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ABSTRACT

Graph Contrastive Learning (GCL) has shown strong promise for unsupervised
graph representation learning, yet its effectiveness on heterophilic graphs, where
connected nodes often belong to different classes, remains limited. Most existing
methods rely on complex augmentation schemes, intricate encoders, or negative
sampling, which raises the question of whether such complexity is truly necessary
in this challenging setting. In this work, we revisit the foundations of supervised
and unsupervised learning on graphs and uncover a simple yet effective principle
for GCL: mitigating node feature noise by aggregating it with structural features
derived from the graph topology. This observation suggests that the original node
features and the graph structure naturally provide two complementary views for
contrastive learning. Building on this insight, we propose an embarrassingly simple
GCL model that uses a GCN encoder to capture structural features and an MLP
encoder to isolate node feature noise. Our design requires neither data augmen-
tation nor negative sampling, yet achieves state-of-the-art results on heterophilic
benchmarks with minimal computational and memory overhead, while also of-
fering advantages in homophilic graphs in terms of complexity, scalability, and
robustness. We provide theoretical justification for our approach and validate its ef-
fectiveness through extensive experiments, including robustness evaluations against
both black-box and white-box adversarial attacks.

1 INTRODUCTION

Contrastive learning is a powerful unsupervised technique for representation learning that has at-
tracted significant attention in recent years. It learns meaningful representations by encouraging
embeddings of similar instances to align closely while pushing apart those of dissimilar ones, typically
using feature embeddings generated from different encoders. This process allows models to capture
important patterns without relying on large amounts of labeled data and has demonstrated strong
performance in domains such as computer vision, natural language processing, and recommendation
systems (Radford et al., 2021; Grill et al., 2020; Chen et al., 2020). When extended to graph-structured
data, this approach is referred to as Graph Contrastive Learning (GCL).

The central idea of GCL is to design encoders that produce distinct yet semantically meaningful graph
views. While this paradigm has shown strong promise, its effectiveness on heterophilic graphs, where
connected nodes often belong to different classes, remains limited. To overcome this challenge, many
existing frameworks adopt increasingly complex strategies. Augmentation-based approaches generate
views through perturbations such as edge removal or feature masking (Zhang et al., 2023; Zhu et al.,
2020; 2021; Xiao et al., 2022; Xu et al., 2025), often using elaborate, heuristically designed pipelines
that may distort graph semantics. For example, EPAGCL (Xu et al., 2025) constructs augmented
views by adding or dropping edges according to weights derived from the Error Passing Rate (EPR).
In contrast, augmentation-free approaches shift the complexity to the encoder, requiring sophisticated
designs to extract distinct representations from the same input. PolyGCL (Chen et al., 2024) applies
polynomial filters to generate low-pass and high-pass spectral views, while SDMG (Zhu et al., 2025)
employs two dedicated low-frequency encoders to facilitate diffusion-based learning. Despite these
intricacies, both approaches often continue to rely on negative sampling during training, which adds
further complexity. We refer readers to Appendix A for additional related work.
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To illustrate the trade-off between complexity and node classification performance in recent GCL
methods, Fig. 1 plots accuracy against training time for each epoch, with marker color indicating
storage cost. They are on the more challenging heterophilic datasets: the Wisconsin dataset and the
(large-scale) Roman dataset. GraphACL’23 and PolyGCL’24 gain higher accuracy at the expense
of greater complexity, while GraphECL’24, EPAGCL’25, and SDMG’25 reduce training time and
storage but suffer degraded performance. This trend raises two natural questions:

Q1 Have recent advances in GCL substantially improved performance on heterophilic graphs?

Q2 Are increasingly elaborate designs truly necessary, or can simpler models achieve compara-
ble or better results?
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Figure 1: Performance–complexity trade-off of GCL methods on the Wisconsin and Roman datasets.
Accuracy is plotted against training time (log scale, in seconds), with marker color indicating storage
cost. Our GCN-MLP achieves the best performance with minimal complexity, while OOM cases are
marked with red crosses. OOM refers to out of memory on an NVIDIA RTX A5000 GPU (24GB).

To address these questions, we revisit the essence of node classification. In the ideal case, classification
is trivial when nodes of the same class share identical features. In practice, however, node features
from the same class are better modeled as realizations from a common distribution. The noise, defined
as the deviation of the feature from the distribution mean, introduces variability that complicates
classification. Hence, we want to “mitigate noise”, which might be (partially) achieved by aggregating
features across nodes of the same class, akin to a law-of-large-numbers effect (Ji et al., 2025). In
homophilic graphs, models such as GCN leverage neighborhood aggregation under the assumption
that neighbors are likely to share the same class. In contrast, for heterophilic graphs, effective
strategies involve identifying non-neighboring but same-class nodes for aggregation (Linkerhägner
et al., 2025). This is usually much harder (Xiao et al., 2023), as the graph topology does not provide
direct information for aggregation. While labeled data provides supervision to guide class separation,
unsupervised settings require stronger noise mitigation to ensure that features cluster well by class. In
summary, heterophilic GCL suffers from limited guidance from both the graph structure and node
labels.

However, beyond aggregating features across nodes, an alternative way to mitigate noise is to generate
multiple feature representations for the same node. Our strategy is motivated by the observation that:
cancellation is stronger in the sum of two vectors when they are less correlated. The key, therefore,
is to construct diverse feature views such that their associated “noise” is preferably less correlated.
For graph-structured data, two natural sources arise: the original node features independent of the
graph topology and the embeddings from aggregating over the graph structure. We hope that their
respective noises, termed feature noise and structural noise, are weakly correlated for cancellation.

From the above intuition, an embarrassingly simple GCL model is readily available: we use only a
GCN and an MLP as view-generation encoders. We emphasize that our novelty lies not in merely
combining existing architectures (i.e., GCN and MLP), but in uncovering a novel underlying principle
for GCL: when feature noise and structural noise are weakly correlated, their contrastive interaction
(and simple linear fusion) yields stronger noise mitigation. Therefore, our design goal is to construct
two views whose noise components are as uncorrelated as possible. The GCN-MLP architecture
is a simple yet effective instantiation of this principle, where the GCN captures structural features
together with their inherent structural noise, while the MLP isolates node feature noise, yielding
two complementary views for contrastive learning. This GCN-MLP model requires neither data
augmentation nor negative sampling, and it can be applied to any graph dataset. The approach has
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notable advantages in heterophilic settings, where original features and graph structure are less
correlated. We refer to it as “simple” due to its minimal and transparent design. As a preview, its
effectiveness on certain datasets is demonstrated in Fig. 1, while more studies can be found in the
main text.

Our main contributions are as follows:

• We propose an augmentation-free GCL model that is simple, flexible, and efficient. We
provide the theoretical justification for our choice of contrasting views, which further
explains the model’s simplicity and robustness.

• We identify the reasons underlying the model’s pronounced performance on heterophilic
datasets, and we further demonstrate its cost-effectiveness, scalability, and strong robustness
when applied to homophilic datasets.

• We conduct extensive numerical experiments on diverse datasets, showing clear advantages
on many datasets in terms of accuracy, efficiency, and resistance to adversarial attack.

2 PRINCIPLES OF GRAPH CONTRASTIVE LEARNING

Consider an undirected graph G = (V, E) with the node set V = {v1, . . . , vN} and edge set
E ⊆ V × V . Each node vi is associated with a feature vector xi, which is collected as the i-th row
in the feature matrix X ∈ RN×d. The graph structure is encoded by a symmetric weighted matrix
A = (aij)1≤i,j≤n ∈ RN×N , where aij is the edge weight between vi and vj . The complete graph
data is denoted by X = (A,X).

GCL belongs to the category of unsupervised representation learning, where no labels are available
during training. For unsupervised learning, the goal is to train an encoder fθ that maps each node
vi and its context in X to a representation zi = fθ(X , vi) ∈ RF , where F denotes the feature
dimension. The resulting embedding matrix Z ∈ RN×F is then used for downstream tasks such as
node classification, which is our main focus.

For GCL, self-supervision is achieved by enforcing consistency between representations Z1 and Z2

obtained from different encoders fθ1 and fθ2 . As a guiding principle, the encoders fθ1 and fθ2 should
represent different “graph views”. The concept of a graph view is not universally defined and is open
to interpretation, while a local-global dichotomy is popular (Chen et al., 2024). For each node vi,
the final feature representation is a weighted sum βz1,i + (1 − β)z2,i, where z1,i and z2,i are the
i-th row of Z1 and Z2, respectively, and 0 < β < 1. Most models simply choose β = 0.5 to avoid
discriminating against any graph view.

We take a step back and examine the main challenge of unsupervised learning. In the ideal situation
where the features are noiseless, i.e., xi = xj if and only if vi and vj have the same label, the
classification becomes trivial. However, this never happens for real datasets. More specifically, we
formalize the discussion as follows.

Assume that for each label class c, the feature for a node with label c is generated according to a
class-specific distribution γc.
Definition 1. Let c be a class label and Vc be the set of nodes of label c. Define the class centroid
xc = Ex∼γc

[x], and the noise of vi ∈ Vc to be ni = xi − xc.

In practice, a proxy for xc is the empirical centroid x̂c = (
∑

vi∈Vc
xi)/|Vc|.

Unlike in the ideal situation, ni can have a large norm, which prohibits effective separation of nodes
from different classes. To address this challenge, we may aim for a small ratio between the norms of
the noise and class centroid, termed noise-to-class centroid ratio (NCR), which leads to the following
two natural strategies (see more discussions at the end of the section):

• Enlarge the norm of the class centroids of the output representation.

• Reduce the norm of the noise of the output representation.

To explain how these strategies might be implemented, we consider the following simple observation
(see Appendix B for the proof).
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Proposition 1. Consider two different representation learning models fθ1 and fθ2 whose representa-
tions are in the same space RF . Let z1,c and z2,c be the respective centroids from these two different
representations, assumed to be non-zero vectors. Then, for 0 < β < 1, the norm of the aggregated
feature centroid zc = βz1,c + (1− β)z2,c increases as the cosine similarity between z1,c and z2,c
increases while keeping the centroid norms fixed. Moreover, suppose |Vc| = nc, and for r = 1, 2,
let z′r,c be the empirical centroid of the features {zr,i : 1 < i ≤ nc} (i.e., excluding the node
v1). Let n′

r,1 = zr,1 − z′r,c be the deviation of v1’s feature from the empirical centroid in the k-th
representation. Then, the norm of the output noise n1 = z1 − zc, where z1 = βz1,1 + (1− β)z2,1, is
a non-decreasing function of the cosine similarity between n′

1,1 and n′
2,1 while keeping the deviation

norms fixed.

Intuitively, recall that we seek cancellation between n1,i and n2,i, while avoiding it between z1,i
and z2,i. The observation suggests that to generate output features Z with a small NCR, we need to
ensure that for each vi, z1,i and z2,i are strongly correlated, while their respective noise (to centroid)
n1,i and n2,i are weakly correlated (see empirical evidence in Appendix D.1).

On implementing the strategies Contrastive learning is deemed to amplify the class centroid via
a contrastive loss (minimizing pairwise feature cosine similarity). More specifically, the learning
process seeks to align the centroids of distinct views. The dedicated loss encourages these centroids
to form a small angle, thereby reducing cancellation during aggregation.

However, a similar approach to reducing noise through a dedicated loss is not as straightforward, since
labels are unavailable during training. Centroids, and hence noise, cannot be computed explicitly.
Instead, the idea is to design encoders with different characteristics so that their respective noise is
intrinsically less correlated. We provide the motivation in the next section.

3 FEATURE NOISE AND STRUCTURAL NOISE

As we have envisioned in the previous section, we motivate the model design aiming for noise
reduction. Any graph dataset naturally consists of two pieces of information: features and the graph
structure. We formalize earlier discussions and associate each with a notion of “noise”. We analyze
their correlations, in alignment with the objective of noisy reduction as discussed in the previous
section. Let ÃG be the normalized adjacency matrix. For a matrix M, we use Mi to denote the i-th
row vector of M.
Definition 2. For any feature matrix X, its associated feature noise of a node vi with label c is
ni = xi − xc. For a fixed k > 0, the k-hop structural noise (or simply the structural noise) of vi with
class label c is the feature noise n

(k)
i associated with the transformed feature matrix Ãk

GX, defined
as follows:

n
(k)
i =

(
Ãk

GX
)
i
−Mi (1)

with

Mi = E

 1

|Vc|
∑

vj∈Vc

(
Ãk

GX
)
j

 =
1

|Vc|
∑

vj∈Vc

(
Ãk

GX
)
j
, (2)

where X is the mean feature matrix whose j-th row is xc if vj has label c.

Observe that when k = 0, the 0-hop structural noise reduces to ordinary feature noise associated
with X. We single out this case since no graph information is involved. Recall that our objective is to
obtain features with less correlated noise. Although k-hop structural noise still contains the original
feature noise, its effect is attenuated, as a consequence of the following result (see Appendix B).

Proposition 2. Given the feature matrix X, let X be the mean feature matrix, where the i-th row
is xc if vi has label c. If the graph G is sufficiently dense, then as k increases, the features Ãk

GX is
close to Ãk

GX, with high probability.

Intuitively, as X is unambiguous in the sense that it trivially separates all classes, the “uncertainty”
or “noise” of Ãk

GX is solely from different neighborhood structures of distinct nodes. Therefore,
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approximately, the “noise” of Ãk
GX is also due to distinct neighborhood structures. The result suggests

that feature noise ni and structural noise n
(k)
i , k > 0 are indeed of different characteristics. In other

words, the operator Ãk
G effectively “replaces” feature noise with structural noise. This decoupling

between feature and structural noise becomes more pronounced when the graph construction depends
only weakly on the initial node features.

We may verify the above numerically as follows, even for a relatively small k = 2. For a node
vi, we compute its feature and 2-hop structural noise ni and n

(2)
i . We reshuffle the index so that

the components of ni are ordered increasingly, while the same indexing is applied to n
(2)
i . Sample

examples are shown in Fig. 2. We see that n(2)
i displays a more random behavior with the given

feature index ordering.

Figure 2: For a sample node vi, the noise ni (left panel) and n
(2)
i (right panel) of a random selected

node vi from the Cornell dataset. We see that n(2)
i displays a more random behavior.

From the examples in Fig. 2, we expect that the correlation between n
(2)
i and ni can be reduced due

to cancellation from the random spikes. This is desirable, as discussed in Section 2.

Consider the empirical average correlation Ek =
∑

1≤i≤N ⟨ni,n
(k)
i ⟩/N between {ni} and {n(k)

i },
then we have the following observation.

Observation 1. Ek can be decomposed as Ek = Dk +Hk, where Dk can be reduced as k increases,
while the remaining term Hk has zero expectation, i.e., E[Hk] = 0.

We emphasize that this statement is heuristic rather than rigorous. A fuller and more explicit expla-
nation is provided in Appendix B. For example, we show rigorously (in Corollary 1) that Dk for
k = 2l + 2 is always reduced from that for k = 2l. This is particularly relevant as 2-layer GCN is
commonly used in the GNN literature. The result (cf. Theorem 1) in Appendix B on Ek also further
confirms that Ãk

G transforms “feature noise” into “structural noise”.

To summarize, recall we want to comply with the strategies outlined in Section 2. Hence, to generate
a “secondary view” to supplement the initial features, it suffices to consider Ãk

G-transformed features.
To further enhance the expressiveness, the discussions suggest that we may consider a simple MLP
and a simple GCN (Kipf & Welling, 2017) as the view generation encoders. As a preview, the
parameter k corresponds to the number of GCN layers. A moderate choice such as k = 2, which
conforms to common practices, is usually sufficient to generate less correlated structural noise (see
evidence in Fig. 2). We provide more details on the model in the next section.

4 VERY SIMPLE GCL

We now present the full details of the proposed simple GCL model. Building on the analysis
in the previous sections, the strategy is to use a k-layer GCN and an MLP as view-generation
encoders. Consider a graph G with adjacency matrix A and node features X, collectively denoted as
X = (A,X). The k-layer GCN captures structural features together with their inherent structural

5
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noise, producing the view

H(0) = X, H(ℓ+1) = σ
(
ÃGH

(ℓ)W(ℓ)
)
, ℓ = 0, . . . , k − 1,

where ÃG is the normalized adjacency matrix with self-loops, W(ℓ) are learnable weight matrices,
and σ(·) is a nonlinear activation (e.g., ReLU). The output of the GCN after k layers,

Zs = H(k)

is a representation with prominent structural noise. In parallel, the MLP serves as an encoder that
isolates feature noise, generating the feature-noise representation

Zf = MLP(X).

Together, Zs and Zf form two complementary views used for contrastive learning. The learnable
parameters of the model are the weight matrices of the GCN and the MLP, while the number of GCN
layers k and MLP layers L are treated as hyperparameters. In practice, we adopt L = 1 for the MLP,
which is a simple and efficient choice and aligns with common practice. To optimize these parameters,
we adopt the standard cosmean contrastive loss L (Thakoor et al., 2022) between Zs and Zf , i.e.,

L(Zs,Zf ) = 1− 1

N

N∑
i=1

⟨Zs,i,Zf,i⟩
∥Zs,i∥2∥Zf,i∥2

,

where ⟨Zs,i,Zf,i⟩ is the inner product of these two vectors Zs,i and Zf,i, and ∥Zs,i∥2 and ∥Zf,i∥2
are their respective ℓ2-norms. It is deemed to align the feature vectors for “amplifying class centroids”
(see the first strategy in Section 2).

For downstream tasks, we compute a weighted average of the two views as Z = βZs + (1− β)Zf ,
where β is either set to 0.5 or tuned based on validation accuracy. This aggregation is effective
only if the noise components of Zs and Zf are not strongly correlated. As in Observation 1, the
structure-noise view Zs and the feature-noise view Zf are less correlated. Consequently, their
combination allows the signal components to be reinforced while their independent noise components
are partially canceled out. This highlights the importance of constructing diverse feature views that
capture different sources of noise, as feature noise and structural noise exhibit inherently different
characteristics.

Heterophily v.s. homophily While the proposed GCN-MLP model is applicable to both homophilic
and heterophilic graphs, its (accuracy) advantage is expected to be more pronounced in the heterophilic
setting (cf. Observation 1). In homophilic graphs, conventional GCNs already perform well: since
neighbors often share the same label, feature aggregation amplifies class-consistent signals and
naturally suppresses noise. In this case, structural and feature information are highly aligned, so the
benefit of integrating the two views is less pronounced. However, homophily is a local notion. Even
in homophilic datasets, there exists “heterophilic nodes”, which are along class boundaries and hence
difficult to classify. To evaluate whether our GCN-MLP model provides the additional benefits on
such challenging cases, we focus the evaluation on nodes with a heterophily ratio of 1, i.e., nodes
whose neighbors all belong to different classes. We report test accuracy on this subset. As shown
Table 1, our GCN-MLP consistently outperforms GraphACL, a strong contrastive baseline widely
recognized for its performance on homophilic datasets. In addition, in the homophilic setting, the
proposed model offers substantial gains in computation and memory efficiency (see Section 5.5), and
it further demonstrates strong robustness (see Section 5.4).

Table 1: Test accuracy on heterophilic nodes
Cora Citeseer Pubmed

GraphACL 36.31±0.01 31.06±0.87 43.43±0.03
GCN-MLP 39.11±0.65 32.95±0.13 54.07±0.57

In contrast, in heterophilic graphs, neighbors may belong to different classes, and aggregation via
message passing amplifies structural noise while suppressing feature noise. By decoupling feature
noise and structural noise, the GCN-MLP model produces complementary views: the MLP focuses
on extracting information directly from node features, while the GCN leverages the graph structure
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to provide a complementary, structurally informed view. Since these two noise sources are less
correlated in heterophilic graphs, their combination strengthens useful signals while (partially)
canceling independent noise, enabling the model to outperform state-of-the-art GCL methods on
challenging heterophilic benchmarks. Numerical evidence supporting this claim is provided in
Section 5.2.

Robustness In practical scenarios, graphs often exhibit noisy features or incomplete topology (e.g.,
missing edges) (Lee et al., 2024). The proposed GCN-MLP model mitigates potential performance
degradation in such cases. The MLP produces a feature-based view independent of graph topology,
so perturbations or missing edges do not affect it. Meanwhile, the structurally informed GCN view is
combined with the MLP view under a contrastive objective, which reinforces useful representations
while canceling uncorrelated noise. This complementary design enhances robustness to both structural
perturbations and feature noise. Empirical results under adversarial attacks in Section 5.4 further
demonstrate the model’s resilience to both black-box and white-box perturbations.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and splits We first focus on heterophilic datasets to verify our claim that our method is
particularly well-suited for handling weak or negative homophily, making it more applicable to such
scenarios. The benchmarks include Wisconsin, Cornell, Texas, Actor, Crocodile, Squirrel-filtered
(Squirrel), and Chameleon-filtered (Chameleon), where the filtered Squirrel and Chameleon versions
remove duplicate nodes to avoid training–test leakage (Platonov et al., 2023b). We further evaluate
on three large-scale heterophilic datasets: Amazon-ratings (Amazon), Roman-empire (Roman), and
Arxiv-year, to test scalability. For the second part, we also report results on homophilic datasets,
including citation graphs (Cora, Citeseer, Pubmed) and co-purchase networks (Computer, Photo). All
datasets follow the standard public splits, with detailed descriptions in Appendix C.1.

Baselines We compare GCN-MLP with a large number of unsupervised learning methods (15 in
total), including classical models and recent SOTAs: DGI (Velickovic et al., 2019), GMI (Peng et al.,
2020), MVGRL (Hassani & Khasahmadi, 2020), GRACE (Zhu et al., 2020), CCA-SSG (Zhang et al.,
2021), BGRL (Thakoor et al., 2022), AFGRL (Lee et al., 2022), DSSL (Xiao et al., 2022), SP-GCL
(Wang et al., 2023), GraphACL (Xiao et al., 2023), GraphECL (Xiao et al., 2024), PolyGCL (Chen
et al., 2024), LOHA (Zou et al., 2025), EPAGCL (Xu et al., 2025) and SDMG (Zhu et al., 2025).
Detailed descriptions and implementations of these baselines are given in Appendix C.2.

Evaluation protocol To evaluate the quality of the representation, we mainly focus on the node
classification task. Following the standard linear evaluation protocol, we train a linear classifier on
the frozen representations and report the test accuracy as the evaluation metric. We further assess
GCN-MLP on the graph classification task (see Appendix D.3) to demonstrate its generalization
beyond node-level settings.

Setup We randomly initialize model parameters and train the encoder with the Adam optimizer.
Each experiment is repeated with ten random seeds, and we report the mean performance and standard
deviation. For all methods, hyperparameters (i.e., learning rate, weight decay, and hidden feature
dimension) are tuned based solely on validation accuracy to ensure fairness, following the settings
commonly adopted in standard baselines (Xiao et al., 2023). When baseline results are unavailable
for certain datasets or do not follow standard public splits (Xiao et al., 2022; Chen et al., 2024; Zou
et al., 2025; Zhu et al., 2025), we reproduce them using the authors’ official code.

5.2 OVERALL PERFORMANCE

Node classification results on heterophilic and homophilic datasets are reported in Tables 2 and 3, re-
spectively. On heterophilic graphs, GCN-MLP achieves clear state-of-the-art performance, surpassing
GraphACL, PolyGCL, GraphECL, and all other baselines by a significant margin. This demonstrates
the effectiveness of the strategy that mitigates feature noise via aggregating with representations
dominated by weakly correlated structural noise. We refer readers to Appendix D.1 for visualizations
and discussions on the relations between model performance and noise correlation.

On the other hand, on homophilic graphs, GCN-MLP provides less pronounced gain in terms of
classification accuracy as we have discussed in Section 4. While GCN-MLP shows weaker results

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

on Cora, it performs comparably to other methods on Citeseer, Pubmed, and Computers, and is on
par with the best method (i.e., SDMG) on Photo. Despite a smaller accuracy gain in the homophilic
settings, GCN-MLP remains cost-effective as it offers substantial advantages in efficiency, requiring
far less computation time and memory, as shown in Table 8 below.
Table 2: Node classification results(%) on heterophilic datasets. The best and the second-best result under each
dataset are highlighted in red and blue, respectively.

Method DGI CCA-SSG BGRL DSSL SP-GCL GraphACL PolyGCL GraphECL LOHA EPAGCL SDMG GCN-MLP

Squirrel 40.60±0.35 41.23±1.77 42.55±2.35 40.95±3.35 40.11±2.20 35.51±2.03 33.07±0.94 41.14±6.71 34.46±1.69 40.28±1.59 41.55±6.71 43.89±1.62
Chameleon 42.57±0.71 39.46±3.10 40.13±2.16 37.69±2.07 44.49±2.59 38.59±2.81 41.79±2.45 35.82±2.76 45.45±1.83 35.43±1.28 36.82±0.77 46.01±4.23
Crocodile 51.25±0.51 56.77±0.39 53.87±0.65 62.98±0.51 61.72±0.21 66.17±0.24 65.95±0.59 52.52±3.01 66.09±0.69 70.14±0.62 65.38±0.37 66.47±1.20
Actor 28.30±0.76 27.82±0.60 28.80±0.54 28.15±0.31 28.94±0.69 30.03±0.13 34.37±0.69 35.80±0.89 33.69±0.73 30.02±0.91 26.74±0.13 36.79±0.91
Wisconsin 55.21±1.02 58.46±0.96 51.23±1.17 62.25±0.55 60.12±0.39 69.22±0.40 76.08±3.33 79.41±2.19 77.05±6.08 63.73±3.95 52.68±1.21 85.29±2.19
Cornell 45.33±6.11 52.17±1.04 50.33±2.29 53.15±1.28 52.29±1.21 59.33±1.48 43.78±3.51 69.19±6.86 54.05±7.05 52.97±5.82 45.59±0.67 71.35±6.19
Texas 58.53±2.98 59.89±0.78 52.77±1.98 62.11±1.53 59.81±1.33 71.08±0.34 72.16±3.51 75.95±5.33 69.73±6.26 68.92±5.95 53.60±2.67 78.38±4.68
Roman 63.71±0.63 67.35±0.61 68.66±0.39 71.70±0.54 70.88±0.35 74.91±0.28 72.97±0.25 45.05±1.57 OOM 47.11±0.87 49.20±0.51 78.21±0.39
Amazon 42.72±0.42 41.23±0.25 41.17±0.25 42.12±0.78 42.04±0.68 OOM 44.29±0.43 36.88±1.25 38.45±0.20 OOM 45.18±0.16 45.42±0.47
Arxiv-year 39.26±0.72 37.38±0.41 43.02±0.62 45.80±0.57 44.11±0.35 47.21±0.39 43.07±0.23 OOM OOM OOM OOM 46.15±0.08

Table 3: Node classification results(%) on homophilic datasets.
Method DGI GMI MVGRL GRACE CCA-SSG BGRL AFGRL SP-GCL GraphACL PolyGCL LOHA EPAGCL SDMG GCN-MLP

Cora 82.30±0.60 82.70±0.20 82.90±0.71 80.00±0.41 84.00±0.40 82.70±0.60 82.31±0.42 83.16±0.13 84.20±0.31 82.74±0.14 81.22±0.17 82.14±0.89 83.60±0.60 77.26±0.14
Citeseer 71.80±0.70 73.01±0.30 72.61±0.70 71.72±0.62 73.10±0.30 71.10±0.80 68.70±0.30 71.96±0.42 73.63±0.22 71.82±0.45 71.89±0.63 71.94±0.57 73.20±0.50 70.12±0.44
Pubmed 76.80±0.60 80.11±0.22 79.41±0.31 79.51±1.10 81.00±0.40 79.60±0.50 79.71±0.21 79.16±0.84 82.02±0.15 77.31±0.27 78.09±0.29 81.28±0.62 80.00±0.40 79.00±0.03
Computer 83.95±0.47 82.21±0.34 87.52±0.11 86.51±0.32 88.74±0.28 89.69±0.37 89.90±0.31 89.68±0.19 89.80±0.25 86.54±0.45 79.05±0.32 76.81±0.79 90.40±0.20 87.65±1.10
Photo 91.61±0.22 90.72±0.21 91.72±0.10 92.50±0.22 93.14±0.14 92.90±0.30 93.25±0.33 92.49±0.31 93.31±0.19 91.45±0.35 86.46±0.41 93.05±0.23 94.10±0.20 93.41±0.88

5.3 ABLATION AND HYPERPARAMETER ANALYSIS

To illustrate the complementary roles of the two encoders, the GCN captures structural features with
their inherent noise, while the MLP isolates feature noise, together producing complementary views.
An ablation study on the Cora, Chameleon, Roman, and Arxiv-year datasets (Table 4) shows that
GCN-GCN and MLP-MLP both underperform relative to GCN-MLP, confirming the effectiveness of
combining structurally informed and feature-based views. For the selection of key hyperparameters,
we largely follow existing literature or the common practice of the GNN/GCL community.

Table 4: Node classification results (%) across different datasets and design configurations.

Method Cora Chameleon Roman Arxiv-year

MLP-MLP 64.37±0.31 42.13±4.52 65.55±0.48 35.64±0.28
GCN-GCN 56.23±0.54 38.49±2.72 32.83±0.28 40.82±0.18

GCN-MLP 77.26±0.14 46.01±4.42 77.13±0.46 46.15±0.08

Feature dimension In the GCN-MLP model, the linear layers in both the GCN and MLP expand
the feature dimension, thereby increasing representation capacity and enabling the model to capture
more complex patterns, as discussed in Xiao et al. (2023). As shown in Fig. 3a, enlarging the feature
dimension consistently improves performance on both homophilic and heterophilic graphs, with
especially pronounced gains on the latter.

The number of GCN layers In the GCN-MLP model, we study the effect of the number of
GCN layers k on both homophilic and heterophilic graphs, as shown in Fig. 3b. On heterophilic
graphs, performance may improve as k increases, since deeper propagation helps reduce the cosine
similarity between features and structural noise (as in Observation 1), thereby enhancing the benefit
of combining the two views. In contrast, on homophilic graphs (e.g., Computer), increasing k
aggregates class-consistent signals and suppresses noise, so structural and feature information are
already strongly correlated. As a result, the advantage of combining the two views becomes limited.
Notably, most of the performance gain on heterophilic graphs occurs from k = 1 to k = 2, while
further increases yield diminishing returns. This suggests that a moderate choice such as k = 2,
consistent with common practice (Kipf & Welling, 2017), is sufficient to reduce structural noise and
achieve strong performance without increasing model complexity.

Augmentation & Negative sampling techniques To access whether GCN-MLP benefits from
additional training tricks, we further evaluate it with two common operations: data augmentation
(e.g., edge removal and node-feature masking) and negative sampling using the InfoNCE loss adopted
in GRACE, on both homophilic and heterophilic datasets. Table 5 shows that these techniques yield
performance comparable to our original model, indicating that GCN-MLP already operates close to
its optimal capacity without relying on either augmentation or negative sampling. This aligns with the
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Figure 3: Performance comparison across feature dimension and GCN layers

principle of Occam’s Razor, which favors simpler models when additional complexity does not offer
clear benefits. Our augmentation-free and negative-sample-free design therefore remains lightweight,
effective, and efficient while maintaining strong performance.

Table 5: Comparison GCN-MLP with its additional techniques
Crocodile Wisconsin Roman Pubmed Photo

GCN-MLP 66.47±1.20 85.29±2.19 78.21±0.39 79.00±0.03 93.41±0.87

GCN-MLP(+ Aug.) 65.56±1.01 85.49±2.80 78.25±0.49 79.05±0.22 93.48±0.82
GCN-MLP(+ Neg.) 65.71±0.95 84.92±3.26 78.16±0.45 78.67±0.13 93.40±0.96
GCN-MLP(+ Aug. & Neg.) 65.71±0.55 85.69±4.96 78.20±0.49 78.58±0.04 93.46±0.97

5.4 ROBUSTNESS STUDY

We evaluate the claimed robustness of GCN-MLP through node classification under both black-
box and white-box adversarial attacks on standard benchmarks, including homophilic (Photo) and
heterophilic (Actor, Wisconsin, Texas) graphs. GCN-MLP is compared against eight baselines: a
robust supervised method (FROND (Kang et al., 2024)), three robust GCL methods (GCL-Jac (Xu
et al., 2020), Ariel (Feng et al., 2022), Res-GRACE (Lin et al., 2024)), and five state-of-the-art GCL
models (GraphACL, PolyGCL, LOHA, EPAGCL, SDMG). Additional results on more datasets are
provided in Appendix D.2.

Attacks methods We consider four black-box topology attacks in the evasion setting: Random,
PRBCD (Zügner et al., 2018), Nettack (Geisler et al., 2021), and Metattack (Zügner & Günnemann,
2019). In addition, we evaluate two white-box attacks (i.e., PGD (Madry et al., 2018) and PRBCD)
that jointly perturb the graph structure and node features. All models are trained on clean graphs,
while adversarial perturbations are introduced only at inference. Further implementation details of
the attacks are provided in Appendix C.3.
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Figure 4: Performance comparison under adversarial attacks on Cora and Photo datasets

Robust results We first evaluate GCN-MLP’s robustness under increasing perturbation rates (from
0% to 25% in 5% increments), using Metattack on Cora (Fig. 4a) and Random attack on Photo
(Fig. 4b). While GCN-MLP performs worse than baselines on Cora in the absence of attacks, it
exhibits superior robustness as the perturbation rate increases, consistently outperforming strong
baselines (e.g., GraphACL), particularly at higher perturbation levels. This robustness stems from
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its dual-view design: the MLP provides a structure-independent feature view resilient to edge
perturbations, while the GCN offers a structure-aware view. Contrastive learning aligns the two,
reinforcing consistent signals and suppressing adversarial noise, so the feature view anchors stable
representations even when the structural view is corrupted. Results in Table 6 and Table 7 further
confirm its superior robustness, especially under more challenging white-box attacks.

Table 6: Black-box attack robust accuracy results(%) on graph evasion attack for node classification.
Dataset Attack FROND GCL-Jac Ariel Res-GRACE GraphACL PolyGCL LOHA EPAGCL SDMG GCN-MLP

Photo

clean 92.93±0.46 91.46±0.50 85.75±1.21 92.23±1.22 93.31±0.19 91.45±0.35 86.46±0.41 93.05±0.23 94.10±0.20 93.41±0.88
Random 89.90±1.21 86.40±0.74 80.62±1.53 87.79±1.93 26.61±0.05 90.17±0.99 85.83±1.12 84.08±1.50 89.90±0.78 92.94±0.58
PRBCD 88.58±1.05 85.24±1.30 80.58±1.62 85.39±4.19 29.13±0.95 89.65±0.39 86.35±1.07 80.60±2.72 89.42±0.96 92.84±0.28

Metattack 89.61±1.13 86.20±1.06 82.76±1.11 85.46±1.56 28.42±0.74 91.06±1.36 86.56±0.89 85.65±0.56 90.78±0.99 91.14±0.68
Nettack 91.17±1.35 90.50±0.63 85.28±0.91 91.51±1.40 32.84±0.25 91.29±1.15 87.40±0.89 89.59±1.05 90.29±0.56 92.34±0.52

Wisconsin

clean 67.84±3.84 43.53±6.19 56.08±4.31 52.35±7.18 69.22±0.40 76.08±3.33 76.05±6.08 63.73±3.95 52.68±1.21 85.10±2.35
Random 69.61±4.49 44.71±6.43 51.18±5.44 51.76±6.27 51.56±5.63 75.23±3.13 76.47±4.12 59.02±4.59 51.18±0.98 85.29±1.81
PRBCD 67.65±5.28 44.71±6.72 55.88±4.41 51.37±6.67 52.55±5.13 74.60±3.14 75.29±4.12 60.39±6.61 50.98±0.78 84.90±2.33

Metattack 64.51±5.98 43.53±4.09 50.98±4.64 50.59±6.06 52.15±5.08 76.67±3.92 74.71±4.31 60.39±4.79 51.67±1.47 84.90±1.76
Nettack 70.78±6.17 44.71±5.32 55.29±5.02 50.00±5.70 53.73±5.16 77.65±3.92 75.49±3.73 59.02±2.97 51.57±1.57 85.10±2.00

Actor

clean 35.08±1.08 29.25±1.21 24.36±1.11 30.72±0.72 30.03±0.13 34.37±0.69 33.69±0.73 30.02±0.91 26.74±0.13 36.56±0.93
Random 35.15±0.78 27.59±1.12 25.64±1.02 30.16±1.09 28.36±1.95 25.41±0.72 34.19±0.59 28.92±1.03 27.09±0.68 36.19±0.77
PRBCD 35.04±0.90 27.76±1.66 24.95±0.89 30.48±1.28 28.37±1.95 27.21±0.64 26.23±0.79 28.66±2.01 26.79±0.82 36.47±1.05

Metattack 32.34±7.10 28.00±1.10 25.54±0.75 30.34±1.04 28.45±1.26 28.29±0.42 26.97±0.65 29.65±1.12 26.78±0.91 36.56±1.12
Nettack 34.97±0.88 28.87±0.73 25.51±0.95 30.86±0.96 28.60±1.20 25.96±0.86 27.20±0.74 30.05±0.81 26.72±0.79 36.14±0.67

Table 7: White-box attack robust accuracy (%) under 15% perturbation for node classification.
Dataset Attack FROND Res-GRACE GraphACL PolyGCL LOHA EPAGCL SDMG GCN-MLP

Photo
clean 92.03±1.27 92.50±0.17 93.31±0.19 91.45±0.35 86.46±0.41 93.05±0.23 94.10±0.20 93.41±0.88
PGD 14.18±5.16 45.46±2.05 30.94±3.62 22.93±2.73 59.35±0.43 7.71±1.41 3.11±1.11 90.56±0.54

PRBCD 15.08±7.52 40.72±3.70 28.56±1.16 15.86±1.99 52.82±3.45 3.69±1.35 21.35±11.31 75.42±0.69

Texas
clean 74.86±3.21 54.59±5.51 71.08±0.34 72.43±4.86 69.73±6.26 68.92±4.05 53.60±2.67 78.38±4.68
PGD 69.46±7.16 28.85± 8.55 21.62±7.20 56.76±16.22 32.70±20.17 48.65±17.72 27.57±22.67 75.68±6.28

PRBCD 65.14±3.91 26.49±11.22 23.78±8.99 53.51± 13.23 37.57±15.17 46.22±16.24 15.68±16.12 67.03±5.10

Wisconsin
clean 67.84±3.84 52.35±7.18 69.22±0.40 76.08±3.33 76.05 ±6.08 63.73 ±3.95 52.68 ±1.21 85.10±2.35
PGD 62.16±6.01 30.45± 6.89 8.04±3.75 66.27±6.06 66.86±7.52 18.43±10.57 15.29±17.60 80.98±4.64

PRBCD 57.06±5.71 27.56± 8.36 11.37±3.56 60.59± 5.65 57.06±7.36 33.92±11.20 18.24±12.15 73.53±4.04

Cornell
clean 63.24±9.38 51.08± 5.19 59.33±1.48 43.78±3.51 54.05±7.05 52.97±5.82 45.59±0.67 73.78±5.68
PGD 44.36±8.34 30.58± 6.13 29.46±10.23 38.65±6.17 48.11±5.10 20.00±9.98 39.46±11.67 53.78±8.92

PRBCD 43.81±8.00 28.13± 5.47 37.03±8.74 36.76± 7.47 44.05±7.65 20.54±13.20 13.24±8.24 52.16±9.52

5.5 COMPLEXITY ANALYSIS

The training time complexity of GCN-MLP consists of three parts: solving the GCN encoder, the
MLP encoder, and computing the contrastive loss. For a graph with N nodes and |E| edges, each
GCN layer requires O(|E|h+Nh2) operations, where h is the hidden feature dimension, leading
to a total of O(k(|E|h +Nh2)) for k layers. The MLP encoder adds O(LNh2) for L layers. The
contrastive loss further requires pairwise similarity computations O(N), resulting in a total training
complexity of O(k(|E|h + Nh2) + N). Training/inference time and memory comparisons with
baselines (e.g., GraphACL, PolyGCL, GraphECL, EPAGCL, and SDMG) are shown in Table 8.
GCN-MLP consistently achieves much lower training, inference costs and avoids out-of-memory
issues, even on large-scale graphs (e.g., Arxiv-year).

Table 8: Comparison of training time (s), inference time (s), and storage (MiB) across different datasets.

Method Training Time (s) Inference Time (s) Storage (MiB)
Cora Wisconsin Roman Arxiv-year Cora Wisconsin Roman Arxiv-year Cora Wisconsin Roman Arxiv-year

GraphACL 0.22 0.63 248.38 927.48 13.29 38.69 1215.34 44.59 326 204 11999 6114
PolyGCL 0.34 0.23 OOM OOM 7.46 9.73 OOM OOM 4098 894 OOM OOM
GraphECL 0.02 0.27 60.58 OOM 0.50 0.04 0.04 OOM 112 336 2306 OOM
EPAGCL 0.13 0.12 0.97 OOM 2.81 2.63 3.14 OOM 649 329 22127 OOM
SDMG 0.06 0.54 0.36 OOM 1.22 0.28 0.55 OOM 2888 824 3676 OOM

GCN-MLP 0.04 0.007 0.097 3.96 0.02 0.001 0.031 1.89 2396 588 5850 44368

6 CONCLUSION

In conclusion, we introduce a minimal yet effective framework for graph contrastive learning that
avoids the complexity of augmentations, negative sampling, and sophisticated encoders. By con-
structing complementary views from features and graph structure, the proposed GCN-MLP achieves
strong performance with low computational and memory overhead. Theoretical analysis supports its
foundation, and extensive experiments across a wide variety of graph datasets, including robustness
under adversarial attacks, validate its practicality. These results highlight that simplicity, rather than
complexity, can drive effective and efficient graph contrastive learning.
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risks of harm or misuse. We also take care to ensure fair evaluation by following standard protocols
and reporting reproducible results. The authors affirm full compliance with the ICLR Code of Ethics.
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REFERENCES

Jialu Chen and Gang Kou. Attribute and structure preserving graph contrastive learning. Proc. AAAI
Conf. Artif. Intell., 37(6):7024–7032, Jun. 2023.

Jingfan Chen, Guanghui Zhu, Yifan Qi, Chunfeng Yuan, and Yihua Huang. Towards self-supervised
learning on graphs with heterophily. In Proc. ACM Int. Conf. Inf. & Knowledge Management, pp.
201–211, 2022.

Jingyu Chen, Runlin Lei, and Zhewei Wei. PolyGCL: Graph contrastive learning via learnable
spectral polynomial filters. In Proc. Int. Conf. Learn. Representations, 2024.

T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. A simple framework for contrastive learning of
visual representations. In Proc. Int. Conf. Mach. Learn., pp. 1597–1607, 2020.

Shengyu Feng, Baoyu Jing, Yada Zhu, and Hanghang Tong. Adversarial graph contrastive learning
with information regularization. In Proc. Web Conf., 2022.

S. Geisler, T. Schmidt, H. Sirin, D. Zügner, A. Bojchevski, and S. Günnemann. Robustness of graph
neural networks at scale. In Advances Neural Inf. Process. Syst., pp. 7637–7649, 2021.

J. B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch, B. A. Pires,
Z. Guo, and M. G. Azar. Bootstrap your own latent-a new approach to self-supervised learning. In
Advances Neural Inf. Process. Syst., 2020.

David R. Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation analysis: An
overview with application to learning methods. Neural Comput., 16(12):2639–2664, 2004.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In Proc. Int. Conf. Mach. Learn., pp. 4116–4126, Jul 2020.

Feng Ji, Yanan Zhao, Kai Zhao, Hanyang Meng, Jielong Yang, and Wee Peng Tay. Rethinking
graph neural networks from a geometric perspective of node features. In Proc. Int. Conf. Learn.
Representations, 2025.

Qiyu Kang, Kai Zhao, Qinxu Ding, Feng Ji, Xuhao Li, Wenfei Liang, Yang Song, and Wee Peng Tay.
Unleashing the potential of fractional calculus in graph neural networks with FROND. In Proc. Int.
Conf. Learn. Representations, Vienna, Austria, 2024.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proc. Int. Conf. Learn. Representations, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

J. Kohler and A. Lucchi. Sub-sampled cubic regularization for non-convex optimization. In Interna-
tional Conference on Machine Learning, 2017.

Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised learning on
graphs. In Proc. AAAI Conf. Artif. Intell., volume 33, pp. 7372–7380, 2022.

S. Lee, F. Ji, W. P. Tay, and K. Xia. Graph neural networks with a distribution of parametrized graphs.
In Proc. Int. Conf. Mach. Learn., 2024.

Yujun Li, Hongyuan Zhang, and Yuan Yuan. Edge contrastive learning: An augmentation-free graph
contrastive learning model. In Proc. AAAI Conf. Artif. Intell., pp. 18575–18583, 2025.

D. Lim, F. Hohne, X. Li, S. L. Huang, V. Gupta, O. Bhalerao, and S. N. Lim. Large scale learning on
non-homophilous graphs: New benchmarks and strong simple methods. In Advances Neural Inf.
Process. Syst., volume 34, pp. 20887–20902, 2021.

Minhua Lin, Teng Xiao, Enyan Dai, Xiang Zhang, and Suhang Wang. Certifiably robust graph
contrastive learning. In Advances Neural Inf. Process. Syst., 2024.

Jonas Linkerhägner, Cheng Shi, and Ivan Dokmanić. Joint graph rewiring and feature denoising via
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A RELATED WORKS

A.1 GRAPH CONTRASTIVE LEARNING WITHOUT AUGMENTATION

Deep Graph Infomax (DGI) (Velickovic et al., 2019) is a seminal framework in graph contrastive
learning, which maximizes mutual information (MI) between local node features and a global graph
representation. It aggregates node features into a global embedding using a readout function, and
employs a discriminator to distinguish positive samples from the original graph against negative
samples generated by shuffling node features. This corruption serves as an augmentation, boosting
robustness and generalization. Contrastive Multi-view Representation Learning (MVGRL) (Hassani &
Khasahmadi, 2020) extends this idea by leveraging multiple graph views generated through different
graph diffusion processes. Its discriminator contrasts node-level and graph-level embeddings across
views, leading to richer representations. Cross-Scale Contrastive Graph Knowledge Synergy (CGKS)
(Zhang et al., 2023) further advances this line by constructing a graph pyramid of coarse-grained
views and employing a joint optimization strategy with pairwise contrastive loss to transfer knowledge
across scales.

GRACE (Zhu et al., 2020) adopts a different strategy by producing two graph views via edge removal
and node feature masking, then maximizing agreement between their node embeddings. It further
enhances contrastive learning with both inter-view and intra-view negative pairs. GCA (Zhu et al.,
2021) improves upon GRACE by designing adaptive augmentations guided by topological and
semantic priors. Moving beyond dual views, ASP (Chen & Kou, 2023) introduces three comple-
mentary perspectives, i.e., original, attribute, and global, into a joint contrastive learning framework,
strengthening representation quality across these perspectives.

GraphCL (You et al., 2020) systematizes augmentation strategies tailored to graph data. To handle
non-homophilous graphs, DSSL (Xiao et al., 2022) and HGRL (Chen et al., 2022) exploit global
and high-order information. While HGCL relies on augmentations, DSSL assumes an underlying
graph generation process, which may not align with real-world scenarios. Despite these advances,
augmentation-based methods have notable limitations: their performance is highly sensitive to the
chosen augmentations, with no universally optimal strategy. In addition, they tend to bias the encoder
toward low-frequency components, while overlooking high-frequency information that is essential for
learning on heterophilic graphs (Liu et al., 2022). More recently, EPAGCL (Xu et al., 2025) combines
edge addition and deletion, generating augmented views by adding or dropping edges according to
weights derived from the Error Passing Rate (EPR).

To overcome the drawbacks of augmentation-based methods, augmentation-free approaches have
been proposed. Graphical Mutual Information (GMI) (Peng et al., 2020) directly estimates MI
between input features and representations of nodes and edges, eliminating the need for data augmen-
tation. L-GCL (Zhang et al., 2022) also avoids augmentations but focuses primarily on homophilic
graphs. SP-GCL (Wang et al., 2023) overcomes this by capturing both low- and high-frequency
components, making it effective for heterophilic structures. GraphACL (Xiao et al., 2023) further
removes reliance on both augmentations and homophily assumptions, achieving robust performance
across varying graph types. More recent methods adopt spectral strategies to replace augmentation
entirely. PolyGCL (Chen et al., 2024) employs learnable polynomial filters to construct spectral
views with varying frequency responses. LOHA (Zou et al., 2025) directly contrasts natural low- and
high-pass components in the spectral domain to facilitate contrastive learning. Similarly, AFECL
(Li et al., 2025) introduces an edge-centric contrastive framework that operates without any form of
augmentation. SDMG (Zhu et al., 2025) employs two dedicated low-frequency encoders to extract
global signals, promoting a diffusion-based self-supervised learning scheme.

Although SimMLP (Wang et al., 2025) and GraphECL (Xiao et al., 2024) also employ GCN and
MLP as dual encoders, our GCN-MLP framework differs fundamentally in both motivation and
contrastive formulation. SimMLP and GraphECL distill knowledge from a teacher GNN into a student
MLP trained solely on node features, with the aim of integrating rich structural information into the
MLP. Only the MLP outputs are used for downstream tasks, with the primary goal of accelerating
inference by replacing GNN computation. In contrast, GCN-MLP is not a distillation model but
is grounded in a new principle: feature noise and structural noise are weakly correlated, and their
contrastive interaction leads to stronger noise cancellation. Therefore, our design goal is to construct
two views whose noise components are as uncorrelated as possible. The GCN-MLP architecture is a
simple yet effective instantiation of this principle, where the GCN encodes structural information

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

with its associated structural noise, and the MLP isolates feature noise. This naturally facilitates
noise cancellation through contrastive learning and linear combination, resulting in cleaner and more
discriminative features for node classification, particularly on challenging heterophilic graphs.

A.2 GRAPH CONTRASTIVE LEARNING WITHOUT NEGATIVE SAMPLE PAIRS

Building on the success of BYOL for image data, BGRL (Thakoor et al., 2022) eliminates the need
for negative samples in graph contrastive learning. It generates two graph augmentations through
random node feature masking and edge masking, using an online encoder and a target encoder. The
objective is to maximize the cosine similarity between the online encoder’s prediction and the target
encoder’s embedding. To prevent mode collapse and ensure stable training, a stop-gradient operation
is applied to the target encoder.

Augmentation-Free Graph Representation Learning (AFGRL) (Lee et al., 2022) addresses the limi-
tations of augmentation-dependent methods like BGRL and GCA (Zhu et al., 2021), where repre-
sentation quality heavily depends on the choice of augmentation schemes. Building on the BGRL
framework, AFGRL eliminates the need for augmentations by generating positive samples directly
from the original graph for each node. This approach captures both local structural information and
global semantics. However, it introduces higher computational costs.

Inspired by Canonical Correlation Analysis (CCA) methods (Hardoon et al., 2004), CCA-SSG (Zhang
et al., 2021) introduces an unsupervised learning framework for graphs without relying on negative
sample pairs. It maximizes the correlation between two augmented views of the same input while
decorrelating the feature dimensions within a single view’s representation.

These advancements highlight promising alternatives to traditional graph contrastive learning methods.
Employing augmentation-free frameworks or innovative masking strategies mitigates challenges
associated with negative sample selection and augmentation dependency, offering robust solutions
for graph representation learning.

B DISCUSSIONS AND PROOFS

Proof of Proposition 1. We have the following simple observation: let v1,v2 and 0 < β < 1.
Then ∥βv1 + (1 − β)v2∥ is a non-decreasing function of the cosine similarity between v1 and
v2, while keeping their norms fixed. This follows from laws of cosines: ∥βv1 + (1 − β)v2∥2 =
β2∥v1∥2 + (1 − β)2∥v2∥2 + 2β(1 − β)∥v1∥∥v2∥ cos(α), where α is the angle between v1,v2.
Therefore, ∥βv1 + (1− β)v2∥ is non-decreasing in cos(α).

The first part of Proposition 1 follows from letting v1 = z1,c and v2 = z2,c. For the second part of
Proposition 1, notice that n1 = βn′

1,1+(1−β)n′
2,1. Hence, it suffices to apply the above observation

with v1 = n′
1,1 and v2 = n′

2,1.

Outline of the proof of Proposition 2. This result is essentially Ji et al. (2025, Theorem 1(a)). We
indicate the underlying reason here, and readers are referred to Ji et al. (2025) for technical details
and assumptions. We notice that the operator Ãk

G is an averaging operator of feature vectors, then
one may apply the vector Bernstein inequality (Kohler & Lucchi, 2017, Lemma 18) to obtain the
desired noise mitigation.

We next discuss Observation 1. From the above proof, we notice that the term ∥v1∥∥v2∥ cos(α) (in
the law of cosines) is essentially the inner product ⟨v1,v2⟩, which plays the key role in the analysis
of ∥βv1 + (1 − β)v2∥2. Therefore, for the rest of the appendix, we use ⟨v1,v2⟩ to quantify the
correlation between v1 and v2.

Recall that the normalized Laplacian matrix L̃G is defined as IN − ÃG , where IN is the identity
matrix. It is symmetric and hence admits an orthogonal eigenbasis, i.e., L̃G = WGΛGW

⊺
G , where

columns wi, i ≤ N of WG are eigenvectors and their associated eigenvalues are λi, 1 ≤ N . They
are ordered increasingly and form the diagonal of ΛG .

For the j-th feature component, let mj be the column vector whose i-th entry is the j-th component
of ni, the feature noise of node vi. Consider L̃G as the graph shift operator (Shuman et al., 2013).
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Then the i-th Fourier coefficient m̂j(i) of mj is the number ⟨wi,mj⟩. According to the general
principle of graph signal processing, if mj is smooth, then m̂j(i) is relatively small for large i and
relatively large for small i.
Theorem 1. Let the empirical average correlation between the feature noise and structural noise be

Ek =
1

N

∑
1≤i≤N

⟨ni,n
(k)
i ⟩.

There is a decomposition Ek = Dk +Hk such that the following holds:

(a)

Dk =
1

N

∑
1≤i≤N

(1− λi)
k

∑
1≤j≤N

m̂j(i)
2,

where {λi : i = 1, . . . , N} are the eigenvalues of the normalized Laplacian L̃G and
{m̂j(i) : i, j = 1, . . . , N} are the Fourier coefficients of the feature noise matrix.

(b) The term Hk takes the form

Hk =
1

N

∑
1≤i≤N

⟨ni,gi⟩,

such that gi depends only on the graph topology and class centroids. Furthermore, E[Hk] =
0.

Proof. Let N be the matrix whose i-th row is ni, denoted by (N)i. Recall that ni = xi − xc, where
c is the class label of vi. We re-express n(k)

i in (1) as

n
(k)
i = (Ãk

GX)i − (Ãk
GX)i + (Ãk

GX)i −Mi

= (Ãk
GN)i + gi, (3)

where gi is the i-th row of Ãk
GX−M. Therefore, we have

Ek =
1

N

∑
1≤i≤N

⟨ni, (Ã
k
GN)i⟩+

1

N

∑
1≤i≤N

⟨ni,gi⟩.

Therefore, we have Ek = Dk +Hk, with the following respective expressions:

Dk =
1

N

∑
1≤i≤N

⟨ni, (Ã
k
GN)i⟩, and Hk =

1

N

∑
1≤i≤N

⟨ni,gi⟩.

It suffices to show that they have the stated properties in (a) and (b).

For (a), we may express

NDk = Tr(N(Ãk
GN)

⊺
) = Tr((Ãk

GN)
⊺
N).

Notice that ÃG = IN − L̃G has the same eigenvectors as L̃G , while the eigenvalues are of the form
1− λi. Let ΓG be the diagonal matrix whose diagonal entries are 1− λi, i ≤ N . Then we have the
following:

NDk = Tr((WGΓ
k
GW

⊺
GN)

⊺
N) = Tr((W

⊺
GN)

⊺
Γk
G(W

⊺
GN)).

Notice that the (i, j)-th entry of W⊺
GN is the Fourier coefficient m̂j(i). Therefore the i-th diagonal

entry of (W⊺
GN)⊺Γk

G(W
⊺
GN) is (1− λi)

k
∑

1≤k≤N m̂j(i)
2. Therefore, we have:

NDk = Tr((W
⊺
GN)

⊺
Γk
G(W

⊺
GN)) =

∑
1≤i≤N

(1− λi)
k

∑
1≤k≤N

m̂j(i)
2.

This proves the claim for (a).

To show (b), we note that E[⟨ni,gi⟩] = ⟨E[ni],gi⟩ = 0 since gi is deterministic from (3) and
E[ni] = 0. Therefore, E[Hk] = 0.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

We can say more about the summand Dk. The eigenvalues λi, 1 ≤ i ≤ N are known to belong to
[0, 2]. Hence, the following holds:

Corollary 1. For all l ≥ 0, the sequence D2l is monotonically decreasing, i.e., D2l+2 ≤ D2l.

For general k, the trend depends on the size m̂j(i) for different i. In particular, if the signal is more
concentrated on the low-frequency components, i.e., 1− λi ≥ 0, then an average reduction in Dk

should be observed for general k. In the homophilic setting, due to smoothness, the signal is likely
concentrated for those frequency components where 1− λi ≈ 1. Therefore, the reduction in Dk is
expected to be less pronounced.

If the summand Dk is (made) small, then the average correlation Ek is dominated by Hk. Since gi

depends only on the graph structure and class centroids, it is deterministic once the graph and labels
are fixed; therefore, we obtain E[Hk] = 0. Consequently, when Ek ≈ Hk, then n

(k)
i is effectively

replaced by gi in the correlation computation. As gi has no expected alignment with the initial feature
noise ni, the two components are decoupled in expectation, resulting in weak correlation between
them.

C EXPERIMENTAL DETAILS

C.1 DETAILS OF DATASETS

We refer the reader to Table 9 for detailed statistics of the datasets. Detailed descriptions of the
datasets are given below:

Table 9: Statistics of heterophilic and homophilic graph datasets
Dataset Nodes Edges Classes Node Features Data splits

Texas 183 309 5 1793 48%/32%/20%
Cornel 183 295 5 1703 48%/32%/20%

Wisconsin 251 466 5 1703 48%/32%/20%
Squirrel-filtered 2205 46557 5 2089 48%/32%/20%

Chameleon-filtered 864 7754 5 2325 48%/32%/20%
Actor 7600 33391 5 932 48%/32%/20%

Roman-empire 22662 32927 18 300 50%/25%/25%
Amazon-ratings 24492 186100 5 300 50%/25%/25%

Arxiv-year 169343 1166243 5 128 50%/25%/25%

Cora 2708 5429 7 1433 standard
Citeseer 3327 4732 6 3703 standard
PubMed 19717 88651 3 500 standard

Computer 13752 574418 10 767 10%/10%/80%
Photo 7650 119081 8 745 10%/10%/80%

Texas, Wisconsin and Cornell (Rozemberczki et al., 2021). These datasets are webpage networks
collected by Carnegie Mellon University from computer science departments at various universities.
In each network, nodes represent web pages, and edges denote hyperlinks between them. Node
features are derived from bag-of-words representations of the web pages. The task is to classify nodes
into five categories: student, project, course, staff, and faculty.

Chameleon, Crocodile and Squirrel (Rozemberczki et al., 2021). These datasets represent Wikipedia
networks, with nodes corresponding to web pages and edges denoting hyperlinks between them.
Node features are derived from prominent informative nouns on the pages, while node labels reflect
the average daily traffic of each web page. The Squirrel-filtered and Chameleon-filtered variants
remove duplicate nodes to prevent training–test leakage (Platonov et al., 2023b).

Actor (Pei et al., 2020). This dataset is an actor-induced subgraph extracted from the film-director-
actor-writer network. Nodes represent actors, and edges indicate their co-occurrence on the same
Wikipedia page. Node features are derived from keywords on the actors’ Wikipedia pages, while
labels categorize the actors into five groups based on the content of their Wikipedia entries.

For Texas, Wisconsin, Cornell, Chameleon, Crocodile, Squirrel, and Actor datasets, we uti-
lize the raw data provided by Geom-GCN (Pei et al., 2020) with the standard fixed 10-fold split
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for our experiments. These datasets are available for download at: https://github.com/
graphdml-uiuc-jlu/geom-gcn.

Roman-empire (Platonov et al., 2023a) is a heterophilous graph derived from the English Wikipedia
article on the Roman Empire. Each node represents a word (possibly non-unique) in the text, with
features based on word embeddings. Node classes correspond to syntactic roles, with the 17 most
frequent roles as distinct classes, and all others grouped into an 18th class. Following (Platonov et al.,
2023a), we use the fixed 10 random splits with a 50%/25%/25% ratio for training, validation, and
testing.

Arxiv-year (Lim et al., 2021) is a citation network derived from a subset of the Microsoft Academic
Graph, focusing on predicting the publication year of papers. Nodes represent papers, and edges
indicate citation relationships. Node features are computed as the average of word embeddings from
the titles and abstracts. Following (Lim et al., 2021), the dataset is split into training, validation, and
testing sets with a 50%/25%/25% ratio.

Cora, Citeseer, and Pubmed (Kipf & Welling, 2017). These datasets are among the most widely
used benchmarks for node classification. Each dataset represents a citation graph with high homophily,
where nodes correspond to documents and edges represent citation relationships. Node class labels
reflect the research field, and node features are derived from a bag-of-words representation of the
abstracts. The public dataset split is used for evaluation, with 20 nodes per class designated for
training, and 500 and 1,000 nodes fixed for validation and testing, respectively.

Computer and Photo (Thakoor et al., 2022; McAuley et al., 2015). These datasets are co-purchase
graphs from Amazon, where nodes represent products, and edges connect products frequently bought
together. Node features are derived from product reviews, while class labels correspond to product
categories. Following the experimental setup in Zhang et al. (2022), the nodes are randomly split into
training, validation, and testing sets, with proportions of 10%, 10%, and 80%, respectively.

C.2 BASELINES

DGI (Velickovic et al., 2019): Deep Graph InfoMax (DGI) is an unsupervised learning method
that maximizes mutual information between node embeddings and a global graph representation. It
employs a readout function to generate the graph-level summary and a discriminator to distinguish
between positive (original) and negative (shuffled) node-feature samples, enabling effective graph
representation learning.

GMI (Peng et al., 2020): Graphical Mutual Information (GMI) measures the mutual information
between input graphs and hidden representations by capturing correlations in both node features and
graph topology. It extends traditional mutual information computation to the graph domain, ensuring
comprehensive representation learning.

MVGRL (Hassani & Khasahmadi, 2020): Contrastive Multi-View Representation Learning (MV-
GRL) leverages multiple graph views generated through graph diffusion processes. It contrasts
node-level and graph-level representations across these views using a discriminator, enabling robust
multi-view graph representation learning.

GRACE (Zhu et al., 2020): Graph contrastive representation learning (GRACE) model generates two
correlated graph views by randomly removing edges and masking features. It focuses on contrasting
node embeddings across these views using contrastive loss, maximizing their agreement while
incorporating inter-view and intra-view negative pairs, without relying on injective readout functions
for graph embeddings.

CCA-SSG (Zhang et al., 2021): Canonical Correlation Analysis inspired Self-Supervised Learning
on Graphs (CCA-SSG) is a graph contrastive learning model that enhances node representations
by maximizing the correlation between two augmented views of the same graph while reducing
correlations across feature dimensions within each view.

BGRL (Thakoor et al., 2022): Bootstrapped Graph Latents (BGRL) is a graph representation learning
method that predicts alternative augmentations of the input using simple augmentations, eliminating
the need for negative examples.
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AFGRL (Lee et al., 2022): Augmentation-Free Graph Representation Learning (AFGRL) builds
on the BGRL framework, avoiding augmentation schemes by generating positive samples directly
from the original graph. This approach captures both local structural and global semantic information,
offering an alternative to traditional graph contrastive methods, though at the cost of increased
computational complexity.

DSSL (Xiao et al., 2022): Decoupled self-supervised learning (DSSL) is a flexible, encoder-agnostic
representation learning framework that decouples diverse neighborhood contexts using latent variable
modeling, enabling unsupervised learning without requiring augmentations.

SP-GCL (Wang et al., 2023): Single-Pass Graph Contrastive Learning (SP-GCL) is a single-pass
graph contrastive learning method that leverages the concentration property of node representations,
eliminating the need for graph augmentations.

GraphACL (Xiao et al., 2023): Graph Asymmetric Contrastive Learning (GraphACL) is a simple
and effective graph contrastive learning approach that captures one-hop neighborhood context and
two-hop monophily similarities in an asymmetric learning framework, without relying on graph
augmentations or homophily assumptions.

PolyGCL (Chen et al., 2024): It is a graph contrastive learning pipeline that leverages polyno-
mial filters with learnable parameters to generate low-pass and high-pass spectral views, achieving
contrastive learning without relying on complex data augmentations.

GraphECL (Xiao et al., 2024): It is a simple and efficient contrastive learning method that eliminates
message passing during inference by coupling an MLP with a GNN, enabling the MLP to efficiently
mimic the GNN’s computations, but this design limits representational flexibility and still relies on
negative samples for training.

LOHA (Zou et al., 2025): It is a self-supervised graph spectral contrastive framework that directly
contrasts low-pass and high-pass views based on their natural distinct specialties without additional
data augmentations.

EPAGCL (Xu et al., 2025): Error-Passing-based Graph Contrastive Learning (EPAGCL) is an
augmentation-based GCL model that generates views by adding or dropping edges according to
weights derived from the Error Passing Rate (EPR).

SDMG (Zhu et al., 2025): Smooth Diffusion Model for Graphs (SDMG) is a novel self-supervised
framework that learns recognition-oriented representations without labels, employing two dedicated
low-frequency encoders, one for node features and another for topology, to distill global low-frequency
signals.

C.3 ATTACK METHODS

We consider four black-box topology attacks in the evasion setting: Random, PRBCD (Zügner et al.,
2018), Nettack (Geisler et al., 2021), and Metattack (Zügner & Günnemann, 2019). Additionally,
we further consider two white-box attacks (i.e., PGD (Madry et al., 2018) and PRBCD) that jointly
perturb both the graph structure and node features. A detailed description of these attack methods is
provided below.

Random attack: Adds noisy edges by randomly selecting node pairs across the graph. The number
of edges inserted is determined by a perturbation ratio with respect to the original edge count.

PRBCD: The Projected Randomized Block Coordinate Descent (PRBCD) attack perturbs the
adjacency matrix A by iteratively adding or removing edges to maximize the classification loss of a
surrogate GNN (e.g., GCN). It employs a projected randomized block coordinate descent strategy
with a fixed budget of edge modifications, ensuring efficient and scalable adversarial perturbations.
In the white-box setting, PRBCD extends naturally to jointly perturb node features by exploiting full
access to model parameters and gradients.

Nettack: A targeted structure-based attack designed to mislead node classification. It manipulates
the graph by removing edges to same-class nodes, thereby lowering classification confidence, and
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by adding edges to different-class nodes to trigger misclassification. Using a surrogate GNN for
guidance, it greedily selects the most impactful edge modifications within a fixed budget.

Metattack: A global structure-based attack that perturbs the adjacency matrix A by leveraging
meta-gradients of a surrogate GNN. It modifies the graph to maximize overall classification loss,
thereby degrading performance across all nodes.

PGD: The Projected Gradient Descent (PGD) attack is a white-box method that jointly perturbs
graph structure and node features to maximize the target model’s classification loss. It applies iterative
gradient-based updates within a fixed perturbation budget, projecting modifications back into the
feasible space after each step. With full access to model parameters and gradients, PGD delivers
strong and precise attacks.

D MORE NUMERICAL RESULTS

D.1 PERFORMANCE AND NOISE CORRELATION

We illustrate that if the two noise sources, namely feature and structural noise, are less correlated, then
the resulting GCN-MLP has a better performance. For this, we empirically verify that aggregating
feature representations with weakly correlated structural representations helps mitigate feature noise.

We visualize the cosine similarity histograms between structural features (together with inherent
structural noise, captured by the GCN) and node feature noise (isolated by the MLP) on three datasets:
Cornell, Roman, and Cora, with k = 1 or k = 2 GCN layers. The results are shown in Fig. 7, Fig. 5,
and Fig. 6, respectively.

In general, we always observe that higher accuracy is associated with weaker correlation. Taking
Cornell as an example, when the GCN has k = 2 layers, the cosine similarity histogram shifts from
being concentrated near 1 (strong correlation) toward 0 (weak correlation), compared with k = 1.
Performance improves significantly, which agrees with our discussions.
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(a) Performance (Cornell): 58.38± 3.86
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(b) Performance (Cornell): 75.14± 3.58

Figure 5: Performance v.s. noise correlation on Cornell

D.2 MORE ROBUSTNESS RESULTS

To further assess the robustness of GCN-MLP, we perform node classification under black-box attacks
on additional homophilic and heterophilic datasets (e.g., Photo, Citeseer, Wisconsin, Cornell, Texas,
and Actor). As shown in Table 10, the results reinforce the robustness of GCN-MLP across a broader
range of benchmarks.

D.3 GRAPH CLASSIFICATION RESULTS

While most GCL methods target node-level representation learning and do not provide a straightfor-
ward graph-level extension, we assess GCN-MLP’s generality by applying a simple, non-parametric
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(a) Performance (Roman): 77.74± 0.44
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(b) Performance (Roman): 67.12± 0.51

Figure 6: Performance v.s. noise correlation on Roman

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Cosine Similarity

0

2

4

6

8

10

12

Pe
rc

en
ta

ge
 o

f N
od

es
 (%

)

Cosine Similarity Histogram (Cora, GCN with k = 1 Layer)

(a) Performance (Cora): 77.37± 0.18

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Cosine Similarity

0

2

4

6

8

10

12

Pe
rc

en
ta

ge
 o

f N
od

es
 (%

)

Cosine Similarity Histogram (Cora, GCN with k = 2 Layer)

(b) Performance (Cora): 71.31± 0.30

Figure 7: Performance v.s. noise correlation on Cora

readout (MeanPooling) to obtain graph-level embeddings. We evaluate this configuration on two
standard graph-classification benchmarks, Proteins and DD, and compare against recent graph-level
GCL models such as GraphCL and DRGCL as well as strong node-level baselines adapted to the
graph-level setting (e.g., GraphACL). GCN-MLP achieves competitive performance compared with
node-level baselines and yields results on par with specialized graph-level contrastive methods,
demonstrating that our proposed GCN-MLP framework generalizes effectively beyond node-level
tasks.
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Table 10: Black-box attack robust accuracy results(%) on graph evasion attack for node classification.
Dataset Attack FROND GCL-Jac Ariel Res-GRACE GraphACL PolyGCL LOHA EPAGCL SDMG GCN-MLP

Photo

clean 92.93±0.46 91.46±0.50 85.75±1.21 92.23±1.22 93.31±0.19 91.45±0.35 86.46±0.41 93.05±0.23 94.10±0.20 93.41±0.88
Random 89.90±1.21 86.40±0.74 80.62±1.53 87.79±1.93 26.61±0.05 90.17±0.99 85.83±1.12 84.08±1.50 89.90±0.78 92.94±0.58
PRBCD 88.58±1.05 85.24±1.30 80.58±1.62 85.39±4.19 29.13±0.95 89.65±0.39 86.35±1.07 80.60±2.72 89.42±0.96 92.84±0.28

Metattack 89.61±1.13 86.20±1.06 82.76±1.11 85.46±1.56 28.42±0.74 91.06±1.36 86.56±0.89 85.65±0.56 90.78±0.99 91.14±0.68
Nettack 91.17±1.35 90.50±0.63 85.28±0.91 91.51±1.40 32.84±0.25 91.29±1.15 87.40±0.89 89.59±1.05 90.29±0.56 92.34±0.52

Citeseer

clean 71.37±1.34 70.52±0.65 50.89±3.76 71.72±0.62 73.60±0.70 71.82±0.45 71.95±0.45 71.94±0.57 73.20±0.50 70.12±0.44
Random 70.23±1.40 57.26±4.20 44.98±3.45 56.69±2.63 68.13±0.44 71.58±0.24 71.70±0.29 63.10±1.08 71.47±0.47 69.90±0.00
PRBCD 71.47±1.29 58.30±4.11 46.02±3.16 58.86±266 70.52±1.16 71.19±0.61 71.60±0.63 64.54±2.00 71.28±0.51 69.92±0.04

Metattack 67.94±1.42 57.51±5.21 36.68±3.76 36.20±5.62 20.50±0.28 71.78±0.42 42.99±4.02 47.24±2.67 58.52±0.54 69.92±0.04
Nettack 70.05±1.10 59.40±4.17 46.45±3.16 58.18±2.65 71.93±1.10 70.33±0.50 71.01±0.34 65.27±1.21 70.88±0.78 69.90±0.00

Wisconsin

clean 67.84±3.84 43.53±6.19 56.08±4.31 52.35±7.18 69.22±0.40 76.08±3.33 76.05±6.08 63.73±3.95 52.68±1.21 85.10±2.35
Random 69.61±4.49 44.71±6.43 51.18±5.44 51.76±6.27 51.56±5.63 75.23±3.13 76.47±4.12 59.02±4.59 51.18±0.98 85.29±1.81
PRBCD 67.65±5.28 44.71±6.72 55.88±4.41 51.37±6.67 52.55±5.13 74.60±3.14 75.29±4.12 60.39±6.61 50.98±0.78 84.90±2.33

Metattack 64.51±5.98 43.53±4.09 50.98±4.64 50.59±6.06 52.15±5.08 76.67±3.92 74.71±4.31 60.39±4.79 51.67±1.47 84.90±1.76
Nettack 70.78±6.17 44.71±5.32 55.29±5.02 50.00±5.70 53.73±5.16 77.65±3.92 75.49±3.73 59.02±2.97 51.57±1.57 85.10±2.00

Cornell

clean 63.24±9.38 42.97±6.78 51.89±6.71 51.08±5.19 59.33±1.48 43.78±3.51 54.05±7.05 52.97±5.82 45.59±0.67 73.78±5.68
Random 63.24±7.27 37.30±4.49 40.00±4.95 49.19±4.15 42.97±8.10 43.78±5.14 45.68±3.51 54.32±6.33 45.49±7.72 73.78±5.68
PRBCD 64.86±5.27 41.62±9.83 48.38±6.33 48.92±5.98 46.22±9.66 44.59±4.05 51.08±3.24 53.24±6.74 45.14±7.65 73.78±5.68

Metattack 67.03±5.51 38.65±6.63 49.73±7.85 49.73±6.07 45.14±6.87 42.43±4.87 48.11±5.14 55.68±5.86 45.22±8.33 73.78±5.68
Nettack 66.49±6.53 41.08±7.03 50.54±6.95 49.19±5.24 49.73±7.45 43.78±3.24 52.43±3.51 51.89±3.59 44.68±7.97 73.78±5.68

Texas

clean 74.32±5.16 57.57±5.68 61.35±6.63 57.84±5.69 71.08±0.34 72.16±3.51 69.73±6.26 68.92±5.95 53.60±2.67 77.57±4.37
Random 72.70±4.59 55.41±6.97 55.14±5.82 54.59±8.18 56.22±5.95 73.51±2.16 64.59±2.97 73.51±3.24 53.92±3.27 77.03±5.30
PRBCD 74.05±6.53 57.57±5.14 58.38±9.06 57.84±5.16 57.03±4.67 67.30±4.87 64.59±3.24 65.95±4.32 53.51±2.14 77.30±6.30

Metattack 72.97±5.41 55.41±7.38 55.95±5.14 56.49±5.33 58.11±6.14 68.92±4.32 66.49±2.70 63.24±4.55 53.38±2.27 78.11±5.98
Nettack 73.24±5.33 56.22±6.49 61.08±7.17 56.49±6.89 56.76±5.70 71.08±4.86 65.41±2.97 64.59±4.26 53.92±3.27 77.84±5.10

Actor

clean 35.08±1.08 29.25±1.21 24.36±1.11 30.72±0.72 30.03±0.13 34.37±0.69 33.69±0.73 30.02±0.91 26.74±0.13 36.56±0.93
Random 35.15±0.78 27.59±1.12 25.64±1.02 30.16±1.09 28.36±1.95 25.41±0.72 34.19±0.59 28.92±1.03 27.09±0.68 36.19±0.77
PRBCD 35.04±0.90 27.76±1.66 24.95±0.89 30.48±1.28 28.37±1.95 27.21±0.64 26.23±0.79 28.66±2.01 26.79±0.82 36.47±1.05

Metattack 32.34±7.10 28.00±1.10 25.54±0.75 30.34±1.04 28.45±1.26 28.29±0.42 26.97±0.65 29.65±1.12 26.78±0.91 36.56±1.12
Nettack 34.97±0.88 28.87±0.73 25.51±0.95 30.86±0.96 28.60±1.20 25.96±0.86 27.20±0.74 30.05±0.81 26.72±0.79 36.14±0.67

Table 11: Graph classification results (%); The first 4 rows are from node-level GCL methods adapted
to graph-level tasks, and the next 3 rows are from graph-level models.

Method Proteins DD PTC-MR MUTAG Avg. rank.

MVGRL 74.02±0.30 75.20±0.40 - - 89.20±1.30 5.33
GraphACL 73.50±0.70 - - - - 89.40±2.00 5.50
SimMLP 75.30±0.10 78.40±0.50 60.30±1.10 87.70±0.20 3.63
SDMG 73.16±0.16 72.66±3.16 56.70±2.02 91.58±0.28 5.00

InfoGraph 74.44±0.40 72.85±1.70 61.70±1.40 89.00± 1.10 4.50
GraphCL 74.39±0.45 78.62±0.40 - - 86.80± 1.30 4.67
DRGCL 75.20±0.60 78.40±0.70 - - 89.50± 0.60 2.83
GCN-MLP 75.41±0.35 77.00±0.45 62.27±1.44 89.56± 0.85 2.00
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