
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of
Optimization Formulations

Anonymous Authors1

Abstract
A fundamental problem in combinatorial opti-
mization is identifying equivalent formulations.
Despite the growing need for automated equiva-
lence checks—driven, for example, by optimiza-
tion copilots, which generate problem formula-
tions from natural language descriptions—current
approaches rely on simple heuristics that fail to re-
liably check formulation equivalence. Inspired by
Karp reductions, in this work we introduce Quasi-
Karp equivalence, a formal criterion for determin-
ing when two optimization formulations are equiv-
alent based on the existence of a mapping between
their decision variables. We propose EquivaMap,
a framework that leverages large language mod-
els to automatically discover such mappings for
scalable, reliable equivalence checking, with a ver-
ification stage that ensures mapped solutions pre-
serve feasibility and optimality without additional
solver calls. To evaluate our approach, we con-
struct EquivaFormulation, the first open-source
dataset of equivalent optimization formulations,
generated by applying transformations such as
adding slack variables or valid inequalities to ex-
isting formulations. Empirically, EquivaMap sig-
nificantly outperforms existing methods, achiev-
ing substantial improvements in correctly identi-
fying formulation equivalence.1

1. Introduction
Combinatorial optimization lies at the heart of many of
today’s most pressing challenges in operations research,
theoretical computer science, and machine learning. Its ap-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1The code and datasets are available at
https://anonymous.4open.science/r/
EquivaFormulation-71D4.

plications range from classic problems such as shortest path
(Korte & Vygen, 2012) and maximum flow (Schrijver, 1983)
to modern challenges in neural architecture search (Elsken
et al., 2019) and hyperparameter optimization (Khadka et al.,
2024).

A fundamental problem in combinatorial optimization is
identifying equivalent formulations. Historically, estab-
lishing equivalence has played a pivotal role in unifying
problem-solving techniques and advancing theoretical char-
acterizations of a problem’s computational complexity. In
theoretical computer science, equivalence between prob-
lems underpins the concept of NP-completeness (Cook,
1971; Karp, 1972), which unifies many seemingly distinct
problems—such as SAT, Vertex Cover, and Subset Sum—
into the same equivalence class. This unification enables
researchers to prioritize the development of algorithms for
canonical problems while ensuring their applicability across
equivalent problems. Similarly, in applied fields such as
network design (Kan, 1978) and semiconductor scheduling
(Fang et al., 2023), recognizing equivalence between opti-
mization problems has historically facilitated the transfer of
algorithms, reducing duplication of effort.

The advent of large language models (LLMs) has exposed
a new frontier in combinatorial optimization, introducing
opportunities to automate problem formulation, while also
presenting new challenges—chief among them, the need for
reliable equivalence checking. Recent research has focused
on developing optimization copilots, systems that automate
the translation of natural language descriptions into formal
optimization formulations, particularly for mixed-integer
linear programming (MILP) problems (Ramamonjison et al.,
2023; Xiao et al., 2023; AhmadiTeshnizi et al., 2024; As-
torga et al., 2024). These advancements hold significant po-
tential for democratizing access to optimization techniques,
broadening the reach of powerful tools for better decision-
making (Wasserkrug et al., 2024). However, the widespread
adoption of optimization copilots hinges on reliable evalua-
tion mechanisms capable of verifying whether the generated
formulations are equivalent to their ground-truth counter-
parts. Moreover, automatic formulation equivalence check-
ing is critical to improving optimization copilots by serving
as an intermediate step, facilitating more efficient formula-

1

https://anonymous.4open.science/r/EquivaFormulation-71D4
https://anonymous.4open.science/r/EquivaFormulation-71D4


055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

tion search and refinement (Astorga et al., 2024).

Despite the importance of equivalence checking in combi-
natorial optimization, existing automatic approaches rely
heavily on heuristics (e.g., comparing optimal objective val-
ues) and lack a precise, universally accepted definition of
what constitutes formulation equivalence. Formal methods
such as Karp reductions (Karp, 1972) offer valuable theoret-
ical insights into problem equivalence but were not designed
for modern automated settings, often requiring considerable
human time and expertise to construct.

Towards precise and reliable equivalence checking, we pro-
pose a formal definition of formulation equivalence—Quasi-
Karp Equivalence—grounded in the principles of Karp re-
ductions. Quasi-Karp Equivalence determines whether two
formulations are equivalent by checking for the existence
of a mapping between their decision variables. We pro-
pose EquivaMap, an approach that automates equivalence
checking by using LLMs to identify mappings between for-
mulations, followed by a lightweight verification step to
ensure these mappings preserve optimality and feasibility
without additional MILP solver calls. Grounded in a precise
definition of formulation equivalence, EquivaMap allows
for automatic equivalence verification for optimization for-
mulations.

Our contributions can be summarized as follows:

• We identify pitfalls of existing equivalence checking meth-
ods (Section 3.1).

• We propose Quasi-Karp equivalence as a formalism for
defining when two optimization formulations are equiv-
alent through the existence of a mapping between their
decision variables (Section 3.2) and present EquivaMap,
a scalable method that uses LLMs to discover candidate
mappings, paired with a separate verification step to en-
sure correctness (Section 3.3).

• To evaluate the performance of equivalence-checking
methods, we introduce, to the best of our knowledge, the
first dataset—EquivaFormulation—that documents both
equivalent formulations and the transformation between
them (Section 4.1). Empirically, we show that EquivaMap
outperforms existing methods across various equivalent
transformations (Section 4.2).

2. Background and Related Work
Our work connects important lines of research on combi-
natorial optimization (especially MILPs), LLMs for MILP
modeling, and automatic equivalence-checking methods for
optimization formulations.

2.1. Combinatorial Optimization and MILPs

Combinatorial optimization (CO) broadly deals with find-
ing an optimal object from a finite (or countably infinite)
set of feasible candidates. Such problems arise in diverse
fields, including operations research, computer science, and
engineering, where discrete variables model decisions in
practical scenarios such as routing, scheduling, or allocation
of limited resources (Papadimitriou & Steiglitz, 1998).

A foundational tool for combinatorial optimization is mixed-
integer linear programming (MILP), formulated as:

min
x∈Rp×Zn−p

c⊤x

subject to Ax ◦ b, ℓ ≤ x ≤ u,
(1)

where x is the vector of decision variables, c is the cost
vector, A is the constraint coefficient matrix, and b is the
vector of constraint bounds. The notation Ax ◦ b represents
a system of linear constraints, where ◦ denotes relational
operators from the set {≤,≥,=}. The variables x are parti-
tioned into p continuous variables and n−p integer variables.
Let x∗ denote an optimal solution to (1), and let z∗ = c⊤x∗

be the corresponding optimal objective value. If all decision
variables are continuous (p = n), the problem is a linear
program (LP). MILPs capture many prominent combinato-
rial problems such as the traveling salesman problem (TSP)
(Cook et al., 2011), knapsack problem (Pisinger & Toth,
1998), and network design problems (Kan, 1978).

Many fundamental CO problems—including TSP and
Knapsack—are known to be NP-hard. A key contribution
to the theory of NP-completeness was provided by Karp
(1972), who demonstrated that a number of widely stud-
ied problems are mutually reducible in polynomial time
(often referred to as “Karp reductions”). These reductions
establish deep structural connections among CO problems,
showing that if a polynomial-time algorithm exists for one,
it can be systematically adapted to solve many others.

2.2. Language Models for MILP Modeling

The use of language models for MILP modeling has sparked
considerable interest in the AI-for-OR community. The
NL4Opt competition (Ramamonjison et al., 2023) focused
on using natural language processing (NLP) methods to
formulate optimization problems based on their text descrip-
tions. More recently, with the advent of LLMs, a number
of LLM-based optimization copilots aim to automate MILP
modeling (Mostajabdaveh et al., 2024; Ahmed & Choud-
hury, 2024; Li et al., 2023b; Yu & Liu, 2024; Huang et al.,
2024a; Kadıoğlu et al., 2024; Yang et al., 2024). Both the
Chain-of-Experts (Xiao et al., 2023) and OptiMUS (Ahma-
diTeshnizi et al., 2024) frameworks designed LLM-based
multi-agent systems to automate the modeling of complex
optimization problems by leveraging the reasoning capabili-

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

ties of the LLMs. Tang et al. (2024) further demonstrated
the potential of LLMs by fine-tuning open-source models
with synthetic data tailored for modeling optimization prob-
lems, achieving significant performance improvements over
baseline methods. Building on these capabilities, LLM-
powered chatbots have been used to allow users to interact
with optimization models in a number of contexts includ-
ing supply chain management (Li et al., 2023a), meeting
scheduling (Lawless et al., 2024b), debugging infeasible
models (Chen et al., 2023), and improving solver configura-
tions (Lawless et al., 2024a). These advancements highlight
why LLMs are particularly suitable for MILP modeling:
their ability to process and generate structured information
from natural language aligns well with the requirements of
optimization problem formulation. The rapid development
of optimization copilots underscores the need for reliable,
scalable evaluation techniques.

2.3. Existing Automatic Equivalence Checking Methods

The central task of evaluating optimization copilots is au-
tomatically checking whether the generated formulation
is equivalent to a ground-truth correct one. The earliest
method used in the NL4OPT benchmark (Ramamonjison
et al., 2023) for evaluating formulation equivalence is canon-
ical accuracy, which looks at direct equivalence between
declarations (e.g., objective, constraints) between a refer-
ence correct formulation and a generated formulation. This
method is sensitive to permutations of the order of the dec-
larations in a formulation and fails when multiple valid for-
mulations exist for the same problem. The method used in
benchmarks such as NLP4LP (AhmadiTeshnizi et al., 2024),
MAMO (Huang et al., 2024b), and IndustryOR (Tang et al.,
2024) is execution accuracy, which evaluates whether two
MILP formulations are equivalent by solving them (using
a MILP solver such as Gurobi) and checking if they have
the same optimal objective value. Execution accuracy is
sensitive to variable re-scaling, which can create inconsisten-
cies even when the formulations are functionally equivalent.
To address these issues, recent approaches utilize Graph
Edit Distance (Xing et al., 2024) and a modified Weisfeiler-
Lehman (WL) test (Wang et al., 2024) to measure structural
similarity between the generated and reference formulations.
These methods offer insights into equivalence beyond the
optimal objective value but have limitations. They are par-
ticularly sensitive to structural modifications, such as adding
cutting planes, which keep the formulation equivalent but
change its structural information. Beyond these methods,
Steever et al. (2022) proposed an image-based approach to
detect structural similarity among large-scale MILPs.

3. Methodology
This section introduces Quasi-Karp Equivalance and
EquivaMap, our method for leveraging LLMs to automati-

cally check such equivalence. In the general setup, we have
two formulations α and α′ corresponding to the same (feasi-
ble) optimization problem P , with optimal objective values
z∗ and z′∗ respectively. For example, Figure 1 presents two
formulations α and α′ of an optimization problem P — the
stable set problem. Our method aims to evaluate the equiva-
lence of α and α′ for a given instantiation of the problem.
In Figure 1, an instantiation of P would be defined by a
specific input graph.

3.1. Pitfalls of Existing Equivalence Checking Methods

We discuss existing methods for evaluating formulation
equivalence, including canonical accuracy, execution ac-
curacy, and the WL-test, and exhibit settings where these
methods fail.

Canonical accuracy is based on matching declarations be-
tween predicted and reference programs, where a declara-
tion represents either an optimization objective or a con-
straint (Ramamonjison et al., 2023).
Definition 3.1 (Canonical Accuracy). Given a reference
declaration d (objective or constraint) and a generated dec-
laration d̂, they are said to be matched if d = d̂. Let D and
D̂ denote the sets of reference and generated declarations,
respectively. A False Positive (FP) is a generated declara-
tion d̂ that is unmatched, while a False Negative (FN) is a
reference declaration d that is unmatched. The canonical
accuracy is defined as:

1− min(|FP|+ |FN|, |D|)
|D|

where any score under 100% indicates that the formulations
are not equivalent.

Canonical accuracy imposes a strong assumption that gen-
erated MILPs must adhere to the same variable order as
the ground-truth MILP. As illustrated in Figure 1, if the
constraints in α are permuted differently from those in α′,
they are erroneously treated as nonequivalent, despite being
functionally identical. More broadly, canonical accuracy
fails in cases where the two formulations differ based on
variable or constraint permutations.

Execution accuracy captures whether two optimization
problems have the same optimal objective value (Ahma-
diTeshnizi et al., 2024).
Definition 3.2 (Execution Accuracy). α and α′ are consid-
ered equivalent if z∗ = z′∗.

Execution accuracy has a clear limitation: it is not robust
to rescaling, a common transformation in MILPs that may
simply reflect a change in units. For example, in Figure 1,
the objective function in α′ is rescaled, which would lead
execution accuracy to incorrectly classify α and α′ as non-
equivalent.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

Figure 1: A classic stable set problem, where the two formulations correspond to the same problem description. Formulation
α uses the standard formulation, while formulation α′ rescales the objective function and adds cutting planes based on
cliques (where K denotes the set of cliques in G). LLMs are used to find the mapping function f that maps the variables of
α′ into the variable space of α. An example mapping would be the identity function f(yi) = yi.

Previous studies have shown that MILPs can be represented
as bipartite graphs (Chen et al., 2023a;b; Khalil et al., 2017;
Gasse et al., 2019), providing a foundation for defining
equivalence using graph-isomorphism based approaches
such as the WL-test. To construct this bipartite graph, a
node is added for each variable and each constraint of the
graph. An edge connects a variable node to a constraint
node if that variable has a non-zero coefficient in the cor-
responding constraint. The nodes and edges are endowed
with various real-valued attributes describing the MILP (for
example, a variable node’s attributes will include its coeffi-
cient in the objective function). The WL-test tests whether
two graphs are isomorphic.

Definition 3.3 (WL-test (Douglas, 2011)). Let G = (V,E)
and H = (V ′, E′) be two graphs. The Weisfeiler-Lehman
test is an iterative label refinement procedure used to deter-
mine whether G and H are distinguishable. Initially, each
vertex v ∈ V is assigned a label ℓ0(v). At each iteration t,
the label of each vertex v is updated as follows:

ℓt+1(v) = hash (ℓt(v), {ℓt(u) | u ∈ N (v)})

where N (v) denotes the set of neighbors of v, and the func-
tion hash(·) provides a unique encoding neighboring nodes’
labels. The process continues iteratively until convergence.
To compare graphs, the WL-test computes the multisets of
final labels for G and H . If these multisets differ at any
iteration, the graphs are determined to be non-isomorphic,
which indicates that they are not equivalent.

Modifications of the WL-test were proposed by Wang et al.
(2024) to evaluate formulation equivalence. Xing et al.

(2024) also introduced a related method based on graph-
edit distance, which is a softer version of the WL-test. Since
graph-based methods evaluate equivalence after transform-
ing formulations α and α′ into bipartite graphs, they will
treat the two formulations as non-equivalent if structural
modifications change the number of variables or constraints.
Such modifications are extremely common (and desired)
in MILPs, as techniques like adding cutting planes, refor-
mulating constraints, or introducing auxiliary variables are
frequently used to improve solver efficiency and tighten
linear relaxations. For example, the second formulation in
Figure 1 includes clique cutting planes:∑

i∈k

yi ≤ 1 ∀k ∈ K

for cliques k ∈ K in the graph. These cutting planes are
well-known to strengthen the linear relaxation of the stable
set MILP formulation (Conforti et al., 2014).

3.2. MILP Equivalence Based on Karp Reduction

Towards a more formal notion of MILP formulation equiva-
lence, we introduce a new definition inspired by a classical
tool from complexity theory called a Karp Reduction:
Definition 3.4 (Karp Reduction). Two decision problems
P,Q are said to be equivalent if there exists a function f
that maps arbitrary instances of P to Q such that:

• If p is a yes-instance of P , then f(p) is a yes-instance of
Q,

• If p is a no-instance of P , then f(p) is a no-instance ofQ,
and

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

• f can be computed in polynomial time.

A Karp reduction can be used to show that two decision
problems are equivalent (i.e., a solution to one can be used
to find a solution to the other). These reductions hold for
arbitrary instances of the two decision problems, but we
leverage a similar approach to establish the equivalence
between two specific formulations of an MILP problem in-
stance. Consider two optimization problem formulations α,
α′ that correspond to the same optimization problem P . Our
goal is to formally check that an optimal solution to one for-
mulation can be used to generate an optimal solution to the
other formulation for a specific instantiation of the problem.
Unlike traditional Karp reductions, which define mappings
for arbitrary instances, we focus on instance-specific map-
pings. Moreover, our approach maps between solutions of
the optimization problem rather than the instance itself.

We also relax the condition that a no-instance (which cor-
responds to an infeasible or suboptimal solution) under
one formulation needs to be mapped to a no-instance of
the other. This distinction is important in settings where
a MILP formulation may exclude some, but not all, opti-
mal solutions to improve efficiency. For example, adding
symmetry-breaking constraints to an optimization model
is a common modeling practice that removes functionally
equivalent solutions. With these distinctions in mind, we for-
malize a new notion of equivalence for MILP formulations
which we call Quasi-Karp Equivalence:
Definition 3.5 (Quasi-Karp Equivalence). Suppose α and
α′ are two optimization problems over Rd and Rd′

, re-
spectively. We say α′ is Quasi-Karp equivalent to α if
there exists an algorithm A(α, α′) that produces a mapping
f : Rd′ → Rd such that:

• If x∗ is an optimal solution to α′, then f(x∗) is an optimal
solution to α,

• f can be computed in polynomial time, and

• A(α, α′) runs in polynomial time for all α, α′.

Note that the defintion of Quasi-Karp equivalence is direc-
tional, meaning that α′ being Quasi-Karp equivalent to α
does not necessarily imply that α is Quasi-Karp equivalent
to α′. Also note there is a distinction between the second
and third point in definition 3.5: it is possible forA to run in
polynomial time (e.g., a program implementing f ), but for
f itself to require super-polynomial time to evaluate. For
example, A could construct a branch-and-bound solver as
f -in which case A runs in polynomial time, but f may not.

In Figure 1, an example of one such mapping f would be
xi = yi,∀i ∈ V , which is a linear function. Intuitively,
the notion of Quasi-Karp Equivalence is meaningful only
when the optimization problem is NP-hard and both opti-
mization formulations admit feasible solutions with finite

Algorithm 1 EquivaMap

1: Input: Two optimization formulations α, α′ with objec-
tive min c⊤x, min c′⊤x′ respectively. A solver S that
finds an optimal solution x∗ for α and x′∗ for α′.

2: Output: A Boolean value indicating whether α and α′

are Quasi-Karp equivalent.
3: # {Call an LLM with instance-dependent prompt to find

a mapping}
4: f ← A(α, α′)
5: # {Obtain an optimal solution of α′ using solver S}
6: x′∗ ← S(α′)
7: # {Map the solution x′∗ to a candidate solution in α}
8: x̂← f(x′∗)
9: # {Check if x̂ is optimal and feasible for α}

10: if c⊤x̂ = c⊤x∗ and x̂ feasible for α then
11: return True
12: else
13: return False
14: end if

optimal values. If both formulations are infeasible, then nei-
ther has a valid solution, making any comparison between
them trivial and uninformative. Declaring two infeasible
problems equivalent does not provide any insight into their
structural or computational properties. Likewise, if one for-
mulation is infeasible while the other is feasible, then no
valid mapping f can transform an optimal solution of one
into the other. Finally, if a formulation is unbounded, then it
lacks a finite optimal solution, so no single “optimal” point
can be mapped from one formulation to another. Thus, we
use Quasi-Karp Equivalence to check equivalence between
feasible, bounded formulations.

3.3. EquivaMap: LLM-Based Mapping Discovery with
Lightweight Verification

To determine the mapping between α and α′, we propose
EquivaMap, a framework that leverages LLMs as the map-
finding algorithm A from Definition 3.5. Specifically, given
two formulations α and α′ corresponding to a given in-
stance of the problem P , the algorithmA returns a mapping
function f that aligns their solutions: f = A(α, α′).

In EquivaMap (Algorithm 1), we first use the LLM A to
find the mapping f for the pair of formulations (α, α′) using
an instance-specific prompt (Appendix A). Using a solver S,
we compute an optimal solution x′∗ to α′. With f , we obtain
a candidate solution x̂ = f(x∗) for α. We verify whether
x̂ is an optimal solution of α by substituting x̂ into α and
verifying that x̂ is feasible and optimal (i.e., c⊤x̂ = c⊤x∗).

A key component of EquivaMap is the instance-specific
prompt, which guides the LLM in finding the mapping func-
tion f . The prompt includes a structured description of

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

Figure 2: Workflow of EquivaMap. The method evaluates equivalence between two formulations (α and α′) of the same
optimization problem instance P . An LLM generates a mapping function (f ) to map between the variable spaces of α and
α′. The mappings are applied to transform the optimal solution of α′ into a candidate solution in α. A verifier assesses
whether the candidate solution is feasible and optimal for α. If the verification succeeds, α and α′ are deemed equivalent;
otherwise, they are classified as not equivalent.

each variable in the formulation (α), including its textual
description, the constraints in which it appears, and whether
it appears in the objective function. Note that if a variable
is defined over a set (e.g., xi ∀i ∈ V in Figure 1), the defi-
nition of the variable is only included once in the prompt.
This allows the prompt to scale with the number of sets of
variables, which can be far less than the number of indi-
vidual variables for large-scale problems (see Appendix C
for an example). We provide an analogous description of
the formulation (α′). The prompt then instructs the LLM to
generate a linear mapping for each variable in α, expressed
as a list of coefficients and corresponding variable names in
α′. For more details, we defer to Appendix A.

Below we illustrate this procedure using the example in
Figure 1. Suppose the optimal solution of α′ is y∗i for
all i ∈ V . Applying the identity mapping function f , we
compute x̂i = f(y∗i ) = y∗i for all i ∈ V . We confirm x̂ is
feasible, and substitute x̂i into the objective function∑

i∈V
xi,

to verify whether ∑
i∈V

x̂i =
∑
i∈V

x∗
i .

Note that the mapping f discovered by EquivaMap is not
instance-specific but operates at the formulation level. We
feed the LLM symbolic formulations where parameters and
sets, such as the graph G = (V,E), remain abstract instead
of being replaced by real values. The LLM then infers a
symbolic mapping between the two formulations that is
applicable across all instances. A more explicit prompt
example can be found in Appendix B. However, the veri-
fication step (L9-14) in our algorithm is instance-specific:
we instantiate the symbolic formulation with concrete pa-
rameter values and sets and verify that the mapped solution

is valid. Thus, while the mapping is over formulations, the
verification check is over instances.

Comparing EquivaMap to Definition 3.5 of Quasi-Karp
Equivalence, we note that, under the reasonable assumption
that the LLM’s inference time is polynomial in the length
of its input prompt, EquivaMap runs in polynomial time.
Moreover, by restricting the mapping function f to be linear,
we ensure that it can be computed in polynomial time.

Stochasticity in LLMs and Aggregation. Since LLMs
have stochastic outputs, we run Algorithm 1 K times and
then aggregate the outputs by declaring (α, α′) equivalent
if at least one of the K attempts produces a valid mapping.

4. Experiments
We conduct a comprehensive evaluation of EquivaMap by
introducing EquivaFormulation — to the best of our knowl-
edge, the first dataset that contains equivalent formulations
of MILP instances. Moreover, the dataset includes details
about the transformations used to create these equivalent
formulations (Section 4.1).

Next, we evaluate EquivaMap on this dataset and com-
pare its performance against established baselines including
canonical accuracy, execution accuracy, and the WL-test
(Section 4.2).

4.1. EquivaFormulation: a dataset of equivalent MILP
formulations

We construct EquivaFormulation based on the NLP4LP
dataset (AhmadiTeshnizi et al., 2024). NLP4LP comprises
a diverse set of optimization problems with distinct problem
sizes, objective functions, and constraints. Each instance
in NLP4LP is composed of three components: (1) A de-
scription file with a high-level description of the problem
in natural language. (2) An information file which con-

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

Table 1: Overview of the equivalent and nonequivalent transformations between formulations considered in EquivaFormula-
tion. Transformation Name describes the type of transformation; How It Is Transformed explains the modification applied
to the problem; Example (Before/After) provides a short snippet demonstrating the difference; Equivalent? indicates
whether the transformation preserves the original problem’s optimal solutions; and Size shows the number of affected
instances, reported as the count of LP and MILP problems.

Transformation Name How It Is Transformed Example (Before/After) Equivalent? Size

Substitute Objective Functions Replace objective function
min c⊤x with an auxiliary vari-
able z, adding new constraint
z = c⊤x

Before: min c⊤x

After: min z, s.t. z = c⊤x

Yes 92LP + 140MILP

Add Slack Variables Transform constraint g(x) ≤ b
into g(x) + s = b, s ≥ 0

Before: x+ 2y ≤ 5

After: x+ 2y + s = 5, s ≥ 0

Yes 59LP + 134MILP

Replace by Base-10 Representation Express an integer variable N in
its decimal expansion

Before: x ≤ 106

After: x =
∑6

i=0 di · 10i, 0 ≤ di ≤ 9, di ∈ Z
Yes 44LP + 123MILP

Add Valid Inequalities Include cutting planes or valid
linear combinations that do not
exclude any integer feasible so-
lution

Before: {x+ 2y ≤ 3, x ≤ 1.5 }
After: {x+ 2y ≤ 3, x ≤ 1.5, 2x+ 2y ≤ 4.5 }

Yes 92LP + 142MILP

Rescaling Change units/scales for variables
or objectives (e.g., hours to min-
utes)

Before: x (hours)
After: 60x′ (minutes)

Yes 60LP + 133MILP

Replace by Linear Combinations Decompose a variable x into
x = x+ − x− with x+, x− ≥ 0

Before: x
After: x+ − x−

Yes 77LP + 115MILP

Random Order Substitute the original instance
with a completely unrelated, ran-
domly chosen instance

Before: min z, s.t. z = c⊤x

After: max y, s.t. y = 3

No 87LP + 142MILP

Loose Constraints Delete certain constraints that
are tight at the optimum, alter-
ing the feasible set

Before: x+ 2y ≤ 3 (binding)
After: remove x+ 2y ≤ 3

No 53LP + 120MILP

Feasibility Turn both the original and a ran-
domly chosen instance into fea-
sibility problems (replace objec-
tives with 0)

Before: min 0, s.t. z = c⊤x

After: max 0, s.t. y = 3

No 87LP + 142MILP

tains the corresponding mathematical formulation of the
optimization instance, written in LaTeX. (3) A file that con-
tains the GurobiPy code corresponding to the mathematical
formulation.

As discussed in Section 3.2, we carefully select optimization
problems in the NLP4LP dataset by removing the infeasi-
ble and unbounded instances. In EquivaFormulation, we
introduce seven (Quasi-Karp) equivalent transformations
and three non-equivalent transformations to transform the
formulations in NLP4LP to corresponding (Quasi-Karp)
equivalent and nonequivalent counterparts, respectively (Ta-
ble 1). Our proposed equivalent transformations capture
widely used and important modeling techniques in MILPs.
Standard practices such as substituting the objective func-
tion, adding slack variables, and decomposing variables
into positive and negative components help simplify con-
straints and enforce non-negativity. Additionally, robustness
to rescaling is crucial, as quantities can be represented in
different units (e.g., 1 kg rather than 1000 g). Similarly,
certain structural transformations — such as adding valid
inequalities, reformulating constraints, or introducing auxil-

iary variables — are commonly employed to enhance solver
efficiency and tighten relaxations while preserving the for-
mulation’s optimal solution. Finally, we incorporate non-
equivalent transformations to evaluate the susceptibility of
equivalence-checking methods to false positives. These se-
lected transformations in EquivaMap are designed to test
the robustness of different equivalence-checking methods
in handling diverse MILP formulations.

Since the selected transformations in EquivaFormula-
tion are deterministic, to prevent the mapping finder or
other equivalence-matching methods from exploiting short-
cuts—such as mapping decision variables based on their or-
der (e.g., if variable names are assigned alphabetically)—we
apply several transformations to the formulation before pro-
cessing. Specifically, we randomly permute the order of
problem parameters, decision variables, and constraints in
the information file. Additionally, we assign distinct names
to all decision variables and use GPT-4o to generate var-
ied natural language descriptions for them. These transfor-
mations are implemented to reduce the similarity between
formulation α and α′, ensuring that LLMs cannot exploit

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

Table 2: Accuracy of equivalence-checking methods on formulations obtained from equivalent and non-equivalent transformations.

Canonical Acc. Execution Acc. WL-test naive-LLM EquivaMap

Equivalent Transformations

Worst Case 0% 0% 0% 3.3% 100%
Substitute Objective Functions 0% 100% 0% 91.2% 100%
Add Slack Variables 0% 100% 0% 36.1% 100%
Replace by Base-10 Representation 0% 100% 0% 53.1% 100%
Add Valid Inequalities 0% 100% 0% 3.3% 100%
Rescaling 0% 0% 0% 69.9% 100%
Replace by Linear Combinations 0% 100% 0% 24.4% 100%

Non-Equivalent Transformations

Worst Case 100% 0% 100% 93.6% 100%
Random Order 100% 100% 100% 98.7% 100%
Loose Constraints 100% 100% 100% 93.6% 100%
Feasibility 100% 0% 100% 100% 100%

recognizable transformation patterns to deduce the mapping
directly.

4.2. Performance

We use GPT-4 (Achiam et al., 2023) as the mapping finder
in EquivaMap, and evaluate our method against existing
baselines, plus a naive LLM baseline (naive-LLM). The
naive-LLM baseline uses a prompt that includes two formu-
lations α and α′ and directly checks if they are equivalent.
The prompt can be found in Appendix A. We set K = 3,
and report the accuracy as the percentage of paired formula-
tions α and α′ that are correctly identified as equivalent or
nonequivalent, and summarize the results in Table 2.

The results demonstrate that our method consistently out-
performs all baseline approaches, achieving perfect or
near-perfect accuracy in almost every scenario. Notably,
EquivaMap performs perfectly even in cases where all base-
line approaches completely fail.

For the equivalent transformations (Table 3), our method per-
forms exceptionally well under challenging transformations,
such as Add Valid Inequalities, Rescaling, and Replace by
Linear Combinations. Execution accuracy and the WL-test
fail universally in these settings, achieving 0% accuracy
across all variations. In contrast, EquivaMap achieves 100%
accuracy. These transformations are critical test cases be-
cause they highlight the fundamental weaknesses of existing
approaches: they struggle with capturing key modeling tech-
niques such as cutting planes and variable rescaling. For
example, execution accuracy fails at Rescaling, since a naive
solver run does not recognize scaled problem instances as
equivalent, while WL-test fails at Add Valid Inequalities
or Replace by Linear Combinations since these transfor-
mations break isomorphisms in the graph representation.
Our method reliably handles them, achieving near-perfect

accuracy.

The results for non-equivalent variations further highlight
the reliability of our method. For the Feasibility transfor-
mation, execution accuracy fails with 0% accuracy, yet our
method achieves perfect accuracy for all instances. Under
other non-equivalent settings, our method also works well,
achieving 100% accuracy.

Key observations. EquivaMap outperforms all existing
equivalence-checking methods, including the naive-LLM
baseline. This highlights the necessity of our algorithm —
without the explicit map finding and optimality verification
steps, naively using LLMs with strong reasoning capabilities
will not ensure reliability in checking formulation equiva-
lence. Moreover, these results demonstrate that our method
is reliable across diverse transformations. It consistently
outperforms all baselines, especially in scenarios where
execution accuracy and other methods fail.

5. Discussion
How can we define the equivalence of two formulations
of the same optimization problem instance? In this paper,
we address this conceptual gap by proposing Quasi-Karp
equivalence and a framework, EquivaMap, to systematically
check such equivalence. Through extensive experiments
on MILP problems, we demonstrate that EquivaMap out-
performs existing approaches by large. Additionally, by
introducing the first well-documented pool of equivalent
optimization formulations, encompassing diverse transfor-
mations such as the addition of cutting planes, we provide a
valuable dataset for advancing research in this domain. A
promising future direction is to extend EquivaMap beyond
simple transformations to verify equivalences across diverse
and more complex optimization problems.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

Impact Statement
Our framework for checking the formulation equivalence of
combinatorial optimization problems offers the potential to
streamline the development and deployment of optimization
models across diverse fields, including operations research,
logistics, and engineering. By systematically identifying
equivalences among different formulations, our approach
can reduce redundant effort, promote reproducibility, and
accelerate innovation. In particular, the ability to recognize
and compare formulations at a finer granularity could serve
as a critical building block for “optimization copilots” that
assist researchers and practitioners in designing, debugging,
and refining complex models. At the same time, these ad-
vantages come with important considerations. When compu-
tational tools can automatically detect formulation similari-
ties, there is a possibility of overlooking nuanced domain-
specific constraints or ethical requirements if they are not
explicitly accounted for. Over-reliance on such tools could
inadvertently propagate modeling oversights or marginalize
expert judgment. Furthermore, democratizing advanced op-
timization capabilities may amplify existing disparities if
access to these methods remains unevenly distributed.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

AhmadiTeshnizi, A., Gao, W., and Udell, M. Optimus: Scal-
able optimization modeling with (mi) lp solvers and large
language models. In Forty-first International Conference
on Machine Learning, 2024.

Ahmed, T. and Choudhury, S. Lm4opt: Unveiling the poten-
tial of large language models in formulating mathematical
optimization problems. INFOR: Information Systems and
Operational Research, 62(4):559–572, 2024.

Astorga, N., Liu, T., Xiao, Y., and van der Schaar, M. Auto-
formulation of mathematical optimization models using
llms. arXiv preprint arXiv:2411.01679, 2024.

Chen, H., Constante-Flores, G. E., and Li, C. Diagnosing
infeasible optimization problems using large language
models. arXiv preprint arXiv:2308.12923, 2023.

Chen, Z., Liu, J., Wang, X., and Yin, W. On representing lin-
ear programs by graph neural networks. In The Eleventh
International Conference on Learning Representations,
2023a.

Chen, Z., Liu, J., Wang, X., and Yin, W. On representing
mixed-integer linear programs by graph neural networks.

In The Eleventh International Conference on Learning
Representations, 2023b.

Conforti, M., Cornuejols, G., and Zambelli, G. Integer
programming. Springer, 2014.

Cook, S. A. The complexity of theorem-proving procedures.
In Proceedings of the third annual ACM symposium on
Theory of computing, pp. 151–158, 1971.

Cook, W. J., Applegate, D. L., Bixby, R. E., and Chvatal, V.
The traveling salesman problem: a computational study.
Princeton university press, 2011.

Douglas, B. L. The weisfeiler-lehman method and graph
isomorphism testing. arXiv preprint arXiv:1101.5211,
2011.

Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture
search: A survey. Journal of Machine Learning Research,
20(55):1–21, 2019.

Fang, J., Cheang, B., and Lim, A. Problems and solution
methods of machine scheduling in semiconductor man-
ufacturing operations: A survey. Sustainability, 15(17):
13012, 2023.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi,
A. Exact combinatorial optimization with graph convolu-
tional neural networks. Advances in neural information
processing systems, 32, 2019.

Huang, S., Yang, K., Qi, S., and Wang, R. When large
language model meets optimization. arXiv preprint
arXiv:2405.10098, 2024a.

Huang, X., Shen, Q., Hu, Y., Gao, A., and Wang, B. Mamo:
a mathematical modeling benchmark with solvers. arXiv
preprint arXiv:2405.13144, 2024b.

Kadıoğlu, S., Pravin Dakle, P., Uppuluri, K., Politi, R.,
Raghavan, P., Rallabandi, S., and Srinivasamurthy, R.
Ner4opt: named entity recognition for optimization mod-
elling from natural language. Constraints, 29(3):261–299,
2024.

Kan, A. R. The complexity of the network design problem.
Networks, 8(4):279–285, 1978.

Karp, R. M. Reducibility among combinatorial problems.
In Complexity of Computer Computations, pp. 85–103.
Plenum Press, 1972.

Khadka, K., Chandrasekaran, J., Lei, Y., Kacker, R. N., and
Kuhn, D. R. A combinatorial approach to hyperparame-
ter optimization. In Proceedings of the IEEE/ACM 3rd
International Conference on AI Engineering-Software
Engineering for AI, pp. 140–149, 2024.

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. Advances in neural information processing sys-
tems, 30, 2017.

Korte, B. and Vygen, J. Shortest paths. Combinatorial Op-
timization: Theory and Algorithms, pp. 157–171, 2012.

Lawless, C., Li, Y., Wikum, A., Udell, M., and Vitercik, E.
Llms for cold-start cutting plane separator configuration.
arXiv preprint arXiv:2412.12038, 2024a.

Lawless, C., Schoeffer, J., Le, L., Rowan, K., Sen, S.,
St. Hill, C., Suh, J., and Sarrafzadeh, B. “i want it that
way”: Enabling interactive decision support using large
language models and constraint programming. ACM
Transactions on Interactive Intelligent Systems, 14(3):
1–33, 2024b.

Li, B., Mellou, K., Zhang, B., Pathuri, J., and Menache,
I. Large language models for supply chain optimization.
arXiv preprint arXiv:2307.03875, 2023a.

Li, Q., Zhang, L., and Mak-Hau, V. Synthesizing mixed-
integer linear programming models from natural language
descriptions. arXiv preprint arXiv:2311.15271, 2023b.

Mostajabdaveh, M., Yu, T. T., Ramamonjison, R., Carenini,
G., Zhou, Z., and Zhang, Y. Optimization modeling and
verification from problem specifications using a multi-
agent multi-stage llm framework. INFOR: Information
Systems and Operational Research, 62(4):599–617, 2024.

Papadimitriou, C. H. and Steiglitz, K. Combinatorial opti-
mization: algorithms and complexity. Courier Corpora-
tion, 1998.

Pisinger, D. and Toth, P. Knapsack problems. Springer,
1998.

Ramamonjison, R., Yu, T., Li, R., Li, H., Carenini, G., Ghad-
dar, B., He, S., Mostajabdaveh, M., Banitalebi-Dehkordi,
A., Zhou, Z., et al. Nl4opt competition: Formulating
optimization problems based on their natural language
descriptions. In NeurIPS 2022 Competition Track, pp.
189–203. PMLR, 2023.

Schrijver, A. Min-Max Results in Combinatorial Optimiza-
tion, pp. 439–500. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1983.

Steever, Z., Murray, C., Yuan, J., Karwan, M., and Lübbecke,
M. An image-based approach to detecting structural
similarity among mixed integer programs. INFORMS
Journal on Computing, 34(4):1849–1870, 2022.

Tang, Z., Huang, C., Zheng, X., Hu, S., Wang, Z., Ge, D.,
and Wang, B. Orlm: Training large language models for

optimization modeling. arXiv preprint arXiv:2405.17743,
2024.

Wang, Z., Zhu, Z., Han, Y., Lin, Y., Lin, Z., Sun, R., and
Ding, T. Optibench: Benchmarking large language mod-
els in optimization modeling with equivalence-detection
evaluation. 2024.

Wasserkrug, S., Boussioux, L., Hertog, D. d., Mirzazadeh,
F., Birbil, I., Kurtz, J., and Maragno, D. From large
language models and optimization to decision optimiza-
tion copilot: A research manifesto. arXiv preprint
arXiv:2402.16269, 2024.

Xiao, Z., Zhang, D., Wu, Y., Xu, L., Wang, Y. J., Han, X.,
Fu, X., Zhong, T., Zeng, J., Song, M., et al. Chain-of-
experts: When llms meet complex operations research
problems. In The Twelfth International Conference on
Learning Representations, 2023.

Xing, L., Wang, X., Feng, Y., Fan, Z., Xiong, J., Guo, Z., Fu,
X., Ramamonjison, R., Mostajabdaveh, M., Han, X., et al.
Towards human-aligned evaluation for linear program-
ming word problems. In Proceedings of the 2024 Joint
International Conference on Computational Linguistics,
Language Resources and Evaluation (LREC-COLING
2024), pp. 16550–16556, 2024.

Yang, Z., Wang, Y., Huang, Y., Guo, Z., Shi, W., Han, X.,
Feng, L., Song, L., Liang, X., and Tang, J. Optibench
meets resocratic: Measure and improve llms for opti-
mization modeling. arXiv preprint arXiv:2407.09887,
2024.

Yu, H. and Liu, J. Deep insights into automated optimization
with large language models and evolutionary algorithms.
arXiv preprint arXiv:2410.20848, 2024.

10



550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

A. Additional Experimental Details and Results
In this section, we segment our main results by problem class (i.e., LP vs. MILP), and equivalence (i.e., equivalent vs.
nonequivalent). We also include the fraction of each instance solved correctly for each problem type. Our results are
consistent across both LP and MILP instances, highlighting that EquivaMap outperforms all baseline methods in all settings.

Table 3: Accuracy of equivalence-checking methods on formulations obtained from equivalent transformations. Rows are partitioned by
whether the problems are linear programming problems (LP) or mixed-integer linear programming problems (MILP). Numbers in

parentheses correspond to the raw fraction of instances solved correctly.

Transformation Canonical Acc. Execution Acc. WL-test naive-LLM EquivaMap

LP

Substitute Objective Functions 0%(0/92) 100%(92/92) 0%(0/92) 94.6%(87/92) 100%(92/92)
Add Slack Variables 0%(0/59) 100%(59/59) 0%(0/59) 49.1%(29/59) 100%(59/59)
Replace by Base-10 Representation 0%(0/44) 100%(44/44) 0%(0/44) 50%(22/44) 100%(44/44)
Add Valid Inequalities 0%(0/92) 100%(92/92) 0%(0/92) 6.5%(6/92) 100%(92/92)
Rescaling 0%(0/60) 0%(0/60) 0%(0/60) 76.7%(46/60) 100%(60/60)
Replace by Linear Combinations 0%(0/77) 100%(77/77) 0%(0/77) 13.0%(10/77) 100%(77/77)

MILP

Substitute Objective Functions 0%(0/140) 100%(140/140) 0%(0/140) 87.9%(123/140) 100%(140/140)
Add Slack Variables 0%(0/134) 100%(134/134) 0%(0/134) 23.1%(31/134) 100%(134/134)
Replace by Base-10 Representation 0%(0/123) 100%(123/123) 0%(0/123) 56.1%(69/123) 100%(123/123)
Add Valid Inequalities 0%(0/142) 100%(142/142) 0%(0/142) 0%(0/142) 100%(142/142)
Rescaling 0%(0/133) 0%(0/133) 0%(0/133) 63.2%(84/133) 100%(133/133)
Replace by Linear Combinations 0%(0/115) 100%(115/115) 0%(0/115) 35.7%(41/115) 100%(115/115)

Table 4: Accuracy of equivalence-checking methods on formulations obtained from nonequivalent transformations. Rows are partitioned
by whether the problems are linear programming problems (LP) or mixed-integer linear programming problems (MILP). Numbers in

parentheses correspond to the raw fraction of instances solved correctly.

Transformation Canonical Acc. Execution Acc. WL-test naive-LLM EquivaMap

LP

Random Order 100%(87/87) 100%(87/87) 100%(87/87) 98.9%(86/87) 100%(87/87)
Loose Constraints 100%(53/53) 100%(53/53) 100%(53/53) 88.7%(47/53) 100%(53/53)
Feasibility 100%(87/87) 0%(0/87) 100%(87/87) 100%(87/87) 100%(87/87)

MILP

Random Order 100%(142/142) 100%(142/142) 100%(142/142) 98.6%(140/142) 100%(142/142)
Loose Constraints 100%(120/120) 100%(120/120) 100%(120/120) 96.7%(116/120) 100%(120/120)
Feasibility 100%(142/142) 0%(0/142) 100%(142/142) 100%(142/142) 100%(142/142)

B. Prompts
B.1. naive-LLM Prompt

Listing 1: naive-LLM Prompt
You are given two optimization problem formulations (both declared as MIP).
Decide if they are equivalent formulations.

First problem formulation (Problem A):
{
"parametrized_description": "A laundromat can buy two types of washing machines, a top-

loading model and a front-loading model. The top-loading model can wash
WashRateTopLoading items per day while the front-loading model can wash
WashRateFrontLoading items per day. The top-loading model consumes
EnergyConsumptionTopLoading kWh per day while the front-loading model consumes

11



605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

EnergyConsumptionFrontLoading kWh per day. The laundromat must be able to wash at
least MinItemsPerDay items per day and has available MaxEnergyPerDay kWh per day.
Since the top-loading machines are harder to use, at most MaxFractionTopLoading of
the machines can be top-loading. Further, at least MinNumFrontLoading machines
should be front-loading. How many of each machine should the laundromat buy to
minimize the total number of washing machines?",

"keywords": [
"N.A."

],
"parameters": {

"WashRateTopLoading": {
"description": "Number of items washed per day by a top-loading machine",
"shape": []

},
"WashRateFrontLoading": {

"description": "Number of items washed per day by a front-loading machine",
"shape": []

},
"EnergyConsumptionTopLoading": {

"description": "Energy consumed per day by a top-loading machine (kWh)",
"shape": []

},
"EnergyConsumptionFrontLoading": {

"description": "Energy consumed per day by a front-loading machine (kWh)",
"shape": []

},
"MinItemsPerDay": {

"description": "Minimum number of items to wash per day",
"shape": []

},
"MaxEnergyPerDay": {

"description": "Maximum available energy per day (kWh)",
"shape": []

},
"MaxFractionTopLoading": {

"description": "Maximum fraction of machines that can be top-loading",
"shape": []

},
"MinNumFrontLoading": {

"description": "Minimum number of front-loading machines",
"shape": []

}
},
"variables": {

"NumTopLoading": {
"description": "The number of top-loading machines",
"type": "continuous",
"shape": []

},
"NumFrontLoading": {

"description": "The number of front-loading machines",
"type": "continuous",
"shape": []

}
},
"constraints": [

{
"description": "A top-loading machine washes WashRateTopLoading items per day and a

front-loading machine washes WashRateFrontLoading items per day. The total
number of items washed per day must be at least MinItemsPerDay.",

"formulation": "WashRateTopLoading \\cdot NumTopLoading + WashRateFrontLoading \\
cdot NumFrontLoading \\geq MinItemsPerDay",

"code": {
"gurobipy": "model.addConstr(WashRateTopLoading * NumTopLoading +

WashRateFrontLoading * NumFrontLoading >= MinItemsPerDay)"

12



660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

}
},
{

"description": "A top-loading machine consumes EnergyConsumptionTopLoading kWh per
day and a front-loading machine consumes EnergyConsumptionFrontLoading kWh per
day. The total energy consumption per day cannot exceed MaxEnergyPerDay kWh.",

"formulation": "NumTopLoading \\times EnergyConsumptionTopLoading + NumFrontLoading
\\times EnergyConsumptionFrontLoading \\leq MaxEnergyPerDay",

"code": {
"gurobipy": "model.addConstr(EnergyConsumptionTopLoading * NumTopLoading +

EnergyConsumptionFrontLoading * NumFrontLoading <= MaxEnergyPerDay)"
}

},
{

"description": "At most MaxFractionTopLoading fraction of the total machines can be
top-loading.",

"formulation": "NumTopLoading \\leq MaxFractionTopLoading \\times (NumTopLoading +
NumFrontLoading)",

"code": {
"gurobipy": "model.addConstr(NumTopLoading <= MaxFractionTopLoading * (

NumTopLoading + NumFrontLoading))"
}

},
{

"description": "At least MinNumFrontLoading machines must be front-loading.",
"formulation": "NumFrontLoading \\geq MinNumFrontLoading",
"code": {
"gurobipy": "model.addConstr(NumFrontLoading >= MinNumFrontLoading)"

}
}

],
"objective": {

"description": "Minimize the total number of washing machines purchased.",
"formulation": "Min \\ NumTopLoading + NumFrontLoading",
"code": {

"gurobipy": "model.setObjective(NumTopLoading + NumFrontLoading, GRB.MINIMIZE)"
}

}
}

Second problem formulation (Problem B):
{
"parametrized_description": "A laundromat can buy two types of washing machines, a top-

loading model and a front-loading model. The top-loading model can wash V items per
day while the front-loading model can wash T items per day. The top-loading model
consumes F kWh per day while the front-loading model consumes A kWh per day. The
laundromat must be able to wash at least J items per day and has available R kWh per
day. Since the top-loading machines are harder to use, at most S of the machines

can be top-loading. Further, at least W machines should be front-loading. How many
of each machine should the laundromat buy to minimize the total number of washing
machines?",

"keywords": [
"N.A."

],
"parameters": {

"W": {
"description": "The smallest quantity of front-loading machines.",
"shape": []

},
"A": {

"description": "Daily electricity usage of a front-loading washer (kWh)",
"shape": []

},
"R": {

13



715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

"description": "The highest amount of energy that can be obtained in a single day (
kWh).",

"shape": []
},
"S": {

"description": "The highest percentage of machines that can have a top-loading
feature.",

"shape": []
},
"F": {

"description": "Daily energy usage of a top-loading washing machine in kilowatt-
hours",

"shape": []
},
"J": {

"description": "The smallest quantity of items that need to be cleaned on a daily
basis",

"shape": []
},
"V": {

"description": "Quantity of objects cleaned daily using a top-loading washer",
"shape": []

},
"T": {

"description": "The quantity of objects cleaned daily with a front-loading washing
machine.",

"shape": []
}

},
"variables": {

"a": {
"description": "The quantity of top-loading appliances",
"type": "continuous",
"shape": []

},
"g": {

"description": "The quantity of front-loading machines",
"type": "continuous",
"shape": []

}
},
"constraints": [

{
"description": "A top-loading washer cleans V items daily, while a front-loading

washer cleans T items daily. The combined total of items cleaned each day should
not fall below J.",

"formulation": "J \\leq V \\cdot a + T \\cdot g",
"code": {
"gurobipy": "model.addConstr(V * a + T * g >= J)"

}
}

],
"objective": {

"description": "Reduce the overall quantity of washing machines bought.",
"formulation": "Min \\ g + a",
"code": {

"gurobipy": "model.setObjective(a + g, GRB.MINIMIZE)"
}

}
}

Based on the data, please respond with exactly one of the following:
- "Equivalent" if these two are the same formulation. Be rigorous in your reasoning.
- "Not Equivalent" if they are different. When you are not sure, say "Not Equivalent".

14



770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

Briefly explain the reasoning in 1-2 sentences, then end with the word "Equivalent" or "
Not Equivalent" on its own line.

B.1.1. EquivaMap PROMPT

Listing 2: EquivaMap Prompt
You are an AI language model assisting in mapping variables between two optimization

problems by analyzing their roles in constraints and the objective function.

**Variable from Problem 1:**
- **Name:** OdorRemovingChemicalUnits
- **Description:** The number of units of odor-removing chemical used per house
- **Constraints involving OdorRemovingChemicalUnits:**
- Description: The total number of chemical units used per house cannot exceed

MaxTotalUnits.
Formulation: CleansingChemicalUnits + OdorRemovingChemicalUnits \leq MaxTotalUnits

- Description: The number of cleansing chemical units used cannot exceed
MaxCleansingToOdorRatio times the number of odor-removing chemical units used.

Formulation: CleansingChemicalUnits \leq MaxCleansingToOdorRatio \cdot
OdorRemovingChemicalUnits

- **In Objective Function:** Yes

**Variables from Problem 2:**
- **Name:** v_0
**Description:** Digit 0 of the The quantity of cleaning solution units utilized per

household
**Constraints involving v_0:**

- Description: The quantity of cleansing chemical units applied must not surpass H
times the quantity of odor-removing chemical units used.

Formulation: H \cdot (f_0*10ˆ0 + f_1*10ˆ1) \geq (v_0*10ˆ0 + v_1*10ˆ1 + v_2*10ˆ2)
- Description: The cumulative quantity of chemical components utilized for each

residence must not surpass T.
Formulation: T \geq (f_0*10ˆ0 + f_1*10ˆ1) + (v_0*10ˆ0 + v_1*10ˆ1 + v_2*10ˆ2)

- Description: The company is required to utilize a minimum of G units of the cleaning
solution per household.

Formulation: G \leq (v_0*10ˆ0 + v_1*10ˆ1 + v_2*10ˆ2)
**In Objective Function:** Yes

- **Name:** v_1
**Description:** Digit 1 of the The quantity of cleaning solution units utilized per

household
**Constraints involving v_1:**

- Description: The quantity of cleansing chemical units applied must not surpass H
times the quantity of odor-removing chemical units used.

Formulation: H \cdot (f_0*10ˆ0 + f_1*10ˆ1) \geq (v_0*10ˆ0 + v_1*10ˆ1 + v_2*10ˆ2)
- Description: The cumulative quantity of chemical components utilized for each

residence must not surpass T.
Formulation: T \geq (f_0*10ˆ0 + f_1*10ˆ1) + (v_0*10ˆ0 + v_1*10ˆ1 + v_2*10ˆ2)

- Description: The company is required to utilize a minimum of G units of the cleaning
solution per household.

Formulation: G \leq (v_0*10ˆ0 + v_1*10ˆ1 + v_2*10ˆ2)
**In Objective Function:** Yes

- **Name:** v_2
**Description:** Digit 2 of the The quantity of cleaning solution units utilized per

household
**Constraints involving v_2:**

- Description: The quantity of cleansing chemical units applied must not surpass H
times the quantity of odor-removing chemical units used.

Formulation: H \cdot (f_0*10ˆ0 + f_1*10ˆ1) \geq (v_0*10ˆ0 + v_1*10ˆ1 + v_2*10ˆ2)
- Description: The cumulative quantity of chemical components utilized for each

residence must not surpass T.
Formulation: T \geq (f_0*10ˆ0 + f_1*10ˆ1) + (v_0*10ˆ0 + v_1*10ˆ1 + v_2*10ˆ2)

15



825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

- Description: The company is required to utilize a minimum of G units of the cleaning
solution per household.

Formulation: G \leq (v_0*10ˆ0 + v_1*10ˆ1 + v_2*10ˆ2)
**In Objective Function:** Yes

- **Name:** f_0
**Description:** Digit 0 of the The quantity of odor-neutralizing chemical applied in

each household
**Constraints involving f_0:**

- Description: The quantity of cleansing chemical units applied must not surpass H
times the quantity of odor-removing chemical units used.

Formulation: H \cdot (f_0*10ˆ0 + f_1*10ˆ1) \geq (v_0*10ˆ0 + v_1*10ˆ1 + v_2*10ˆ2)
- Description: The cumulative quantity of chemical components utilized for each

residence must not surpass T.
Formulation: T \geq (f_0*10ˆ0 + f_1*10ˆ1) + (v_0*10ˆ0 + v_1*10ˆ1 + v_2*10ˆ2)

**In Objective Function:** Yes

- **Name:** f_1
**Description:** Digit 1 of the The quantity of odor-neutralizing chemical applied in

each household
**Constraints involving f_1:**

- Description: The quantity of cleansing chemical units applied must not surpass H
times the quantity of odor-removing chemical units used.

Formulation: H \cdot (f_0*10ˆ0 + f_1*10ˆ1) \geq (v_0*10ˆ0 + v_1*10ˆ1 + v_2*10ˆ2)
- Description: The cumulative quantity of chemical components utilized for each

residence must not surpass T.
Formulation: T \geq (f_0*10ˆ0 + f_1*10ˆ1) + (v_0*10ˆ0 + v_1*10ˆ1 + v_2*10ˆ2)

**In Objective Function:** Yes

Based on the above information, find the best mapping from variables in Problem 2 for the
variable ’OdorRemovingChemicalUnits’ from Problem 1. The mapping can be a linear
combination of variables from Problem 2, possibly with constant multipliers. Your goal
is to express ’OdorRemovingChemicalUnits’ in terms of variables from Problem 2, as

accurately as possible, based on their roles in the constraints and objective
functions.

**Important Instructions:**

- **Provide only the mapping for ’OdorRemovingChemicalUnits’ as a JSON object.**
- **Do not include any additional text, explanations, or formatting.**
- **The JSON object must follow this exact structure:**

{
"OdorRemovingChemicalUnits": [

{
"constant": constant_value_1,
"variable": "variable_name_1"

},
{

"constant": constant_value_2,
"variable": "variable_name_2"

},
...

]
}

- **If there is only one term in the mapping, the list should contain a single object.**
- **Use numerical values for constants (decimals), and enclose variable names in double

quotes ("").**

**Examples:**

1. If the best mapping is ’0.1*a’, your response should be:

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

{
"OdorRemovingChemicalUnits": [

{
"constant": 0.1,
"variable": "a"

}
]

}

2. If the best mapping is ’0.1*a + 0.01*b’, your response should be:

{
"OdorRemovingChemicalUnits": [

{
"constant": 0.1,
"variable": "a"

},
{

"constant": 0.01,
"variable": "b"

}
]

}

3. If the best mapping is a single variable ’a’ with a coefficient of 1, your response
should be:

{
"OdorRemovingChemicalUnits": [

{
"constant": 1,
"variable": "a"

}
]

}

4. If there is no direct mapping, your response should be:

{
"OdorRemovingChemicalUnits": [

{
"constant": "none",
"variable": "none"

}
]

}

Please ensure your response is a valid JSON object that can be parsed by standard JSON
parsers.

17



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations

C. Maximum Independent Set example

Figure 3: Comparison between set-based and individual-variable representations in JSON input formatting. EquivaMap
operates on sets of variables, allowing the metadata and constraints to be described concisely (left) instead of expanding
each variable individually, resulting in longer and more redundant prompts (right).

Consider the maximum independent set example in Figure 3. EquivaMap takes in set-based representations of input
formulations (left). When the prompt iterates between variables of formulations α and α′, it processes the entire ’Node’
set as input, rather than individual variables like Node 1, Node 2, etc. If variables in formulation alpha′ are labeled as
Node’, the mapping discovered by the LLM will be Node[i] = Node′[i],∀i, instead of separate mappings for each indexed
variable. This distinction is crucial for scalability, as it means our prompt size remains constant regardless of the number of
nodes in the graph.

D. Runtime Analysis
To evaluate the computational overhead of EquivaMap and the baseline methods, we measured the average runtime across
all instances in our dataset. The breakdown of time spent on different components is presented in Table 5.

Table 5: Mean (± std. dev.) runtime (seconds) per instance for different components of EquivaMap and baselines. Runtime is averaged
across all instances in the EquivaFormulation dataset.

Method Solving Time LLM Call Time WL-Test Time Total

Execution Accuracy 0.12 ± 0.02 - - 0.12 ± 0.02
WL-Test - - 0.38 ± 0.07 0.38 ± 0.07
EquivaMap 0.12 ± 0.02 11.88 ± 4.48 - 12.00 ± 4.50

While EquivaMap exhibits a higher total runtime compared to the baselines, this cost should be considered in light of
its significantly improved accuracy and its ability to identify complex mappings that other methods miss (as shown in
Section 4.2). The LLM interaction, though currently the bottleneck, enables a level of symbolic reasoning and mapping
discovery previously unattainable. It is also worth noting that this runtime is for a single equivalence check. In practice,
formulation equivalence checking is often an offline analysis task where a higher runtime can be tolerated in exchange for
reliable results. Furthermore, the LLM call time can potentially be reduced with more optimized prompting strategies, the
use of smaller fine-tuned models, or by leveraging future advancements in LLM efficiency. Additionally, as discussed in
Section 3.3, EquivaMap’s prompt length scales with the number of sets of variables rather than individual variables, which
helps manage the LLM interaction cost for larger, structured problems.

18


