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Abstract
High-quality data plays a critical role in the pre-
training and fine-tuning of large language models
(LLMs), even determining their performance ceil-
ing to some degree. Consequently, numerous data
selection methods have been proposed to identify
subsets of data that can effectively and efficiently
enhance model performance. However, most of
these methods focus on general data selection and
tend to overlook the specific nuances of domain-
related data. In this paper, we introduce MASS,
a MAthematical data Selection framework using
the Skill graph for pretraining LLMs in the mathe-
matical reasoning domain. By taking into account
the unique characteristics of mathematics and rea-
soning, we construct a skill graph that captures
the mathematical skills and their interrelations
from a reference dataset. This skill graph guides
us in assigning quality scores to the target dataset,
enabling us to select the top-ranked subset which
is further used to pretrain LLMs. Experimental re-
sults demonstrate the efficiency and effectiveness
of MASS across different model sizes (1B and
7B) and pretraining datasets (web data and syn-
thetic data). Specifically, in terms of efficiency,
models trained on subsets selected by MASS can
achieve similar performance to models trained
on the original datasets, with a significant reduc-
tion in the number of trained tokens - ranging
from 50% to 70% fewer tokens. In terms of effi-
cacy, when trained on the same amount of tokens,
models trained on the data selected by MASS out-
perform those trained on the original datasets by
3.3% to 5.9%. These results underscore the poten-
tial of MASS to improve both the efficiency and
effectiveness of pretraining LLMs.
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Figure 1. The pipeline of MASS. (1) We first employ prompt en-
gineering to extract mathematical skills from a reference dataset,
thereby constructing a skill graph. (2) We then score and rank the
target dataset using the constructed skill graph. The top-ranked
subset can further be selected and used to train LLMs.

1. Introduction
The success of large language models (LLMs) is closely
tied to the scaling up of model size, training data, and com-
putational resources (Brown, 2020; Hoffmann et al., 2022;
Qwen Team, 2024). Among these three factors, training
data serves as the foundation of LLMs’ rich knowledge
and capabilities, enabling them to excel in creative writing,
complex reasoning, and even agentic planning. Recently,
there is mounting evidence that pretraining on high-quality
and diverse corpora can significantly enhance LLM perfor-
mance (Penedo et al., 2024; Li et al., 2024a). For example,
Microsoft’s Phi series of models has been renowned for
their pretraining corpus’s quality and efficiency. The latest
Phi-4 model (Abdin et al., 2024), trained on 10T tokens, has
surpassed other models of the same size, including Qwen
2.5 (Qwen Team, 2024), which was trained on 18 trillion
tokens. This has led many researchers to focus on LLM
data curation methodologies, which include the selection of
high-quality sub-datasets (Wettig et al., 2024), deduplica-
tion of extensive datasets (Tirumala et al., 2023), and the
balancing of data from various domains (Xie et al., 2024),
among other techniques.

In terms of data selection methods, the objective is to ex-
tract high-quality subsets from the original datasets such
that training LLMs on these subsets can achieve similar or
even superior performance on downstream tasks compared
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to training on the entire original datasets. There are two
main categories of methods: heuristic-based approaches
and model-based approaches. For the former, a variety of
manually designed filters, including mean word length, stop
word fraction, and word repetitions, are frequently applied
to preprocess raw web data (Tirumala et al., 2023). For the
latter, models similar to BERT (Devlin et al., 2019) are com-
monly used to evaluate and select data with higher scores,
while other approaches directly employ GPT-like models to
assess the data’s value.

While the emergence of OpenAI o-series models (OpenAI,
2024), DeepSeek-R1 (DeepSeek-AI et al., 2025), and sim-
ilar models, focusing on advanced reasoning capabilities,
highlights the growing emphasis on the mathematical and
reasoning abilities of LLMs, current data selection methods
usually concentrate on general domains, neglecting the spe-
cific attributes of mathematical domains. AutoDS (Zhang
et al., 2024b), as an exception, uses Qwen2-72B to score
the OpenWebMath (Paster et al., 2024) dataset based on
whether each text demonstrates mathematical intelligence
and suitability for educational purposes in mathematics. Al-
though it employs tailored prompts for mathematical texts,
it still overlooks the deeper nuances of the mathematical
domain when compared to the general domain, particularly
from the perspective of math skills.

Therefore, in this paper, we delve into data selection for
LLMs and propose MASS - a MAthematical data Selection
framework using Skill graphs, to enhance their mathemat-
ical and reasoning abilities by considering the underlying
skills (or knowledge points) and their interrelations embed-
ded in mathematical datasets. MASS has two selection
guidelines: (1) a data point that encompasses more impor-
tant math skills should have a higher quality score; and
(2) a data point that covers more important compositional
information of math skills should have a higher quality
score. As illustrated in Figure 1, we begin by utilizing a
high-quality reference dataset and instructing a strong LLM
to extract embedded math skills. These skills are then used
to construct a skill graph, where nodes represent skills and
edges denote the co-occurrence of skills. Next, we calculate
the semantic similarities between these math skills and the
target dataset to be selected. We further aggregate these sim-
ilarities on the graph structure to integrate the compositional
information of the skills to obtain final quality scores for
each data point in the target dataset. Finally, these scores
are ranked, allowing us to select a high-quality subset from
the original dataset.

In this work, we select NuminaMath (LI et al., 2024) as
the reference dataset to construct a skill graph based on its
mathematical skills. We then apply our method to three tar-
get datasets: two web datasets (OpenWebMath (Paster et al.,
2024), OpenWebMath-pro (Zhou et al., 2024a)) and one

synthetic dataset (Jiuzhang3.0-CoT (Zhou et al., 2024c)).
Using the skill graph, we identify and extract high-quality
subsets from each of these target datasets. We continue
pretraining TinyLlama-1.1B and Mistral-7B on the
original and selected subsets. Experimental results demon-
strate that with merely 50% to 70% training steps, models
trained on selected subsets can achieve similar performances
than those using original datasets. When trained on the same
amount of tokens, models trained on selected subsets can
outperform those using original datasets by 3.3% to 5.9%.
This highlights the efficiency and efficacy of our data selec-
tion method in enhancing the mathematical and reasoning
capabilities of LLMs.

2. The Proposed MASS
2.1. Overview

Given a target dataset Dtgt = {x1, x2, · · · , xN} where
each data point x is a piece of text, our goal is to select
a high quality subset Dhq with budget b ∈ Z+, where
b = |Dhq| ≪ |Dtgt|. When continuing pre-training or
fine-tuning LLMs on Dhq, we can achieve similar or even
superior downstream performances compared to training on
Dtgt. As illustrated in Figure 2, our proposed MASS can be
divided into two main steps. In the first step, we collect a
small-scale high quality reference dataset Dref and instruct
a strong LLM to identify the mathematical skills present in
Dref . Next, we construct a skill graph Gskill that encap-
sulate the compositional relationships among the various
skills. In the second step, we then use Gskill to guide data
selection. Specifically, we compute the similarities between
the target dataset and the extracted skills. We then perform
aggregation and pooling through the skill graph to generate
final quality scores for each data point in the target dataset.
These scores are eventually used to rank and select the high-
quality subset Dhq . Details of these two steps are described
in the following.

2.2. Skill Graph Construction

Skills Extraction. We randomly sample 100K data points
from NuminaMath dataset (LI et al., 2024) as the refer-
ence data Dref = {d1, d2, · · · , dR} where |Dref | = 100K.
NuminaMath, which comprises 860K pairs of competi-
tion math problems and their solutions, is considered to
be of high quality (i.e., each text is meticulously collected
and annotated with accompanying chain-of-thought traces)
and diverse (i.e., it includes problems ranging from high-
school-level to advanced-competition-level). We then in-
struct Qwen2.5-72B-Instruct-GPTQ-Int4 (Qwen
Team, 2024) to identify 1 to 10 tested mathematical skills
in each data point of the reference dataset due to its excel-
lent accuracy and latency. The prompt template we use is
shown in the Appendix C. As a result, we collect 865K
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skills from Dref in total. An example of the data sample
and its corresponding skills is shown below.

Skill Extraction Example

CONTENT: Find the greatest value of x such
that x2−x−90

x−9 = 2
x+7 . The expression when sim-

plified by factoring the numerator transforms into:
(x−9)(x+10)

x−9 = 2
x+7 . Canceling the (x−9) factor on

both sides, provided x ̸= 9, we get: x+ 10 = 2
x+7 .

Multiplying both sides by (x + 7) to eliminate
the fraction yields: (x + 10)(x + 7) = 2. Ex-
panding and rearranging this equation results in:
x2 + 17x+ 70 = 2 =⇒ x2 + 17x+ 68 = 0. Fac-
toring the quadratic gives: (x+4)(x+13) = 0. The
solutions to this equation are x = −4 and x = −13.
The greatest of these solutions is −4 .

SKILLS: Equation solving, Factoring polynomials,
Fraction manipulation, Quadratic equations, Root
identification, Expression simplification, Algebraic
transformation, Polynomial division, Inequality con-
sideration, Solution verification

Skill Graph Construction. Once we have identified a suffi-
cient set of mathematical skills, we construct a skill graph
Gskill = (V,E,A) where V represents node set of skills,
E denotes the edge of skill co-occurrence, and A is the
adjacency matrix. To reduce noise, we preprocess these
extracted skills by merging those with a semantic similarity
greater than 0.9, utilizing bge-large-en-v1.5 (Xiao
et al., 2024) as the text encoder. As a result, 46,490
unique nodes (skills) are retained to form the node set
V = {v1, v2, · · · , v|V |} (|V | = 46, 490). Each node
vi has two attributes: (1) vcnti , a scalar indicating the
skill’s number of occurrence; (2) vidsi , a list containing
the indices of the sub-reference dataset where this skill ap-
pears. For edges, we create an edge between two skills
when they co-occur in at least one data point, resulting
in 1,184,007 edges in total, forming the edge set E =
{eij = (vi, vj) | fco(vi, vj) > 0}, where fco(vi, vj) de-
notes the co-occurrence count of (vi, vj). Each edge eij
has an attribute: ecntij , a scalar indicating the number of co-
occurrences of the skill pair. Next, we define the adjacency
matrix A ∈ R|V |×|V | for the skill graph. Specifically, for
diagonal elements {Ai,i | i = 1, 2, · · · , |V |}, the values
are normalized from the number of occurrence of the skill
vi using softmax function with temperature coefficient T :

Ai,i = σ(vcnti , T ) =
exp

(
vcnt
i

T

)
∑|V |

j=1 exp
(

vcnt
j

T

) . (1)

For non-diagonal elements {Ai,j | i ̸= j, i, j =

1, 2, · · · , |V |}, the values are similarly normalized from
the number of occurrence of the skill pair (vi, vj):

Ai,j = σ(ecntij , T ) =
exp

(
ecnt
ij

T

)
∑

(eij∈E) exp
(

ecnt
ij

T

) . (2)

By far, we have constructed the skill graph Gskill that en-
capsulates the skills tested in the reference dataset and their
compositional relationships. A visualization of a sub-skill
graph and more statistics of the entire graph can be found in
Appendix B.

2.3. Data Selection via Skill Graph

With the reference dataset Dref = {d1, d2, · · · , dR} and
the skill graph Gskill constructed in the previous step, we
propose to select a high quality subset Dhq from the target
dataset Dtgt = {x1, x2, · · · , xN}. The detailed process is
outlined as follows.

Semantic Similarities Computation. Given a target data
point from target dataset xi ∈ Dtgt, and a specific skill from
the skill set vj ∈ V , we compute their semantic similarity:

sim(xi, vj) = max
k∈vids

j

cos(Emb(xi),Emb(dk)), (3)

where cos denotes the cosine similarity, vidsj is the list
of indices of the sub-reference dataset where this specific
skill vj appears, dk is the k-th data point in the reference
dataset and Emb() is the text embedding model (we use
bge-large-en-v1.5 (Xiao et al., 2024) in this work).
The intuition behind this approach is to calculate the co-
sine similarity between the target data xi and each of the
corresponding reference dataset {dk | k ∈ vidsj } of the
node (skill) vj . The maximum similarity value is then se-
lected as the similarity score sim(xi, vj). Similarly, we
compute the similarities between each data point of the
target dataset and each of the skills, forming the similar-
ity matrix S ∈ RN×|V |, where N is the size of the target
dataset and |V | is the number of nodes in the skill graph.

Aggregation on Skill Graph. With the above formulation
of sim(xi, vj), we aggregate the computed similarities on
the skill graph using the adjacency matrix A. The aggre-
gated similarity simagg(xi, vj) between the target data xi

and the skill vj is calculated as:

simagg(xi, vj) =Aj,jsim(xi, vj)

+
∑

vk∈N (vj)

Aj,ksim(xi, vk), (4)

where N (vj) denotes the neighbor set of vj in the skill
graph. The intuition is that the aggregated similarity
simagg(xi, vj) is not solely based on the original similar-
ity sim(xi, vj) and the skill importance Aj,j , but also in-
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Figure 2. An illustration of MASS. In the first step, we instruct Qwen2.5-72B-Instruct-GPTQ-Int4 (Qwen Team, 2024) to
extract 1 to 10 mathematical skills from each data point in the reference datasets. Using these extracted skills, we construct a skill graph
that captures the compositional relationships among them. In the second step, we assign a quality score to each data point in the target
dataset. This score is calculated by pooling and aggregating the similarities of the data point and the skills in the skill graph. Finally, the
top-ranked data points can be selected for training the large language models.

cludes the weighted sum of the similarities of the connected
skills, incorporating the compositional relationships of these
skills. In practice, we can compute the aggregated similarity
simagg(xi, vj) efficiently using matrix multiplication:

Sagg = SA, (5)

where Sagg and S represent the aggregated and the vanilla
similarity matrices respectively, with A being the adjacency
matrix. For each target data point xi, its quality score is
obtained by summing the similarities between xi and all the
skills vj , which is formulated as:

score(xi) =

|V |∑
j=1

simagg(xi, vj). (6)

Next, we can compute the score vector score(Dtgt) for
the entire target dataset Dtgt = {x1, x2, · · · , xN} in matrix
form as follows:

score(Dtgt) = [score(x1), score(x2), · · · , score(xN )]

=

|V |∑
j=1

Sagg:,j .

(7)

Data Selection. Given the score vector score(Dtgt) and a
selection ratio k%, we determine whether each target data
point xi should be retained or discarded as follows:

op(xi, k) =


keep(xi) if score(xi) ranks in the top k%

of score(Dtgt),

drop(xi) otherwise.
(8)

Finally, by applying op(xi, k) to to all data points in the
target dataset Dtgt, we obtain the high quality subset Dhq:

Dhq = {op(x1, k), op(x2, k), · · · , op(xN , k)}. (9)

2.4. Why MASS Works?

As stated in the introduction, the goal of our method is to en-
sure that each data point receives a higher score if it satisfies
two key conditions: (1) it covers a broader range of impor-
tant mathematical skills, and (2) it captures a richer, more
nuanced compositional understanding of these skills. These
two principles serve as the foundation for evaluating and
ranking the quality of data points within the target dataset.
Here we provide an explanation of how MASS operates
based on these two foundational principles.

Given the adjacency matrix of the skill graph A, according
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to Eq. 4 and Eq. 6, the quality score of a given data point x
consists of two components:

score(x) =

|V |∑
j=1

simagg(x, vj)

=

|V |∑
j=1

Aj,jsim(x, vj) +

|V |∑
j=1

∑
vk∈N (vj)

Aj,ksim(x, vk).

(10)

The first component is a weighted sum of similarities to
these skills, where the weights are given by the diagonal
elements of the adjacency matrix. As described in Eq. 1, if a
skill vj is more important (i.e., it appears more frequently),
the corresponding element Aj,j has a larger value. Conse-
quently, the more important skills a data point covers, the
greater the value of the first component.

Similarly, the second component is also a weighted sum
of similarities, where the weights correspond to the non-
diagonal elements of the adjacency matrix, which encode
the compositional relationships between skills. According
to Eq. 2, if a skill pair (j, k) is more important (it appears
more frequently), the corresponding element Aj,k has a
larger value. Therefore, the more important compositional
information a data point covers, the larger the second com-
ponent becomes.

3. Experiments
3.1. Experiment Setup

Training Corpora. We utilize different types of pretrain-
ing datasets, including math-related web data OpenWeb-
Math (Paster et al., 2024), OpenWebMath-pro (Zhou et al.,
2024a) and synthetic data Jiuzhang3.0 (Zhou et al., 2024c).
OpenWebMath is a dataset that encompasses a large portion
of mathematical text from the internet. It has been filtered
and extracted from over 200 billion HTML files on Common
Crawl, resulting in a refined set of 6.3 million documents
containing a total of 14.7 billion tokens. OpenWebMath-pro
is an enhanced version of OpenWebMath, further refined
using the ProX framework, and contains approximately 5 bil-
lion high-quality tokens. Jiuzhang3.0-Corpus-PT-CoT is a
synthetic dataset composed of 3.8 billion high-quality math-
related tokens, including question-answer pairs sourced
from a variety of origins.

Training Setup. We continue pretraining (CPT)
TinyLlama-1.1B (Zhang et al., 2024a) and
Mistral-7B (Jiang et al., 2023) using both origi-
nal datasets and the selected subsets identified by various
methods. To accelerate the training process, we leverage
DeepSpeed Zero-2 (Ren et al., 2021) and Flash Attention
2 (Dao, 2023). The specific hyperparameter settings used in

Table 1. Hyperparameter settings.
Hyperparameter TinyLlama-1B Mistral-7B

Peak Learning Rate 8e-5 2e-5
Context Length 2,048 4,096
Batch Size 512 256
Learning Rate scheduler Cosine Annealling
Optimizer AdamW
Warmup Ratio 0.01
Weight Decay 0.1

our experiments are provided in Table 1.

Baselines. We compare MASS with various data selection
baselines which are from different method categories. They
include (1) AutoDS (Zhang et al., 2024b): This method uti-
lizes meta-prompted language models as zero-shot verifiers
to autonomously evaluate and select high-quality mathemat-
ical content. (2) DSIR (Xie et al., 2023): This approach
estimates importance weights in a reduced feature space for
tractability and selects data through importance resampling
based on these weights. (3) RHO-1 (Lin et al., 2024): This
method selects suitable tokens during the training process
using selective language modeling and training dynamics.
(4) ProX (Zhou et al., 2024a): This approach refines pre-
training data at scale through program generation using
language models. (5) BM25 (Robertson & Zaragoza, 2009):
This method ranks and selects documents based on query
term occurrence and rarity across the corpus that extends
TF-IDF by considering term frequency saturation and doc-
ument length. (6) Heuristic rules used in the construction
of FineWeb corpora (Penedo et al., 2024): This method
employs heuristic rules for data selection. Note that we
mainly implement these baselines for TinyLlama-1.1B
considering the compute resources.

Evaluation Setup. We compare the model performances on
nine mathematics-related benchmarks used in RHO-1 (Lin
et al., 2024) and ProX (Zhou et al., 2024a). The evaluation
is conducted using the same implementation and includes
few-shot chain-of-thought (CoT) examples.

The code is available: github.com/lijiazheng0917/MASS.

3.2. Main Results

The main performance comparison results are presented
in Table 2. On average, across nine math and reason-
ing downstream tasks, the vanilla TinyLlama-1.1B and
Mistral-7B achieve performance scores of 13.3% and
53.0%, respectively. To assess the effectiveness of our ap-
proach, we continue pretraining these two models using both
the original datasets and the selected subsets. Specifically,
for OpenWebMath, OpenWebMath-pro, and Jiuzhang3.0,
we apply MASS to select the top 30%, top 60%, and top
70% of tokens, respectively, based on the varying qualities
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Table 2. The main experimental results. TinyLlama-1.1B and Mistral-7B are continuously pretrained using both the original and
selected subsets of OpenWebMath, OpenWebMath-pro, and Jiuzhang3.0. The bolded entries indicate the best results within each setting.
* indicates that results are from ProX (Zhou et al., 2024a)

Dataset Method Unique
Tokens

Trained
Tokens GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH Avg.

TinyLlama-1.1B

w/o continual pretraining 2.7 2.8 10.9 17.9 20.5 12.5 14.0 16.3 21.9 13.3

- 14.6B 14.6B 5.2 3.0 20.7 31.4 41.0 14.6 10.1 19.5 37.5 20.3
RULE* 6.5B 15B 4.5 2.8 17.5 29.4 39.3 15.1 12.4 19.4 25.0 18.4
RHO-1* 14.6B 9B 7.1 5.0 23.5 41.2 53.8 - 18.0 - - -

ProX 5.1B 14.6B 8.6 3.0 23.8 40.2 51.6 19.6 14.9 26.1 25.0 23.6
DSIR 4.9B 14.6B 5.5 2.6 24.1 37.8 54.3 16.9 12.1 25.4 22.3 22.1

AutoDS 4.9B 14.6B 7.3 2.4 22.9 39.2 52.7 18.4 13.8 23.2 24.1 22.7

OpenWebMath

MASS 4.9B 14.6B 9.0 4.4 24.9 41.4 54.8 21.5 13.9 20.3 25.0 23.9

- 5.1B 14.6B 8.6 3.0 23.8 40.2 51.6 19.6 14.9 26.1 25.0 23.6
DSIR 3B 14.6B 8.8 3.2 24.1 41.5 53.1 18.9 14.3 27.6 27.5 24.4

AutoDS 3B 14.6B 9.1 4.5 22.4 40.8 54.3 23.2 13.1 26.5 28.0 24.7
OpenWebMath

-pro
MASS 3B 14.6B 10.2 5.8 23.8 42.3 57.9 25.3 15.3 27.0 34.4 26.9

- 3.4B 6.8B 22.3 19.0 46.4 60.1 73.2 29.6 19.1 24.0 34.4 36.4
DSIR 2.4B 6.8B 24.5 21.3 48.2 63.9 74.4 28.8 19.2 22.1 33.6 37.3

AutoDS 2.4B 6.8B 26.7 20.8 51.3 66.7 73.5 31.1 19.3 22.4 32.8 38.3Jiuzhang3.0

MASS 2.4B 6.8B 30.1 24.8 52.5 69.1 80.7 32.9 20.4 22.7 34.4 40.8

Mistral-7B

w/o continual pretraining 41.1 10.6 64.9 68.5 87.3 54.8 33.9 49.9 65.6 53.0

- 14.4B 9.6B 44.5 19.0 60.6 68.4 87.8 50.5 44.5 50.9 56.2 53.6OpenWebMath MASS 4.8B 9.6B 47.7 23.2 64.6 74.7 90.5 55.7 50.7 52.6 65.6 58.4

- 5.1B 5.1B 47.1 21.8 63.2 73.7 89.5 58.2 42.6 52.2 56.2 56.1
BM25 3B 5.1B 44.7 24 63.1 73 86.1 49.1 49.8 52.6 67.1 56.6
DSIR 3B 5.1B 42.1 21.6 63.6 73.4 86.8 50.4 55.3 51.9 70.8 57.5

OpenWebMath
-pro

MASS 3B 5.1B 53.2 25.6 67.0 76.8 90.4 57.6 51.8 54.5 81.2 62.0

- 3.8B 3.8B 66.4 39.4 82.9 85.9 90.8 35.3 61.8 40.1 50.0 61.4Jiuzhang3.0 MASS 2.7B 3.8B 70.0 43.8 84.3 85.7 93.7 35.7 63.5 46.9 65.6 65.5

of the datasets. The selected data are repeated proportionally
to ensure that the total number of tokens used for training
remains consistent.

Table 2 demonstrates that all of these math datasets enhance
the models’ mathematical reasoning capabilities while our
approach achieves the best performance across all these
methods. Moreover, compared to the original datasets, us-
ing MASS-selected datasets further improves the results
by 3.6%, 3.3%, and 4.2% for TinyLlama-1.1B, and
4.8%, 5.9%, and 4.1% for Mistral-7B on OpenWeb-
Math, OpenWebMath-pro, and Jiuzhang3.0, respectively.
Additionally, we present the performance of the interme-
diate checkpoints trained on both the original and selected
datasets, as shown in Figure 3. Clearly, in terms of effi-
ciency, our selected datasets achieve the same results as
the original dataset, but with 43%-71% fewer trained to-
kens. In terms of effectiveness, our approach outperforms
the baseline by 3.2%-5.9%.

What distinguishes MASS from other baselines is its fine-
grained, skill-centric selection approach. While conven-
tional methods focus on superficial linguistic quality (e.g.,

grammatical correctness, noise reduction, or textual coher-
ence), MASS operates at a deeper semantic level. By an-
alyzing reference data, MASS identifies the specific skills
a model requires or lacks and strategically curates training
subsets to address these gaps. This targeted skill-based se-
lection contrasts sharply with existing approaches, which
often overlook semantic efficacy in favor of surface-level
text quality.

3.3. Analysis of MASS

In this section, we delve into an in-depth analysis of our
data selection approach.

3.3.1. COMPUTE EFFICIENCY OF MASS

We conduct a detailed breakdown of the computational costs
associated with MASS, using OpenWebMath as the target
dataset and Mistral-7B as the target model. As summa-
rized in Table 3, the pre-processing steps (including skill
extraction, embedding, graph construction, and subset se-
lection) account for less than 3% of the total computational
budget, with the majority allocated to the actual model train-
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Figure 3. The average performance of continual pretrained TinyLlama-1.1B and Mistral-7B with respect to the number of trained
tokens on OpenWebMath, OpenWebMath-pro and Jiuzhang3.0 datasets.

ing phase. This lightweight pre-processing overhead makes
MASS highly practical for large-scale applications.

In comparison, existing baselines either do not disclose their
pre-processing costs or rely solely on CPU-based opera-
tions, making it difficult to perform a precise, end-to-end
computational comparison. However, in Figure 3 of our
paper, it is clear that MASS achieves more than 40% greater
efficiency than all baselines, which means even if we do not
consider the pre-processing steps of MASS, it remains the
most efficient and effective approach.

3.3.2. QUALITY OF DATASETS

Since we have computed the quality score for each data point
in the target datasets, we randomly sample 10K data points
from each and present the score distributions in Figure 4. It
is clear that Jiuzhang3.0 is the highest-quality dataset, with
an average score of 1.07, followed by OpenWebMath-pro
at 0.95, and OpenWebMath at 0.92. This ranking aligns
with the model performance results shown in Table 2. De-
spite being trained on only 6.8 billion tokens, Jiuzhang3.0
achieves an average performance of 36.4%, significantly out-
performing OpenWebMath (20.3%) and OpenWebMath-pro
(23.6%), which were trained on approximately 15 billion
tokens. This highlights the effectiveness of synthetic data in
the pretraining of large language models, demonstrating that
even with a smaller token count, synthetic data can drive

superior performance. We provide case studies of the data
points with the highest and lowest scores from these three
datasets in the Appendix D.

Figure 4. Distribution of scores of different datasets.

3.3.3. IMPACT OF SELECTION RATIO

Given the varying quality of the datasets, we conduct a
series of experiments to examine the impact of the data
selection ratio in our method. We continue pretraining
TinyLlama-1.1B using subsets of OpenWebMath-pro
and Jiuzhang3.0 selected at different ratios. The subsets are
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Table 3. Compute efficiency of MASS

Operations A100 GPU Hours

Extracting skills from reference dataset ∼24
Embedding reference dataset and target dataset ∼0.5
Constructing the skill graph ∼2 CPU hours
Selecting a high-quality subset from the target dataset ∼4
Training Mistral-7B on the high-quality subset (∼10B tokens) ∼960

repeated to reach a total of 15.3 billion and 6.8 billion tokens,
respectively, as reported in Table 2. The results, presented
in Figure 5, clearly demonstrate that for Jiuzhang3.0, a rel-
atively higher selection ratio leads to higher performance,
while for OpenWebMath-pro, a relatively lower selection
ratio leads to higher performance. This pattern aligns with
the quality of the datasets, indicating that for higher-quality
datasets, maintaining a higher selection ratio is more advan-
tageous. Performance trends exhibit a spike-shaped pattern,
which can be explained by the quality-diversity tradeoff: (1)
at very low selection ratios, the high quality of the selected
data comes at the cost of reduced diversity, which nega-
tively impacts model performance. Prior research (Zhang
et al., 2025) has consistently highlighted the critical role of
diversity in data selection methods; and (2) at excessively
high selection ratios, the inclusion of excessive noisy and
low-quality data degrades performance.

3.3.4. IMPACT OF SKILL GRAPH

As discussed in Section 2.4, a key step in our method for ad-
hering to the two principles is the aggregation of computed
similarities on the skill graph. This aggregation enables the
incorporation of both the importance of individual skills and
their compositional relationships. To assess the effective-
ness and necessity of this step, we perform an ablation study
with two variants.

(1) w/o Diag. In the adjacency matrix A, we set the diagonal
elements {Ai,i | i = 1, 2, · · · , |V |} to 0. This means that
we do not account for our first principle, which pertains to
the importance of individual skills.

(2) w/o Non-diag. In the adjacency matrix A, we set the
non-diagonal elements {Ai,j | i ̸= j, i, j = 1, 2, · · · , |V |}
to 0. This indicates that we do not take into account our
second principle, which emphasizes the importance of the
compositional relationships among skills.

From the results in Table 4, we observe that performance
consistently declines when any part of the adjacency matrix
is omitted, highlighting that both of our principles play a
crucial role in the data scoring and selection process. Ad-
ditionally, non-diagonal elements have a more significant
impact, as indicated by a performance decrease of 2.8% and
2.1% with their omission, compared to 0.4% and 1.2% for

diagonal elements. This could be because more important
nodes tend to have more connections with other nodes in
the graph. As a result, even in the absence of the diagonal
elements, the compositional information derived from the
non-diagonal elements can still provide valuable insights
into skill importance. This allows the model to retain some
level of understanding of the skills’ significance, which
helps mitigate the performance drop.
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Figure 5. The average performance of TinyLlama-1.1B with
respect to different selection ratios. Note that models are trained
on the same amount of tokens.

Table 4. The average performance of TinyLlama-1.1B with
respect to different adjacency matrix forms.

Method OpenWebMath-pro Jiuzhang3.0

MASS 26.9 40.8
w/o Diag. 26.5(0.4%↓) 39.6(1.2%↓)
w/o Non-diag. 24.1(2.8%↓) 37.2(2.1%↓)

3.3.5. IMPACT OF SIMILARITY CALCULATION

In Eq. 3, we define the similarity between a data point and a
skill by taking the maximum value of the cosine similarities.
Below we present two alternative approaches:

(1) Mean Embedding. Compute the mean embedding for
the relevant sub-reference dataset associated with a skill,
and define the similarity as the cosine similarity between

8
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the skill’s mean embedding and the data point embedding:

Emb(nj) = mean
k∈vids

j

Emb(dk), (11)

sim(xi, vj) = cos(Emb(xi),Emb(vj)). (12)

(2) Name Embedding. Use the embedding of the skill name
directly, rather than the corresponding sub-reference dataset,
and define the similarity as the cosine similarity between
the skill name embedding and the data point embedding:

sim(xi, vj) = cos(Emb(xi),Emb(name(vj)). (13)

From the results in Table 5, we observe that both alternatives
reduce model performance, but to different extents across
the two datasets. For OpenWebMath-pro, the average de-
crease is 0.6%, while for Jiuzhang3.0, the average decline is
3.2%. This discrepancy might be attributed to the dataset for-
mat. Specifically, Jiuzhang3.0 is a question-answer pair for-
mat, similar to the reference dataset NuminaMath, whereas
OpenWebMath-pro consists of web-based math-related data.
This may result in less discriminative similarities between
a data point and the sub-reference dataset of a skill. As a
result, the use of mean embeddings or name embeddings has
has a greater impact on the Jiuzhang3.0 dataset compared
to OpenWebMath-pro.

Table 5. The average performance of TinyLlama-1.1B w.r.t.
different similarity calculation methods.

Method OpenWebMath-pro Jiuzhang3.0

MASS 26.9 40.8
Mean Embedding 26.4(0.5%↓) 37.4(3.4%↓)
Name Embedding 26.2(0.7%↓) 37.8(3.0%↓)

4. Related Work
See Appendix A for detailed related work discussion.

Data selection for LLM training falls into heuristic-based
and model-based approaches. Heuristic methods, such as
language filtering, and deduplication, serve as preprocessing
steps, while model-based methods further refine data by
improving quality, diversity (Li et al., 2024b; Liu et al.,
2024). However, despite the variety of methods available,
they often focus on the general domain and neglect the
specific aspects of mathematical reasoning. Recent work
(Zhang et al., 2024b) evaluates text quality for mathematical
intelligence using LLMs, whereas our study approaches the
problem from a skill-based perspective.

Mathematical reasoning is crucial for assessing LLMs’ intel-
ligence (Shao et al., 2024). High-quality datasets play a key
role, such as OpenMathInstruct-2 (Toshniwal et al., 2025)
and MathPile (Wang et al., 2024), which offer curated math
text. Furthermore, our approach leverages a mathematical
skill graph to efficiently select higher-quality data.

Graph-based methods are increasingly valuable in LLM
data curation. Skill-it (Chen et al., 2024) demonstrates that
LLMs learn skills in a natural order and constructs a skills
graph for efficient training. MathScale (Tang et al., 2024)
builds a concept graph and uses random walk for instruction
data generation. Unlike these approaches, our work focuses
on using skill graphs for data selection during continual
pretraining to enhance LLMs’ reasoning abilities.

5. Implications and Future Works
A key distinction between LLMs’ mathematical and reason-
ing capabilities, compared to domains like academic writing
or role-playing, is that they can be analyzed through the lens
of specific underlying skills. The success of MASS high-
lights the advantages of incorporating these skills and their
compositional relationships into the data selection process,
rather than relying on general selection methods.

There are several potential directions for improving our
method in the future. For domains with distinct and well-
defined skills, such as coding or biomedicine, MASS could
be naturally suitable and helpful. However, adapting MASS
for areas like creative writing or role-playing, where skills
are less clear-cut, remains a significant challenge. Also, to
enhance the quality and correctness of extracted skills, we
could filter generated skills using a predefined taxonomy.
Another crucial aspect not yet addressed by MASS is di-
versity. While this paper focuses on a continual pretraining
paradigm, future applications in small-scale data selection
for instruction tuning or reinforcement learning will neces-
sitate combining skills with greater diversity. Additionally,
incorporating skill difficulty could boost the model’s perfor-
mance. Currently, relying solely on skill frequency as an
importance metric might be limiting; less frequent but more
complex skills may require more data for large language
models to effectively master.

6. Conclusion
In this paper, we propose MASS, a novel and data-efficient
framework designed to enhance the mathematical capabil-
ities of large language models (LLMs) by leveraging skill
graph-based data selection. First, we employ prompt engi-
neering techniques to extract and categorize mathematical
skills from a high-quality reference dataset, constructing a
structured skill graph. This graph is then used to score and
rank the target dataset, selecting the top-ranked subset for
training LLMs. Our empirical results show that MASS sig-
nificantly improves both the efficiency and effectiveness of
the training process, leading to models with stronger math-
ematical reasoning abilities and faster convergence. This
approach offers a more data-efficient way to enhance LLMs,
particularly in specialized domains like mathematics.
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Impact Statement
This paper presents work whose goal is to advance the data
efficiency of large language model pretraining, which could
facilitate wider accessibility of AI technologies and con-
tribute to more sustainable AI development practices. There
are no negative societal consequences of our work, as it is
specifically designed to improve the data efficiency of ex-
isting technologies without introducing any harmful ethical,
privacy, or social risks.
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A. Related Work
A.1. Data Selection for LLMs

Data selection for LLM training can generally be categorized into two approaches: heuristic-based and model-based.
Heuristic-based methods, such as text extraction (Barbaresi, 2021), language filtering (Joulin et al., 2017), and data
deduplication (Tirumala et al., 2023), are typically the initial stages of pre-processing web-crawled data. Model-based data
selection methods can follow these stages to further refine the data by considering various factors, such as quality (Li et al.,
2024b), diversity (Liu et al., 2024), and distribution matching (Kang et al., 2024). Model-based selection can be conducted
at the sample level (Fan & Jaggi, 2023; Gu et al., 2025), where a complete piece of text is retained or discarded, or at the
token level (Lin et al., 2024), where only useful tokens are incorporated into LLM training. These methods are generally
targeted at the general domain, often overlooking the specific features of mathematical and reasoning problems. Closest to
our work, (Zhang et al., 2024b) proposed using designed prompts for LLMs to evaluate whether a text exhibits mathematical
intelligence and if it is suitable for educational purposes in mathematics. In contrast, our work addresses this problem from
the perspective of skills.

A.2. LLMs for Mathematical Reasoning

Mathematical reasoning is a cornerstone for assessing the fundamental cognitive capabilities of human intelligence.
Recently, there has been a notable surge in the development of LLMs (Shao et al., 2024; Yang et al., 2024) aimed at
solving mathematical reasoning problems. The release of OpenAI’s o-series models has further highlighted the potential,
significance, and opportunities for enhancing the reasoning capabilities of large models. From the dataset perspective,
numerous high-quality datasets have been developed to bolster the mathematical reasoning abilities of LLMs. For instance,
in the SFT stage, OpenMathInstruct-2 (Toshniwal et al., 2025) features 14 million question-solution pairs, using various
augmentation methods from the MATH (Hendrycks et al., 2021) and GSM8k (Cobbe et al., 2021) datasets, making it
nearly eight times larger than the previous largest open-source math reasoning dataset. In the pretraining stage, MathPile
offers a diverse and high-quality math-centric corpus comprising about 9.5 billion tokens. This corpus was developed
through meticulous data collection and processing, including a comprehensive suite of preprocessing, prefiltering, language
identification, cleaning, filtering, and deduplication. Our method can be further utilized to select these existing datasets
through the math skill graph, thereby efficiently and effectively training LLMs.

A.3. Graphs in Data Curation for LLMs

Graphs, as a form of data that encapsulate compositional relationships, can be valuable in analyzing the acquisition of
knowledge during the training process of LLMs. Skill-it (Chen et al., 2024) demonstrates that language models follow a
natural order when learning a set of skills from their training data and builds a skills graph for data-efficient LLM training.
However, the skills they extracted are relatively general and human-designed, not specifically centered on mathematical
skills. MathScale (Tang et al., 2024) instructs LLMs to construct a concept graph and uses a graph random walk algorithm
to sample a sub-graph, which is then used to generate an instruction tuning dataset. Similarly, Zhou et al. (Zhou et al.,
2024b) further demonstrate the effectiveness of graph-based instruction data generation by constructing dataset-related
graphs. These two methods differ from ours, which focuses on data selection for the continual pretraining stage of LLMs.
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B. More Information of Skill Graph
B.1. Visualization of Skill Graph

We show a sampled sub-skill graph with 10 nodes.

Figure 6. A visualization of sub-skill graph.

B.2. Statistics of Skill Graph

Table 6. Skill Graph Properties

Property Value

Number of nodes 46,490
Number of edges 1,230,497
Density 0.001
Clustering Coefficient 0.776
Modularity 0.587
Average degree 52.94
Maximum degree 11,691
Minimum degree 4
Degree standard deviation 199.69
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C. Skill Extraction Details
The prompt used to extract mathematical skills from the referenced dataset is presented below.

Prompt Template to Extract Skills

Please assume the role of a math teacher and analyze the provided question with the following steps:

1. Determine if the text involves mathematical knowledge, reasoning, or problem-solving skills. Respond with
”YES” or ”NO”.
2. Identify 1-10 concise, general mathematical knowledge points being tested.

Note:
1. Ensure each knowledge point is abstract and generalized.
2. Avoid using verbs; focus on noun phrases (e.g., “function symmetry” instead of “analyzing function symmetry”).
3. Avoid specifics like numbers, angles, or exact values. Focus on overarching concepts and techniques.
4. Keep each knowledge point to a maximum of 10 words.

Provide your assessment in one JSON format:

“‘json
{
“math relevance”: “YES” or “NO”,
“knowledge points”: [“point1”, “point2”, ...]
}
”’

Provided text:
{TEXT}

JSON output:
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D. Case studies
We show the data samples with the highest and lowest scores in Jiuzhang3.0, OpenWebMath-pro and OpenWebMath
datasets, respectively.

Text with the highest score in Jiuzhang3.0 dataset

Problem:
Consider a sequence of numbers where each term is the result of applying the function x5, which maps any integer x
to its smallest nonnegative integer equivalent when divided by 5. For example, 75 = 2 because 7÷5 has a remainder
of 2.
Let S(a, r) represent the sum of (a− ℓ)5 for ℓ ranging from 0 to r, where a and r are integers.
Given a = 17 and r = 12, calculate the value of S(17, 12).

Solution
To solve for S(17, 12), we use the formula provided in the proposition:

S(a, r) =

{
a(r + 1)− r(r+1)

2 if r ≤ a

a(r + 1− 5) + 5r − r(r+1)
2 if r > a

Since r = 12 and a = 17, we see that r > a. Therefore, we use the second case of the formula.
First, calculate a(r + 1− 5):
17 · (12 + 1− 5) = 17 · 8
17 · 8 = 136
Next, calculate 5r − r(r+1)

2 :
5 · 12− 12·(12+1)

2 = 60− 12·13
2

60− 78 = −18
Now, sum the two parts:
136 + (−18) = 136− 18 = 118
Thus, the value of S(17, 12) is:
118

Explanation
In this problem, we needed to apply the formula for the sum of terms involving the function a− ℓ5. The key step
was recognizing which case of the formula to use based on the values of a and r.
By breaking down the problem into simpler calculations and carefully handling the algebraic expressions, we
were able to logically determine the correct value for the sum. This required a clear understanding of the function
properties and the conditions for applying different formula cases. This approach of systematically analyzing the
problem using established methods will help students in their mathematical journey.

Text with the lowest score in Jiuzhang3.0 dataset

Sven Erlander was born in 1934 and died in 2021. How many years old was Sven Erlander when he died?

Solution
To find out how old Sven Erlander was when he died, we need to follow these steps:

1. Determine Sven Erlander’s birth year: Sven Erlander was born in 1934.

2. Determine the year he died: Sven Erlander died in 2021.

3. Calculate the age difference: We subtract his birth year from the year he died:

2021− 1934 = 87 (14)

So, Sven Erlander was 87 years old when he died.
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Text with the highest score in OpenWebMath-pro dataset

New exercises and problems in MathematicsSeptember 2003
New exercises
Maximum score for each exercise (sign ”C”) is 5 points.
A coin has been placed in each field of a 3x3 table, showing tails on top. At least how many coins need to be turned
over, so that there are no three collinear (row, column, diagonal) heads or three collinear tails?
Is there a regular polygon in which the shortest diagonal equals the radius of the circumscribed circle?
Peter’s telephone number (without area code) is 312837, that of Paul is 310650. If each of these numbers is divided
by the same three-digit number, the remainders will be equal. That remainder is the area code of their city. What is
the remainder? (Note: Area codes are two-digit numbers in Hungary.)
The angles A and B of a convex quadrilateral ABCD are equal, and angle C is a right angle. The side AD is
perpendicular to the diagonal BD. The lengths of sides BC and CD are equal. What is the ratio between their
common length and the length of side AD?
Solve the equation 2x log x+ x− 1 = 0 on the set of real numbers. (Suggested by É. Gyánó, Budapest)

New problems
The maximum scores for problems (sign ”B”) depend on the difficulty. It is allowed to send solutions for any number
of problems, but your score will be computed from the 6 largest scores in each month.
We have coloured each positive integer either red or blue. The sum of two numbers of different colours is always
blue, and their product is always red. What colour is the product of two red numbers? (3 points)
Find the locus of those points in the plane of a given square at which the square subtends an angle of 30°. (3 points)
Prove that if m and n are integers, m2 + n2 +m+ n− 1 cannot be divisible by 9. (3 points)
The convex hexagon ABCDEF is cyclic, and AB = BC = a, CD = DE = b, EF = FA = c. Prove that the area
of the triangle BDF is half of the area of the hexagon. (4 points)
The number F in base-a notation is 0,3737 . . . = 0,3̇7̇ and the number G in base-a notation is 0,7373 . . . = 0,7̇3̇.
The same numbers written in base-b notation are F = 0,2525 . . . = 0,2̇5̇ and G = 0,5252 . . . = 0,5̇2̇. Determine
the numbers a and b. (4 points)
Is there a right-angled triangle such that the radius of the incircle and the radii of the three excircles are four
consecutive terms of an arithmetic progression? (4 points)
The point P lies on the perpendicular line segment dropped from the vertex A of the regular tetrahedron ABCD
onto the face BCD. The lines PB, PC and PD are pairwise perpendicular. In what ratio does P divide the
perpendicular line segment? (3 points)
Given the real number t, write the expression x4 + tx2 + 1 as a product of two quadratic factors of real coefficients.
(4 points)
The points X , Y and Z divide a circle into three arcs that subtend angles of 60°, 100° and 200° at the centre of the
circle. If A, B and C are the vertices of a triangle, let MA and MB denote the intersections of the altitudes drawn
from the vertices A and B with the circumscribed circle, and let FC denote the intersection of the bisector of angle
C with the circumscribed circle. Determine all the acute triangles ABC for which the points MA, MB and FC
coincide with the points X , Y and Z in some order. (4 points)
Let x1 = 1, y1 = 2, z1 = 3, and let xn+1 = yn + 1

zn
, yn+1 = zn + 1

xn
, zn+1 = xn + 1

yn
for every positive integer

n. Prove that at least one of the numbers x200, y200 and z200 is greater than 20. (5 points)

New advanced problems
Maximum score for each advanced problem (sign ”A”) is 5 points.
I is the isogonic point of a triangle ABC (the point in the interior of the triangle for which ∠AIB = ∠BIC =
∠CIA = 120◦). Prove that the Euler lines of the triangles ABI , BCI and CAI are concurrent.
Prove that if a, b, c are positive real numbers then

1

a(1 + b)
+

1

b(1 + c)
+

1

c(1 + a)
≥ 3

1 + abc
.

We have selected a few 4-element subsets of an n-element set A, such that any two sets of four elements selected
have at most two elements in common. Prove that there exists a subset of A that has at least 3

√
6n elements and does

not contain any of the selected 4-tuples as a subset.
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Text with the lowest score in OpenWebMath-pro dataset

Article Content
Leo McKern
Reginald Leo McKern (March 16, 1920 - July 23, 2002), better known simply as Leo McKern, was an Australian
actor who appeared in numerous British television programs, movies and in over 200 stage roles.

Some notable roles:
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Text with the highest score in OpenWebMath dataset - Part 1

Question List
For all nonzero integers l and m, let the operation §be defined by

lm = −
∣∣∣∣1 +m

l
m

∣∣∣∣
Quantity A

3
3

2

Quantity B

−1

There are 30 students in Mr. Peterson’s gym class. 14 of them play basketball, 13 play baseball, and 9 play neither
basketball nor baseball.

Quantity A
The number of students who play both basketball and baseball.

Quantity B

6

In a regular n-sided polygon, the measure of a single angle is

(n− 2)180

n

The degree measure of an angle in a regular 10-sided polygon is how much greater than the degree measure of an
angle in a regular 6-sided polygon?
For all real numbers a and b, the operation ⊕ is defined by

a⊕ b = 2a− b

What is the absolute value of the difference between (3⊕ 1)⊕ 2 and 6⊕ 3?

Quantity A
The units digit of 729.

Quantity B
The units digit of 327.
Of the employees at a company, 60 percent were men and, of these, 1

10 were still employed after a recent corporate
restructuring. If the number of women who were still employed after the restructuring was five times the number of
men who were employed after it, what percent of the women were still employed after the restructuring?
If q is even, then #q = −2; If q is odd, then #q = −4. a and b are integers such that b− 3 is odd.

#(6a)
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Text with the highest score in OpenWebMath dataset - Part 2

Quantity B

#b

f(x) = 3x2

g(x) = x+ 1

x is an integer such that −10 ≤ x ≤ −1.

f(g(x))

Quantity B

g(f(x))

Three digits have been removed from each of the following numbers. If n = 25, which of the numbers is equal to
3 · 2(n−1)?

m ∥ n

a

90

r

Quantity B

s

If X is the center of the circle above, then what is the sum of the measures of ∠WXY and ∠V XZ?
In the figure above, c is 4

5 of d. What is the value of c?
What is the value of x?

a+ b

Quantity B

180− c

In the figure above, what is the value of w?
What is the area of a regular hexagon with side length 8?

a ∥ b

95

Quantity B

s

In the figure above, line j is parallel to line k. If f = 130 and g = 70, then h =

1 2 . . . 10 11 12 13 14 15 16 . . . 36 37
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Text with the lowest score in OpenWebMath dataset - Part 1

M A S H (television)
Inspired by the film of the same name, MH (Mobile Army Surgical Hospital) was an American television series that
aired on CBS from September 17, 1972 to February 28, 1983 (251 episodes). The sitcom was about an outfit of
medical workers stationed in Korea during the Korean War. Much like the movie, it combined elements of a ”zany”
comedy and a darker antiwar message.
20th Century Fox head William Self gave the show to producer Gene Reynolds and comedy writer Larry Gelbart.
This combining of genres was unusual for television series of its time, and was in fact an early example of what later
became known as a dramed. The show’s producers did not even want a laugh track in the show, but this proposal
was rejected by CBS; however, as a compromise, the emergency room scenes were shown without a laugh track, and
in fact the show was shown in the United Kingdom entirely without the use of canned laughter. The DVD release
offers a choice between laugh-encrusted and laugh-free soundtracks. Many of the stories were based on real life
tales told by hundreds of actual surgeons interviewed for the show.
At the end of its first season the show ended 46th in the ratings. CBS responded by moving the show to Saturday
night between hits All in the Family and The Mary Tyler Moore Show. MH ended the next 9 of 10 seasons in the top
10.
The series used the theme song ”Suicide is Painless”, which was taken from the film, though without the lyrics.
Some said the series seemed to be more about the Vietnam War, given the attitudes of the characters, than about the
Korean War – despite its Korean setting. However, even the movie was somewhat anachronistic, given its use of
such early seventies fashion as the fu manchu mustache. The show’s producers have said that the movie was really
about all wars, not just Korea or Vietnam.
The series was followed by After starting Morgan, Farr, and Christopher reunited in a midwestern hospital after the
war. It was not well regarded, and was quickly cancelled.
The show featured Alan Alda, who wrote and directed some of the most emotional and award-winning episodes;
Out of all the starring characters Hawkeye, Hotlips, Klinger and Father Mulcahy were the only ones in the show
for its entire series. McLean Stevenson left the show at the end of the third series, and his character Henry Blake
was discharged and sent home. In the final scene of his last episode it was reported that Blake’s plane had been
shot down and he was killed. Actor Wayne Rogers left the series after the end of series three due to disagreements
about his character. At the beginning of the fourth series Hawkeye was informed by Radar that Trapper had been
discharged, and audiences did not see Trapper’s departure. At the same time Col Potter was assigned to the unit as
Commanding Officer replacing Blake, while BJ Hunnicut was drafted in as Trapper’s replacement. Larry Linville
left during the first episode of series six as Frank Burns became mad and was drafted away from the 4077th. Charles
Winchester, a snobbish but highly skilled surgeon, was his replacement. A couple of episodes into series eight Gary
Burghoff left the series, and Radar was discharged. Existing character Klinger took over Radar’s post, the character
thereafter enjoying a more prominent position in the series.
Gary Burghoff (Radar O’Reilly) was the only M*A*S*H actor to reprise his role from the movie, retaining his
extraordinary ability to detect the arrival of choppers transporting wounded long before anyone else could hear a
thing. When Burghoff left the series, the company clerk role was taken up by Jamie Farr (Corporal (later Sergeant)
Klinger, whose cross-dressing never got him the discharge he wanted).
Viewed as one of the most popular sitcoms in history, it is still a very popular syndicated series. Originally seen
as an ensemble show, it became increasingly centered around Alan Alda’s character, Hawkeye Pierce. The show
survived many personnel changes over the course of the show, and in fact the series changed its tone over the years.
Initially, the series placed more emphasis on the ”zany” elements, while in the later years it focused more on serious
elements and character development; however, both the serious and the comedic elements were present throughout
the history of the series. In the later years the story lines began to also stale and the show’s comedic edge had dulled
even though the show was still in the top of the ratings. Alda and his fellow actors then voted to end the series
with the 10th season but CBS and 20th Century Fox offered the actors a shortened 11th season leading up to an
opportunity for them to say goodbye in a grand finale.

20



MASS: MAthematical Data Selection via Skill Graphs for Pretraining Large Language Models

Text with the lowest score in OpenWebMath dataset - Part 2

Goodbye, Farewell, and Amen The final episode was titled ”Goodbye, Farewell, and Amen” and was first broadcasted
on February 28, 1983. The episode was 2.5 hours long and was viewed by over 125 million Americans (77% of
viewership that night) which made ”Goodbye, Farewell, and Amen” the most watched television episode in history
up to that time.
The finale started in the waning days of the war with Hawkeye in a mental hospital who was finally driven over the
edge by a bus ride gone terribly wrong. The bus passengers, who were refugees, were in danger of being discovered
and executed by a North Korean patrol. Hawkeye scolds the refugees to be quiet but a baby begins to whimper and
its mother responds by smothering the child. Hawkeye repressed this by replacing the memory of the baby with that
of a small animal.
Dr. Winchester captured a rag-tag bunch of Chinese musicians who he teaches Wolfgang Amadeus Mozart’s
”Quintet for Clarinet and Strings” to them. However, he later sees all the musicians killed and as a result views
classical music as stained for him (classical music was his number one solace during the war).
Corporal Max Klinger, best known for constantly trying to be discharged via a Section 8, finally decides to stay in
Korea to be with his new wife even though he finally got his release papers (along with most of the 4077).
The final and perhaps most memorable scene was between Hawkeye and BJ Hunnicut. Hunnicut was not able to
say goodbye and Hawkeye mocked him for this failure. Both men lament that they will be on opposite sides of
the country after they go home and conclude that they will probably never see each other again. They tearfully
embrace for the last time and Hawkeye boards a helicopter and lifts off. Hunnicut rides off on a motorcycle and as
the helicopter ascends Hawkeye sees a final message from his longtime friend spelt out with stones on the sandy
soil, ”GOODBYE.”
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