
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEDERATED HIERARCHICAL ANTI-FORGETTING
FRAMEWORK FOR CLASS-INCREMENTAL LEARNING
WITH LARGE PRE-TRAINED MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large pre-trained models, such as BERT, have demonstrated strong performance
across various tasks. However, they are vulnerable to catastrophic forgetting in in-
cremental learning, particularly in federated settings with non-IID data. Existing
approaches, such as knowledge distillation and exemplar replay, partially address
this issue but often incur high memory overhead, increase privacy risks, and intro-
duce additional computational burden. To overcome these challenges, we propose
FEDHAF, a modular framework for federated class-incremental learning with
large pre-trained models. FEDHAF consists of three key components: a frozen
feature extractor, a feature adjustment module, and a task-specific head. This
structure enables efficient adaptation to new tasks while preserving knowledge
from previous ones. We further introduce a two-stage training strategy that sep-
arates classifier learning from feature alignment. This strategy combines feature-
level distillation with balance regularization, improving knowledge retention with-
out requiring extensive parameter tuning or compromising privacy. Extensive
experiments on benchmark datasets, including CIFAR-100, TinyImageNet, Im-
ageNet, and Shakespeare, demonstrate that FEDHAF consistently outperforms
state-of-the-art methods.

1 INTRODUCTION

Large pre-trained models such as BERT (Devlin et al., 2018), GPT (Brown et al., 2020), and
ResNet (He et al., 2016) have significantly improved the performance of deep learning in natural
language processing and computer vision. These models are trained on large-scale datasets, cap-
turing both semantic and visual features. However, their success depends on access to centralized
data, which often contains sensitive or private information. In domains like healthcare and finance,
this raises privacy concerns and increases the risk of data leakage. Federated learning (FL) offers a
practical solution by allowing multiple clients to collaboratively train models without sharing raw
data (McMahan et al., 2017; Nguyen et al., 2021; Tran et al., 2024a; He & Wang, 2024). This decen-
tralized approach enhances data privacy and supports training on distributed and diverse datasets.

Applying FL to large pre-trained models introduces several challenges. In many real-world settings,
data arrives continuously, and models must be updated incrementally. Federated class-incremental
learning (FCL) addresses this need by allowing clients to receive new classes over time and update
their models locally while preserving data privacy. However, the combination of evolving tasks,
data heterogeneity, and privacy constraints makes it difficult to retain previously learned knowledge
across clients. A key challenge in this setting is catastrophic forgetting, where models lose perfor-
mance on earlier tasks after learning new ones (He & Wang, 2024; Zhang et al., 2024). In centralized
scenarios, this problem is often mitigated by assuming independent and identically distributed (IID)
data. In contrast, FL usually involves non-IID data, where each client has its own distinct distribu-
tion (Zhang et al., 2024). Clients tend to learn local patterns, and when updates are aggregated, the
global model often fails to generalize across all tasks. As a result, catastrophic forgetting becomes
more severe (Tran et al., 2024a; Kim et al., 2024).

Existing FL methods, such as FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020), focus
on efficient model aggregation but do not directly address forgetting. In centralized learning, ap-
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proaches like knowledge distillation, generative replay, and exemplar replay are commonly used to
reduce forgetting. However, these techniques are difficult to apply in FL due to privacy concerns and
resource limitations. For example, generative and exemplar replay require access to previous data
or synthetic reconstructions, which increase memory and computational costs (Shin et al., 2017;
Rolnick et al., 2019b). These limitations highlight the need for new approaches that combine the
benefits of large pre-trained models with the constraints of FL to reduce forgetting effectively. An-
other challenge is the high cost of fine-tuning large pre-trained models, which often have millions
of parameters. In FL settings with limited computation, communication bandwidth, and storage, di-
rectly fine-tuning these models is impractical. The presence of non-IID data and privacy constraints
further complicates this process.

Current Task
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Pre-trained
Model

Herding

Task Specific
Head

LFAM

L Head  

Feature Adjustment Module

First Stage

Second Stage
C1 Ck CN
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Global Model
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Figure 1: Overview of proposed FEDHAF.

To address these challenges, we
propose FEDHAF (Federated
Hierarchical Anti-Forgetting), a
framework for federated class-
incremental learning with large
pre-trained models. As shown
in Figure 1, FEDHAF is com-
posed of three key components:
(i) a feature extractor based on
a frozen pre-trained model to
generate high-quality represen-
tations, (ii) a feature adjustment
module to align features across heterogeneous clients, and (iii) a task-specific head that adapts to
new tasks while retaining useful prior knowledge. FEDHAF employs a two-stage training process.
In the first stage, features are extracted using the frozen backbone. In the second stage, only the
adjustment module and task-specific head are fine-tuned to incorporate new information while main-
taining performance on previous tasks. Additionally, we introduce a feature-level consistency loss
that encourages alignment between old and new representations, helping the global model preserve
learned knowledge.

In this work, our contributions can be summarized as follows:

• We propose FEDHAF, a federated class-incremental learning framework that reduces catastrophic
forgetting when using large pre-trained models.

• We design an efficient adaptation strategy that freezes the feature extractor and fine-tunes
lightweight components, enabling low-cost and privacy-preserving model updates.

• We evaluate FEDHAF on benchmarks and show improved performance in both knowledge reten-
tion and class-imbalanced scenarios under heterogeneous distributions.

2 BACKGROUND AND MOTIVATION

2.1 FEDERATED LEARNING WITH PRE-TRAINED MODELS

Federated learning is a decentralized learning paradigm that allows a set of clients, denoted as N =
{1, . . . , N}, to collaboratively train a global model without exposing their local data. A central
server coordinates the training process by minimizing the following global objective:

min
w

L(w,D) =

N∑
i=1

|Di|
|D|

Li(w,Di), (1)

where w represents the global model parameters, Di is the local dataset of client i, and D = ∪N
i=1Di

is the total data. Practical FL algorithms such as FedAvg (McMahan et al., 2017) and FedProx (Li
et al., 2020) enable efficient training through local computation and periodic model aggregation.
However, FL systems face two major challenges: (i) statistical heterogeneity caused by non-IID
client data and (ii) communication constraints due to limited resources. These challenges lead to
inconsistent local updates, which reduce both convergence speed and generalization performance.

To address these issues, recent works have explored incorporating large pre-trained models such as
ResNet (He et al., 2016), BERT (Devlin et al., 2018), and GPT (Radford et al., 2019). These models

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

provide strong feature representations and typically require fewer training epochs to achieve high
accuracy. For example, as shown in Figure 2, a pre-trained ResNet152 can reach over 80% accuracy
on CIFAR-100 in just 10 epochs, while a randomly initialized model fails to surpass 52% accuracy
even after 30 epochs. This accelerated convergence is particularly advantageous in federated settings
with limited resources.
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Figure 2: Model accuracy on
CIFAR-100 dataset.
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Figure 3: Forgetting issue in
pre-trained models.

Despite their advantages, directly ap-
plying pre-trained models in feder-
ated learning introduces new chal-
lenges, particularly in dynamic or
task-incremental scenarios. A ma-
jor concern is catastrophic forgetting,
where model updates from new tasks
overwrite previously acquired knowl-
edge. As illustrated in Figure 3, both
FedAvg and FedProx experience sig-
nificant accuracy degradation. The
accuracy drops from over 75% on the first task to around 10% by the ninth task. FedAvg shows a
rapid decline, reaching 45.25% by the second task. Although FedProx initially maintains a slightly
higher accuracy of 48.33%, it eventually encounters a similar performance drop. This issue is fur-
ther aggravated by the privacy constraints in FL, which prohibit access to past data for retraining or
rehearsal. As a result, the global model struggles to preserve useful representations for new tasks.

2.2 EXISTING SOLUTIONS AND MOTIVATION

Catastrophic forgetting has been extensively studied in centralized class-incremental learning (CIL),
where methods such as experience replay (Rolnick et al., 2019a), knowledge distillation (Li &
Hoiem, 2017), and parameter isolation (Fernando, 2017) have shown effectiveness. However, these
strategies often rely on accessing historical data or maintaining a global memory buffer, which con-
flicts with the privacy constraints of federated learning.

To adapt to federated settings, recent advances in Federated Class Incremental Learning (FCL) (Qi
et al., 2023; Babakniya et al., 2023; Nori et al., 2025; Sun et al., 2024; Chaudhry et al., 2023)
have proposed strategies such as client-side generative replay, server-side prototype synthesis, and
data-free knowledge retention. While these methods can improve knowledge preservation, they
often incur considerable computational and memory overhead, hindering deployment on resource-
constrained devices. Furthermore, training generative models or synthetic exemplars under non-IID
federated conditions is particularly challenging due to statistical heterogeneity and limited client
capacity (Jeong & Moon, 2023). An alternative research direction focuses on modular adaptation
of large pre-trained models. A widely adopted strategy is to freeze the backbone and fine-tune
lightweight task-specific heads or adapters (Lyu & Liu, 2025; He et al., 2025; Lin et al., 2023), which
effectively reduces both training cost and communication load. In parallel, data-free knowledge
distillation methods (Yin et al., 2020; Chen et al., 2019; Zhao et al., 2023) have been explored to
retain prior knowledge without requiring access to original data. However, these approaches often
lack mechanisms to detect task shifts across clients, leading to degraded performance under dynamic
task distributions (Zhou et al., 2024).

These limitations highlight the need for a unified, efficient framework that leverages the general-
ization of large pre-trained models, mitigates forgetting in dynamic federated settings, and supports
scalability and privacy protection.

3 METHODOLOGY

We propose FEDHAF, as depicted in Figure 1, a modular framework that addresses the challenges
of catastrophic forgetting, resource constraints, and task shifts in federated class-incremental learn-
ing. FEDHAF leverages the stability of large pre-trained models while introducing lightweight
and privacy-preserving components to enable scalable deployment. Specifically, it consists of three
modules: a frozen feature extractor ϕ that generates consistent representations across tasks, a Fea-
ture Adjustment Module (FAM) that aligns feature distributions using distillation and balance losses,
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and a Task-Specific Head (TSH) trained to integrate new knowledge without overwriting previous
decision boundaries. This design enables efficient, robust continual learning in federated settings.

3.1 DESIGN OF FEATURE ADJUSTMENT MODULE

FAM is designed to adapt fixed backbone features to new tasks in federated class-incremental learn-
ing. It is implemented as a multi-layer perceptron to transform frozen features into task-adaptive
representations.In non-IID settings, newly introduced classes may shift feature distributions and
undermine prior representations.

To mitigate this, FAM refines the intermediate features before classification to support task integra-
tion. Inspired by work in class imbalance (Guo & Zhang, 2017; Liu et al., 2017) and representation
fairness in incremental learning (Zhu et al., 2022), we introduce two complementary objectives:
Feature Distillation Loss, which constrains the drift of new features from old ones, and Feature
Balance Loss, which aligns the feature magnitudes between new and old classes. This combination
enables effective adaptation while preserving prior knowledge under frozen backbone constraints.

Feature Distillation Loss: Unlike traditional methods that distill information from the classifier,
FEDHAF distills at the feature level. We leverage the old-class dataset Dold to enforce consistency
between the adjusted features produced by the current model Ft and those generated by the previous
task’s model Ft−1. The loss is formally defined as:

LFD =
1

|Dold|
∑

x∈Dold

∥F ′
t (x)− F ′

t−1(x)∥22 (2)

where F ′
t (x) and F ′

t−1(x) denote the adjusted feature representations of sample x from the current
and previous models, respectively. By aligning features in this way, the model is encouraged to
maintain stable representations of old classes even as new tasks are introduced. This mechanism is
critical in federated incremental learning, where revisiting past data is restricted by privacy concerns.

Feature Balance Loss: In incremental learning, the feature space for new tasks may dominate, caus-
ing the classifier to favor new tasks and neglect previously learned ones. To address this, FEDHAF
introduces the Feature Balance Loss, which equalizes the feature norms across new and old tasks:

LFB =

∣∣∣∣∣∣ 1

Cnew

Cnew∑
j=1

∥Fj∥ −
1

Cold

Cold∑
i=1

∥Fi∥

∣∣∣∣∣∣ (3)

where Cnew and Cold represent the number of classes in the new and old tasks, respectively, and
∥Fj∥ and ∥Fi∥ denote the magnitudes of the feature vectors for samples from the new and old tasks.
This loss ensures that the new task features do not overshadow the older task features, promoting a
balanced learning process across all tasks.

In summary, the combination of Feature Distillation Loss and Feature Balance Loss allows FED-
HAF to address catastrophic forgetting while maintaining adaptability. The final loss for FAM is
given by: LFAM = λFDLFD + λFBLFB, where λFD and λFB are hyperparameters that control the
trade-off between feature consistency and feature balance. This ensures the seamless integration of
new knowledge without compromising performance on older tasks.

3.2 DESIGN OF TASK-SPECIFIC HEAD

TSH classifies features adapted from FAM while accommodating new classes over time. It is imple-
mented as a single-layer classifier with batch normalization, which improves training stability under
evolving task distributions. To balance learning of new tasks with retention of previous knowledge,
TSH is optimized using a combination of cross-entropy and knowledge distillation losses.

Cross-Entropy Loss: This CE loss function is employed to optimize the classification of new task
samples. It encourages the classifier to learn accurate decision boundaries over the new task dataset
Dnew, where each pair (x, y) denotes an input and its ground-truth label from classes introduced at
task t. The loss is defined as:

LCE =
1

|Dnew|
∑

(x,y)∈Dnew

CE(Ft(x), y), (4)
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where Ft(x) represents the output logits of the current model Ft for input x. Averaging over Dnew

ensures that the classifier learns accurate decision boundaries for newly introduced classes.

Knowledge Distillation Loss: To mitigate catastrophic forgetting, we employ knowledge distilla-
tion to align the predictions of the current model Ft with those of the previous task model Ft−1 on
the old task dataset Dold. This encourages the current model to preserve decision boundaries learned
from past tasks while adapting to new ones. The loss is defined as:

LKD =
1

|Dold|
∑

x∈Dold

KL
(
Ft(x) ∥ Ft−1(x)

)
, (5)

where Ft(x) and Ft−1(x) denote the predictive distributions of the current and previous models for
input x, respectively. By averaging over Dold, this formulation ensures that the knowledge encoded
in earlier tasks is retained during continual updates.

The TSH loss is a weighted combination of the Cross-Entropy and Knowledge Distillation: LHead =
λCELCE+λKDLKD, where λCE and λKD balance new class accuracy and old class retention, enabling
the classifier to adapt to new tasks while preserving past performance.

3.3 FEDHAF TRAINING FRAMEWORK

Inspired by a recent study in incremental learning with large pre-trained models (Qin et al., 2023).
FEDHAF adopts a two-stage training scheme that decouples task-specific adaptation from feature
refinement. This modular approach ensures stable learning by preventing gradient interference be-
tween components and minimizing forgetting. Algorithm 1 illustrates different steps of FEDHAF.

Two-Stage Training Process. The training process of FEDHAF is structured into two stages: one
focusing on the adaptation of the Task-Specific Head and the other on fine-tuning FAM.

During both stages, the feature extractor (ϕ) remains fixed, ensuring that pre-trained fea-
ture representations are preserved. This design guarantees that the feature space re-
mains generalizable across tasks and improves computational efficiency by reducing the
number of parameters that need to be optimized. The key steps are as follows:

Local 
Initialization

𝜃(𝑡)

TSH Training
𝐿𝐻𝑒𝑎𝑑 = 𝐿𝐶𝐸𝜆𝐶𝐸+ 𝐿𝐾𝐷𝜆𝐾𝐷

Fine-tuning 
the FAM

Transmit
Global

Representation

Global
Aggregation

𝜃(𝑡+1) =෍

𝑖=1

𝐾

𝑤𝑖𝜃
(𝑖)
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Examples

Client 𝑖Central Server

Two-Stage
Training

𝐿𝐹𝐴𝑀 = 𝐿𝐹𝐷𝜆𝐹𝐷+ 𝐿𝐹𝐵𝜆𝐹𝐵
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(𝑖)

Figure 4: Two-stage training for FEDHAF.

In the first stage, only the task-specific head
is updated, while FAM remains frozen. The
head is trained on new task data and herd-
ing exemplars from prior tasks. Cross-entropy
loss guides learning on the current task, while
knowledge distillation encourages retention of
earlier decision boundaries. This stage enables
rapid adaptation to new classes without altering
the feature space.

Once the head is optimized, the model switches
to refining FAM while keeping head fixed. This
stage adjusts intermediate features to align new representations with those from previous tasks. Both
feature distillation and feature balance losses are applied, ensuring integration of new knowledge
while preserving consistency in the feature space. A small proportion of herding exemplars is intro-
duced to mitigate feature drift and reduce catastrophic forgetting. Fine-tuning FAM in this manner
ensures that the feature extractor adapts smoothly to newly introduced tasks while maintaining con-
sistency with the knowledge acquired from previous tasks.

Local Herding Sample Management. To address forgetting without violating privacy constraints,
each client maintains a small set of locally stored herding exemplars from previous tasks. These
samples are never shared with the server or other clients. At the end of task t, each client selects
a fixed number of representative samples per class from its current local dataset D(k)

t . Selection is
based on feature-space proximity to the class mean using the frozen extractor:

x(i)
c ∈ arg min

x∈Dc

∥∥ϕ(x)− f̄c
∥∥ , f̄c =

1

|Dc|
∑
x∈Dc

ϕ(x) (6)

where Dc ⊆ D
(k)
t is the set of samples from class c. These exemplars form the local memory

D
(k)
herd, subject to a fixed buffer size B. During training for task t+1, clients use both D

(k)
t+1 and D

(k)
herd
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to compute loss terms. This local replay mechanism enhances retention of prior knowledge while
preserving privacy.

Server Aggregation and Model Broadcasting. Once local training is completed, each client sends
its updated FAM and Task-Specific Head parameters to the server. The pre-trained feature extractor
remains frozen and is excluded from communication. The server aggregates the received updates
using standard federated averaging and forms the updated global model. These parameters are then
broadcast back to all clients for the next incremental round. This process ensures low communication
overhead, no raw data sharing, and full compliance with federated privacy constraints.

3.4 THEORETICAL ANALYSIS

To support the empirical results of FEDHAF, we provide theoretical guarantees under standard
assumptions in federated optimization. Let θ = (θHead, θFAM) denote the learnable parameters of
FEDHAF. For simplicity, let each client minimize the following local objective:

Lloc(θ) = λCELCE + λKDLKD + λFDLFD + λFBLFB, (7)
where each loss term corresponds to cross-entropy, knowledge distillation, feature-level distillation,
and feature balance regularization, respectively. We now introduce the used assumptions (Wang
et al., 2024; Lian et al., 2018):
Assumption 1 (Lipschitz Smoothness). Loss function Lloc is differentiable and has L-Lipschitz
continuous gradients:

∥∇Lloc(θ)−∇Lloc(θ
′)∥ ≤ L∥θ − θ′∥, ∀θ, θ′. (8)

Assumption 2 (Bounded Gradient Variance). Let ξ denote a random minibatch. Variance of the
stochastic gradient is:

Eξ ∥∇Lloc(θ; ξ)−∇Lloc(θ)∥2 ≤ σ2. (9)

First, we introduce the convergence result under the federated averaging scheme.
Theorem 1 (Convergence). Under Assumptions 1 and 2, suppose each client performs E local
updates with learning rate η satisfying ηLE ≤ 1. Then after T global rounds, the expected average
gradient norm satisfies:

1

T

T−1∑
t=0

E
[∥∥∥∇Lloc(θ

t
)
∥∥∥2

]
≤

2(Lloc(θ
0) − L∗)

ηET
+

ηLσ2(E − 1)

2K
, (10)

where L∗ is the optimal loss and K is the number of clients.

Next, we analyze how changes in adjusted features contribute to forgetting.
Theorem 2 (Bound on Catastrophic Forgetting). Let F ′

old and F ′
new denote the adjusted features

before and after the update, respectively. If
E
[
∥F ′

new − F ′
old∥2

]
≤ ε, (11)

and h is Lh-Lipschitz, then the increase in classification error on old tasks satisfies:
∆Eold ≤ Lh

√
ε. (12)

Theorem 3 (Stability of Two-Stage Training). Assume that after Stage 1, ∥∇θHead
Lloc∥ ≤ ϵ1, and

after Stage 2, ∥∇θFAM
Lloc∥ ≤ ϵ2. The full gradient norm is bounded as:

∥∇Lloc(θ)∥ ≤ ϵ1 + ϵ2. (13)

This result shows that decoupling the modules reduces gradient interference and improves stability.
Theorem 4 (Generalization Bound). Let H denote the hypothesis class formed by the Feature Ad-
justment Module and classifier head. If the loss is bounded by M , then with probability at least
1− δ, the generalization error satisfies:

Etest ≤ Êtrain + 2Rn(H) +

√
log(1/δ)

2n
+ O(λFB), (14)

where Rn(H) is the empirical Rademacher complexity.

These analyses demonstrate that the modular and decoupled architecture of FEDHAF ensures con-
vergence, mitigates forgetting, and provides generalization guarantees in federated settings with
non-IID and evolving tasks. Related proofs for all theoretical results are provided in Appendix E.
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4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets and Models. We evaluate FEDHAF on four benchmarks covering both vision and
language domains: CIFAR-100 (Krizhevsky, 2009), TinyImageNet (Le & Yang, 2015), Ima-
geNet (Deng et al., 2009), and Shakespeare (Caldas et al., 2018). CIFAR-100 contains 100 classes
with 600 images per class, while TinyImageNet includes 200 classes with 500 training and 50 val-
idation images each. ImageNet provides a large-scale visual recognition benchmark with 1,000
classes and over 1.2 million training images, posing significant challenges for scalability and gener-
alization. Shakespeare is a character-level language modeling dataset partitioned by speaker, char-
acterized by naturally imbalanced and variable-length samples. For the image classification tasks,
we use ResNet-152 as the backbone model. For the Shakespeare dataset, we adopt a pre-trained
BERT-BASE to capture sequence-level linguistic patterns.

Parameter Settings. We adopt the class-incremental learning setup, where new classes are intro-
duced progressively over time. To simulate realistic federated environments, we generate non-IID
data partitions using Latent Dirichlet Allocation (LDA) following the approach in (Babakniya et al.,
2023), resulting in heterogeneous and imbalanced data distributions (see Table 1). All models are
trained using stochastic gradient descent (SGD) with a learning rate of 0.02. To reduce forgetting,
we apply a herding strategy that retains 20% of samples from previous tasks, and this ratio is varied
in the ablation studies. The settings for LANDER follow those described in (Tran et al., 2024b).

Table 1: Training parameters of each benchmark dataset.
Dataset #Client #Client per round #classes per task

CIFAR-100 50 5 10
TinyImageNet 50 5 20
ImageNet 300 30 5
Shakespeare 100 10 6

Evaluation Metrics. To assess the
performance of FEDHAF in feder-
ated class-incremental learning, we
adopt three standard metrics: aver-
age accuracy, average forgetting, and
wallclock time. Average Accuracy
(Ã) measures overall classification
performance by computing the test accuracy over all seen classes at the end of each incremental
round. The final value is obtained by averaging across all rounds, reflecting the model’s ability to
retain and integrate knowledge throughout the learning process. Average Forgetting (F̃ ) quantifies
the degradation in performance on previously learned tasks. It is calculated as the difference between
the maximum accuracy achieved during training and the final accuracy on each task, then averaged
over all tasks to capture the model’s retention capability. Wallclock Time reports the average time
required to complete one federated round, measured in seconds using an NVIDIA RTX 3090 GPU.
This value is averaged across clients to evaluate training efficiency under practical conditions.

Baselines. We compare FEDHAF against six methods, including FedAvg (McMahan et al., 2017),
FedProx (Li et al., 2020), FedCIL (Qi et al., 2023), FedLwF-2T (Usmanova et al., 2021), LAN-
DER (Tran et al., 2024b), and Oracle. FedAvg performs simple parameter averaging, while FedProx
stabilizes training under heterogeneous data via a proximal term. FedCIL leverages prototype align-
ment and classifier regularization to alleviate forgetting in class-incremental scenarios. FedLwF-2T
adapts the learning-without-forgetting paradigm to federated settings via dual-temperature knowl-
edge distillation. LANDER addresses data-free continual learning by synthesizing samples around
label-text anchors to preserve prior knowledge. Finally, Oracle assumes centralized access to all
data across clients and tasks, thus providing an upper-bound reference for performance.

4.2 EXPERIMENTAL RESULTS

Main Results. Figure 5 illustrates the accuracy trajectories of FEDHAF and baseline methods
on CIFAR-100, TinyImageNet, ImageNet, and Shakespeare. As tasks accumulate, performance
degradation occurs for all methods. However, FEDHAF outperforms baseline approaches across
datasets. Specifically, on CIFAR-100, FEDHAF maintains superior accuracy throughout incremen-
tal learning, significantly surpassing FedAvg and FedProx, which rapidly decline after a few tasks.
LANDER demonstrates relatively stable performance, while the Oracle model maintains stable high
performance, emphasizing the importance of comprehensive data availability.
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(a) CIFAR-100 dataset

1 2 3 4 5 6 7 8 9
Task

10

20

30

40

50

60

70

A
cc

ur
ac

y 
(%

)

Ours
FedAvg
FedProx
FedCIL
FedLwF-2T
LANDER
Oracle

(b) TinyImageNet dataset
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(c) ImageNet dataset
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(d) Shakespeare dataset

Figure 5: Accuracy vs. tasks. After each task, the model is evaluated on all previously seen tasks.

Table 2: Ablation study on CIFAR-100 evaluating the impact of removing key components.
Method A1 A2 A3 A4 A5 A6 A7 A8 A9 Ã ↑ F̃ ↓

Ours - w/o LCE 46.2 31.17 23.28 18.66 15.43 13.19 11.47 10.26 9.17 19.87 58.8
Ours - w/o LKD 65.43 53.4 44.37 39.21 35.32 28.94 20.99 17.32 12.56 35.28 43.38
Ours - w/o LFD 69.71 63.39 53.37 45.32 39.11 32.1 28.94 25.96 22.43 42.93 36.41
Ours - w/o LFB 62.85 52.47 45.66 39.67 35.39 29.41 25.32 19.32 20.67 36.75 41.91
Ours - w/o FAM 60.32 49.3 41.56 32.59 25.67 23.22 21.09 18.47 15.99 32.02 46.64

Ours - w/o 2-stages training 71.69 64.42 55.69 47.22 39.16 35.69 32.15 29.32 25.12 43.49 35.17
Ours 79.01 69.32 59.84 50.81 44.55 39.22 36.21 34.32 31.21 49.39 30.3

Table 3 further quantifies these results. FEDHAF reaches 49.39% average accuracy with only
30.03% forgetting, compared to over 60% forgetting for FedAvg and FedProx. FedLwF-2T achieves
modest improvements through distillation but remains weak across tasks. The Oracle model pro-
vides an upper bound at 78.67%. LANDER is more robust than FedAvg and FedProx but still trails
FEDHAF in both accuracy and retention. Similar patterns are observed on TinyImageNet and Ima-
geNet, where FEDHAF maintains nearly 42% average accuracy on TinyImageNet and demonstrates
strong stability on ImageNet despite increased task complexity and data volume. On the Shakespeare
dataset, which poses unique challenges due to its sequential and linguistic nature, most baselines suf-
fer severe forgetting, while FEDHAF maintains over 20% accuracy on the final task. Since LAN-
DER relies on pseudo feature generation and visual class-center structures, its assumptions do not
hold for natural language tasks; for fairness, we omit it from the Shakespeare experiments. These
results further confirm that FEDHAF offers consistency across both vision and language tasks in
federated class-incremental settings.

Table 3: Performance of baselines in terms of average accuracy
and average forgetting on the CIFAR-100 dataset.

Method Avg. Accuracy Avg. Forgetting Training Time (s)

FedAvg (McMahan et al., 2017) 31.32% ± 0.11 65.68% ± 0.91 ≈16.5
FedProx (Li et al., 2020) 33.21% ± 0.32 64.93% ± 0.48 ≈19.4
FedCIL (Qi et al., 2023) 34.55% ± 0.48 61.14% ± 0.42 ≈32.1
FedLwF-2T (Usmanova et al., 2021) 33.53% ± 0.19 65.26% ± 0.82 ≈18.3
LANDER (Tran et al., 2024b) 40.09% ± 0.52 35.26% ± 0.77 ≈198.4
FEDHAF (Ours) 49.39% ± 0.23 30.3% ± 0.59 ≈67.3
Oracle 78.67% ± 0.33 – ≈132.6

In addition to accuracy and for-
getting, Table 3 also reports
training time. FEDHAF re-
quires approximately 67.3 sec-
onds per task, which is higher
than FedAvg and FedProx due to
their use of simple local updates
without explicit knowledge re-
tention mechanisms. FedLwF-
2T introduces a distillation objective with moderate computational overhead, while FedCIL takes
about 32.1 seconds per task because of the added cost of training generative models. LANDER in-
curs longer training time mainly due to its adversarial training between generator and discriminator,
along with the overhead of generating and distilling a large number of pseudo features in each task
round. In summary, FEDHAF achieves significantly better performance. Its modular design, which
incorporates representation preservation and task-aware adaptation, enhances knowledge retention
while achieving a favorable trade-off between efficiency and stability.

Overall, FEDHAF demonstrates substantial advantages in mitigating catastrophic forgetting in fed-
erated class-incremental learning across diverse visual and language tasks. Its structured approach
to knowledge retention and adaptation ensures consistent high accuracy and manageable training
complexity, highlighting its practicality and scalability in realistic federated learning scenarios.

Evaluation on Loss Functions and Architectural Components. We perform additional experi-
ments on CIFAR-100 under the federated incremental learning setting to assess the contribution of
each loss function and architectural component. Table 2 summarizes the results. Disabling the cross-
entropy loss corresponds to using all classifier heads for supervision instead of restricting updates
to task-relevant outputs. This introduces conflicting gradients from unseen classes and accelerates
forgetting. In contrast, head splitting provides isolated supervision, stabilizing class boundaries. Re-
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moving the knowledge distillation loss weakens retention by eliminating soft constraints that help
regularize predictions across tasks. This leads to output drift, especially under non-IID aggrega-
tion. Feature-level distillation is critical for maintaining stable representations. Without it, feature
embeddings shift unpredictably, erasing prior structure, a problem worsened in federated settings.
Omitting the feature balance loss disrupts inter-task consistency, allowing new-task gradients to
dominate and bias the feature space, which degrades performance on previous classes. Removing
the FAM prevents alignment between frozen features and client-specific distributions, resulting in
growing misalignment and unstable updates. Lastly, disabling two-stage training leads to gradient
interference between classifier and feature adaptation, hindering convergence. Sequential optimiza-
tion of these components ensures smoother transitions and better stability across tasks.

Communication Cost. FEDHAF minimizes communication by freezing the backbone and only
transmitting the Feature Adjustment Module and Task-Specific Head. In contrast, LANDER trans-
mits larger components, including task-specific latent vectors, multi-level prototypes, and generator
parameters. These high-dimensional elements significantly raise communication costs. Prior work
(Shin et al., 2017) highlights the overhead of generative replay in bandwidth-limited federated set-
tings. Other baselines like FedCIL or FedLwF involve transferring full model outputs or multiple
classifier copies, further increasing per-round costs. We further provide a detailed computational
analysis of FEDHAF in Appendix D. FEDHAF makes it more scalable and deployment-friendly in
resource-constrained environments.

Table 4: Impact of herding ratio on CIFAR-100.
Herding Ratio Average Accuracy Training Time

100% 51.94% 50 mins
75% 51.49% 38 mins
50% 50.87% 29 mins
40% 50.35% 21 mins
30% 49.98% 16 mins
20% 49.39% 13 mins
10% 43.23% 11 mins
5% 36.98% 9 mins
1% 30.70% 8 mins

Impact of Herding Ratio. We conduct an ab-
lation study to evaluate the effect of the herding
ratio (ρ), which denotes the proportion of re-
tained data from previous tasks, on both model
performance and training efficiency using the
CIFAR-100 dataset. As shown in Table 4, in-
creasing ρ improves accuracy but also leads
to higher computational cost. At ρ = 100%,
the model achieves the highest accuracy but re-
quires 50 minutes of training. Reducing ρ to 75% or 50% slightly decreases accuracy while substan-
tially lowering training time, indicating a favorable trade-off between performance and efficiency.
However, when ρ falls below 30%, the accuracy drops sharply despite further reductions in compu-
tation. These results suggest that moderate herding ratios provide a good balance, whereas very low
values impair learning stability and knowledge retention.

Table 5: Impact of different settings on CIFAR-100.
λFD Ã λFB Ã λCE Ã λKD Ã

0.1 38.99 0.1 38.23 0.1 38.32 0.1 32.14
0.5 40.21 1 41.67 0.5 40.31 0.5 36.22
1 41.09 10 39.43 1 42.67 1 42.67
2 43.67 50 38.32 2 29.42 2 40.1

Hyperparameter Tuning for FED-
HAF. Table 5 shows the effect of
varying key hyperparameters on the
final average accuracy Ã. The
weights λFD, λFB , λCE , and λKD

control the contributions of feature
distillation, feature balance, cross-entropy, and knowledge distillation losses, respectively. Proper
tuning of these values is essential for balancing feature alignment, classification performance, and
knowledge retention. Based on empirical results, we set λFD = 2, λFB = 1, λCE = 1, and
λKD = 1 as the default configuration in all experiments.

5 CONCLUSIONS AND LIMITATIONS

We propose FEDHAF, a modular framework for federated class-incremental learning with large
pre-trained models. FEDHAF freezes the feature extractor and decouples feature alignment from
classifier adaptation, enabling efficient and stable local training. It employs a two-stage training
strategy with feature-level distillation and balance regularization to effectively retain knowledge
across tasks and reduce forgetting. This design ensures reasonable communication and computation
overhead, making FEDHAF suitable for privacy-sensitive, non-IID federated settings. Extensive ex-
periments show that FEDHAF consistently outperforms strong baselines in both accuracy and for-
getting. However, the current design assumes synchronized updates and task-specific heads, which
may limit flexibility in asynchronous or overlapping class scenarios. Future work will further ex-
plore dynamic head sharing, asynchronous training, and integration with formal privacy guarantees.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models were used solely to aid in polishing the writing of this paper. They were
not used for research ideation, methodology, analysis, or drawing conclusions. The authors take full
responsibility for all content.

B FEDHAF INCREMENTAL TRAINING ALGORITHM

Algorithm 1 summarizes our method.
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Algorithm 1 FEDHAF Incremental Training Algorithm

Require: Initial model parameters θFAM, θHead, new task data Dnew, herding exemplars from old
tasks Dherding, previous task knowledge.

Ensure: Updated model parameters θFAM, θHead
1: Stage 1: Train Task-Specific Head (Freeze FAM)
2: for each epoch in Stage 1 do
3: for each minibatch (X,Y ) in Dnew ∪Dherding do
4: Compute logits p = Head(FAM(X))
5: Compute classification and distillation losses
6: Backpropagate and update θHead (FAM remains frozen)
7: end for
8: end for
9: Stage 2: Fine-tune FAM (Freeze Head)

10: for each epoch in Stage 2 do
11: for each minibatch (X,Y ) in Dnew ∪Dherding do
12: Compute adjusted features F ′

new = FAM(X)
13: Compute feature alignment loss
14: Backpropagate and update θFAM (Head remains frozen)
15: end for
16: end for
17: Server Aggregation
18: Clients send θFAM, θHead to the server
19: Server aggregates client models: θglobal =

∑N
k=1 wkθk

20: Server redistributes the global model to clients return Updated global model θglobal

C DETAILS OF THE FEDHAF

Architectures of FEDHAF.

Table 6: Details for FEDHAF Architecture
FeatureAdjustment ClassificationHead
Linear(2048 → 512) Linear(256 → 128)
BatchNorm1d(512) BatchNorm1d(128)

ReLU ReLU
Dropout Dropout

Linear(512 → 512) Linear(128 → num classes)
BatchNorm1d(1024)

ReLU
Dropout

Linear(512 → 256)
BatchNorm1d(128)

Residual Add

Weight Initialization. For image classification tasks (CIFAR-100, TinyImageNet, ImageNet), we
adopt Kaiming initialization for all trainable modules at each new task. This initialization is well-
suited to convolutional layers and accelerates convergence by preserving variance across layers. In
contrast, for text-based tasks (e.g., Shakespeare), the model is randomly initialized.

Global Aggregation Method. Once local training for task t is complete, each client uploads its
updated parameters (θ

(k,t)
FAM , θ

(k,t)
Head ) to the server. The shared feature extractor ϕ remains fixed and

is excluded from communication. The server performs weighted Federated Averaging (FedAvg) to
aggregate the received updates:

θ
(t)
FAM =

K∑
k=1

wkθ
(k,t)
FAM , θ

(t)
Head =

K∑
k=1

wkθ
(k,t)
Head (15)
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where wk =
|D(k)

t |∑
j |D(j)

t |
reflects the relative data volume of each client. The updated global parame-

ters (θ(t)FAM, θ
(t)
Head) are then broadcast to all clients before the next task round begins. As only model

parameters are exchanged, FEDHAF ensures low communication cost and strong privacy guaran-
tees.

D COMPLEXITY ANALYSIS

The computational complexity of FEDHAF is evaluated by analyzing the time complexity of each
stage of the training process.

In Stage 1, the computational complexity is driven by the number of minibatches, the dimensionality
of the Task-Specific Head, and the operations involved in forward and backward propagation. The
complexity per iteration in this stage is expressed as:

O(Nminibatch × (dhead +Nexemplar)), (16)

where Nminibatch is the number of minibatches processed per epoch, dhead represents the dimen-
sionality of the Task-Specific Head, and Nexemplar is the number of exemplars used for knowledge
distillation. Consequently, the total time complexity for Stage 1 is:

O(E1 ×Nminibatch × (dhead +Nexemplar)), (17)

where E1 denotes the number of epochs in this stage.

Stage 2 introduces complexity due to the fine-tuning of the FAM. The complexity per iteration in
this stage is:

O(Nminibatch × (dFAM +Nexemplar)), (18)

where dFAM represents the dimensionality of the Feature Adjustment Module. Therefore, the total
time complexity for Stage 2 is:

O(E2 ×Nminibatch × (dFAM +Nexemplar)), (19)

with E2 indicating the number of epochs in Stage 2. In the context of federated learning, each
client performs local training on their data, and the server aggregates the models using a weighted
averaging strategy. The complexity of the aggregation step is given by:

O(Nclients × dglobal), (20)

where Nclients is the number of participating clients in the federated learning process, and dglobal is the
global model’s dimensionality. This aggregation step is performed after each local training round.

Additionally, the communication cost for transmitting model updates between the clients and the
server is influenced by both the number of clients and the size of the model. The communication
complexity is given by:

O(Nclients × dglobal), (21)

which accounts for the transfer of the model parameters from each client to the server and the
subsequent redistribution of the aggregated global model back to the clients.

These characteristics indicate that FEDHAF achieves a favorable balance between learning ef-
fectiveness and computational efficiency. By freezing the backbone and restricting optimiza-
tion to lightweight modules—namely the task-specific head and the Feature Adjustment Module
(FAM)—the number of trainable parameters per client is reduced by over 95% compared to full
model fine-tuning. For example, in our CIFAR-100 experiments using a ResNet-152 backbone, the
FAM and head together comprise fewer than 2 million parameters, in contrast to over 60 million in
the full network.

This modular and decoupled design not only reduces computational and memory demands, but
also facilitates deployment on edge clients with limited resources, ensuring stable learning without
compromising scalability or privacy guarantees.
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E THEORETICAL ANALYSIS OF FEDHAF

E.1 PROOF FOR THEOREM 1

Proof. Standard in literature on local SGD. Using the L-smoothness of Lloc and convexity of client
averaging, one applies the descent lemma and bounds the error from local steps via Assumption
2.

E.2 PROOF FOR THEOREM 2

Proof. For any feature vector r, let pold = h(r) and pnew = h(r +∆r). By Assumption 3,

∥pnew − pold∥ ≤ Lh∥∆r∥.

Taking expectation over feature drift and applying Jensen’s inequality gives

E∥pnew − pold∥ ≤ Lh

√
E∥∆r∥2 ≤ Lh

√
ϵ,

which bounds the shift in output logits, hence the increase in classification error.

E.3 PROOF FOR THEOREM 3

Proof. We follow the standard Rademacher complexity framework. Since the total loss includes a
regularized term LFB that is Lipschitz in the features, its effect is upper bounded by λFBLϕ for some
Lϕ > 0. Applying symmetrization and contraction bounds yields the result.

E.4 PROOF FOR THEOREM 4

Proof. By block-separability of parameters, we write:

∇Lloc(θ) =

[
∇θHeadLloc
∇θFAMLloc

]
.

Then,
∥∇Lloc(θ)∥ ≤ ∥∇θHeadLloc∥+ ∥∇θFAMLloc∥ ≤ ε1 + ε2,

by triangle inequality in Euclidean norm.
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