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ABSTRACT

To answer causal questions from observational data, it is important to consider the
mechanisms that determine which data values are observed and which are miss-
ing. Prior work has considered the treatment assignment mechanism and proposed
methods to remove the confounding bias from the common causes of treatment
and outcome. However, there are other issues in sample selection, commonly
overlooked in prior work, that can bias the treatment effect estimation, such as the
issue of censored outcome as a form of collider bias. In this paper, we propose
the novel Selection Controlled CounterFactual Regression (SC-CFR) to simulta-
neously address confounding and collider bias. Specifically, we first calculate the
magnitude of the collider bias of different instances by estimating the selection
model and then add a control term to remove the collider bias while learning a
balanced representation to remove the confounding bias when estimating the out-
come model. Our theoretical analysis shows that we can achieve an unbiased
treatment effect estimates from observational data with confounding and collider
bias under certain assumptions. Extensive empirical results on both synthetic and
real-world datasets show that our method consistently outperforms benchmarks
on treatment effect estimation when both types of biases exist.

1 INTRODUCTION

Causal inference is a powerful statistical modeling tool for explanatory analysis and a central prob-
lem in causal inference is the estimation of treatment effect. The gold standard approach for treat-
ment effect estimation is to conduct Randomized Controlled Trials (RCTs), but RCTs can be expen-
sive (Kohavi & Longbotham, 2011) and sometimes infeasible (Bottou et al., 2013). Therefore, it is
important to develop effective approaches to estimate treatment effect from observational data.

In observational studies, association does not imply causation, mainly due to the presence of (sample
selection) biases in the data. There are two main sources of biases: confounding bias and collider
bias (Hernán & Robins, 2020). To define confounding bias and collider bias, we use causal diagrams
in Figure 1, and let X be the observed pre-treatment variables, T be the treatment variable, and Y
be the outcome variable.

Confounding bias results from common causes of treatment and outcome (Guo et al., 2020; Green-
land, 2003; Hernán & Robins, 2020). As shown in Figure 1(a), there are two sources of associ-
ation between T and Y : the path T → Y that represents the causal effect of T on Y , and the
path T ← X → Y between T and Y that includes the common cause X, named the backdoor
path (Pearl, 2009), which introduces spurious associations into the observational data and results in
P (T ∣ X) ≠ P (T ). Confounding bias is very common in observational studies and can lead to in-
correct treatment effect estimation. For example, when estimating the effect of job training programs
on future incomes (LaLonde, 1986), work ability is a confounder that determines both whether an
individual participated in the program and the individual’s income. Due to the confounding bias, we
may draw an incorrect conclusion about the effect of the job training programs on future incomes.

Collider bias is a special case of sample selection bias that results from conditioning on a common
effect of T and Y (Greenland et al., 1999; Greenland, 2003; Hernan et al., 2004; Westreich, 2012;
Elwert & Winship, 2014), as shown in Figure 1(b), where S is the selection variable indicating
whether a unit is selected, i.e., S = 1 when the unit is selected for observation and Y is observable,
otherwise S = 0 and we cannot observe Y (Smith & Elkan, 2004b). Except for the path T → Y , the
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Figure 1: Causal diagrams with either confounding bias, collider bias or both.

other source of association between T and Y is from the open path T → S ← Y that links T and Y
through their conditioned on common effect S, which results in P (T,Y,X ∣ S = 1) ≠ P (T,Y,X)
and introduces spurious associations into the observational data. An analysis conditioned on S will
cause sample selection bias, i.e., we can only observe the outcome of those selected units, leading
to incorrect treatment effect estimation (Westreich, 2012; Tattan-Birch et al., 2021).

Currently, many causal inference methods have been proposed to estimate treatment effect di-
rectly from observational data with confounding bias, including propensity score based methods
(Rosenbaum & Rubin, 1983; Dehejia & Wahba, 2002; Hirano et al., 2003; Hirano & Imbens, 2004;
Williamson et al., 2012), confounder balancing methods (Hainmueller, 2012; Kuang et al., 2017;
Athey et al., 2018; Fong et al., 2018) and causal representation learning methods (Johansson et al.,
2016; Shalit et al., 2017; Yao et al., 2018; Hassanpour & Greiner, 2020). However, existing causal
inference works mostly ignore collider bias in data, and thus suffer from the most common case
where confounding bias and collider bias are both present, as shown in Figure 1(c). In real-world
scenarios, the above two biases both exist in observational data in most of time. Still taking the anal-
ysis of job training programs as an example, ones who has not participated in such programs with
a lower income may be unwilling to report their current incomes, leading to collider bias. In this
case, if we only control one of the two biases, the other will still affect our estimation. Therefore, it
is necessary to develop an approach to solve both biases in treatment effect estimation.

Most of the previous work on selection bias (Heckman, 1979; Chib et al., 2009; Marchenko &
Genton, 2012; Ding, 2014; Ogundimu & Hutton, 2016; Wiemann et al., 2022), including work that
took confounding bias into account(Bareinboim et al., 2014; Bareinboim & Tian, 2015; Correa &
Bareinboim, 2017), has only solved the simple case of selection bias caused by covariates or the
treatment variable. However, for the more complex situation of collider bias, only (Bareinboim &
Pearl, 2012) discussed the feasibility of removing it with the assistance of some variables that meet
certain conditions. At present, there is still no mature method that can solve both kinds of bias si-
multaneity. In this paper, our theoretical analysis shows that under certain assumptions, treatment
effects can be unbiasedly estimated from observational data even in the presence of both confound-
ing and collider biases. We propose the Selection Controlled CounterFactual Regression (SC-CFR)
to simultaneously address both biases for treatment effect estimation. In SC-CFR, we first calculate
the magnitude of the collider bias of different instances by estimating the selection model and then
add a control term to remove the collider bias while learning a balanced representation to remove the
confounding bias when estimating the outcome model. We conduct experiments on both synthetic
and real-world datasets, and the results demonstrate that our method outperforms other baselines.

The main contributions in this paper are as follows: (1) We propose and investigate a practical
problem on treatment effect estimation from observational data with both confounding and collider
biases, which is still an open problem in causal inference to the best of our knowledge. (2) We
propose a novel SC-CFR algorithm to estimate average treatment effect in observational studies
with both confounding bias and collider bias. (3) Our theoretical analysis shows that both collider
and confounding biases can be simultaneously removed under certain assumptions. (4) Extensive
experiments show our proposed SC-CFR algorithm achieves a better performance of treatment effect
estimation in observational studies with both synthetic and real-world datasets.
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2 RELATED WORK

There are currently three main categories of treatment effect estimation methods in observational
studies, i.e., methods based on the propensity score, confounder balancing and representation
learning. The propensity score was introduced by (Rosenbaum & Rubin, 1983) and defined as
P (T = 1 ∣ X). Based on the propensity score, various estimators have been proposed for treatment
effect estimation with confounding bias, such as propensity score matching (Dehejia & Wahba,
2002) and inverse propensity weighting (IPW) (Hirano et al., 2003). Hirano & Imbens (2004) pro-
posed the generalized propensity score for continuous treatments. Bang & Robins (2005) proposed
the doubly robust estimator that combines IPW with regression. Confounder balancing is to learn
sample weights that make the confounder distributions of control and treated units similar through
sample re-weighting. Entropy Balancing (Hainmueller, 2012) was proposed to directly adjust sam-
ple weights to the specified sample moments while moving the sample weights as little as possible.
Approximate Residual Balancing (Athey et al., 2018) combines balancing weights with a regu-
larized regression adjustment through a lasso residual regression adjustment. Kuang et al. (2017)
proposed Differentiated Confounder Balancing to select and differentiate confounders to balance
the distributions. (Fong et al., 2018) proposed Covariate Balancing Generalized Propensity Score,
which improves the estimation of propensity scores through combining confounder balancing tech-
niques with the generalized propensity score. Methods based on deep representation learning were
proposed to learn the balanced representation for all covariates, so that conditioning on the learned
representation, the treatment is independent of the confounders. Johansson et al. (2016) proposed
Balancing Neural Network to learn balanced representations through deep neural networks. Shalit
et al. (2017) proposed Counterfactual Regression that applies integral probability metric to measure
the distances between distributions. Yao et al. (2018) proposed a local similarity preserved individ-
ual treatment effect estimation method that preserves local similarity and balances data distributions
simultaneously. (Hassanpour & Greiner, 2020) proposed Disentangled Representations for Coun-
terFactual Regression that learns disentangled representations of confounders, adjustment variables
and instrumental variables. All the above causal inference methods focused on solving confounding
bias, while ignoring collider bias in observational studies.

In the literature of economics, there is some work focusing on correcting for sample selection bias.
Heckman (1979) proposed a two-stage regression method called Heckman’s Correction, and many
extensions (Ogundimu & Hutton, 2016; Marchenko & Genton, 2012; Ding, 2014; Chib et al., 2009;
Wiemann et al., 2022) have been proposed after that. These methods can only solve the simpler case
of selection bias caused by covariates or the treatment variable, i.e., the missing at random (MAR)
scenario, and suffer from confounding bias in data unless the model specification is correct. Many
researchers regard sample selection bias as a special missing data problem, i.e., missing outcome,
and discuss the effectiveness of causal inference methods to solve it (Smith & Elkan, 2004a; Daniel
et al., 2012; Williamson et al., 2012), e.g., propensity score and doubly robust methods. Unfortu-
nately, for the cases of missing not at random (MNAR), like collider bias, it remains an uniden-
tifiable problem (Hernán & Robins, 2020). In the field of computer science, Bareinboim & Pearl
(2012) were the first to classify and discuss the problem of causal inference under both selection bias
and confounding bias, showing that with the help of some exogenous variables that satisfy certain
conditions, it is feasible to solve collider bias and confounding bias simultaneously. Bareinboim
et al. (2014); Bareinboim & Tian (2015) proposed a method to address selection bias by adjusting
the selection backdoor path, and Correa & Bareinboim (2017) proposed a generalized adjustment
method based on it to solve both confounding bias and selection bias. However, the above methods
assume that the variables that determine the sample selection must satisfy certain conditions, e.g.,
Y á S ∣X, T , and thereby cannot solve the problem of collider bias.

3 SELECTION CONTROLLED COUNTERFACTUAL REGRESSION

3.1 PROBLEM FORMULATION

Suppose we have i.i.d. observational data D = {Xi, Ti, Y
obs
i }n

i=1, where n denotes the number of
units. For the ith unit, we observe its treatment variable Ti, observed outcome variable Y obs

i and
pre-treatment variables Xi ∈ Rd×1, where d denotes the dimension of the observed pre-treatment
variables.
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In this paper, we focus on the case of binary treatment, i.e., Ti ∈ {0,1}, where Ti = 1 denotes unit i
is treated and Ti = 0 denotes otherwise. Under the potential outcome framework (Imbens & Rubin,
2015), we define the potential outcomes under treatment as Y (1) and under control as Y (0). Then
the observed outcome Y obs

i can be written as:

Y obs
i = {Ti ⋅ Yi(1) + (1 − Ti) ⋅ Yi(0) Si = 1

NaN Si = 0
, (1)

where Si indicates whether a unit indexed by i is selected into the sample, and we cannot collect or
observe the outcome of units with S = 0 (denoted by NaN ). With the observational data, our goal
is to estimate the Average Treatment effect (ATE), which is defined as:

ATE = E[Y (1) − Y (0)]. (2)
However, for a selected unit with the treatment Ti in dataset D, we can only observe the outcome
Yi(Ti) and the counterfactual outcome Yi(1 − Ti) is missing. What’s worse, according to the defi-
nition of collider bias we mentioned earlier, E[Y ∣ T = 1, S = 1] ≠ E[Y ∣ T = 1]. As a result, we
cannot estimate ATE by Equation 2 directly.

To address this problem, we propose a novel Selection Controlled CounterFactual Regression (SC-
CFR) to estimate ATE from observational data with both collider and confounding biases. And
throughout this paper, we assume the Stable Unit Treatment Value assumption, the overlap as-
sumption and the Unconfoundedness assumption (Imbens & Rubin, 2015) are satisfied.

3.2 PRELIMINARIES

In the presence of both confounding bias and collider bias, the general relationship among X, T and
Y can be represented by the additive noise model as:

Y = f(X, T ) + ϵy. (3)
And the mechanism that determines whether a unit is selected into the sample can be represented as:

S∗ = h(X, Y, T ) + ϵs, (4)

where S∗ determines S through S = {1 S∗ >= 0
0 S∗ < 0 .

If we directly apply existing causal inference methods to reweight the samples with S = 1 to estimate
the ATE, e.g., IPW or other confounder balancing methods, we can only address the confounding
bias from X and ensure that X and T of the reweighted sample are approximately independent, i.e.,
Pw(X, T, Y, S = 1) = Pw(X) ⋅ Pw(T ) ⋅ Pw(Y ∣ X, T, S = 1), but cannot address the collider bias
from S, hence cannot make Pw(X, T, Y, S = 1) = P (X, T, Y ), leading to biased estimation.

And when we only use samples with S = 1 to perform Maximum Likelihood Estimation (MLE)
of the outcome model to estimate counterfactuals and then the ATE, we will get the biased result
E[Y ∣T,X, S = 1] = f(X, T ) +E[ϵy ∣ S = 1], where E[ϵy ∣ S = 1] is the biased term. Therefore,
if we can estimate E[ϵy ∣ S = 1] correctly and add it to the regression as a control variable, it
will be possible to achieve an unbiased estimate of f(X, T ). We show that under the following
assumption, we can estimate E[ϵy ∣ S = 1] using only observational data, even in the presence of
both confounding bias and collider bias.

Assumption 1. The noise term ϵy and ϵs are both additive. And ϵy is additive and remains the same
distribution type after being transformed by the selection mechanism function, i.e., h(X, f(X, T )+
ϵy, T ) = h(X, f(X, T ), T ) + δ(ϵy), where δ(ϵy) denotes the transformed term by the selection
mechanism function.

Proposition 1. Under Assumption 1, the biased term E[ϵy ∣ S = 1] caused by the collider bias can
be converted into the conditional expectation about the noise terms.

Proof. Under Assumption 1, we have
E[ϵy ∣ S = 1]= E[ϵy ∣ S∗ >= 0]

= E[ϵy ∣ h(X, Y, T ) + ϵs >= 0]
= E[ϵy ∣ h(X, f(X, T ) + ϵy, T ) + ϵs >= 0]
= E[ϵy ∣ h(X, f(X, T ), T ) + δ(ϵy) + ϵs >= 0]
= E[ϵy ∣ δ(ϵy) + ϵs >= −h(X, f(X, T ), T )],

(5)
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Through Equation 5, we can convert the biased term into the conditional expectation about the noise
terms, which is computable if we make certain assumptions about the distribution of ϵy and ϵs.
Considering that the most widely used loss function in machine learning is the Mean Square Error
(MSE) function, which assumes that the noise term satisfies the Gaussian distribution, to avoid
conflicts among assumptions, we make the following assumption about the noise term.

Assumption 2. ϵy and ϵs satisfy that ϵy ∼ N(0, σ2
y), ϵs ∼ N(0, σ2

s) and (ϵy
ϵs
) ∼

N ((0
0
) ,(σ

2
y ρ
ρ σ2

s
)).

Proposition 2. Under assumption 2, the biased term E[ϵy ∣ δ(ϵy) + ϵs >= −h(X, f(X, T ), T )]
caused by the collider bias can be calculated and controlled while solving the confounding bias by
representation learning.

Proof. Based on the theorem of moments of the incidentally truncated bivariate Normal distribution
(Greene, 2017), we have

E[ϵy ∣ δ(ϵy) + ϵs >= −h(X, f(X, T ), T )] = cov(ϵy,δ(ϵy)+ϵs)
std(δ(ϵy)+ϵs) ⋅

ϕ(−h(X,f(X,T ),T )/std(δ(ϵy)+ϵs))
Φ(h(X,f(X,T ),T )/std(δ(ϵy)+ϵs)))

= E[ϵy ⋅δ(ϵy)]+E[ϵyϵs]
std(δ(ϵy)+ϵs) ⋅ ϕ(−h(X,f(X,T ),T )/std(δ(ϵy)+ϵs))

Φ(h(X,f(X,T ),T )/std(δ(ϵy)+ϵs)) ,

(6)
where cov(⋅) denotes the covariance, std(⋅) denotes the standard deviation, ϕ(⋅) and Φ(⋅) denote
the density and distribution function for a standard normal variable, respectively.

Let α = 1
std(δ(ϵy)+ϵs) , λ(α ⋅ h (X, f (X, T ) , T )) = ϕ(−α⋅h(X,f(X,T ),T ))

Φ(α⋅h(X,f(X,T ),T )) and β = E[ϵy ⋅δ(ϵy)]+E[ϵyϵs]
std(δ(ϵy)+ϵs) ,

through Equations 5 and 6, we have

E[Y ∣X, T, S = 1] = f(X, T ) + β ⋅ λ(α ⋅ h (X, f (X, T ) , T )). (7)

Since α and β are constants, we can consider them as parameters of regression, and thus we can
calculate and control it by firstly estimating h (X, f (X, T ) , T )) and learning α, and then adding
λ(α⋅h (X, f (X, T ) , T )) as a control term in the regression. At the same time, in order to avoid con-
founding bias, we still need to eliminate the influence of confounders on the treatment variable dur-
ing regression, which can be achieved by learning representations of covariates, denoted by R(X),
to make P (R(X), Y, T = 1, S = 1) = P (R(X), Y, T = 0, S = 1) and g(R(X), T )) = f(X, T )
(Johansson et al., 2016). Then we can estimate the ATE by

ÂTE = 1
ns
∑i∶Si=1(ĝ(R(Xi),1) − ĝ(R(Xi),0)), (8)

where ns denotes the number of selected units.

Based on the above assumptions and propositions, we propose a method to solve both collider bias
and confounding bias simultaneously.

3.3 ALGORITHM AND OPTIMIZATION

With the above preliminaries, we propose a novel method, named Selection Controlled CounterFac-
tual Regression (SC-CFR), to estimate the ATE on observational data with confounding bias and
collider bias. We implement our method through deep neural networks, as shown in Figure 2.

According to the analyses in Section 3.2, we have the following objectives in our training process in
order to solve collider bias and confounding bias simultaneously. First, we need to use the treatment
variable and covariates of samples with both S = 0 and S = 1 to regress the selection mechanism
model and obtain an accurate estimate of h (X, f (X, T ) , T )). Second, we need to learn the param-
eter α and calculate λ(α ⋅ h (X, f (X, T ) , T )). Third, we need to learn representations R(X) to
solve the confounding bias. And fourth, we need to add the control term λ(α ⋅ h (X, f (X, T ) , T ))
to the outcome regression and learn the parameters in g(R(Xi), T ) and β.
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Figure 2: Neural network architecture of the proposed SC-CFR algorithm.

To achieve the above goals, we define our objective function as

min 1
n ∑

n
i=1LBCE (h (Xi, f (Xi, Ti) , Ti)), Si)

+ 1
ns
∑i∶Si=1wi ⋅LMSE (g (R (Xi) , Ti) + β ⋅ λ(α ⋅ h (Xi, f (Xi, Ti) , Ti)), Y obs

i )
+γ ⋅D (R (Xi)i∶Ti=0,Si=1,R (Xi)i∶Ti=1,Si=1)
+Ω(h, g,α, β),

(9)

where LBCE denotes the Binary Cross Entropy (BCE) loss function, LMSE denotes the MSE loss
function, Ω(⋅) denotes the regularization terms, wi denotes the compensation weights for the dif-
ference in treatment group size and D(⋅) denotes the metric that measures the distance between
distributions, which can be the Integral Probability Metric (IPM) (Shalit et al., 2017). We also use
batch normalization (Ioffe & Szegedy, 2015), early stopping and other optimization methods in the
training process. For details of our SC-CFR algorithm, please see Figure 2.

4 EXPERIMENTS

4.1 BASELINES

We implement the following baseline estimators Direct Estimator (Dir) that estimates ATE through
calculating E[Y obs ∣ S = 1] −E[Y obs ∣ S = 1] directly, Inverse Probability Weighting (IPW) (Hi-
rano et al., 2003), Heckman’s Correction (Heckit) (Heckman, 1979), Differentiated Confounder
Balancing (DCB) (Kuang et al., 2017) and Counterfactual Regression (CFR) (Shalit et al., 2017),
which are respectively very representative in each category of causal inference methods, to estimate
the ATE and compare them with our proposed estimator (SC-CFR). Note that we use the Maximum
Mean Discrepancy (MMD) metric to implement CFR and SC-CFR, and we split each dataset into
60/20/20 train/validation/test datasets. We implement the algorithm in PyTorch environment with
Python 3.8. The CPU we use is Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz and the GPU we
use is NVIDIA GeForce GTX 1050 Ti with CUDA version 10.2.
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Table 1: Results on synthetic datasets under different confounding bias strengths sc with a fixed
collider bias strength ss = 3. The smaller Bias, SD, MAE and RMSE, the better.

sc = 10 sc = 50 sc = 100
Estimator Bias SD MAE RMSE Bias SD MAE RMSE Bias SD MAE RMSE

Dir 1.275 0.095 1.275 1.279 1.151 0.244 1.151 1.177 0.960 0.514 0.998 1.089
IPW 5.283 0.649 5.283 5.323 9.357 3.889 9.357 10.133 12.726 13.480 12.726 18.538

Heckit 0.756 0.075 0.756 0.760 4.296 0.403 4.296 4.315 7.415 1.269 7.415 7.523
DCB 0.979 0.084 0.979 0.983 2.511 0.212 2.511 2.520 3.020 0.510 3.020 3.063
CFR 1.473 0.241 1.473 1.493 0.885 0.349 0.885 0.951 1.017 0.616 1.048 1.189

SC-CFR 0.575 0.317 0.599 0.657 0.401 0.404 0.460 0.569 0.568 0.765 0.794 0.953

Based on the estimated ATE, we calculate its Bias, standard deviations (SD), mean absolute errors
(MAE) and root mean square errors (RMSE) to evaluate the performance of the above estimators.

4.2 EXPERIMENTS ON SYNTHETIC DATA

4.2.1 DATASETS

In order to better evaluate the performance of each estimator in the presence of both confounding
bias and collider bias, we generate synthetic datasets with different strengths of collider bias and
confounding bias, denoted by ss and sc respectively, where ss affects the difference between the
population distribution and the sample distribution (i.e., denotes the strength of collider bias), and
sc affects the number of confounders (i.e., denotes the strength of confounding bias). The size n of
our generated datasets is 10,000.

We first generate the continuous pre-treatment variables X ∈ Rn×sc with independent Gaus-
sian distributions as X

i.i.d.∼ N(0,1). To introduce confounding bias with strength sc into
datasets, we generate the binary treatment variable T ∈ Rn×1 from a logistic function as
T ∼ Bernoulli (1/ (1 + e−∑sc

i=1(1(mod(i,2)≡1)⋅Xi/2−1(mod(i,2)≠1)⋅Xi/2+ϵt))), where Bernoulli(⋅)
denotes the Bernoulli distribution, 1(⋅) is the indicator function, function mod(x, y) re-
turns the modulus after division of x by y and ϵt ∼ N(0,1). Next, we generate
the continuous outcome variable Y ∈ Rn×1 from a non-linear function as Y = 3 ⋅
T +∑sc

i=1 (T ⋅Zi + (1 (mod (i,2) ≠ 1) − 1 (mod (i,2) ≡ 1)) ⋅ (mod(i,2)+1
2

) ⋅ (Zi +Z2
i ))+ϵy , where

ϵy ∼ N(0,1). To introduce collider bias with strength ss into datasets, we generate the binary selec-
tion variable S ∈ Rn×1 from a logistic function as S ∼ Bernoulli (1/ (1 + e−ss⋅(Y −T+ϵs))), where
ϵs ∼ N(0,1) and a unit is selected into the sample only when S = 1. The ground truth ATE can be
calculated easily by the above functions.

To compare our estimator with baselines under different strengths of confounding bias and collider
bias, we first fix sc to 50 and evaluate the performance of each estimator under ss = {1,3,5}, then fix
ss to 3 and evaluate the performance of each estimator under sc = {10,50,100}. We independently
performed 50 experiments under each setting and regenerated the dataset for each experiment to
evaluate the robustness of our estimator.

4.2.2 RESULTS

We report the results in Table 1 for comparing among different confounding bias strengths sc with
the collider bias strength ss fixed and Table 2 for comparing among different ss with sc fixed.

From Table 1, our observations and interpretations are as follows: In general, the performance of
all estimators gradually decreases as the strength of confounding bias increases. The overall perfor-
mance of IPW is very poor, because IPW does reduce confounding bias in data, but in the setting
of high dimensional variables, it may be more likely to suffer from incorrect model specification
and extreme propensity scores. Heckman’s Correction performs better than the direct estimator only
when sc = 10, because it only focuses on the collider bias and may suffer more from confounding
bias in high dimensional settings due to model misspecification, as we mentioned earlier. The per-
formance of DCB is much better than Heckman’s Correction, since it directly estimates ATE from
the re-weighted observational data. However, it ignores collider bias during the learning process of
sample weights, which makes the distribution of re-weighted samples shift more from the overall
distribution, leading to biased estimation. CFR estimator has better performance than the above
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Table 2: Results on synthetic datasets under different collider bias strengths ss with a fixed con-
founding bias strength sc = 50. The smaller Bias, SD, MAE and RMSE, the better.

ss = 1 ss = 3 ss = 5
Estimator Bias SD MAE RMSE Bias SD MAE RMSE Bias SD MAE RMSE

Dir 1.177 0.248 1.177 1.203 1.151 0.244 1.151 1.177 1.146 0.264 1.146 1.176
IPW 9.976 4.359 9.976 10.887 9.357 3.889 9.357 10.133 12.154 6.248 12.154 13.666

Heckit 4.249 0.356 4.249 4.264 4.296 0.403 4.296 4.315 4.383 0.399 4.383 4.402
DCB 2.255 0.221 2.255 2.266 2.511 0.212 2.511 2.520 2.441 0.231 2.441 2.452
CFR 0.917 0.407 0.917 1.003 0.885 0.349 0.885 0.951 1.007 0.417 1.007 1.090

SC-CFR 0.219 0.482 0.411 0.529 0.401 0.404 0.460 0.569 0.611 0.382 0.641 0.721

estimators, but it is easier to overfit on the selected units, resulting in large counterfactual prediction
errors, and thus more susceptible to collider bias. The direct estimator is overall the most stable
one among the baselines since other methods for a specific bias are more vulnerable to the harmful
impact of the other bias, but it still suffers from both biases. Our SC-CFR effectively solves both
confounding bias and collider bias in observational data and performs best in almost all cases. Note
that the reason for the relatively mediocre SD performance of SC-CFR is that in our implementa-
tion, there may be too little data with S = 1 compared to the data with S = 0 in each batch, resulting
in slow fitting when the batch size is relatively small (but still get better performance than all the
baselines).

From Table 2, our observations and interpretations are as follows: The performance of IPW is
overall the worst because it suffers from incorrect model specification as we analyzed earlier. The
Heckman’s Correction estimator performs poorly in all cases for the same reason we mentioned
earlier. DCB performs slightly better than the Heckman’s Correction estimator since it is a re-
weighting method and can tolerate a certain degree of incorrect model specification, but still suffers
from collider bias. The direct estimator is overall stable, although it is helpless against both biases.
CFR achieves better performance than other baselines, but is susceptible to collider bias as we
mentioned before. Our SC-CFR performs best in most of time and it proves that our method does
solve both collider and confounding biases in observational studies.

4.3 EXPERIMENTS ON REAL-WORLD DATA

4.3.1 DATASETS

In order to evaluate the proposed method in real-world scenarios, we conduct experiments on two
well-known datasets: the IHDP dataset (Hill, 2011) and the Lalonde dataset (LaLonde, 1986).

The IHDP dataset: The original RCT data of the Infant Health and Development Program (IHDP)
aims at evaluating the effect of specialist home visits on the future cognitive test scores of premature
infants (Brooksgunn et al., 1992). In (Hill, 2011), they removed a non-random subset of the treated
group and used simulated outcomes to induce confounding bias. As (Shalit et al., 2017) did, we
use the simulated outcome implemented as setting ”A” in the NPCI package (Dorie, 2016).1 To
introduce collider bias into the IHDP dataset, we generate the binary selection variable S from a
logistic function as S ∼ Bernoulli (1/ (1 + e−(5⋅T−(1/2)⋅Y +ϵihdp))), where ϵihdp ∼ N(0,1). Intu-
itively, parents whose child had lower cognitive abilities and received home visits were more likely
to report the test scores, leading to collider bias. The final dataset comprises 747 units (139 treated,
608 control) with 26 pre-treatment variables related to the children and their families.

The Lalonde dataset: It is a widely used benchmark in the causal inference community based
on the RCT, aiming to estimate the effect of job training programs on future incomes. It com-
bines a randomized study based on the National Supported Work (NSW) program with observa-
tional data to form a larger dataset (LaLonde, 1986). Guided by (Hainmueller, 2012; A. Smith &
E. Todd, 2005), to introduce confounding bias, we use the Dehejia and Wahha sampled dataset of
the LaLonde (185 treated, 260 control) (Dehejia & Wahba, 2002), and replace its control group
with the control group (2490 control) from Population Survey of Income Dynamics (PSID) where
the measured covariates are the same with the experimental data.2 To introduce collider bias
into the Lalonde dataset, we generate the binary selection variable S from a logistic function as

1The dataset is available at http://www.fredjo.com/
2The datasets are available at https://users.nber.org/ rdehejia/nswdata2.html
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Table 3: Results on real datasets. The smaller Bias, SD, MAE and RMSE, the better.
IHDP Lalonde

Estimator Bias SD MAE RMSE Bias SD MAE RMSE
Dir 0.520 0.092 0.520 0.529 6.673 0.195 6.676 3.577

IPW 26.388 1.006 26.388 26.407 67.512 39.771 67.512 78.355
Heckit 1.381 1.159 1.507 1.803 3.577 1.247 3.577 3.788
DCB 0.359 0.094 0.359 0.371 1.392 0.295 1.392 1.422
CFR 0.508 0.176 0.508 0.538 1.781 0.822 1.799 1.961

SC-CFR 0.049 0.264 0.215 0.306 0.286 0.804 0.667 0.853

S ∼ Bernoulli (1/ (1 + e−(Y −3⋅T+ϵlalonde))), where ϵlalonde ∼ N(0,1). Intuitively, ones who had a
lower income and not participated in job training programs were unwilling to report their incomes,
leading to collider bias. The final dataset comprises 2675 units (185 treated, 2490 control) with 11
pre-treatment variables related to individuals’ basic information, ethnicity and job information.

4.3.2 RESULTS

We report the results in Table 3 and our findings are as follows: The overall performance on the IHDP
dataset is much better since the outcomes of the IHDP dataset are simulated with relatively simple
functions. Specifically, IPW performs very poorly on both datasets, because the propensity score
model is more complex on the real dataset, leading to serious errors in propensity score estimation.
Heckman’s Correction performs much better than the IPW estimator, but still suffer from model
misspecification. The direct estimator achieves very good performance on the IHDP dataset, but
performs poorly on the Lalonde dataset since the Lalonde dataset is completely collected in real-
world scenarios and thus has stronger confounding bias. It also suffers from collider bias. On both
datasets, CFR is better than the above estimators because it solves confounding bias in data and has
stronger fitting ability, but is very susceptible to collider bias as we analyzed before. DCB is the one
with the best overall performance among all baselines, but still suffer from collider bias. SC-CFR
we propose performs best in most of time on both datasets. It proves that our method can effectively
solve both confounding bias and collider bias in real-world scenarios and achieve a more precise
treatment effect estimation.

5 CONCLUSION AND FUTURE WORK

In this paper, we focus on the problem of estimating treatment effect in observational studies with
both confounding bias and collider bias. We argue that previous methods mainly focus on solving
either confounding bias or selection bias caused by only the treatment variable or covariates, while
ignoring collider bias in data, and thus underperform in the presence of both biases. Therefore, we
propose an algorithm, named the Selection Controlled CounterFactual Regression, to simultaneously
address both biases for treatment effect estimation. We first calculate the magnitude of the collider
bias of different instances by estimating the selection model and then add a control term to remove
the collider bias while learning a balanced representation to remove the confounding bias when
estimating the outcome model. And the experiment results on synthetic datasets and real-world
datasets demonstrate that our estimator outperforms other baselines.

One of the limitations of our work is that the proposed model is integrated, and when the size of
samples with S = 1 is much smaller than that with S = 0, it is likely to have inadequate T = 1
or T = 0 data for model training in each batch, resulting in slow fitting. A simple solution is to
divide the integrated model into independent models, i.e., to train the selection mechanism model
and the outcome model step by step, to avoid the above problem. At the same time, our algorithm
is based on the unconfoundedness assumption and thus cannot solve the confounding bias caused
by unobserved confounding variables. Therefore, our future work will focus on causal inference
with unobserved confounders in observational studies with both confounding bias and collider bias,
and developing more general methods to estimate the biased control term, which can relax the noise
distribution assumptions.
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A APPENDIX

A.1 SUPPLEMENTARY EXPERIMENTS WHEN ASSUMPTIONS ARE NOT SATISFIED

Our approach is based on the following assumptions.

Assumption 1. The noise term ϵy and ϵs are both additive. And ϵy is additive and remains the same
distribution type after being transformed by the selection mechanism function, i.e., h(X, f(X, T )+
ϵy, T ) = h(X, f(X, T ), T ) + δ(ϵy), where δ(ϵy) denotes the transformed term by the selection
mechanism function.

Assumption 2. ϵy and ϵs satisfy that ϵy ∼ N(0, σ2
y), ϵs ∼ N(0, σ2

s) and (ϵy
ϵs
) ∼

N ((0
0
) ,(σ

2
y ρ
ρ σ2

s
)).

To verify the robustness of our method when the above two assumptions are not satisfied, we conduct
the following supplementary experiments on synthetic data.

First, we change the noise terms from Gaussian distribution to uniform distribution that violates As-
sumption 2 and report the results in Table 4 and Table 5. We also change the selection mechanism
function with ϵy ⋅ T that violates Assumption 1 and report the results in Table 6 and Table 7.The re-
sults show that even if the assumptions are not satisfied, the performance of SC-CFR only decreases
slightly and still is the best among all methods.
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Table 4: Results on synthetic datasets that violate Assumption 2 under different confounding bias
strengths sc with a fixed collider bias strength ss = 3. The smaller Bias, SD, MAE and RMSE,
the better.

sc = 10 sc = 50 sc = 100
Estimator Bias SD MAE RMSE Bias SD MAE RMSE Bias SD MAE RMSE

Dir 1.532 0.084 1.874 1.876 1.319 0.233 1.319 1.340 1.546 0.108 1.546 1.549
IPW 4.650 0.700 4.650 4.703 9.862 5.338 9.862 11.214 10.435 13.119 10.435 16.763

Heckit 1.518 0.140 1.518 1.524 3.456 0.352 3.456 3.474 6.719 1.147 6.719 6.816
DCB 1.870 0.081 1.870 1.872 2.933 0.225 2.933 2.942 3.383 0.491 3.383 3.419
CFR 1.634 0.312 1.634 1.663 0.935 0.361 0.935 1.002 0.990 0.563 1.010 1.140

SC-CFR 0.699 0.416 0.714 0.813 0.652 0.573 0.779 0.868 0.824 0.397 0.836 0.915

Table 5: Results on synthetic datasets that violate Assumption 2 under different collider bias
strengths ss with a fixed confounding bias strength sc = 50. The smaller Bias, SD, MAE and
RMSE, the better.

ss = 1 ss = 3 ss = 5
Estimator Bias SD MAE RMSE Bias SD MAE RMSE Bias SD MAE RMSE

Dir 1.343 0.277 1.343 1.371 1.319 0.233 1.319 1.340 1.286 0.231 1.286 1.306
IPW 9.091 8.648 9.113 12.548 9.862 5.338 9.862 11.214 13.372 11.166 13.372 17.421

Heckit 3.225 0.433 3.225 3.254 3.456 0.352 3.456 3.475 3.375 0.418 3.375 3.401
DCB 1.887 0.253 1.887 1.904 2.933 0.225 2.933 2.942 2.836 0.204 2.836 2.843
CFR 0.826 0.464 0.854 0.948 0.935 0.361 0.935 1.002 0.944 0.421 0.944 1.034

SC-CFR 0.142 0.454 0.401 0.476 0.652 0.573 0.779 0.868 0.644 0.447 0.667 0.783

Table 6: Results on synthetic datasets that violate Assumption 1 under different confounding bias
strengths sc with a fixed collider bias strength ss = 3. The smaller Bias, SD, MAE and RMSE,
the better.

sc = 10 sc = 50 sc = 100
Estimator Bias SD MAE RMSE Bias SD MAE RMSE Bias SD MAE RMSE

Dir 1.425 0.103 1.425 1.428 1.383 0.257 1.383 1.406 1.174 0.438 1.174 1.253
IPW 4.821 0.776 4.821 4.883 17.505 38.837 17.505 42.600 16.195 28.827 16.195 33.065

Heckit 0.967 0.510 0.967 1.092 4.149 0.354 4.149 4.164 7.284 1.199 7.284 7.382
DCB 0.854 0.071 0.854 0.857 2.322 0.234 2.322 2.334 2.865 0.458 2.865 2.901
CFR 1.710 0.232 1.710 1.725 1.031 0.403 1.031 1.107 1.038 0.598 1.080 1.198

SC-CFR 0.650 0.311 0.659 0.721 0.646 0.505 0.684 0.820 0.319 0.680 0.587 0.751

Table 7: Results on synthetic datasets that violate Assumption 1 under different collider bias
strengths ss with a fixed confounding bias strength sc = 50. The smaller Bias, SD, MAE and
RMSE, the better.

ss = 1 ss = 3 ss = 5
Estimator Bias SD MAE RMSE Bias SD MAE RMSE Bias SD MAE RMSE

Dir 1.159 0.206 1.159 1.177 1.383 0.257 1.383 1.406 1.346 0.238 1.346 1.367
IPW 10.231 7.256 10.231 12.543 17.505 38.837 17.505 42.600 12.430 13.998 12.430 18.720

Heckit 4.318 0.271 4.318 4.327 4.149 0.354 4.149 4.164 4.229 0.287 4.229 4.239
DCB 2.269 0.210 2.269 2.279 2.322 0.234 2.322 2.334 2.259 0.192 2.259 2.267
CFR 0.782 0.361 0.783 0.862 1.031 0.403 1.031 1.107 1.036 0.360 1.036 1.097

SC-CFR 0.233 0.520 0.421 0.570 0.646 0.505 0.684 0.820 0.747 0.384 0.747 0.840
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