764 33.3 0.328
0.01 0.765 32.6 0.326
0.1 0.658 39.6 0.329
1 0.011 677.1 0.587

The best perplexity is achieved at β = 0.01, but
the gain over the baseline (β = 0) is marginal
(33.6→ 32.6). For larger β the model collapses:
at β = 1, perplexity explodes and MAUVE falls.

This limited improvement can be attributed to
the decoder’s robustness to Gaussian noise in
the latent space. As illustrated in Figure 4, the
decoder maintains reasonable performance even
when sampling from the prior with σ = 1, indi-
cating that the latent space is sufficiently robust
without strong KL regularization.

Alternative regularisers, notably latent masking,
yield larger and more robust improvements. We
therefore omit the KL term in the final model and rely solely on latent masking to shape the
representation space.

17

D.2 Additional details of comparison across generative paradigms

Table 9: Comparison with autoregressive and diffusion baselines across three generative tasks. The
best-performing scores are shown in bold, while the second-best scores are underlined.

ParaDetox Xsum SQuAD2.0

Method BLEU ↑ J-Score ↓ R-1/2/L ↑ BS ↑ R-L ↑ BS ↑

GPT2 0.677 0.604 0.283/0.082/0.218 0.690 0.332 0.680

GPT Neo 0.610 0.492 0.231/0.045/0.171 0.621 0.245 0.665

AR-Diffusion 0.647 0.465 0.268/0.059/0.206 0.568 0.185 0.569

DiffuSeq 0.679 0.475 0.189/0.130/0.136 0.588 0.186 0.563

SeqDiffuSeq 0.688 0.486 0.286/0.067/0.213 0.617 0.194 0.574

TESS 0.694 0.587 0.317/0.116/0.264 0.627 0.339 0.667

SEDD 0.666 0.001 0.200/0.033/0.138 0.576 0.086 0.443

LD4LG 0.708 0.580 0.303/0.100/0.246 0.702 0.211 0.641

TEncDM 0.619 0.496 0.319/0.107/0.253 0.699 0.323 0.703

COSMOSN=16 0.649 0.497 — – — —

COSMOSN=128 0.694 0.554 0.328/0.114/0.258 0.704 0.339 0.708

We also present extended results for our conditional generation tasks using a broader variety of
evaluation metrics. For XSUM and SQUAD2.0, we report ROUGE scores [16], a standard metric
that evaluates text quality based on n-gram overlap with reference outputs. For PARADETOX, we
additionally include the J-score, which is defined as the product of style accuracy, fluency, and content
preservation. Extended results are summarized in Table 9.

E Limitations

There are several limitations to our study that point to promising directions for future work. First,
jointly training the autoencoder and diffusion model remains an open research direction. Such an
approach may significantly improve training efficiency. Second, the latent dimensionality d is held
fixed in all experiments, because changing d would necessitate redesigning diffusion backbone; a
systematic sweep of this hyper-parameter is therefore left to dedicated follow-up work. Finally, we
report results with relatively small backbones of roughly 130M parameters to keep ablations rapid
and compute budgets fair; scaling the architecture is an orthogonal engineering effort that is expected
to reinforce the empirical trends observed here.

F Societal Impact

Our research introduces an alternative modeling approach for language, centered on latent continuous
diffusion. We hold the view that this method does not bring about significant new societal risks
exceeding those already connected with current language models.

G Generation examples

To give a qualitative sense of model behaviour, we first present representative unconditional gen-
erations: Table 10 shows random samples from COSMOSN=128 and the TEncDM baseline on
ROCStories, while Table 11 does the same for Wikipedia. We then move to the conditional setting,
providing sequence-to-sequence outputs for three benchmarks: summaries for XSum in Table 12,

18

Table 10: Randomly generated samples for ROCStories dataset.

TEncDM COSMOSN=128

Amy wanted to buy a new dress for the dance! She
shopped around for ten minutes. She tried on a
dress that was too big. Amy loved that the dress
was too grab for her size. She found that it was a
little too long to wear!

Amy and her friend Sue were excited about sixth
grade together. The three of them visited Amy’s
online shoe store. Amy’s friend Beth arrived at the
shoe store and Sue tried some dresses. The girls
checked out and looked at all the collection. Amy
felt like she was being an idiot.

Maggie was a nasty girl in school. When she
moved to a small town, she had no Mae friends.
After school, sheared out and made no friends.
Sometimes they called her back, and they left her
alone. She finally understood why she needed to
be friends.

Jay was sitting at home bored. He was looking
for an activity to keep him active. He decided to
play a game of basketball. He played basketball
for an hour. He was able to have a fun time that
afternoon.

My car was becoming very worn out. I went to my
mechanic to get checked out. He told me that I had
a flat tire. I went to NCaven to get it fixed. I still
made it to work in no time.

Sam was working late. He didn’t have money to
pay all his bills. He was having trouble getting
paid. Sam decided to quit his work job. He was
able to get another job to pay his bills.

My daughter is moving to a new school next year.
She was nervous about moving to this new location.
I am afraid of a leaker of all of her relationships.
We figured it out and made some alterations on the
team. This is where she will be graduating high
school.

Debra hasn’t written a check in weeks. She’s been
very stressed and frustrated with paying bills. Last
week, she acted horribly during her check. The
bank quickly ran a check - up. To her shock, she
found out that she owed nearly a million in cash.

John went to the library. The librarian told him to
read more books. John went to the booktore. He
tried to read 6 books. He couldn’t decide which to
buy.

Tina never thought she needed her son to be cool
enough to swim. So she begged him to do so while
he was supposed to. So he practiced and swam all
the time. But when it was time to go outside, he
constantly got sore. Tina was too stressed to let
him swim for 3 hours.

detoxified rewrites for ParaDetox in Table 14, and question-generation examples for SQuAD 2.0 in
Table 13.

19

Table 11: Randomly generated samples for the Wikipedia dataset using COSMOSN=128.
The press said working conditions for the match did not have to be finalised. Even the organizers had
planned for the date of the match to be 19 August 2017 to accommodate a crowd of some 500, 000
people watching the match.

Bob Hall served as Foundation founding president from 1990 to 1991. In 1993, Hansen was elected
President of the College of Bymphoschipelgeons. Upon his retirement from this position, he also
served as the chairman of the Scientific Advisory Committee of the College of Medical Surgeonsgeons
(IMS). In 1996, publisher magazine selected Bob Hall as his candidate for the next U. S. presidential
nomination for 2000 and 2001. He died October 26, 2013, at his home in Tampa, Florida from the
causes of kidney failure at the age of 71, caused by a cerebral kidney failure in 1980. He is buried at
the

He was excluded from the committee because Johnson refused to approve the text of the bill, and
two senators refused to attend discussing the legal provisionss of the Seventh Amendment, but
invited senior officials to hear it. Both the Congress House and the Weed Hermans challenged the
committee’s request to have the Seventh Amendment be argued in the Supreme Court’s decision
during the subsequent legislative hearings. Both attributed the premise premisel of Johnson’s
Amendment to internal law, which allocated the Congress to adopt executive decrees beginning in
January 1699. The law, for its part, was however applied by the majority of the

Folk music typically contains a mix of German, Russian, Russian, Iranian, Egyptian, Norwegian,
Turkish, Jewish and Tabad music, though typically the songs are from a specific religion or back-
ground. Icelandmar0̆0edk, for instance, distinguish genderly distinguishes folk music from the multi -
diverse genres, primarily rock and jazz.. Folk music is consequently not subegoaticly distinct from
rock, which in turn, which consists primarily of music of folk including jazz, blues, nor rock, and
industrial rock. Due to the diversity of genres in these genres, certain new genres of music also exist.
Pandit music, such as

In 1974, Parker became the Director of the Office of Virginia’s Chamber of Trade and Commerce, a
position he would hold under increased pressure from his fellow Democratic opponent. He oversaw
the J. Howard administration, which lasted for 11 years headed by William J. P honorter.

20

Table 12: Samples from XSum summarization dataset. Parts of the articles are omitted for brevity.

Article: Two-year-old Lane Thomas Graves had been playing in the sand near the resort’s Seven Seas Lagoon
when he was dragged underwater by the creature... The lighthouse has been installed near to where the attack
occurred... A Disney spokesperson said they hoped the monument would spread awareness for the Lane
Thomas Foundation, which also uses the lighthouse as its logo. Who is liable for alligator boy’s death? "The
lighthouse sculpture has been installed to help spread awareness of the Lane Thomas Foundation, which was
established to provide assistance and support to families whose children need organ transplants," Walt Disney
World said in a statement.
Reference: Walt Disney World has unveiled a lighthouse memorial for a young boy who was killed by an
alligator while on holiday at the Florida theme park.

TEncDM COSMOSN=128

A statue of a Florida boy who died
after being rescued from a beachqua-
rina during water has been honoured
by US television provider Disney.

Walt Disney Disney has unveiled a
lighthouse statue in memory of a
young boy who died when he was
stabbed by an alligator at a Florida
resort in Florida.

Article: The Sky Blues currently play in Coventry’s Ricoh Arena but had a long dispute with the stadium’s
previous owners... In a statement, Rugby Borough Council said its leader and the council’s executive director
and head of planning had met with Coventry City in March. "The club requested the meeting to understand
how the council would deal with any planning application for potential stadium sites in the borough of
Rugby," it said. It said the plans would need to be finalised by September to be included in the council’s
local plan, but added that a site had yet to be identified. Peter Ward, from Sky Blues Supporters’ Consultative
Group, said he was pleased to hear that things were "moving" with the club’s search for a new home. "It’s
good that finally there is some evidence things
Reference: Planners in Rugby have revealed they have been in talks with Coventry City Football Club about
building a stadium in the borough.

TEncDM COSMOSN=128

Coventry City Council says it is
looking on whether potential plans
for a 0̆0a33m Super League stadium
in Coventry.

Coventry City fans say they will
meet with the city council over a
proposed move from the club club
to a new stadium.

Table 13: Samples from SQuAD2.0 question generation dataset.

Context: Temporal measurement has occupied scientists and technologists, and was a prime motivation in
navigation and astronomy. Periodic events and periodic motion have long served as standards for units of
time. Examples include the apparent motion of the sun across the sky, the phases of the moon, the swing
of a pendulum, and the beat of a heart. Currently, the international unit of time, the second, is defined by
measuring the electronic transition frequency of caesium atoms (see below). Time is also of significant social
importance, having economic value (ẗime is money)̈ as well as personal value, due to an awareness of the
limited time in each day and in human life spans.

Answer: Temporal measurement.

Question: What has been a prime motivation in astronomy and navigation?

TEncDM COSMOSN=128

What has a significant role in sur-
veying units of time?

What have technologists filled time
in astronomy?

Context: In Book 11 of his Confessions, St. Augustine of Hippo ruminates on the nature of time, asking,
Ẅhat then is time? If no one asks me, I know: if I wish to explain it to one that asketh, I know not.Ḧe begins
to define time by what it is not rather than what it is, an approach similar to that taken in other negative
definitions. However, Augustine ends up calling time a 2̆01cdistention2̆01d of the mind (Confessions 11.26)
by which we simultaneously grasp the past in memory, the present by attention, and the future by expectation.

Answer: St. Augustine of Hippo.

Question: Who commented on the nature of time in Book 11 of his confessions?.

TEncDM COSMOSN=128

Who wrote " " nature of timefes-
sions ?

Which philosopher ruminates about
explaining the nature of time?

21

Table 14: Random samples for the detoxification task on the ParaDetox dataset.

Input: fucking imagine obama just put the hands up and keep a good distance between he and cruz .

Reference: Imagine Obama just put the hands up and distanced himself with Cruz.

TEncDM COSMOSN=128

2̆018 obama just put the hands up
and keep a good distance between
him and cruz.

imagine obama just put the hands up
and keep a good distance between
he and cruz.

Input: you just summed up how fucking stupid politics is in one comment

Reference: You just summed up how politics is in one comment.

TEncDM COSMOSN=128

you just sum up up how bad politics
is in one comment

you just sum up up how how stupid
politics is in one comment

Input: only churches give a crap it seems.

Reference: only churches care it seems.

TEncDM COSMOSN=128

Only churches care bad it it seems.. only churches give a thing it seems.

Input: second , maybe if you douches would read the damn edit summaries , this wouldnt happen .

Reference: second , maybe if you would read the edit summaries , this wouldnt happen .

TEncDM COSMOSN=128

2̆01d, maybe if you would read the
editmaries.

If you read the edit summaries, this
wouldn’t happen.

Input: what we witnessed here today was a fucking miracle, and i want you to acknowledge that.

Reference: What we witnessed here today was a miracle, and I want you to acknowledge that.

TEncDM COSMOSN=128

What we witnessed here today was a
miracle, and I want you to acknowl-
edge that.

what we witnessed here today was
a a miracle, and i want to acknowl-
edge that.

22

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim that COSMOS learns a compressed and smooth latent representation
through carefully designed autoencoder objectives, enabling high-quality text generation
with reduced inference time. Empirically, COSMOS matches or surpasses traditional token-
level diffusion and autoregressive baselines across a diverse set of generative tasks.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The discussion of limitations is located in the Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

23

Answer: [NA]
Justification: We do not have theorems in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We thoroughly describe our method in Section 4.2.2 and provide a complete
set of hyperparameters in Appendix C. We use publicly available datasets and will make our
code publicly available upon publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use publicly available datasets. We add code to the supplementary materials
and will make our code publicly available upon publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details could be found in Appendix A and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Following prior work, we do not report error bars for comparison results across
all tasks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These details could be found in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not involve human participants and does not introduce any
new datasets; all data used are publicly available.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss societal impact in Appendix F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

26

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: We do not release any pretrained models or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide all the information about the datasets in Appendix A. We also cite
the BERT paper whose representations we use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

27

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release only our source code which we thoroughly comment.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our study does not rely on crowdsourced data and does not involve any
research with human participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our study does not involve crowdsourcing or any research involving human
participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

28

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not utilized in any of the scenarios described.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

29

https://neurips.cc/Conferences/2025/LLM

	Dataset descriptions
	Additional Related Work
	Gaussian Diffusion on Embeddings
	Simplex-Based Diffusion
	Masked Diffusion
	Latent Diffusion

	Implementation details
	Latent diffusion pipeline
	Training and inference configuration
	Inference time benchmarking configuration

	Additional autoencoder training analysis
	Marginal utility of variational prior in text autoencoder
	Additional details of comparison across generative paradigms

	Limitations
	Societal Impact
	Generation examples

