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Abstract. Open-world anomaly detection is a task in which machine
learning is well-positioned to advance cancer diagnosis, potentially lead-
ing to significantly improved survival rates. For a model to be used in
clinical settings, it must demonstrate high performance, robustness, and
generalisability. A common approach to achieving high generalisability
is to incorporate information from broader representations within the
model. In this work, we investigate the application of GroundingDINO
to medical anomaly detection and localisation, evaluating both its overall
performance and the influence of text prompts. We find that Ground-
ingDINO outperforms the YOLOv11ln model even with minimal use of
contextual information. When exploring methods to introduce more con-
textual information, we observe that specifying the organ within the
prompt improves closed-set performance on rarer lesion classes. However,
adding visual descriptions of lesions during training leads to a significant
performance drop on those subsets, indicating that the model memorises
prompt-image pairs rather than learning meaningful semantic relation-
ships. Our work highlights a critical limitation of GroundingDINO in
medical imaging and proposes targeted modifications to the model ar-
chitecture or training strategies as promising directions for utilising richer
semantic prompts to improve anomaly detection.

Keywords: Anomaly Detection - GroundingDINO - Prompt Engineer-
ing - Medical Imaging - Lesion Detection - Cancer Research

1 Introduction

Early detection is critical to improving survival outcomes for cancer, which ac-
counts for nearly 1 in 6 deaths globally [I6][I4]. To aid in diagnosis, medical
imaging technologies such as Computed Tomography (CT) and Magnetic Res-
onance Imaging (MRI) provide detailed 3D anatomical views. However, auto-
mated identification of open-world anomalies in these scans has not kept pace
with advancements in imaging technologies, as interpreting the resulting im-
ages remains highly challenging [I7]. For example, studies have found that ap-
proximately one-third of diagnoses are often missed across various diagnostic
pathways [8][3]. Therefore, research into computer-aided cancer detection is in-
valuable not only for improving cancer survival rates but also for alleviating
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the growing burden on healthcare systems. As such, significant effort has been
dedicated to developing machine learning models for medical anomaly detection
(AD). The appearance of cancer varies widely across types, subtypes, and indi-
vidual patients, making robust open-set performance challenging [7][20]. How-
ever, for a model to be clinically viable, it must be capable of detecting both
common and rare, or previously unseen, pathologies. A common strategy for im-
proving generalisability is to incorporate contextual information into the model.
For example, the GroundingDINO model achieves state-of-the-art open-set per-
formance in the natural imaging domain by introducing language prompts into a
closed-set detector [I1]. Despite such successes, however, these methods remain
relatively underexplored in the medical domain. Contributions. We present the
first investigation of GroundingDINO for medical anomaly detection, focusing on
lesion detection in CT scans of the chest-abdomen—pelvis region, and compare
its performance with the state-of-the-art YOLOv11n model. Through a series
of experiments using varied text prompts, we examine the impact of prompt
design on both closed-set and open-set performance, exploring how semantic in-
formation can enhance medical AD. Our ultimate goal is to lay the groundwork
for future integration of text and image modalities to achieve state-of-the-art
performance with real clinical applicability.

2 Methodology

Background. GroundingDINO is a transformer-based vision—language model
originally trained for object detection on natural images. Its primary goal is
to generalise to unseen object classes by integrating semantic information via
language into the closed-set detector DINO [21], thereby enabling open-set ca-
pabilities. The model’s architecture includes three cross-modality fusion points,
which the authors argue provide stronger language guidance during detection
compared to models with fewer fusion locations [II]. Open-set detection is par-
ticularly relevant in medical imaging tasks such as cancer screening, where rare
and previously unseen lesions may be encountered. Recent work has highlighted
the importance of integrating semantic priors to improve detection generalisa-
tion in these settings [2]. Recent advances in Large Language Models (LLMs),
such as Gemini [I8], BiomedGPT [13], and ChatGPT-4 [I], have demonstrated
strong capabilities in generating clinically rich, context-aware descriptions. These
models provide a powerful means of constructing descriptive prompts to guide
open-set detection models in medical applications [12]. Despite its comparatively
modest size and training data, GroundingDINO achieves state-of-the-art perfor-
mance on open-set detection benchmarks, outperforming larger models such as
GLIP [9] in the COCO zero-shot setting [10]. Its utility in medical contexts has
already been demonstrated in the BiomedParse study [22], where it was used to
propose bounding boxes without additional training.

Model Architecture. The pipeline used in our experiments is illustrated in
Figure [1} Since GroundingDINO is limited to 2D detection, a single slice must
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Fig. 1. Detection pipeline used during experiments, highlighting the inclusion of the
GroundingDINO architecture. A single slice is normalised and a text prompt gener-
ated, before being passed to GroundingDINO to perform the detection. The locations
of cross-modality fusion are highlighted: cross-attention blocks within the feature en-
hancer and decoder, and language guidance of query selection. Multiple methods for
prompt generation were explored, so it is shown generally.

first be selected from the scan. The slice is then normalised to improve consis-
tency across samples. Before being passed to GroundingDINO, a text prompt
must also be generated. As the method of prompt generation varies across our
experiments, a general representation is shown in Figure [l When relevant, the
images are used post-normalisation to generate the prompts. The prompt and
normalised image are then passed to the GroundingDINO architecture, where
the text and image backbones extract features from the inputs. The feature en-
hancer then updates the features, making use of text-to-image and image-to-text
cross-attention. The updated text features then guide the selection of queries to
be used in the decoder, where text and image cross-attention are used to gener-
ate the model outputs. For additional details, we refer the reader to the original
work by Liu et al. [IT]

3 Evaluation

Datasets. For training and evaluation, we used the Universal Lesion Segmenta-
tion Challenge 2023 (ULS23) dataset [5] consisting of chest-abdomen—pelvic CT
scans with annotations provided as segmentation masks. The dataset includes
scans of 6,382 lesions from 2,627 patients located across a range of organs (Fig-
ure[2). Each scan is cropped to a volume of interest (VOI) of size 256 x 256 x 128
voxels, containing a single annotated lesion centred within the VOI.

Pre-processing. Annotations of different lesions from the same scan were merged
to create a single, comprehensive annotation, enabling the data to be used for
our detection task. The segmentation masks were then converted into bounding
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Fig. 2. Breakdown of the ULS23 Dataset. a) Number of slices from scans containing
(no) lesions in each organ. b) Distribution of mask sizes by organ, with samples outside
1.5 times the IQR from the nearest quartile shown as outliers. ¢) Number of patients
with scans of lesions in each organ.

boxes for compatibility with GroundingDINO. As the first step in our pipeline,
scans were normalised. Due to the diversity of lesion types in the dataset, the
lesions spanned a wide range of Hounsfield units (HU), making it challenging to
define suitable windowing parameters. Therefore, inspired by the ULS23 baseline
model, Z-score normalisation was applied to each slice. To assess the impact of
normalisation on lesion visibility, we quantified visibility as the absolute differ-
ence between the median intensity within the lesion and the median intensity of
the surrounding region, divided by the standard deviation of local values. This
analysis showed a positive effect of normalisation for all lesion types except those
located in bone, suggesting work may be necessary to minimise biases in future
models. The dataset was split into 80 % for training (274,617 slices), 10 % for
validation (33,995 slices), and 10 % for testing (36,230 slices). Splitting was
performed separately for each organ, while ensuring patient-level separation to
prevent data leakage between sets.

Experiments. Three classes of experiments were performed, with separate ver-
sions of the model trained using varying levels of detail in the text prompts. In
the first experiment, the prompt was simply “lesion” for all scans. Since the same
prompt accompanied every image, there was minimal language guidance, making
these results a baseline for comparison with later experiments. To provide con-
text, equivalent YOLOv11n models [6] were also trained. Because YOLO does
not incorporate language information, this comparison is most relevant to the
first experiment. In the second experiment, the organ of interest was specified
within the prompt (e.g., “/organ/ lesion”). The final experiment evaluated the
use of visual descriptions of lesions during training. Models from the previous
experiment were fine-tuned using visual descriptions as prompts specifically for
lymph node lesions in the training set. Lymph node lesions were selected due to
their moderate number of training samples and comparatively low performance
in our first two experiments. The descriptions were generated using prompts to
Gemini (the ‘gemini-2.5-pro-preview-03-25" model) [I8]. The three experiment
classes were conducted both with all lesion types included in training and with
mediastinal lesions (4, 879 training slices) excluded. Mediastinal lesions were cho-
sen for removal because they had the fewest training samples, minimising the
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Fig. 3. Radar charts comparing the performance of GroundingDINO and YOLO strat-
ified by organ, with the prompt of “lesion” given to GroundingDINO. Average Precision
and RoDeO/total metrics are shown for GroundingDINO (green) and YOLO (blue)
models that saw all lesion types (top) and all except mediastinal lesions (bottom) from
the ULS23 dataset during training.

reduction in overall training set size. Evaluating performance on the previously
unseen mediastinal lesion class provides insight into the model’s open-set capa-
bilities. Since the data consists of cropped CT scans, each scan shows only a
small region of anatomy.

Training Strategy. To train GroundingDINO, the Open-GroundingDINO train-
ing code was used with default model hyperparameters and data augmenta-
tions [23]. The released GroundingDINO|model with the Swin-T image backbone
was used as the initialization, and bert-base-uncased [4] from Hugging Face [19]
served as the text backbone. For YOLO training, the default implementation
from the [Ultralytics| Python package was used. All models were trained for 25
epochs on NVIDIA A40 and L40S GPUs. To evaluate model performance, we
used the Average Precision (AP) and RoDeO [I5] metrics. For RoDeO, a bound-
ing box threshold of 0.2 was selected based on sweeps over the validation set.

4 Results

4.1 Minimal Language Guidance

The results for the GroundingDINO models that used the word “lesion” as the
prompt for all scans, along with the corresponding YOLO models, are presented
in Figure[3] It is evident that GroundingDINO performs as well as or better than
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Fig. 4. Inference examples from the GroundingDINO model trained on lesions across
all organs in the ULS23 dataset, using ‘lesion” as the text prompt. Ground truth
annotations (top, red boxes) and model predictions (bottom, blue boxes) are shown
for six organ sites.

YOLO across all organs. This provides an immediate indication of its potential
suitability for medical anomaly detection, thereby supporting its use in research
such as ours. Some inference examples from the GroundingDINO model that
was trained on all lesion types are shown in Figure[d] illustrating both successful
detections and failure cases. Figure [ highlights ambiguities in lesion definition,
bounding an internal substructure within the ground truth. Figure @d contains
false positives, an issue noted in the original GroundingDINO paper [I1]. As
expected, after removing mediastinal lesions from training, performance on me-
diastinal lesions drops significantly. However, while YOLO’s performance falls
to near zero (e.g., RoDeO/total = 0.013), GroundingDINO maintains better
performance. This better preservation of accuracy, even before introducing ad-
ditional language guidance, suggests that GroundingDINO may possess stronger
inherent generalisability, making the results especially relevant in discussions of
clinical deployment. Nevertheless, the sizeable performance drop underscores
that open-set detection remains a significant challenge. Consequently, with mul-
timodal models like GroundingDINOQ, it is natural to consider whether language
guidance can be used to mitigate this decline.

4.2 Enhanced Language Guidance

The results for the different GroundingDINO models using the three different
prompt types are shown in Figure [5]

Organ-specific prompts. Organ-specific prompts appear to have no conclusive
overall impact on performance. While a slight overall improvement is observed
when all organs are included during training, the small magnitude of this effect
combined with its absence when mediastinal lesions are excluded means that its
significance cannot be definitively established. However, improvements in per-
formance for colon (54 % RoDeO /total), mediastinal (87 % RoDeO/total), and
abdominal (30 % RoDeO /total) lesions were observed when all lesion types were
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Fig. 5. Radar charts comparing the performance of GroundingDINO models stratified
by organ, with the models differing by the choice of text prompt used. Average Precision
and RoDeO/total metrics are shown for GroundingDINO models that saw all lesion
types (top) and all except mediastinal lesions (bottom) from the ULS23 dataset during
training. Prompts of ‘lesion” (green), “lorgan] lesion” (blue) and the addition of visual
descriptions (red) were all tested.

included during training. The substantial changes in performance for these le-
sion types are likely due to them having the fewest training samples (Figure )
With fewer samples, their influence during training is more easily overshadowed
by other lesion types. By specifying the organ, competition between lesion classes
is reduced, allowing the model to better learn visual features characteristic of
the specified lesion type. A similar performance improvement is observed for
colon lesions when mediastinal lesions were excluded from training. However, no
improvement is seen for mediastinal or abdominal lesions. The lack of change
for mediastinal lesions is expected, as the model had no opportunity to learn
their specific features. In contrast, the absence of improvement for abdominal
lesions suggests that their performance was suppressed only by the presence of
mediastinal lesions during training despite mediastinal lesions constituting the
smallest fraction of the dataset.

Descriptive prompts. After fine-tuning the models using visual descriptions
for lymph node lesions during training, performance on lymph node lesions
dropped to zero. In the test set, none of the model’s predictions for lymph node
lesions exceeded a confidence score of 0.05, which explains why RoDeO/total
= 0. To better understand this behaviour, the outputs of GroundingDINO were
analysed in more detail. During inference, GroundingDINO generates 900 (box,
caption) pairs. For each pair, an activation score is computed for every token in
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Fig. 6. Token-level activation maps from GroundingDINO for a lymph node lesion
sample from the training and testing sets, showing uniformly distributed attention
across tokens.

the text input, and tokens with scores above a certain threshold are selected to
form the caption. Examples of the mean activation scores across the 900 pre-
dictions for a sample from training and testing sets are shown in Figure [6] The
activation across the tokens is highly uniform. Excluding the start and end mark-
ers, the maximum difference between the lowest and highest activation scores
for a single prediction is 0.0001 in the training sample and 0.00004 in the testing
sample. During training, GroundingDINO aims to align text and image features
so that semantic information can guide detection. However, the observed unifor-
mity suggests overfitting, specifically, the model appears to align the entire text
prompt with the image features, rather than understanding and leveraging the
semantics of the prompt. As a result, when given the prompt "lymph node le-
sion” during testing, it fails to relate this to the visual descriptions used during
training and is unable to generate accurate predictions. This form of overfit-
ting primarily affects performance when the training and testing prompts differ,
which explains why it did not pose a problem in earlier experiments. Since the
previous models were fine-tuned using descriptive prompts, the drop in lymph
node performance to zero suggests that the initial learning rate may have been
too high. While a lower learning rate might have helped the model retain its
understanding of a lymph node lesion, it likely would not have resolved the issue
of uniform activation, as this stems from the underlying mechanism by which
GroundingDINO learns. Instead, modifications to the loss function, text encoder,
or further prompt engineering are proposed as possible responses.

5 Conclusions

GroundingDINO was found to outperform the YOLOv11n model when prompted
with the term “lesion”, highlighting its suitability for research into medical
anomaly detection. Incorporating organ-specific information into text prompts
significantly improves closed-set performance on rare lesion classes, emphasis-
ing the importance of semantic conditioning. Although overall and open-set
performance remain unchanged, these findings suggest clear opportunities for
improvement. Using detailed visual lesion descriptions during training revealed
overfitting issues that hinder semantic generalization, underscoring the need to
refine training methods to better leverage language-based cues.
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