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Abstract
Manual annotation of qualitative research data001
is costly and time-consuming. Recently, ma-002
chine learning approaches have been intro-003
duced to assist such tasks. However, it remains004
challenging for a machine learning model to005
incorporate context, data scarcity, data imbal-006
ance and other aspects in thematic analysis. We007
employed transfer learning, combining the pre-008
trained models BERT and ResNet to propose009
an annotation assistance model and evaluated010
its accuracy and efficiency for semi-automatic011
annotation. We experimented on a dataset of012
focus group discussions between researchers013
and participants on perception towards robots014
in public spaces. We tested various training015
methods, including few-shot learning, data aug-016
mentation, and the use of different data modali-017
ties, to evaluate the impact of dataset size, data018
balance, and data modality on the proposed an-019
notation assistance model’s performance. The020
best-performing model achieved an average021
balanced accuracy of 59.89% for predicting022
thematic labels in researcher sentences and023
48.67% for participant sentences.024

1 Introduction025

Data annotation is an essential task in machine026

learning and data-driven analysis. Except for un-027

supervised learning, developing a machine learn-028

ing model often relies on high-quality datasets,029

which ideally include large, diverse and represen-030

tative data along with accurate annotation. How-031

ever, datasets collected in naturalistic and uncon-032

trolled conditions often suffer from data imbalance033

issues and require intensive and costly manual data034

labelling labour. This is especially prevalent in035

the analysis of qualitative research data, which fo-036

cuses on distilling subjective and high-level themes037

emerging in less structured data and currently relies038

on time-consuming manual annotation approaches.039

A majority of data annotation tasks focus on objec-040

tive labels developed for quantitative research, such041

as object bounding boxes for computer vision, or 042

lower-level information, such as part-of-speech tag- 043

ging for natural language processing. In contrast, 044

there have been relatively limited labelled datasets 045

for text comprehension at the sentence, paragraph, 046

or higher semantic levels (Jain et al., 2020). How- 047

ever, such high-level, contextualised information is 048

precisely what is required in qualitative research. 049

Qualitative research is critical in generating com- 050

prehensive understanding. In addition to obtain- 051

ing users’ thoughts and expectations, qualitative 052

research allows researchers to use the data to im- 053

prove the user experience (Søraa et al., 2023). For 054

example, it can help improve aspects of a prod- 055

uct that users perceive as failing (Horstmann and 056

Krämer, 2019). A common qualitative research 057

method is thematic analysis, in which thematic la- 058

bels of data are developed by researchers based on 059

the research themes and contextual analysis of qual- 060

itative data such as interviews. Existing thematic 061

analysis approaches remain largely dependent on 062

manual annotation, which is time-consuming and 063

labour-intensive. Additionally, the diversity of top- 064

ics in each qualitative research study imposes chal- 065

lenges for researchers to transfer thematic labels 066

developed from one domain to another. 067

Prior work has shown that manually annotating 068

the subjective labels of 369,436 reviews required 069

a total of 14 weeks by 3 annotators (Qureshi et al., 070

2022). Likewise, qualitative research data labelling 071

can also take several months, depending on the 072

dataset’s size (Stuckey, 2015). Motivated by re- 073

ducing the labour costs associated with the annota- 074

tion of qualitative data, we propose to use transfer 075

learning methods to address the challenges of qual- 076

itative research data annotation. We demonstrated 077

the feasibility of this approach using a representa- 078

tive dataset with ground-truth thematic labels and 079

investigated the performance of transfer learning 080

models on this dataset. This facilitates the future 081
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development of semi-automatic annotation support082

to accelerate thematic analysis for qualitative re-083

search.084

As qualitative research data is particularly affected085

by privacy and ethical issues, publicly available086

data is difficult to acquire. The scarcity of rele-087

vant data leads to a challenge for developing mod-088

els for automated labelling. Additionally, qualita-089

tive research data is often not primarily aimed at090

training new machine-learning models. Therefore,091

such datasets are significantly smaller in size (Chen092

et al., 2018). Transfer learning is a common ap-093

proach for tasks with insufficient data (Weiss et al.,094

2016). Pre-trained models that have previously095

learned patterns and features from large datasets096

can be fine-tuned to be applied to a new task097

and achieve better performance than learning from098

scratch. Considering the complexity of qualita-099

tive data and the benefits of having expert human100

annotators in the loop to generate high-level discov-101

eries, we have decided to take the semi-automatic102

annotation method instead of fully automatic anno-103

tation for assisting thematic analysis. This allows104

researchers to correct labels (Mosqueira-Rey et al.,105

2023), thus ensuring annotation accuracy as well106

as efficiency (Desmond et al., 2021).107

In addition to transfer learning, other practical so-108

lutions for addressing the challenge of limited data109

samples include zero-shot, few-shot learning and110

data augmentation (Parnami and Lee, 2022; Long-111

pre et al., 2020; Kirk et al., 2023). Data augmen-112

tation helps to overcome the problem of class im-113

balance and increases a model’s robustness (Feng114

et al., 2021). Similarly, feature extraction from mul-115

tiple data modalities is shown to enhance model116

performance (Gandhi et al., 2023). Thus, we are117

motivated to explore whether these approaches can118

further contribute to semi-automatic annotation as-119

sistance for qualitative research.120

In summary, this work contributes to qualitative121

data annotation and analysis by proposing a novel122

semi-automatic annotation assistance model using123

transfer learning, specifically:124

• We assess the impact of data modalities,125

namely text, audio, and the multimodal com-126

bination of text and audio on using pre-trained127

models for semi-automatic thematic analysis.128

• We evaluate the utility of textual data augmen-129

tation on qualitative research data to improve130

the performance of semi-automatic annota- 131

tion. 132

• We investigate the feasibility of tuning a pre- 133

trained model with a small number of data 134

points, i.e., zero-shot and few-shot learning, 135

for semi-automatic annotation of qualitative 136

research data. 137

• We propose a machine learning model based 138

on pre-trained BERT and ResNet for semi- 139

automatic annotation and provide recommen- 140

dations for future work. 141

2 Background 142

In qualitative research, coding is the process of 143

analysing data, representing large volumes of text 144

or speech data with concise single words or short 145

phrases, and identifying the main topics covered 146

in the data. As such, coding is crucial in qualita- 147

tive data analysis as it allows researchers to quickly 148

retrieve and categorize the data (Stuckey, 2015; 149

Gillies et al., 2022). However, creating codes and 150

labelling data can be very time-consuming. Sev- 151

eral annotation tools exist to assist this task and 152

improve annotation efficiency (John and Johnson, 153

2000; Banner and Albarran, 2009), such as Atlas.ti, 154

NVivo, and MAXQDA. Nevertheless, these sys- 155

tems provide only an interface for manual data 156

labelling, and researchers still need to develop the 157

coding scheme and perform the annotation. 158

To increase labelling efficiency and quality, ma- 159

chine assistance has played an important role in 160

data annotation tasks in recent years. For instance, 161

INCEpTION (Klie et al., 2018) combines a recom- 162

mendation system and can customise algorithms to 163

choose the next data point to be annotated through 164

active learning. AILA (Choi et al., 2019) incorpo- 165

rates machine learning models to predict important 166

words in documents and highlights them. In addi- 167

tion to the NLP field, there are tools for annotating 168

multimodal data, such as PEANUT (Zhang et al., 169

2023) and NOVA (Baur et al., 2020). The latter 170

also proposes a Cooperative Machine Learning ap- 171

proach to track faces and skeletons in videos and 172

identify people’s emotions. 173

Machine-assisted methods have been applied re- 174

cently to develop annotation platforms specifically 175

designed for qualitative research. Cody (Rietz and 176

Maedche, 2021) embeds supervised machine learn- 177

ing to assist users, allowing them to accept or reject 178
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label suggestions generated by the system and itera-179

tively update the model based on the users’ choices.180

PaTAT (Gebreegziabher et al., 2023) uses a model181

to find semantically similar words to group data and182

provides users with similarity scores via a graph-183

ical user interface for reference. Both Cody and184

PaTAT use label recommendation systems and up-185

date models based on users’ feedback to have a bet-186

ter predicting suggestion. However, both systems187

are only based on the similarity of sentences or fre-188

quently occurring words in sentences and cannot189

handle context understanding in natural language190

to aid higher-level thematic analysis.191

Due to the scarcity of qualitative research data,192

coupled with the limitations faced by Cody and193

PaTAT, the use of large-scale language models and194

transfer learning can help master semantics and195

achieve good results on a small number of training196

samples (Ruder et al., 2019). Transformer-based197

BERT (Devlin et al., 2018) is a large language198

model for bidirectional and unsupervised language199

representations. It can autonomously learn from200

text without specific labels and has demonstrated201

outstanding performance in downstream NLP tasks,202

including high accuracy in detecting hate speech on203

social media (Mozafari et al., 2020) or applications204

in identifying fake news (Qasim et al., 2022), mak-205

ing it a popular pre-trained model option (Koroteev,206

2021). Previous research has shown that combin-207

ing BERT with zero-shot and few-shot learning208

methods can achieve good performance, even with-209

out further fine-tuning (Gupta et al., 2020). Thus,210

we are motivated to investigate applying BERT to211

support the thematic analysis of qualitative data.212

3 Methodology213

3.1 Dataset214

We employed a dataset collected in our previ-215

ous work for exploring how transfer learning may216

benefit qualitative research, which contains audio-217

video recordings and transcripts of participatory de-218

sign workshops on human-robot interaction (anon,219

2020). These workshops encompass eight focus220

groups where researchers and participants engaged221

in discussion regarding the roles that robots could222

take in public spaces and active robot prototyping223

via Zoom video conferencing. The raw data com-224

prises approximately 16 hours of video and audio225

recordings. ASR (Automatic Speech Recognition)226

transcription service by Amazon was used to gen-227

(a) Labels in Researcher sentences

(b) Labels in Participant sentences

Figure 1: Imbalanced sentence labels in the original dataset

erate textual transcripts with sentence timestamps 228

for each workshop. These transcripts comprise 229

7,244 sentences, with 2,749 sentences contributed 230

by participants and 4,495 sentences by researchers. 231

This dataset has been manually annotated by re- 232

searchers for thematic analysis, with a different set 233

of sentence-level labels given to sentences spoken 234

by participants (‘P’) or researchers (‘R’). These 235

sentences are categorised into 64 thematic labels, 236

with 29 for ‘R’ sentences and 35 for ‘P’ sentences. 237

These 64 labels are further aggregated into 11 the- 238

matic categories, 5 for ‘R’ and 5 for ‘P’, along 239

with a ‘Noise’ label for disfluencies and other sen- 240

tences irrelevant for thematic analysis. Each label 241

and its corresponding thematic category were de- 242

veloped by researchers specifically for qualitative 243

analysis of this data, defining their meanings and 244

corresponding usage contexts. 245

The proportion of sentences with each label is 246

summarised in Figure 1. As shown here, the 247

dataset contains imbalanced labels: for ‘R’ labels, 248

‘Workshop Management’ is the majority class with 249

27.13% of the sentences given this label; for ‘P’ 250

labels, both ‘Design Action’ and ‘Failure Reason- 251

ing’ have a relatively large number of sentences, at 252

26.87% and 26.12% respectively. 253
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3.2 Data Preprocessing254

Textual Data There were a small number of la-255

belling errors in the manual annotation, such as256

using a researchers’ label for a participants’ sen-257

tence. These mislabelled data points were excluded258

in our experiments. Additionally, data labelled as259

‘Noise’ has been excluded. We prioritised the accu-260

rate identification of main theme categories as this261

is the most relevant for qualitative analysis.262

We concatenated partial sentences produced by263

ASR in the generated transcript. For example, the264

sentence: “I’ll just quickly share my screen” was265

split into three separate sentences in the transcript266

due to speech pauses: “I’ll just quickly”, “share”,267

and “my screen”. Therefore, we manually concate-268

nated such sentences during preprocessing. Specifi-269

cally, we concatenated two adjacent sentences with270

the same role (participant or researcher) and the271

same thematic label, provided their duration did272

not exceed 5 seconds.273

Audio Data The original audio comprises complete274

recordings of the eight online meetings. We aligned275

the timestamps based on the processed text tran-276

script to segment the recordings into sentence-level277

audio files. For each sentence, we extracted Mel-278

(a) Researcher’s sentences

(b) Participant’s sentences

Figure 2: Label class distribution after preprocessing

Frequency Cepstral Coefficients (MFCC) (Wang 279

et al., 2016) using librosa (McFee et al., 2015) with- 280

out re-sampling the original audio and saved the 281

Mel spectrogram plots as the audio data. 282

Our preprocessing resulted in 2,273 ‘R’ sentences 283

and Mel spectrogram plots, 1,812 ‘P’ sentences 284

and Mel spectrogram plots. The distribution of 285

all thematic labels after preprocessing is shown 286

in Figure 2. Finally, we randomly split ‘R’ and 287

‘P’ data into training and test sets, with 80% for 288

training and 20% for testing. We manually adjusted 289

the test set to include a balanced number of samples 290

for each thematic label and this test set was used in 291

all the experiments. 292

3.3 Machine Learning Models 293

We developed machine learning models for three 294

different modalities: text, audio, and multimodal 295

models combining text and audio data.1 296

Text We utilised the pre-trained BERT-base tok- 297

enizer and text classification model from Hugging 298

Face (Wolf et al., 2020), which has a 12-layer struc- 299

ture with 110 million parameters. 300

Audio As described in Section 3.2, audio fea- 301

tures were represented as Mel spectrograms. For 302

the audio model, we chose CNN (Convolutional 303

Neural Network) architectures that demonstrate 304

exceptional performance in visual classification 305

tasks. More specifically, we employed ResNet 306

models with residual layers, including the pre- 307

trained ResNet50 and ResNet152 models (He et al., 308

2016), with weights set to ‘IMAGENET1K_V2’ 309

sourced from TorchVision (maintainers and con- 310

tributors, 2016). ResNet exclusively utilised spec- 311

trograms generated from audio files as its input. 312

Multimodal For the multimodal approach, we com- 313

bined BERT and ResNet to extract text and Mel 314

spectrogram embeddings separately, then concate- 315

nated them. We then add fully connected layers to 316

predict the labels from the concatenated audio and 317

textual features. The multimodal model can be fur- 318

ther divided into two approaches: one using the pre- 319

trained BERT from Transformers and pre-trained 320

ResNet from TorchVision, and the other trained on 321

our dataset with custom BERT and ResNet models. 322

1See https://github.com/LINK-REMOVED for source
codes and a detailed description of the thematic label defi-
nitions and coding scheme.
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3.4 Experiments323

We conducted experiments to evaluate the perfor-324

mance of the thematic label classification model’s325

performance across three aspects: Data Modal-326

ity, Unbalanced Classes, and Available Number of327

Samples. Depending on the specific experiments,328

adjustments were made to the training set, while329

the test set remained the same for all models.330

Baseline model: As shown in Figure 2, there were331

substantial differences in the distribution of each332

thematic label. We established a baseline classifi-333

cation model by predicting all test sentences as the334

majority label.335

Text models: We compared different text-based336

models using different sizes of available training337

data, namely Zero-shot, 5-shot, 10-shot, 80% orig-338

inal text, and Augmented text models. All Text339

models were configured using a pre-trained BERT340

model and a pre-trained BERT tokenizer. Except341

for the Zero-shot model, the remaining models used342

the same parameters during training. The tokenized343

text input had a length of 256, the batch size was344

set to 16, and the learning rate was 0.00002 (2e-345

5). The training process was carried out over 20346

epochs. The set of labels to predict was known to347

all models.348

The Zero-shot model was not fine-tuned with sam-349

ples from the training set and solely relied on the350

pre-trained BERT for classification on the test set.351

The Few-shot models included 5-shot and 10-shot352

models, where five and ten samples, respectively,353

were selected from the training set for each of the354

thematic categories in each of the ‘P’ and ‘R’ data355

to fine-tune the model.356

The 80% original text model used all of the avail-357

able training data (80% of the whole dataset) to358

fine-tune the pre-trained BERT model.359

The Augmented text model used augmented train-360

ing data with artificial training samples generated361

for the smaller thematic categories to create a bal-362

anced training set. Specifically, we used TextAt-363

tack (Morris et al., 2020) for text data augmenta-364

tion, which generate paraphrased sentences of the365

original samples. Using the number of samples in366

the majority class as the reference, we generated367

sentences for the remaining classes for them to con-368

tain a relatively equal number of samples as the369

majority class. For example, the ‘Workshop Man-370

agement’ label had the highest number of training 371

samples in ‘R’, with 763 samples, while the ‘Fail- 372

ure’ label had only 157 samples. We performed 373

data augmentation on these 157 samples, generat- 374

ing an additional 4 Augmented text samples for 375

each original sample. This resulted in a total of 376

785 training samples for the ‘Failure’ label. We 377

then randomly selected 606 samples from the Aug- 378

mented text samples and combined them with the 379

original 157 samples so that the size of the aug- 380

mented set of data with the ‘Failure’ label matches 381

the size of the ‘Workshop Management’ label. 382

Audio models: We employed pre-trained 383

ResNet50 and ResNet152 for the audio models 384

which predicts thematic labels based on audio in- 385

formation represented visually as the Mel spectro- 386

gram plots for each sentence time-aligned with the 387

text model inputs. Similar to the Text models, we 388

used a batch size of 16 and trained the models for 389

20 epochs, while the learning rate was set to 0.001. 390

Text+Audio multimodal model: The multimodal 391

model combined both text and audio data as its in- 392

puts. The text and audio components had different 393

learning rates same as the text-only and audio-only 394

models. There outputs are then concatenated and 395

passed through fully connected layers to generate 396

the predictions. We developed two types of multi- 397

modal models: 398

1. The multi-base model used the pre-trained 399

BERT and ResNet152 models without fine- 400

tuning them on the training set. 401

2. The multi-trained model combined the best- 402

performing fine-tuned models trained in the 403

text-only and audio-only experiments. 404

Evaluation metrics: Due to the unbalanced 405

classes, we employed the weighted F1-score and 406

balanced accuracy metrics implemented with the 407

scikit-learn library (Pedregosa et al., 2011) for per- 408

formance evaluation. Balanced accuracy is com- 409

puted as the average recall across all labels. 410

4 Results 411

4.1 Classification Performance Overview 412

Table 1 and Figure 3 provide an overview of all 413

models’ performance on the test set reported as bal- 414

anced accuracy. As shown here, thematic analysis 415

is a challenging task for text, audio, or multimodal 416

models. For the specific dataset of focus group 417
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Model ‘R’ labels ‘P’ labels
Baseline 20.00 20.00

Text
Zero-shot 20.00 20.80
5-shot 30.91 27.12
10-shot 34.14 39.92
80% Original 58.06 48.67
Augmented 57.25 43.46

Audio
ResNet152 42.00 26.59
ResNet50 41.53 28.12

Text + Audio
Multi-base 59.89 48.33
Multi-trained 58.32 41.44

Table 1: Balanced accuracy (%) on the test set for all models.

Figure 3: Balanced accuracy on the test set for all models.

discussion between researchers and participants418

that we experimented on, it is more difficult for419

the automatic models to predict thematic labels in420

participants’ sentences than in the researchers’ sen-421

tences, which may be due to the diversity in the422

topics discussed and the individual differences in423

speech styles and phrasing by participants.424

Pre-trained models with the appropriate fine-tuning425

and modality fusion can achieve improved perfor-426

mance, thus having the potential to assist human an-427

notators by suggesting auto-predicted labels when428

integrated into an annotation tool. However, human429

insights are still required and a semi-auto, collab-430

orative annotation approach should be taken for431

thematic analysis. In Sections 4.2, 4.3, and 4.4 we432

will further discuss how data modality, class bal-433

ance, and training sample availability influence the434

performance of thematic label prediction.435

4.2 Influence of Data Modality436

The performance of models using different data437

modalities for classifying each thematic label is438

shown in Table 2. Here we report the results of the439

multi-base multimodal model in the ‘T+A’ column. 440

In the ‘Audio’ column, we reported ResNet152 441

results for ‘R’ and ResNet50 results for ‘P’. 442

Label Text Audio T+A
‘R’esearcher labels

Introduction 43.90 25.00 40.00
Clarification 70.23 55.17 75.56
Workshop Management 80.66 81.16 86.32
Implementation 40.00 29.51 46.62
Failure 48.78 21.74 55.56

‘P’articipant labels
Information 55.32 33.33 60.38
Design Action 55.93 33.33 51.79
Failure Action 37.04 12.50 34.78
Failure Reasoning 51.85 33.63 50.94
Perception 38.71 23.88 41.18

Table 2: Weighted F1-scores (%) of models using different
data modalities with 80% of original data as the training set.

The Text+Audio model yields the best performance 443

in predicting the ‘R’ labels except for the ‘Introduc- 444

tion’ class. The Audio model shows a significant 445

performance gap compared to the Text model in 446

predicting the ‘R’ labels, but combining the text 447

and audio information yields benefits. For ‘P’ la- 448

bels, the Text model achieved better performance 449

in 3 out of 5 labels, while the multimodal model 450

yielded better performance in predicting the other 451

two thematic labels. Similar to the ‘R’ label results, 452

the Audio model had worse performance when 453

used alone, but contributed to predicting some la- 454

bels when combined with the text data. 455

As shown here, similar to previous studies on data 456

annotation, our work also indicates that utilising 457

multimodal data is beneficial in transfer-learning 458

assisted thematic analysis. 459

4.3 Influence of Unbalanced Classes 460

Table 3 reports the performance of text models 461

trained with original data containing unbalanced 462

classes and augmented data containing paraphrased 463

sentences of original data to increase the number 464

of samples in non-majority classes. 465

For ‘R’ labels, the model trained with balanced 466

training data including paraphrases of original sen- 467

tences achieved better results for all labels except 468

for ‘Introduction’. This improvement is particu- 469

larly noticeable for the minority classes, such as 470

the ‘Failure’ label. For the majority class ‘Work- 471

shop Management,’ the improvement is less sub- 472
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Label Origin. Aug.
‘R’esearcher labels

Introduction 43.90 37.04
Clarification 70.23 74.13
Workshop Management 80.66 82.11
Implementation 40.00 44.07
Failure 48.78 57.14

‘P’articipant labels
Information 55.32 62.22
Design Action 55.93 50.39
Failure Action 37.04 35.29
Failure Reasoning 51.85 46.30
Perception 38.71 33.85

Table 3: Weighted F1-scores (%) of text models trained on
original (“Origin.”) and augmented training data (“Aug.”)

stantial. For ‘P’ labels, using augmented training473

data did not yield improved performance except474

for the ‘Information’ label. The interesting perfor-475

mance difference in models using original vs. aug-476

mented training data for analysing themes in the477

researchers’ or participants’ sentences suggests that478

paraphrasing may be a more suitable data augmen-479

tation approach for qualitative data with more struc-480

ture and fewer individual variances.481

4.4 Influence of Available Training Samples482

Table 4 reports the performance of text models with483

different amounts of training samples available for484

fine-tuning the pre-trained BERT model. ‘Baseline’485

refers to always predicting the majority class.486

For both ‘R’ and ‘P’ labels, the Zero-shot learn-487

ing models (i.e., no fine-tuning) only predicted the488

majority class. This indicates that due to the sig-489

nificant difference in how thematic analysis is con-490

ducted for qualitative data compared to objective491

text classification and summarisation tasks, exist-492

ing pre-trained language models are not directly493

applicable even when the thematic label sets are494

known. Therefore, a semi-automatic approach with495

close human guidance as opposed to a fully auto-496

matic approach is required in thematic analysis.497

However, as soon as a small number of training498

samples become available (5-shot and 1-shot learn-499

ing models), the pre-trained models can be fine-500

tuned to achieve better prediction performance.501

With more training samples available, including502

augmentation with paraphrasing, the models can503

achieve more accurate predictions and, thus poten-504

tially reduce the human annotator’s workload.505

5 Discussion 506

5.1 Transfer learning for thematic analysis 507

Our experiments demonstrate that transfer learning 508

has the potential to support thematic analysis of 509

qualitative data, especially when data augmentation 510

and multimodal fusion are adopted in fine-tuning 511

the pre-trained models. 512

Sample Size: In interviews and focus group dis- 513

cussions that qualitative data is usually collected 514

from, the time researchers and participants spend 515

on discussing each theme is often uneven, result- 516

ing in unbalanced classes for automatic prediction. 517

Our experiments showed that text data augmenta- 518

tion using paraphrasing is a promising approach 519

to the unbalanced data issue and for increasing the 520

performance of labelling themes with less available 521

data. However, data augmentation for text data is 522

less explored compared to image data augmenta- 523

tion in computer vision. Paraphrasing often yields 524

sentences without substantial differences from the 525

original sentences, which results in the model learn- 526

ing features that are already present in the original 527

data, unable to effectively discover new patterns to 528

distinguish various themes. Thus, better methods 529

need to be developed to create artificial training 530

samples that are diverse and believable. Further- 531

more, while few-shot and zero-shot learning have 532

shown promising results for text classification and 533

summarisation tasks, our experiments indicate that 534

thematic analysis is a more challenging task and is 535

not suited for a fully automatic annotation pipeline. 536

Multimodal fusion: Our experiments indicate that 537

fusing information from text and audio modali- 538

ties can lead to better performance for thematic 539

label prediction. Interestingly, the pre-trained mul- 540

timodal models without fine-tuning achieved better 541

performance than the models trained on our dataset. 542

Further research is required to investigate addi- 543

tional improvements to the multimodal model, such 544

as including video data or adopting other modality 545

fusion architectures than simple concatenation. 546

Dataset specific influences: The models per- 547

formed differently when predicting thematic la- 548

bels for researchers and for participants. Over- 549

all, the models achieved better results for ‘R’ la- 550

bels than ‘P’ labels. Several factors specific to 551

the dataset we conducted our experiments on may 552

have contributed to this difference. Firstly, the 553

data was collected from focus groups with mul- 554
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Speaker Label Baseline Zero-shot 5-shot 10-shot Origin. Aug.
Introduction 0.00 0.00 18.60 10.26 43.90 37.04
Clarification 0.00 0.00 15.00 44.00 70.23 74.13

‘R’ Workshop Management 59.01 59.19 57.33 69.27 80.66 82.11
Implementation 0.00 0.00 22.99 20.00 40.00 44.07
Failure 0.00 0.00 19.15 21.05 48.78 57.14
Information 0.00 0.00 25.93 47.06 55.32 62.22
Design Action 51.64 51.64 38.71 37.62 55.93 50.39

‘P’ Failure Action 0.00 0.00 14.29 25.00 37.04 35.29
Failure Reasoning 0.00 0.00 20.51 38.55 51.85 46.30
Perception 0.00 0.00 40.00 35.90 38.71 33.85

Table 4: Weighted F1-scores (%) of text models with different sizes of available training data.

tiple researchers and participants in each session.555

Participants had active discussions with occasional556

overlapping speech, which posed difficulties for557

ASR transcription. Secondly, the same group of558

researchers followed a semi-structured approach to559

organise the discussion and asked a similar set of560

questions across the 8 focus group sessions. Partic-561

ipants, on the other hand, were more spontaneous562

and reflective in phrasing their discussion, and a dif-563

ferent set of participants engaged in discussion on a564

diverse range of topics specific to each focus group565

session and their personal backgrounds. Thus, it is566

a more challenging task for the model to identify567

themes shared across such a diverse population and568

phrasing in participants’ sentences.569

5.2 Limitation and Future Work570

We used ASR-generated transcripts, which can571

have limited accuracy compared to manual tran-572

scription, especially as the speakers did not wear573

close-up microphones. This may have limited the574

text models’ abilities to identify representative fea-575

tures from the auto-generated transcripts. More-576

over, the current models are evaluated on one spe-577

cific dataset, and it would be beneficial to expand578

our evaluation to other qualitative research datasets579

to understand the robustness and generalisability580

of the models with cross-corpora analysis. Lastly,581

user studies are required to evaluate the difference582

in annotation efficiency and quality between man-583

ual annotation and semi-automatic annotation using584

the proposed model for assisting thematic analysis.585

For this, we plan to embed the proposed model in586

annotation tools, such as Label Studio (Tkachenko587

et al., 2020-2022), and compare the annotation time588

and quality differences between the manual and589

semi-auto annotation approaches.590

6 Conclusion 591

We addressed the challenge of annotation assis- 592

tance in qualitative research by investigating the ef- 593

ficacy of using pre-trained models with various fine- 594

tuning approaches for thematic analysis. Specifi- 595

cally, we evaluated few-shot learning, data augmen- 596

tation, and multimodal fusion considering three 597

main aspects that can influence the thematic label 598

classification performance: size of available train- 599

ing samples, modality fusion, and class balance. 600

On a dataset of focus group discussions, the trans- 601

fer learning model achieved a balanced accuracy 602

of up to 59.89% for predicting a set of thematic 603

labels, with weighted F1-scores of up to 86.32% 604

for predicting individual labels. Our work demon- 605

strates the potential of adopting transfer learning 606

to support qualitative research and reduce the hu- 607

man annotator’s workload in the complex task of 608

thematic analysis via annotation assistance. 609
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