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Abstract
Large models such as vision language models
(VLMs) have demonstrated robust world knowl-
edge comprehension, inspiring advancements in
automated mathematical problem-solving. In the
domain of geometry problem-solving, the intri-
cate and diverse abstract relationships inherent
in geometry diagrams present significant chal-
lenges for leveraging large models. To enhance
the accuracy of geometry problem-solving, we
analyze existing problem-solving paradigms and
propose leveraging VLMs for enhanced diagram
autoformalization accuracy. First, we construct
a multimodal instruction-tuning dataset named
GeometryDiagramFormalization86K (GDF86K)
through data augmentation based on algebraic
commutativity in the Geometry3K dataset. This
dataset contains over 86,000 image-caption pairs
to facilitate training of diagram autoformalization
models. Utilizing GDF86K, we conduct super-
vised fine-tuning to implement Geo-TinyLLaVA,
a vision-language model specialized in geome-
try diagram autoformalization. When input di-
agrams with complete point annotations, Geo-
TinyLLaVA outperforms the conventional Inter-
GPS diagram parser in autoformalization per-
formance and can serve as a plugin to enhance
the problem-solving accuracy of the geometry
problem-solving system. Code and data are avail-
able at https://github.com/1509cxt/
Geo-TinyLLaVA.

1. Introduction
The performance of large models in mathematical compre-
hension has garnered significant attention. Notably, the
evaluation of large models with visual capabilities in the
mathematical domain (Lu et al., 2024; Zhang et al., 2025)
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heavily relies on assessing their understanding of mathemat-
ical problems that incorporate visual information, such as
plane geometry problems.

Advancements in automatic plane geometry problem-
solving using Transformer-based large models can be cate-
gorized into two primary approaches:

• Large models functioning directly as complete solvers
(e.g., G-LLaVA (Gao et al., 2023)), representing an
end-to-end paradigm.

• Large models serving as auxiliary components to a
mechanical symbolic deduction engine (e.g., Alpha-
Geometry (Trinh et al., 2024), Inter-GPS (Lu et al.,
2021)), representing a non-end-to-end paradigm.

In the paradigm where large models directly as solvers,
publicly available experimental results show that fine-tuned
vision-language models like G-LLaVA exhibit good geome-
try problem-solving capabilities, surpassing many popular
foundation models (e.g., LLaVA (Liu et al., 2023b), GPT-
4V (OpenAI, 2023)) and the average human performance.
However, enhancing the reasoning and computational capa-
bilities of large models may require more meticulously de-
signed post-training methods. Additionally, neural networks
inherently have shortcomings in terms of overall stability
and interpretability. Therefore, we are more inclined to rely
on formal systems for reasoning and computation to ensure
a certain level of mathematical correctness.

Large models may currently be best suited to an auxiliary
role in the domain of plane geometry. We observe that
AlphaGeometry employs a specifically designed mechan-
ical deduction engine to handle the reasoning process for
solving geometry problems, while using large models to as-
sist in auxiliary construction, thereby achieving noteworthy
performance on Olympiad-level geometry problems.

Mechanical deduction engines for solving plane geometry
problems heavily depend on the accuracy of the formalized
geometry information provided. For instance, AlphaGeome-
try relies on human experts to manually formalize the textual
information of a limited set of test geometry problems. As
a complete system for solving geometry problems, Inter-
GPS incorporates a symbolic deduction engine along with
two front-end modules: a text parser and a diagram parser,
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specifically designed to parse problem information as input
to the deduction engine.

To enable the symbolic deduction engine to utilize more
accurate formalized geometry information and thereby im-
prove problem-solving accuracy, this work focuses on lever-
aging vision-language models to achieve more precise plane
geometry diagram autoformalization.

A geometry diagram encompasses its fundamental geomet-
ric primitives (such as points, lines, circles, etc.), the relative
coordinates of these points, and various textual elements
and symbols that establish geometric relationships among
all points. The task of geometry diagram parsing involves
inputting a geometry diagram and outputting a structured
textual representation of all the geometric information con-
tained within the diagram, as described above. See Figure 1
for an example of a geometry diagram and its parsing result.

To enable more accurate autoformalization of geometry di-
agrams, we first construct a multimodal instruction-tuning
dataset named GDF86K. This dataset is developed through
quality refinement and algebraic commutativity-based data
augmentation of the Geometry3K (Lu et al., 2021) training
and validation sets. It comprises four subsets, each con-
taining 86,080 image-caption pairs, where each instance
includes a geometry diagram and its corresponding formal
language description of geometric relationships. Leverag-
ing GDF86K, we fine-tune a vision-language model with
geometry diagram autoformalization capabilities, named
Geo-TinyLLaVA. Specifically, given complete point anno-
tation within diagrams, our Geo-TinyLLaVA demonstrates
superior performance in geometry diagram autoformaliza-
tion compared to the Inter-GPS diagram parser. The model
can serve as a plug-in component to enhance the parsing
capability of the Inter-GPS diagram parser, thereby improv-
ing the overall geometry problem-solving accuracy of the
Inter-GPS system.

2. Related Work
Vision-Language Model. Recent years have witnessed
remarkable advancements in Vision-Language Models
(VLMs), more commonly referred to as Multimodal Large
Language Models (MLLMs). The development of large
language models (Brown et al., 2020; Ouyang et al., 2022;
Touvron et al., 2023) has been significantly accelerated by
the introduction of the Transformer architecture (Vaswani,
2017), thereby facilitating vision-language joint represen-
tation learning (Radford et al., 2021; Li et al., 2022; 2023).
The continuous evolution of large-scale pretrained models
has enabled more effective training paradigms for multi-
modal tasks, leading to the proliferation of diverse MLLMs
(Liu et al., 2023b;a; 2024). Concurrently, novel frameworks
(LLaMA-Factory (Zheng et al., 2024), TinyLLaVA Factory

(Jia et al., 2024)) for efficient multimodal model training
have been proposed, significantly reducing computational
resource requirements and implementation complexity for
associated tasks. However, current foundation models ex-
hibit suboptimal performance in mathematical visual com-
prehension tasks (Zhang et al., 2025).

Geometry Diagram Parsing: Detection and Formaliza-
tion. As mentioned earlier, the prerequisite for a mechanical
deduction engine to correctly solve geometry problems is
that the problem is accurately represented in certain machine
language that the deduction engine need. Both the text and
the geometry diagram of the problem need to be parsed to
obtain the parsing result. Among these, parsing the geome-
try diagram is particularly challenging, as the vast amount
of geometric information embedded in the diagram leads to
a highly detailed parsing result. Any error in parsing results
could cause the subsequent failure of the deduction engine.
Previously, the conventional Inter-GPS diagram parser oper-
ated under a non-end-to-end paradigm: it first used Hough
Transform (Stockman & Shapiro, 2001) to extract basic geo-
metric elements, then employed an object detection network
to extract the image regions of text and symbols, which were
passed to an OCR tool. Finally, the geometric relationships
were optimized based on the Euclidean distances between
geometric elements and text-symbols. The parsing result
(as shown in Figure 1) produced by this paradigm can be
divided into two parts:

• Information about geometric elements such as points,
lines, and circles, as well as the relative coordinates of
points. This task can be considered a detection task for
image segments, belonging to a mid-level vision task.

• Geometric relationships described in formal language
(also known as logic forms), which use predicate logic
to construct multiple literals that extract all the geomet-
ric relationships in the diagram. This task is catego-
rized as a high-level vision task.

However, in generating logic forms, the conventional Inter-
GPS diagram parser’s paradigm falls short in terms of se-
mantic understanding of the image. This work introduces
a vision-language model that can construct more accurate
logic forms, assisting the Inter-GPS diagram parser in pro-
ducing better parsing results.

3. Data Preparation
3.1. Observations on the Dataset Geometry3K

In certain plane geometry problems, the original diagram
may lack labels for some geometric points. However, during
formalization, each point might be referenced; thus, every
point in the diagram requires a consistent and explicit label.
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Diagram Parsing Result
"point_instances": ["L","M","N","P"],

"line_instances": ["NM","LN","LM","LP","PN"],

"circle_instances": [""],

"point_positions": {

    "L": [148.0,2.0],

    "M": [23.0,261.0],

    "N": [145.0,316.0],

    "P": [266.0,260.0]

},

"diagram_logic_forms": [

    "Equals(MeasureOf(Angle(P, L, N)), 25)",

    "Equals(LengthOf(Line(N, M)), 4)",

    "Perpendicular(Line(L, M), Line(N, M))",

    "Perpendicular(Line(L, P), Line(P, N))",

    "Equals(MeasureOf(Angle(M, L, N)), 

    MeasureOf(Angle(N, L, P)))"

]

Detection

Formalization

Figure 1. An example of a diagram and its parsing result from Geometry3K(Lu et al., 2021). On the left is the diagram to be parsed, while
the right side shows its corresponding parsing result.

Figure 2. An example of an original diagram and its corresponding
complete diagram in Geometry3K(Lu et al., 2021).

To achieve consistent and comprehensive geometric point
annotations in the Geometry3K dataset, the annotation team
re-labeled all geometric points in each problem’s original
diagram using blue uppercase letters. This approach re-
sulted in the re-annotation of already labeled points and
the identification of previously unlabeled points. The re-
sulting diagram is referred to as complete diagram in
this paper. Consequently, each problem in the Geometry3K
dataset includes two images: the original diagram
and complete diagram. See Figure 2 for an example
of these two types of diagrams.

In Figure 2, based solely on the original diagram, it is chal-
lenging to deduce that the intersection of FH and GJ is
labeled as point B, and the center of the circle is labeled

as point A in the ground truth. For the unlabeled geomet-
ric points in the original diagram, it is difficult to infer the
corresponding labels in the ground truth.

Our vision-language model also faces challenges in cor-
rectly naming unlabeled geometric points during formaliza-
tion. Therefore, we predominantly utilize diagrams with
complete point annotations as visual inputs for our model.
Only when all geometric points in the original diagram are
labeled do we provide the original diagram to the vision-
language model.

For a geometry problem, it is preferable that its diagram
assigns consistent names to all existing geometric points,
facilitating the writing of solutions and the grading process.
If a diagram lacks labels for certain points, completing
these annotations can be done by the problem creator or
considered within the scope of the detection task in diagram
parsing.

3.2. Data Quality Refinement

While verifying the completeness of geometric point anno-
tations in the Geometry3K diagrams, we identified certain
expression errors in the logic forms of some diagrams that
could be corrected (examples are provided in Appendix A).

We rectified these errors in the diagram logic forms, which
consequently improved the problem-solving accuracy of
Inter-GPS’s symbolic solver (deduction engine) on the Ge-
ometry3K test set (see Table 1). Unless otherwise specified,
all data referenced in this work refer to the dataset Geome-
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try3K after our quality refinement process.

Table 1. Problem-solving accuracy of the Inter-GPS symbolic
solver when directly using the ground truth parsing results from the
Geometry3K test set (601 problems in total). The accuracy does
not include cases where the solver failed and randomly selected
one of the four multiple-choice options.

Data used Accuracy
Uncorrected Data 67.22%
Corrected Data 69.05%

3.3. Instruction Data Construction

The training data for the Inter-GPS diagram parser is sourced
from the training and validation sets of Geometry3K, com-
prising a total of 2,401 problems. This work also makes
exclusive use of these data.

We employed heuristic methods, such as Hamming distance
based on Average-hashing (Buchner, 2025) values of im-
ages, to deduplicate images in the training and validation
sets of Geometry3K. Additionally, we manually filtered out
data where unusable diagrams led to uncorrectable errors in
their logic forms (examples are provided in Appendix B).

Following the aforementioned collation process, we retained
a total of 1,345 problems from the Geometry3K training
and validation sets for training the vision-language model.

3.3.1. RANDOM SHUFFLE (RS)

When representing a diagram using formal language, multi-
ple literals are generated to express geometric relationships.
These literals are essentially conjunctive, and due to the
commutativity of the conjunction operator, their order is
inconsequential. Therefore, for a given diagram, we can
apply a random shuffle to the existing literal list, produc-
ing different sequences that remain semantically equivalent.
See Figure 3 for an example of data augmentation using the
Random Shuffle technique.

Given a (diagram, literal list) pair containing
n literals, this data augmentation technique allows for the
generation of up to n! distinct literal lists.

3.3.2. PREDICATE COMMUTATIVITY TRANSFORMATION
(PCT)

Inspired by the performance evaluation methodology of the
Inter-GPS diagram parser, we identify commutative proper-
ties in specific arguments of predicates and functions within
its formal language definition. Based on the algebraic com-
mutativity, individual literals may possess multiple equiv-
alent representations conveying identical geometric infor-
mation. For instance, the literal “Perpendicular(Line(C, A),
Line(B, A))” exhibits 8 distinct equivalent forms, includ-

ing “Perpendicular(Line(A, B), Line(A, C))” as a symmetric
counterpart.

A single diagram typically corresponds to multiple literals,
and applying Predicate Commutativity Transformation to
each literal yields numerous distinct literal lists through com-
binatorial expansion. Notably, the Predicate Commutativ-
ity Transformation and Random Shuffle data augmentation
techniques are orthogonal and can be applied concurrently
for enhanced data diversity. For a more comprehensive
example, refer to Figure 3.

4. Model Architecture and Training
4.1. Model Architecture

Our model, Geo-TinyLLaVA, utilizes the TinyLLaVA (Jia
et al., 2024) framework based on the LLaVA (Liu et al.,
2023b) architecture. An overview of our Geo-TinyLLaVA
is depicted in Figure 4: it comprises a Large Language
Model (LLM) Fθ, a modality connector Pϕ, and a vision
tower Gφ, where θ, ϕ, and φ are learnable parameters. The
model takes as input a diagram and a fixed textual instruction
for autoformalization, outputting a text sequence as formal
language literals.

During the forward process, given an image Xv and a lan-
guage instruction Xq, the vision tower Gφ first encodes
the image to obtain an embedding, which is then mapped
to the LLM’s dimension through the modality connector
Pϕ. The resulting image token embedding and the text em-
bedding obtained by tokenizing the language instruction,
are concatenated and input into the LLM. The LLM iter-
atively performs next-token prediction to generate output
tokens. These output tokens are subsequently decoded by
the tokenizer to produce the language response Y.

4.2. Model Training

We train our Geo-TinyLLaVA in one stage of supervised
fine-tuning. Given a single-turn conversation consisting of
the image Xv, the language instruction Xq and the target
response Yt = {yi}Ni=1 with sequence length of N , we
compute the probability of generating Yt as:

p(Yt|Xv,Xq) =

N∏
i=1

Fθ(yi|Pϕ ◦Gφ(Xv),Xq) (1)

and maximize its log-likelyhood autoregressively as training
objective:

max
ϕ,θ,φ

N∑
i=1

logFθ(yi|Pϕ ◦Gφ(Xv),Xq) (2)
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Equals(MeasureOf(Angle(P, L, N)), 25);
Equals(LengthOf(Line(N, M)), 4);
Perpendicular(Line(L, M), Line(N, M));
Perpendicular(Line(L, P), Line(P, N)).

Perpendicular(Line(L, M), Line(N, M));
Equals(MeasureOf(Angle(P, L, N)), 25);
Perpendicular(Line(L, P), Line(P, N));
Equals(LengthOf(Line(N, M)), 4).

Original Random Shuffle RS
Augmented

 

Perpendicular(Line(M, N), Line(L, M));
Equals(MeasureOf(Angle(N, L, P)), 25);
Perpendicular(Line(P, N), Line(P, L));
Equals(LengthOf(Line(M, N)), 4).

RS+PCT
Augmented

 

Equals(MeasureOf(Angle(N, L, P)), 25);
Equals(LengthOf(Line(M, N)), 4);
Perpendicular(Line(M, N), Line(L, M));
Perpendicular(Line(P, N), Line(P, L)).

PCT
Augmented

 

Predicate Commutativity Transformation Predicate Commutativity Transformation

Random Shuffle

Figure 3. An example illustrating the application of the data augmentation techniques, Random Shuffle and Predicate Commutativity
Transformation. The Original logic forms are selected from those presented in Figure 1. The RS augmented, PCT augmented, and
RS+PCT augmented logic forms represent the results of applying Random Shuffle only, Predicate Commutativity Transformation only,
and both techniques combined, respectively.

Figure 4. Overview of our Geo-TinyLLaVA.

5. Experiments
5.1. Setup

Evaluation Protocols. We employ two complementary
evaluation protocols: one (protocol 1) directly assesses the
autoformalization performance, and the other (protocol 2)
evaluates the symbolic solver’s problem-solving accuracy
based on the parsing results derived from the model’s auto-
formalization output.

To directly evaluate the autoformalization performance, we
consider the commutative properties of predicates discussed
in Section 3.3.2. We could match the formal language lit-
erals generated by the model for a given diagram with its
ground truth literals, considering predicate commutativity
equivalence. Metrics such as precision and recall are then

calculated based on the number of correct literal matches.

Evaluating the problem-solving accuracy involves execut-
ing the solver on the complete parsing results of geometry
problems. The textual component of a problem is processed
using the Inter-GPS text parser to obtain text logic forms.
The diagram parsing result comprises detection and formal-
ization components: the detection part is obtained using the
Inter-GPS diagram parser, while the formalization part is
produced by the model.

Notably, when the symbolic solver fails to produce a so-
lution, it randomly selects one of the four multiple-choice
options. In such cases, we uniformly account for this chance
accuracy in our evaluation.

Dataset. All instruction tuning data is constructed from the
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1,345 curated problem instances (from training and valida-
tion sets from Geometry3K) described in Section 3.3. For
each problem instance’s diagram, we sample 64 literal lists
through three augmentation strategies: 1) Random Shuffle
(RS), 2) Predicate Commutativity Transformation (PCT),
and 3) combined RS and PCT, yielding three augmented
subsets each containing 86,080 (diagram, literal
list) pairs. Additionally, we create a control group by
replicating the original 1,345 data pairs 64 times without
augmentation. These 4 subsets collectively constitute our
instruction tuning dataset GDF86K.

For the evaluation data, we employ the Geometry3K test set
containing 601 problems. It is crucial to reiterate that the
task of identifying unnamed geometric points in diagrams
and predicting their human-annotated ground truth labels
falls outside the scope of formalization. For protocol 1, we
evaluate all 601 problems, using diagrams with complete
point annotations from Geometry3K when original diagrams
lack full point labels. For protocol 2, we selected 259 test
problems where all geometric points are explicitly labeled
in original diagrams to facilitate ablation studies. These
259 diagrams ensure alignment in point labeling objectives
across three parties: the conventional Inter-GPS diagram
parser, our vision-language model, and human-annotated
ground truth.

Implementation Details. We conduct supervised fine-
tuning on the TinyLLaVA-Phi-2-SigLIP-3.1B pretrained
model from the TinyLLaVA Factory (Jia et al., 2024), which
integrates Microsoft Phi-2-2.7B (Javaheripi et al., 2023) as
the language model, Google SigLIP ViT (Zhai et al., 2023)
as the vision tower, and a two-layer Multi-Layer Perceptron
(MLP) as the modality connector. The fine-tuned model
Geo-TinyLLaVA-Phi-2-SigLIP-3.1B (hereafter abbreviated
as Geo-TinyLLaVA for conciseness) is derived through this
training process. During fine-tuning, all full parameters of
the language model, vision tower, and modality connector
are optimized with a learning rate of 1e-5, batch size of 1,
and 1 training epoch across 4 NVIDIA A100 (40GB) GPUs.

For inference and evaluation, we standardized the decoding
parameters of Geo-TinyLLaVA as follows: temperature set
to 0, beam size of 4, and a maximum of 1024 new tokens.

5.2. Geometry Diagram Autoformalization

By performing literal matching with the ground truth, we
compare the diagram autoformalization performance of
our Geo-TinyLLaVA model against the Inter-GPS diagram
parser, as presented in Tables 2 and 3. It is evident that
Geo-TinyLLaVA surpasses the Inter-GPS diagram parser
across all evaluation metrics in both tables. Furthermore,
Geo-TinyLLaVA models fine-tuned with augmented data
exhibit even better performance.

5.3. Geometry Problem Solving Based on Inter-GPS

In the geometry problem-solving system Inter-GPS, the
execution of the symbolic solver relies on a structurally
complete diagram parsing result. The diagram parsing re-
sult consists of a detection component and a formalization
component. In evaluating problem-solving accuracy, we
assessed the impact of different sources for the detection
component by using both the detection function of the Inter-
GPS diagram parser and the diagram detection ground truth.
This allowed us to compare the problem-solving accuracy
of the entire Inter-GPS system when utilizing autoformal-
ization results from our Geo-TinyLLaVA and the Inter-GPS
diagram parser, as shown in Tables 4 and 5.

In terms of symbolic solver problem-solving based on
model’s diagram autoformalization results, It reveals that
our Geo-TinyLLaVA consistently outperforms the Inter-
GPS diagram parser. Notably, the Geo-TinyLLaVA trained
with data augmented solely through Predicate Commutativ-
ity Transformation data augmentation technique provides
the most significant improvement in problem-solving accu-
racy within the Inter-GPS system. This observation may
suggests that the Random Shuffle data augmentation tech-
nique may not substantially enhance data diversity.

Furthermore, the problem-solving performance of the aut-
oformalization by the Inter-GPS diagram parser in these
two tables indicates that using diagram detection ground
truth (which is more accurate) led to a decrease in problem-
solving accuracy. Upon detailed investigation of the solver
execution process, we identified the primary cause: prob-
lems that originally resulted in solver failures when using
detection information from the Inter-GPS diagram parser
(where the system would randomly select one of four op-
tions, yielding a 25% accuracy rate) became more prone
to incorrect computations when provided with diagram de-
tection ground truth. This increased the likelihood of the
solver attempting more extensive computations and deduc-
tions, ultimately producing incorrect results (leading to a
0% accuracy rate for these problems).

5.4. Comparison on Quality of Generated Formal
Language Literals

During the experimental evaluation, it was observed that, in
certain test problems where correct solutions were achiev-
able with literals generated by our Geo-TinyLLaVA, the
symbolic solver failed to derive correct answers when uti-
lizing the formal language literals generated by Inter-GPS
diagram parser and the ground truth annotations from the
Geometry3K dataset. Specifically, as illustrated in Fig-
ure 5, both the Inter-GPS parser and the ground truth an-
notations exhibited ambiguity regarding whether the circle
center A lies on chord GJ. While they implied this position-
ing through angle or arc annotations, they did not explic-
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Table 2. Average value of autoformalization performance metrics over the formalization results on each evaluation data. This table
compares the performance metrics of Geo-TinyLLaVA models trained with the four groups of instruction tuning data mentioned in
Section 5.1 and the Inter-GPS diagram parser in diagram autoformalization. Subsequent experimental result tables follow this convention
without further elaboration.

Autoformalization model Precision Recall F1 Score IoU
Inter-GPS diagram parser 61.48% 71.32% 66.03% 55.80%
Geo-TinyLLaVA (w/o) 81.80% 80.98% 81.39% 75.68%
Geo-TinyLLaVA (RS) 83.77% 84.46% 84.11% 78.51%
Geo-TinyLLaVA (PCT) 83.56% 82.55% 83.05% 77.76%
Geo-TinyLLaVA (RS+PCT) 85.59% 85.68% 85.63% 80.61%

Table 3. Autoformalization performance distribution across evaluation thresholds. The table presents the percentage of test cases achieving
four literal-matching thresholds: Totally Same (F1 score = 100%), Perfect Recall (recall = 100%), Almost Same (F1 score >= 75%),
Likely Same (F1 score >= 50%).

Autoformalization model Totally Same Perfect Recall Almost Same Likely Same
Inter-GPS diagram parser 32.61% 42.43% 45.09% 67.05%
Geo-TinyLLaVA (w/o) 57.17% 59.00% 71.67% 83.67%
Geo-TinyLLaVA (RS) 57.07% 60.73% 75.04% 88.02%
Geo-TinyLLaVA (PCT) 59.07% 62.06% 74.54% 86.02%
Geo-TinyLLaVA (RS+PCT) 59.23% 63.06% 79.87% 89.02%

Table 4. Problem-solving accuracy with Inter-GPS diagram parser in diagram detection across different diagram autoformalization models.
Autoformalization model Inter-GPS text parser Text Ground Truth
Inter-GPS diagram parser 61.29% 61.87%
Geo-TinyLLaVA (w/o) 64.58% 65.64%
Geo-TinyLLaVA (RS) 64.77% 65.93%
Geo-TinyLLaVA (PCT) 66.22% 66.89%
Geo-TinyLLaVA (RS+PCT) 64.58% 65.54%
Diagram logic form Ground Truth 69.59% 71.72%

Table 5. Problem-solving accuracy with ground truth in diagram detection across different diagram autoformalization models.
Autoformalization model Inter-GPS text parser Text Ground Truth
Inter-GPS diagram parser 56.37% 57.92%
Geo-TinyLLaVA (w/o) 70.95% 71.81%
Geo-TinyLLaVA (RS) 71.43% 71.72%
Geo-TinyLLaVA (PCT) 72.01% 72.59%
Geo-TinyLLaVA (RS+PCT) 71.14% 71.53%
Diagram logic form Ground Truth 78.76% 79.83%

itly include the corresponding formal language statement
“PointLiesOnLine(A, Line(G, J))”(even though solving the
problem did not necessarily require this information). In
contrast, Geo-TinyLLaVA generated literals that accurately
represented the arc’s measure, thereby conveying the geo-
metric information more precisely.

This finding suggests that, as a diagram autoformalization
model, Geo-TinyLLaVA can sometimes produce higher-
quality formal language literals than the ground truth an-
notations in the Geometry3K dataset. Consequently, Geo-
TinyLLaVA may contribute to the development of higher-

quality datasets in this domain.

6. Conclusion
In this work, we focus on achieving more accurate geometry
diagram autoformalization by leveraging vision-language
models. We construct the instruction tuning dataset
GDF86K by applying algebraic commutativity-based data
augmentation techniques to the Geometry3K dataset and
develop our vision-language model, Geo-TinyLLaVA. Ex-
perimental results demonstrate that, when diagrams include
complete point annotations, Geo-TinyLLaVA outperforms
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Figure 5. Comparison of the formal language literals generated during evaluation for the diagram of Problem 2785 in Geometry3K(Lu
et al., 2021). The literals highlighted in red indicate incorrect information.

the conventional Inter-GPS diagram parser in autoformaliza-
tion tasks. Furthermore, integrating Geo-TinyLLaVA as a
module within the geometry problem-solving system Inter-
GPS enhances overall problem-solving accuracy. We hope
that our commutativity-based data augmentation techniques
and the Geo-TinyLLaVA model provide valuable insights
to the mathematical formalization community.

7. Limitations
When employing Geo-TinyLLaVA as a plug-in module for
Inter-GPS, the construction of diagram parsing (refer to
Figure 1) results necessitates a collaborative workflow: the
Inter-GPS diagram parser handles the detection part, while
Geo-TinyLLaVA completes the formalization part. This in-
tegration requires both models to have a consistent naming
convention for all geometric points within the diagram, ne-
cessitating the input of diagrams with complete point anno-
tations. In future work, we plan to explore the development
of a unified parser for geometry problems to eliminate the
collaborative requirements between modules and enhance
system flexibility.
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A. Correctable Expression Errors in Diagram Logic Forms in Geometry3K

Figure 6. Examples of correctable expression errors in the diagram logic forms from the Geometry3K(Lu et al., 2021). Uncorrected logic
forms denote the formal language expressions originally provided by Geometry3K for these diagrams, while Corrected logic forms
represent the revised formal language expressions that we corrected based on the accurate information contained in the original diagram.
The logic forms highlighted in red are incorrect and have been removed during correction, while the logic forms highlighted in green are
correct information added during correction.

Original diagram Complete diagram Uncorrected logic forms Corrected logic forms
Equals(LengthOf(Line(D,
A)), 6);
Equals(LengthOf(Line(L,
C)), 5);
Equals(MeasureOf(Angle(E,
D, A)), x);
Equals(MeasureOf(Angle(L,
D, C)), x);

PointLiesOnLine(D, Line(C,

E)).

Equals(LengthOf(Line(D,
A)), 6);
Equals(MeasureOf(Angle(E,
D, A)), x);
Equals(MeasureOf(Angle(B,
D, C)), x);

PointLiesOnLine(D, Line(C,

E)).

Equals(LengthOf(Line(R,
Q)), 8);
Equals(MeasureOf(Angle(S,
R, Q)), 110);

Equals(LengthOf(Line(S,

T)), 8).

Equals(LengthOf(Line(R,
Q)), 8);
Equals(MeasureOf(Angle(S,
R, Q)), 110);
Equals(LengthOf(Line(S,
T)), 8);

Parallel(Line(Q, T),

Line(R, T)).

Equals(LengthOf(Line(A,

E)), 11);

Equals(LengthOf(Line(S,

T)), 6);

Equals(LengthOf(Line(S,

D)), 8);

Equals(LengthOf(Line(D,

E)), 14).

Equals(LengthOf(Line(A,

E)), 11);

Equals(LengthOf(Line(T,

P)), 6);

Equals(LengthOf(Line(D,

C)), 8);

Equals(LengthOf(Line(D,

E)), 14).
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B. Unusable Diagrams with Uncorrectable Logic Form Errors in Geometry3K

Figure 7. Examples of unusable diagrams with uncorrectable logic form errors in Geometry3K(Lu et al., 2021).
Original diagram Complete diagram Logic forms Notes

Equals(MeasureOf(Angle(A,
B, C)), 2x+1);
Equals(MeasureOf(Angle(A,
B, D)), 3x-7);
PointLiesOnCircle(A,
Circle(O, radius 1 0));
PointLiesOnCircle(C,
Circle(O, radius 1 0));

PointLiesOnLine(E, Line(B,

A)).

The angular degree values
adjacent to the straight lines
were incorrectly labeled in both
diagrams, leading to
corresponding errors in the
logic forms.

Equals(LengthOf(Line(A,
E)), 3);
Equals(MeasureOf(Angle(F,
B, E)), 28);
Equals(MeasureOf(Angle(H,
M, B)), 12);
PointLiesOnCircle(B,
Circle(G, radius 6 0));
PointLiesOnCircle(D,
Circle(G, radius 6 0));
PointLiesOnCircle(H,
Circle(G, radius 6 0));
... (dozens of literals)

PointLiesOnLine(A, Line(K,

M)).

The original diagram lacks
labels for all geometric points,
while the complete diagram
excessively labels these points,
resulting in disordered logic
forms.

Equals(LengthOf(Line(C,
A)), 8);
Equals(LengthOf(Line(C,
D)), 17);
PointLiesOnCircle(E,
Circle(C, radius 0 0));
PointLiesOnCircle(A,
Circle(C, radius 0 0));

PointLiesOnLine(E, Line(C,

D)).

The original diagram is missing
the label for point E, the
intersection of a line and a
circle. The complete diagram
erroneously labels point D
adjacent to the already labeled
point B in the original diagram.
Both diagrams contain errors in
point labeling.
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