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Abstract. Open-world anomaly detection is a task in which machine
learning is well-positioned to advance cancer diagnosis, potentially lead-
ing to significantly improved survival rates. For a model to be used in
clinical settings, it must demonstrate high performance, robustness, and
generalisability. A common approach to achieving high generalisability
is to incorporate information from broader representations within the
model. In this work, we investigate the application of GroundingDINO
to medical anomaly detection and localisation, evaluating both its overall
performance and the influence of text prompts. We find that Ground-
ingDINO outperforms the YOLOv11n model even with minimal use of
contextual information. When exploring methods to introduce more con-
textual information, we observe that specifying the organ within the
prompt improves closed-set performance on rarer lesion classes. However,
adding visual descriptions of lesions during training leads to a significant
performance drop on those subsets, indicating that the model memorises
prompt-image pairs rather than learning meaningful semantic relation-
ships. Our work highlights a critical limitation of GroundingDINO in
medical imaging and proposes targeted modifications to the model ar-
chitecture or training strategies as promising directions for utilising richer
semantic prompts to improve anomaly detection.

Keywords: Anomaly Detection · GroundingDINO · Prompt Engineer-
ing · Medical Imaging · Lesion Detection · Cancer Research
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1 Introduction

Early detection is critical to improving survival outcomes for cancer, which ac-
counts for nearly 1 in 6 deaths globally [16][14]. To aid in diagnosis, medical
imaging technologies such as Computed Tomography (CT) and Magnetic Res-
onance Imaging (MRI) provide detailed 3D anatomical views. However, auto-
mated identification of open-world anomalies in these scans has not kept pace
with advancements in imaging technologies, as interpreting the resulting im-
ages remains highly challenging [17]. For example, studies have found that ap-
proximately one-third of diagnoses are often missed across various diagnostic
pathways [8][3]. Therefore, research into computer-aided cancer detection is in-
valuable not only for improving cancer survival rates but also for alleviating
the growing burden on healthcare systems. As such, significant effort has been
dedicated to developing machine learning models for medical anomaly detection
(AD). The appearance of cancer varies widely across types, subtypes, and indi-
vidual patients, making robust open-set performance challenging [7][20]. How-
ever, for a model to be clinically viable, it must be capable of detecting both
common and rare, or previously unseen, pathologies. A common strategy for im-
proving generalisability is to incorporate contextual information into the model.
For example, the GroundingDINO model achieves state-of-the-art open-set per-
formance in the natural imaging domain by introducing language prompts into a
closed-set detector [11]. Despite such successes, however, these methods remain
relatively underexplored in the medical domain. Contributions. We present the
first investigation of GroundingDINO for medical anomaly detection, focusing on
lesion detection in CT scans of the chest–abdomen–pelvis region, and compare
its performance with the state-of-the-art YOLOv11n model. Through a series
of experiments using varied text prompts, we examine the impact of prompt
design on both closed-set and open-set performance, exploring how semantic in-
formation can enhance medical AD. Our ultimate goal is to lay the groundwork
for future integration of text and image modalities to achieve state-of-the-art
performance with real clinical applicability.

2 Methodology

Background. GroundingDINO is a transformer-based vision–language model
originally trained for object detection on natural images. Its primary goal is
to generalise to unseen object classes by integrating semantic information via
language into the closed-set detector DINO [21], thereby enabling open-set ca-
pabilities. The model’s architecture includes three cross-modality fusion points,
which the authors argue provide stronger language guidance during detection
compared to models with fewer fusion locations [11]. Open-set detection is par-
ticularly relevant in medical imaging tasks such as cancer screening, where rare
and previously unseen lesions may be encountered. Recent work has highlighted
the importance of integrating semantic priors to improve detection generalisa-
tion in these settings [2]. Recent advances in Large Language Models (LLMs),
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Fig. 1. Detection pipeline used during experiments, highlighting the inclusion of the
GroundingDINO architecture. A single slice is normalised and a text prompt gener-
ated, before being passed to GroundingDINO to perform the detection. The locations
of cross-modality fusion are highlighted: cross-attention blocks within the feature en-
hancer and decoder, and language guidance of query selection. Multiple methods for
prompt generation were explored, so it is shown generally.

such as Gemini [18], BiomedGPT [13], and ChatGPT-4 [1], have demonstrated
strong capabilities in generating clinically rich, context-aware descriptions. These
models provide a powerful means of constructing descriptive prompts to guide
open-set detection models in medical applications [12]. Despite its comparatively
modest size and training data, GroundingDINO achieves state-of-the-art perfor-
mance on open-set detection benchmarks, outperforming larger models such as
GLIP [9] in the COCO zero-shot setting [10]. Its utility in medical contexts has
already been demonstrated in the BiomedParse study [22], where it was used to
propose bounding boxes without additional training.
Model Architecture. The pipeline used in our experiments is illustrated in
Figure 1. Since GroundingDINO is limited to 2D detection, a single slice must
first be selected from the scan. The slice is then normalised to improve consis-
tency across samples. Before being passed to GroundingDINO, a text prompt
must also be generated. As the method of prompt generation varies across our
experiments, a general representation is shown in Figure 1. When relevant, the
images are used post-normalisation to generate the prompts. The prompt and
normalised image are then passed to the GroundingDINO architecture, where
the text and image backbones extract features from the inputs. The feature en-
hancer then updates the features, making use of text-to-image and image-to-text
cross-attention. The updated text features then guide the selection of queries to
be used in the decoder, where text and image cross-attention are used to gener-
ate the model outputs. For additional details, we refer the reader to the original
work by Liu et al. [11]
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Fig. 2. Breakdown of the ULS23 Dataset. a) Number of slices from scans containing
(no) lesions in each organ. b) Distribution of mask sizes by organ, with samples outside
1.5 times the IQR from the nearest quartile shown as outliers. c) Number of patients
with scans of lesions in each organ.

3 Evaluation

Datasets. For training and evaluation, we used the Universal Lesion Segmenta-
tion Challenge 2023 (ULS23) dataset [5], comprising chest–abdomen–pelvic CT
scans with segmentation mask annotations. The dataset contains 6, 382 lesions
from 2, 627 patients across various organs (Figure 2). Each scan is cropped to a
volume of interest (VOI) of 256×256×128 voxels, centred on a single annotated
lesion. Although lesion centring introduces bias, this controlled setup establishes
baseline performance. Extending to whole-volume detection is required for clin-
ical use and can be addressed in future translation work.
Pre-processing. Annotations of multiple lesions from the same scan were com-
bined into a single annotation without merging adjacent lesions, enabling de-
tection use. Segmentation masks were converted to bounding boxes for Ground-
ingDINO. Scans were normalised first. Due to wide variation in Hounsfield units
(HU) across lesions, fixed windowing was unsuitable. Following the ULS23 base-
line, Z-score normalisation was applied per slice. Visibility—measured as the
absolute difference between median lesion and surrounding intensities divided
by local standard deviation—improved for all lesion types except those in bone,
indicating potential bias. The dataset was split into 80 % training (274,617
slices), 10 % validation (33,995 slices), and 10 % testing (36,230 slices), with
organ-specific and patient-level separation to prevent data leakage.
Experiments. Three experiment types were conducted with models trained
on prompts of varying detail. The first used a simple prompt, “lesion”, for all
scans, providing minimal language guidance and serving as a baseline. Equivalent
YOLOv11n models [6], which lack language input, were trained for comparison,
mainly relevant to this first experiment. The second experiment specified the
organ in the prompt (e.g., “[organ] lesion”). The third fine-tuned these models
using visual descriptions generated by Gemini (‘gemini-2.5-pro-preview-03-25’
model) [18], focusing on lymph node lesions due to their moderate sample size
and lower initial performance. All three experiments were run both with all lesion
types and with mediastinal lesions (4, 879 training slices) excluded, as they had
the fewest samples, minimising training set reduction. Testing on excluded me-
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Fig. 3. Radar charts comparing the performance of GroundingDINO and YOLO strat-
ified by organ, with the prompt of “lesion” given to GroundingDINO. Average Precision
and RoDeO/total metrics are shown for GroundingDINO (green) and YOLO (blue)
models that saw all lesion types (top) and all except mediastinal lesions (bottom) from
the ULS23 dataset during training.

diastinal lesions evaluates open-set performance. Since data consists of cropped
CT scans, each shows only a small anatomical region.
Training Strategy. To train GroundingDINO, the Open-GroundingDINO train-
ing code was used with default model hyperparameters and data augmenta-
tions [23]. The released GroundingDINO model with the Swin-T image backbone
was used as the initialization, and bert-base-uncased [4] from Hugging Face [19]
served as the text backbone. For YOLO training, the default implementation
from the Ultralytics Python package was used. All models were trained for 25
epochs on NVIDIA A40 and L40S GPUs. To evaluate model performance, we
used the Average Precision (AP) and RoDeO [15] metrics. For RoDeO, a bound-
ing box threshold of 0.2 was selected based on sweeps over the validation set.

4 Results

4.1 Minimal Language Guidance

The results for the GroundingDINO models using the prompt “lesion” for all
scans, along with the corresponding YOLO models, are shown in Figure 3.
GroundingDINO performs as well as or better than YOLO across all organs.
GroundingDINO’s superior performance using only simple prompts indicates
that semantic alignment, not present in YOLO, offers tangible benefits inde-
pendent of prompt complexity, highlighting the model’s potential suitability for

https://github.com/IDEA-Research/GroundingDINO/releases/tag/v0.1.0-alpha
https://docs.ultralytics.com/quickstart/
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Fig. 4. Inference examples from the GroundingDINO model trained on lesions across
all organs in the ULS23 dataset, using “lesion” as the text prompt. Ground truth
annotations (top, red boxes) and model predictions (bottom, blue boxes) are shown
for six organ sites.

medical anomaly detection and supporting its use in research such as ours. In-
ference examples from the GroundingDINO model trained on all lesion types
are shown in Figure 4, illustrating both successful detections and failure cases.
Figure 4c highlights ambiguities in lesion definition, bounding an internal sub-
structure within the ground truth. Figure 4d contains false positives, typically
observed near anatomical features resembling lesion morphology (e.g., vessels
or bones). The issue of false positives is noted in the original GroundingDINO
paper [11]. The persistence of these issues with minimal prompts points to the
need for more precise annotations and improved semantic grounding. As ex-
pected, after removing mediastinal lesions from training, performance on me-
diastinal lesions drops significantly. However, while YOLO’s performance falls
to near zero (e.g., RoDeO/total = 0.013), GroundingDINO maintains better
performance. This better preservation of accuracy, even before introducing ad-
ditional language guidance, suggests stronger inherent generalisability, making
results especially relevant in discussions of clinical deployment. Nevertheless, the
sizeable performance drop underscores that open-set detection remains a signif-
icant challenge. Consequently, with multimodal models like GroundingDINO, it
is natural to consider whether language guidance can mitigate this decline.

4.2 Enhanced Language Guidance

The results for the different GroundingDINO models using the three different
prompt types are shown in Figure 5.
Organ-specific prompts. Organ-specific prompts show no definitive overall ef-
fect on performance. A slight improvement is seen when all organs are included
in training, but its small magnitude and disappearance when mediastinal lesions
are excluded make its significance unclear. Notably, performance improves for
colon (54 % RoDeO/total), mediastinal (87 %), and abdominal (30 %) lesions
when all lesion types are included. These gains likely result from limited training
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Fig. 5. Radar charts comparing the performance of GroundingDINO models stratified
by organ, with the models differing by the choice of text prompt used. Average Precision
and RoDeO/total metrics are shown for GroundingDINO models that saw all lesion
types (top) and all except mediastinal lesions (bottom) from the ULS23 dataset during
training. Prompts of “lesion” (green), “[organ] lesion” (blue) and the addition of visual
descriptions (red) were all tested.

data for these lesion types (Figure 2a), making them more susceptible to being
overshadowed. Organ-specific prompts reduce interclass competition, helping the
model learn relevant visual features. A similar improvement is observed for colon
lesions when mediastinal lesions are excluded. However, no gains are seen for me-
diastinal or abdominal lesions. For mediastinal lesions, this is expected, as the
model had no exposure to them. For abdominal lesions, the absence of improve-
ment suggests their performance was suppressed specifically by the presence of
mediastinal lesions, despite the latter being the smallest class.
Descriptive prompts. After fine-tuning models using visual descriptions for
lymph node lesions during training, performance on lymph node lesions dropped
to zero. In the test set, none of the model’s predictions for lymph node lesions
exceeded a confidence score of 0.05, explaining why RoDeO/total = 0. To better
understand this behaviour, the model outputs were analysed in more detail.
During inference, GroundingDINO generates 900 (box, caption) pairs. For each
pair, an activation score is computed for every token in the text input, and tokens
with scores above a threshold form the caption. Examples of the mean activation
scores across the 900 predictions for a training and testing sample are shown
in Figure 6. Activation is highly uniform across tokens. Excluding start and
end markers, the maximum activation difference per prediction is just 0.0001 in
training and 0.00004 in testing. GroundingDINO is meant to align text and image
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Fig. 6. Token-level activation maps from GroundingDINO for a lymph node lesion
sample from the training and testing sets, showing uniformly distributed attention
across tokens.

features so semantics guide detection, but the uniformity suggests overfitting: the
model aligns the entire prompt with image features rather than understanding
it. As a result, it fails to link the test prompt “lymph node lesion” to relevant
training visuals, leading to inaccurate predictions, especially when training and
test prompts differ, which earlier experiments did not reveal. The drop in lymph
node performance to zero, despite previous success with descriptive prompts,
suggests the initial learning rate was too high. A lower rate might have preserved
some understanding but would not fix the uniform activation, which stems from
how GroundingDINO learns. Addressing this may require changes to the loss
function, text encoder, or prompt engineering.

5 Conclusions

GroundingDINO was found to outperform the YOLOv11n model when prompted
with the term “lesion”, highlighting its suitability for research into medical
anomaly detection. Incorporating organ-specific information into text prompts
significantly improves closed-set performance on rare lesion classes, emphasis-
ing the importance of semantic conditioning. Although overall and open-set
performance remain unchanged, these findings suggest clear opportunities for
improvement. Using detailed visual lesion descriptions during training revealed
overfitting issues that hinder semantic generalization, underscoring the need to
refine training methods to better leverage language-based cues.
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