Annotation Assistance for Thematic Analysis using Transfer Learning

Removed for Review

Abstract

Manual annotation of qualitative research data
is costly and time-consuming. Recently, ma-
chine learning approaches have been intro-
duced to assist such tasks. However, it remains
challenging for a machine learning model to
incorporate context, data scarcity, data imbal-
ance and other aspects in thematic analysis. We
employed transfer learning, combining the pre-
trained models BERT and ResNet to propose
an annotation assistance model and evaluated
its accuracy and efficiency for semi-automatic
annotation. We experimented on a dataset of
focus group discussions between researchers
and participants on perception towards robots
in public spaces. We tested various training
methods, including few-shot learning, data aug-
mentation, and the use of different data modali-
ties, to evaluate the impact of dataset size, data
balance, and data modality on the proposed an-
notation assistance model’s performance. The
best-performing model achieved an average
balanced accuracy of 59.89% for predicting
thematic labels in researcher sentences and
48.67% for participant sentences.

1 Introduction

Data annotation is an essential task in machine
learning and data-driven analysis. Except for un-
supervised learning, developing a machine learn-
ing model often relies on high-quality datasets,
which ideally include large, diverse and represen-
tative data along with accurate annotation. How-
ever, datasets collected in naturalistic and uncon-
trolled conditions often suffer from data imbalance
issues and require intensive and costly manual data
labelling labour. This is especially prevalent in
the analysis of qualitative research data, which fo-
cuses on distilling subjective and high-level themes
emerging in less structured data and currently relies
on time-consuming manual annotation approaches.

A majority of data annotation tasks focus on objec-
tive labels developed for quantitative research, such

as object bounding boxes for computer vision, or
lower-level information, such as part-of-speech tag-
ging for natural language processing. In contrast,
there have been relatively limited labelled datasets
for text comprehension at the sentence, paragraph,
or higher semantic levels (Jain et al., 2020). How-
ever, such high-level, contextualised information is
precisely what is required in qualitative research.

Qualitative research is critical in generating com-
prehensive understanding. In addition to obtain-
ing users’ thoughts and expectations, qualitative
research allows researchers to use the data to im-
prove the user experience (Sgraa et al., 2023). For
example, it can help improve aspects of a prod-
uct that users perceive as failing (Horstmann and
Krimer, 2019). A common qualitative research
method is thematic analysis, in which thematic la-
bels of data are developed by researchers based on
the research themes and contextual analysis of qual-
itative data such as interviews. Existing thematic
analysis approaches remain largely dependent on
manual annotation, which is time-consuming and
labour-intensive. Additionally, the diversity of top-
ics in each qualitative research study imposes chal-
lenges for researchers to transfer thematic labels
developed from one domain to another.

Prior work has shown that manually annotating
the subjective labels of 369,436 reviews required
a total of 14 weeks by 3 annotators (Qureshi et al.,
2022). Likewise, qualitative research data labelling
can also take several months, depending on the
dataset’s size (Stuckey, 2015). Motivated by re-
ducing the labour costs associated with the annota-
tion of qualitative data, we propose to use transfer
learning methods to address the challenges of qual-
itative research data annotation. We demonstrated
the feasibility of this approach using a representa-
tive dataset with ground-truth thematic labels and
investigated the performance of transfer learning
models on this dataset. This facilitates the future



development of semi-automatic annotation support
to accelerate thematic analysis for qualitative re-
search.

As qualitative research data is particularly affected
by privacy and ethical issues, publicly available
data is difficult to acquire. The scarcity of rele-
vant data leads to a challenge for developing mod-
els for automated labelling. Additionally, qualita-
tive research data is often not primarily aimed at
training new machine-learning models. Therefore,
such datasets are significantly smaller in size (Chen
et al., 2018). Transfer learning is a common ap-
proach for tasks with insufficient data (Weiss et al.,
2016). Pre-trained models that have previously
learned patterns and features from large datasets
can be fine-tuned to be applied to a new task
and achieve better performance than learning from
scratch. Considering the complexity of qualita-
tive data and the benefits of having expert human
annotators in the loop to generate high-level discov-
eries, we have decided to take the semi-automatic
annotation method instead of fully automatic anno-
tation for assisting thematic analysis. This allows
researchers to correct labels (Mosqueira-Rey et al.,
2023), thus ensuring annotation accuracy as well
as efficiency (Desmond et al., 2021).

In addition to transfer learning, other practical so-
lutions for addressing the challenge of limited data
samples include zero-shot, few-shot learning and
data augmentation (Parnami and Lee, 2022; Long-
pre et al., 2020; Kirk et al., 2023). Data augmen-
tation helps to overcome the problem of class im-
balance and increases a model’s robustness (Feng
etal., 2021). Similarly, feature extraction from mul-
tiple data modalities is shown to enhance model
performance (Gandhi et al., 2023). Thus, we are
motivated to explore whether these approaches can
further contribute to semi-automatic annotation as-
sistance for qualitative research.

In summary, this work contributes to qualitative
data annotation and analysis by proposing a novel
semi-automatic annotation assistance model using
transfer learning, specifically:

* We assess the impact of data modalities,
namely text, audio, and the multimodal com-
bination of text and audio on using pre-trained
models for semi-automatic thematic analysis.

* We evaluate the utility of textual data augmen-
tation on qualitative research data to improve

the performance of semi-automatic annota-
tion.

* We investigate the feasibility of tuning a pre-
trained model with a small number of data
points, i.e., zero-shot and few-shot learning,
for semi-automatic annotation of qualitative
research data.

* We propose a machine learning model based
on pre-trained BERT and ResNet for semi-
automatic annotation and provide recommen-
dations for future work.

2 Background

In qualitative research, coding is the process of
analysing data, representing large volumes of text
or speech data with concise single words or short
phrases, and identifying the main topics covered
in the data. As such, coding is crucial in qualita-
tive data analysis as it allows researchers to quickly
retrieve and categorize the data (Stuckey, 2015;
Gillies et al., 2022). However, creating codes and
labelling data can be very time-consuming. Sev-
eral annotation tools exist to assist this task and
improve annotation efficiency (John and Johnson,
2000; Banner and Albarran, 2009), such as Atlas.ti,
NVivo, and MAXQDA. Nevertheless, these sys-
tems provide only an interface for manual data
labelling, and researchers still need to develop the
coding scheme and perform the annotation.

To increase labelling efficiency and quality, ma-
chine assistance has played an important role in
data annotation tasks in recent years. For instance,
INCEpTION (Klie et al., 2018) combines a recom-
mendation system and can customise algorithms to
choose the next data point to be annotated through
active learning. AILA (Choi et al., 2019) incorpo-
rates machine learning models to predict important
words in documents and highlights them. In addi-
tion to the NLP field, there are tools for annotating
multimodal data, such as PEANUT (Zhang et al.,
2023) and NOVA (Baur et al., 2020). The latter
also proposes a Cooperative Machine Learning ap-
proach to track faces and skeletons in videos and
identify people’s emotions.

Machine-assisted methods have been applied re-
cently to develop annotation platforms specifically
designed for qualitative research. Cody (Rietz and
Maedche, 2021) embeds supervised machine learn-
ing to assist users, allowing them to accept or reject



label suggestions generated by the system and itera-
tively update the model based on the users’ choices.
PaTAT (Gebreegziabher et al., 2023) uses a model
to find semantically similar words to group data and
provides users with similarity scores via a graph-
ical user interface for reference. Both Cody and
PaTAT use label recommendation systems and up-
date models based on users’ feedback to have a bet-
ter predicting suggestion. However, both systems
are only based on the similarity of sentences or fre-
quently occurring words in sentences and cannot
handle context understanding in natural language
to aid higher-level thematic analysis.

Due to the scarcity of qualitative research data,
coupled with the limitations faced by Cody and
PaTAT, the use of large-scale language models and
transfer learning can help master semantics and
achieve good results on a small number of training
samples (Ruder et al., 2019). Transformer-based
BERT (Devlin et al., 2018) is a large language
model for bidirectional and unsupervised language
representations. It can autonomously learn from
text without specific labels and has demonstrated
outstanding performance in downstream NLP tasks,
including high accuracy in detecting hate speech on
social media (Mozafari et al., 2020) or applications
in identifying fake news (Qasim et al., 2022), mak-
ing it a popular pre-trained model option (Koroteev,
2021). Previous research has shown that combin-
ing BERT with zero-shot and few-shot learning
methods can achieve good performance, even with-
out further fine-tuning (Gupta et al., 2020). Thus,
we are motivated to investigate applying BERT to
support the thematic analysis of qualitative data.

3 Methodology

3.1 Dataset

We employed a dataset collected in our previ-
ous work for exploring how transfer learning may
benefit qualitative research, which contains audio-
video recordings and transcripts of participatory de-
sign workshops on human-robot interaction (anon,
2020). These workshops encompass eight focus
groups where researchers and participants engaged
in discussion regarding the roles that robots could
take in public spaces and active robot prototyping
via Zoom video conferencing. The raw data com-
prises approximately 16 hours of video and audio
recordings. ASR (Automatic Speech Recognition)
transcription service by Amazon was used to gen-
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Figure 1: Imbalanced sentence labels in the original dataset

erate textual transcripts with sentence timestamps
for each workshop. These transcripts comprise
7,244 sentences, with 2,749 sentences contributed
by participants and 4,495 sentences by researchers.

This dataset has been manually annotated by re-
searchers for thematic analysis, with a different set
of sentence-level labels given to sentences spoken
by participants (‘P’) or researchers (‘R’). These
sentences are categorised into 64 thematic labels,
with 29 for ‘R’ sentences and 35 for ‘P’ sentences.
These 64 labels are further aggregated into 11 the-
matic categories, 5 for ‘R’ and 5 for ‘P’, along
with a ‘Noise’ label for disfluencies and other sen-
tences irrelevant for thematic analysis. Each label
and its corresponding thematic category were de-
veloped by researchers specifically for qualitative
analysis of this data, defining their meanings and
corresponding usage contexts.

The proportion of sentences with each label is
summarised in Figure 1. As shown here, the
dataset contains imbalanced labels: for ‘R’ labels,
‘Workshop Management’ is the majority class with
27.13% of the sentences given this label; for ‘P’
labels, both ‘Design Action’ and ‘Failure Reason-
ing’ have a relatively large number of sentences, at
26.87% and 26.12% respectively.



3.2 Data Preprocessing

Textual Data There were a small number of la-
belling errors in the manual annotation, such as
using a researchers’ label for a participants’ sen-
tence. These mislabelled data points were excluded
in our experiments. Additionally, data labelled as
‘Noise’ has been excluded. We prioritised the accu-
rate identification of main theme categories as this
is the most relevant for qualitative analysis.

We concatenated partial sentences produced by
ASR in the generated transcript. For example, the
sentence: “I’ll just quickly share my screen” was
split into three separate sentences in the transcript
due to speech pauses: “I'll just quickly”, “share”,
and “my screen”. Therefore, we manually concate-
nated such sentences during preprocessing. Specifi-
cally, we concatenated two adjacent sentences with
the same role (participant or researcher) and the
same thematic label, provided their duration did
not exceed 5 seconds.

Audio Data The original audio comprises complete
recordings of the eight online meetings. We aligned
the timestamps based on the processed text tran-
script to segment the recordings into sentence-level
audio files. For each sentence, we extracted Mel-
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Figure 2: Label class distribution after preprocessing

Frequency Cepstral Coefficients (MFCC) (Wang
et al., 2016) using librosa (McFee et al., 2015) with-
out re-sampling the original audio and saved the
Mel spectrogram plots as the audio data.

Our preprocessing resulted in 2,273 ‘R’ sentences
and Mel spectrogram plots, 1,812 ‘P’ sentences
and Mel spectrogram plots. The distribution of
all thematic labels after preprocessing is shown
in Figure 2. Finally, we randomly split ‘R’ and
‘P’ data into training and test sets, with 80% for
training and 20% for testing. We manually adjusted
the test set to include a balanced number of samples
for each thematic label and this test set was used in
all the experiments.

3.3 Machine Learning Models

We developed machine learning models for three
different modalities: text, audio, and multimodal
models combining text and audio data.'

Text We utilised the pre-trained BERT-base tok-
enizer and text classification model from Hugging
Face (Wolf et al., 2020), which has a 12-layer struc-
ture with 110 million parameters.

Audio As described in Section 3.2, audio fea-
tures were represented as Mel spectrograms. For
the audio model, we chose CNN (Convolutional
Neural Network) architectures that demonstrate
exceptional performance in visual classification
tasks. More specifically, we employed ResNet
models with residual layers, including the pre-
trained ResNet50 and ResNet152 models (He et al.,
2016), with weights set to IMAGENET1K_V?2’
sourced from TorchVision (maintainers and con-
tributors, 2016). ResNet exclusively utilised spec-
trograms generated from audio files as its input.

Multimodal For the multimodal approach, we com-
bined BERT and ResNet to extract text and Mel
spectrogram embeddings separately, then concate-
nated them. We then add fully connected layers to
predict the labels from the concatenated audio and
textual features. The multimodal model can be fur-
ther divided into two approaches: one using the pre-
trained BERT from Transformers and pre-trained
ResNet from TorchVision, and the other trained on
our dataset with custom BERT and ResNet models.

ISee https://github.com/LINK-REMOVED for source
codes and a detailed description of the thematic label defi-
nitions and coding scheme.
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3.4 Experiments

We conducted experiments to evaluate the perfor-
mance of the thematic label classification model’s
performance across three aspects: Data Modal-
ity, Unbalanced Classes, and Available Number of
Samples. Depending on the specific experiments,
adjustments were made to the training set, while
the test set remained the same for all models.

Baseline model: As shown in Figure 2, there were
substantial differences in the distribution of each
thematic label. We established a baseline classifi-
cation model by predicting all test sentences as the
majority label.

Text models: We compared different text-based
models using different sizes of available training
data, namely Zero-shot, 5-shot, 10-shot, 80% orig-
inal text, and Augmented text models. All Text
models were configured using a pre-trained BERT
model and a pre-trained BERT tokenizer. Except
for the Zero-shot model, the remaining models used
the same parameters during training. The tokenized
text input had a length of 256, the batch size was
set to 16, and the learning rate was 0.00002 (2e-
5). The training process was carried out over 20
epochs. The set of labels to predict was known to
all models.

The Zero-shot model was not fine-tuned with sam-
ples from the training set and solely relied on the
pre-trained BERT for classification on the test set.

The Few-shot models included 5-shot and 10-shot
models, where five and ten samples, respectively,
were selected from the training set for each of the
thematic categories in each of the ‘P’ and ‘R’ data
to fine-tune the model.

The 80% original text model used all of the avail-
able training data (80% of the whole dataset) to
fine-tune the pre-trained BERT model.

The Augmented text model used augmented train-
ing data with artificial training samples generated
for the smaller thematic categories to create a bal-
anced training set. Specifically, we used TextAt-
tack (Morris et al., 2020) for text data augmenta-
tion, which generate paraphrased sentences of the
original samples. Using the number of samples in
the majority class as the reference, we generated
sentences for the remaining classes for them to con-
tain a relatively equal number of samples as the
majority class. For example, the ‘“Workshop Man-

agement’ label had the highest number of training
samples in ‘R’, with 763 samples, while the ‘Fail-
ure’ label had only 157 samples. We performed
data augmentation on these 157 samples, generat-
ing an additional 4 Augmented text samples for
each original sample. This resulted in a total of
785 training samples for the ‘Failure’ label. We
then randomly selected 606 samples from the Aug-
mented text samples and combined them with the
original 157 samples so that the size of the aug-
mented set of data with the ‘Failure’ label matches
the size of the “Workshop Management’ label.

Audio models: We employed pre-trained
ResNet50 and ResNet152 for the audio models
which predicts thematic labels based on audio in-
formation represented visually as the Mel spectro-
gram plots for each sentence time-aligned with the
text model inputs. Similar to the Text models, we
used a batch size of 16 and trained the models for
20 epochs, while the learning rate was set to 0.001.

Text+Audio multimodal model: The multimodal
model combined both text and audio data as its in-
puts. The text and audio components had different
learning rates same as the text-only and audio-only
models. There outputs are then concatenated and
passed through fully connected layers to generate
the predictions. We developed two types of multi-
modal models:

1. The multi-base model used the pre-trained
BERT and ResNet152 models without fine-
tuning them on the training set.

2. The multi-trained model combined the best-
performing fine-tuned models trained in the
text-only and audio-only experiments.

Evaluation metrics: Due to the unbalanced
classes, we employed the weighted F1-score and
balanced accuracy metrics implemented with the
scikit-learn library (Pedregosa et al., 2011) for per-
formance evaluation. Balanced accuracy is com-
puted as the average recall across all labels.

4 Results

4.1 Classification Performance Overview

Table 1 and Figure 3 provide an overview of all
models’ performance on the test set reported as bal-
anced accuracy. As shown here, thematic analysis
is a challenging task for text, audio, or multimodal
models. For the specific dataset of focus group



Model ‘R’ labels ‘P’ labels
Baseline 20.00 20.00
Text
Zero-shot 20.00 20.80
5-shot 3091 27.12
10-shot 34.14 39.92
80% Original 58.06 48.67
Augmented 57.25 43.46
Audio
ResNet152 42.00 26.59
ResNet50 41.53 28.12
Text + Audio
Multi-base 59.89 48.33
Multi-trained 58.32 41.44

Table 1: Balanced accuracy (%) on the test set for all models.
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Figure 3: Balanced accuracy on the test set for all models.

discussion between researchers and participants
that we experimented on, it is more difficult for
the automatic models to predict thematic labels in
participants’ sentences than in the researchers’ sen-
tences, which may be due to the diversity in the
topics discussed and the individual differences in
speech styles and phrasing by participants.

Pre-trained models with the appropriate fine-tuning
and modality fusion can achieve improved perfor-
mance, thus having the potential to assist human an-
notators by suggesting auto-predicted labels when
integrated into an annotation tool. However, human
insights are still required and a semi-auto, collab-
orative annotation approach should be taken for
thematic analysis. In Sections 4.2, 4.3, and 4.4 we
will further discuss how data modality, class bal-
ance, and training sample availability influence the
performance of thematic label prediction.

4.2 Influence of Data Modality

The performance of models using different data
modalities for classifying each thematic label is
shown in Table 2. Here we report the results of the

multi-base multimodal model in the ‘T+A’ column.
In the ‘Audio’ column, we reported ResNet152
results for ‘R’ and ResNet50 results for ‘P’.

Label Text Audio T+A
‘R’esearcher labels
Introduction 43.90 25.00 40.00
Clarification 70.23  55.17 175.56
Workshop Management 80.66 81.16  86.32
Implementation 40.00 29.51 46.62
Failure 48.78 21.74 55.56
‘P’articipant labels
Information 55.32 3333 60.38
Design Action 5593 3333 51.79
Failure Action 37.04 1250 34.78
Failure Reasoning 51.85 33.63 50.94
Perception 38.71 23.88 41.18

Table 2: Weighted F1-scores (%) of models using different
data modalities with 80% of original data as the training set.

The Text+Audio model yields the best performance
in predicting the ‘R’ labels except for the ‘Introduc-
tion’ class. The Audio model shows a significant
performance gap compared to the Text model in
predicting the ‘R’ labels, but combining the text
and audio information yields benefits. For ‘P’ la-
bels, the Text model achieved better performance
in 3 out of 5 labels, while the multimodal model
yielded better performance in predicting the other
two thematic labels. Similar to the ‘R’ label results,
the Audio model had worse performance when
used alone, but contributed to predicting some la-
bels when combined with the text data.

As shown here, similar to previous studies on data
annotation, our work also indicates that utilising
multimodal data is beneficial in transfer-learning
assisted thematic analysis.

4.3 Influence of Unbalanced Classes

Table 3 reports the performance of text models
trained with original data containing unbalanced
classes and augmented data containing paraphrased
sentences of original data to increase the number
of samples in non-majority classes.

For ‘R’ labels, the model trained with balanced
training data including paraphrases of original sen-
tences achieved better results for all labels except
for ‘Introduction’. This improvement is particu-
larly noticeable for the minority classes, such as
the ‘Failure’ label. For the majority class ‘Work-
shop Management,’ the improvement is less sub-



Label Origin. Aug.
‘R’esearcher labels
Introduction 4390 37.04
Clarification 70.23 7413
Workshop Management  80.66  82.11
Implementation 40.00  44.07
Failure 48.78 57.14
‘P’articipant labels
Information 5532 62.22
Design Action 5593 50.39
Failure Action 37.04 3529
Failure Reasoning 51.85 46.30
Perception 38.71 33.85

Table 3: Weighted F1-scores (%) of text models trained on
original (“Origin.”) and augmented training data (“Aug.”)

stantial. For ‘P’ labels, using augmented training
data did not yield improved performance except
for the ‘Information’ label. The interesting perfor-
mance difference in models using original vs. aug-
mented training data for analysing themes in the
researchers’ or participants’ sentences suggests that
paraphrasing may be a more suitable data augmen-
tation approach for qualitative data with more struc-
ture and fewer individual variances.

4.4 Influence of Available Training Samples

Table 4 reports the performance of text models with
different amounts of training samples available for
fine-tuning the pre-trained BERT model. ‘Baseline’
refers to always predicting the majority class.

For both ‘R’ and ‘P’ labels, the Zero-shot learn-
ing models (i.e., no fine-tuning) only predicted the
majority class. This indicates that due to the sig-
nificant difference in how thematic analysis is con-
ducted for qualitative data compared to objective
text classification and summarisation tasks, exist-
ing pre-trained language models are not directly
applicable even when the thematic label sets are
known. Therefore, a semi-automatic approach with
close human guidance as opposed to a fully auto-
matic approach is required in thematic analysis.

However, as soon as a small number of training
samples become available (5-shot and 1-shot learn-
ing models), the pre-trained models can be fine-
tuned to achieve better prediction performance.
With more training samples available, including
augmentation with paraphrasing, the models can
achieve more accurate predictions and, thus poten-
tially reduce the human annotator’s workload.

5 Discussion

5.1 Transfer learning for thematic analysis

Our experiments demonstrate that transfer learning
has the potential to support thematic analysis of
qualitative data, especially when data augmentation
and multimodal fusion are adopted in fine-tuning
the pre-trained models.

Sample Size: In interviews and focus group dis-
cussions that qualitative data is usually collected
from, the time researchers and participants spend
on discussing each theme is often uneven, result-
ing in unbalanced classes for automatic prediction.
Our experiments showed that text data augmenta-
tion using paraphrasing is a promising approach
to the unbalanced data issue and for increasing the
performance of labelling themes with less available
data. However, data augmentation for text data is
less explored compared to image data augmenta-
tion in computer vision. Paraphrasing often yields
sentences without substantial differences from the
original sentences, which results in the model learn-
ing features that are already present in the original
data, unable to effectively discover new patterns to
distinguish various themes. Thus, better methods
need to be developed to create artificial training
samples that are diverse and believable. Further-
more, while few-shot and zero-shot learning have
shown promising results for text classification and
summarisation tasks, our experiments indicate that
thematic analysis is a more challenging task and is
not suited for a fully automatic annotation pipeline.

Multimodal fusion: Our experiments indicate that
fusing information from text and audio modali-
ties can lead to better performance for thematic
label prediction. Interestingly, the pre-trained mul-
timodal models without fine-tuning achieved better
performance than the models trained on our dataset.
Further research is required to investigate addi-
tional improvements to the multimodal model, such
as including video data or adopting other modality
fusion architectures than simple concatenation.

Dataset specific influences: The models per-
formed differently when predicting thematic la-
bels for researchers and for participants. Over-
all, the models achieved better results for ‘R’ la-
bels than ‘P’ labels. Several factors specific to
the dataset we conducted our experiments on may
have contributed to this difference. Firstly, the
data was collected from focus groups with mul-



Speaker Label Baseline Zero-shot 5-shot 10-shot Origin. Aug.
Introduction 0.00 0.00 18.60  10.26 4390 37.04
Clarification 0.00 0.00 15.00 44.00 70.23 7413

‘R’ Workshop Management ~ 59.01 59.19 5733  69.27 80.66  82.11
Implementation 0.00 0.00 2299  20.00 40.00 44.07
Failure 0.00 0.00 19.15  21.05 48.78 57.14
Information 0.00 0.00 2593  47.06 5532 62.22
Design Action 51.64 51.64 38.71 37.62 5593 50.39
‘P’ Failure Action 0.00 0.00 1429  25.00 37.04 3529
Failure Reasoning 0.00 0.00 20.51 38.55 51.85 46.30
Perception 0.00 0.00 40.00 3590 38.71  33.85

Table 4: Weighted F1-scores (%) of text models

tiple researchers and participants in each session.
Participants had active discussions with occasional
overlapping speech, which posed difficulties for
ASR transcription. Secondly, the same group of
researchers followed a semi-structured approach to
organise the discussion and asked a similar set of
questions across the 8 focus group sessions. Partic-
ipants, on the other hand, were more spontaneous
and reflective in phrasing their discussion, and a dif-
ferent set of participants engaged in discussion on a
diverse range of topics specific to each focus group
session and their personal backgrounds. Thus, it is
a more challenging task for the model to identify
themes shared across such a diverse population and
phrasing in participants’ sentences.

5.2 Limitation and Future Work

We used ASR-generated transcripts, which can
have limited accuracy compared to manual tran-
scription, especially as the speakers did not wear
close-up microphones. This may have limited the
text models’ abilities to identify representative fea-
tures from the auto-generated transcripts. More-
over, the current models are evaluated on one spe-
cific dataset, and it would be beneficial to expand
our evaluation to other qualitative research datasets
to understand the robustness and generalisability
of the models with cross-corpora analysis. Lastly,
user studies are required to evaluate the difference
in annotation efficiency and quality between man-
ual annotation and semi-automatic annotation using
the proposed model for assisting thematic analysis.
For this, we plan to embed the proposed model in
annotation tools, such as Label Studio (Tkachenko
etal., 2020-2022), and compare the annotation time
and quality differences between the manual and
semi-auto annotation approaches.

with different sizes of available training data.

6 Conclusion

We addressed the challenge of annotation assis-
tance in qualitative research by investigating the ef-
ficacy of using pre-trained models with various fine-
tuning approaches for thematic analysis. Specifi-
cally, we evaluated few-shot learning, data augmen-
tation, and multimodal fusion considering three
main aspects that can influence the thematic label
classification performance: size of available train-
ing samples, modality fusion, and class balance.
On a dataset of focus group discussions, the trans-
fer learning model achieved a balanced accuracy
of up to 59.89% for predicting a set of thematic
labels, with weighted F1-scores of up to 86.32%
for predicting individual labels. Our work demon-
strates the potential of adopting transfer learning
to support qualitative research and reduce the hu-
man annotator’s workload in the complex task of
thematic analysis via annotation assistance.
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