
HiLD 2024: 2nd Workshop on High-dimensional Learning Dynamics

Analyzing & Eliminating Learning Rate Warmup in GPT Pre-Training

Atli Kosson ATLI.KOSSON@EPFL.CH

Bettina Messmer BETTINA.MESSMER@EPFL.CH

Martin Jaggi MARTIN.JAGGI@EPFL.CH

EPFL, Switzerland

Abstract
Learning Rate Warmup is a popular heuristic for training neural networks, which downscales early
updates relative to later ones. This aids training, suggesting that the initial updates are too large in
some sense, but why and by which criteria remains unclear. In this work we explore this for small
GPT training by assessing and controlling the update size via various metrics. We find the standard
ℓ2-norm of the updates to be insufficient, but using relative changes of either the matrix weights
or neural representations is promising for reducing or eliminating the need for explicit warmup.
Quantifying the updates in representation space in particular can help withstand changes in the
gradient signal-to-noise ratio or “critical batch size” throughout training, which warmup can help
counteract but simpler weight based methods fail to account for.

1. Introduction

Neural networks are typically trained using variations of stochastic gradient descent, where the
learning rate hyperparameter scales the size of weight updates. Throughout training, the learning rate
is often adjusted according to a learning rate schedule. This schedule frequently includes a warmup
phase, where the learning rate starts low and is increased to a target value before being reduced
according to a decay schedule. Both the choice of warmup and decay strategy can significantly affect
the final model performance. In this work, we focus on the linear warmup introduced by Goyal et al.
[8] for large batch size ResNet [9] training, which is also commonly used for transformers [33].

The length of the warmup is a hyperparameter that requires tuning, which is complicated by the
fact that the reasons for its effectiveness are somewhat unclear. Empirically, warmup helps stabilize
training and allows for larger learning rates throughout the rest of training, which can speed up
the process and provide beneficial regularization [8]. By definition, warmup must achieve this by
decreasing the size of early updates, but why does this help? Are the initial updates too large for
some reason? How should we quantify large updates?

This work explores warmup from this perspective, focusing on GPT2 [27] training with adaptive
optimizers like AdamW [22] and Lion [3]. We identify three key issues that necessitate warmup:

1. The way Adam handles momentum can lead to artificially large initial updates.

2. Early optimizer updates are not proportionate to the initialization magnitude of matrices.

3. The gradients of early samples are highly correlated, limiting effective mini-batch sizes.

We demonstrate that simple modifications to the optimizer, eliminating momentum bias correction in
AdamW and scaling matrix updates similarly to Rotational Optimizers [17], can mitigate the first two
issues. For the third issue, we analyze changes to the internal neural representations of the network.
When gradients of different samples are highly correlated, the internal representations change rapidly,

© A. Kosson, B. Messmer & M. Jaggi.

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

0 2500 5000
Iteration

0

1

Le
ar

ni
ng

 R
at

e
Sc

he
du

le 0%
2%
5%
10%
20%

10 3 10 2

Learning Rate

3.1

3.2

3.3

3.4

3.5

Va
lid

at
io

n
Lo

ss

0 0.05 0.50 1
Iteration (scale)

4

6

8

10

Tr
ai

ni
ng

 L
os

s

0 0.05 0.50 1
Iteration (scale)

0

1

2-u
pd

at
e

siz
e

/ m
ax

Figure 1: Warmup significantly benefits GPT2 training with AdamW. Panel 1: Trapezoidal learning
rate schedules with different warmup lengths and 50% linear cooldown. Panel 2: Final validation loss
for various learning rate and warmup configurations. Note the performance gap between no-warmup
(black) and other configurations. Panel 3: Training curves comparing the best no-warmup run to
a 5% warmup with the same learning rate. The warmup run quickly surpasses the no-warmup run.
Panel 4: Comparison of ℓ2-update norms for these runs shows large initial updates without warmup.

which we conjecture can lead to issues with the non-linearities of the network. This is analogous to
having a low critical batch size [26] early in training, preventing the use of the peak learning rate. We
derive a scaling factor based on the signal-to-noise ratio of the gradient to mitigate this, functioning
as an automatic learning rate warmup. Alternatively, using high momentum values with the first two
methods can enable performant training without warmup in our setting.

2. Baseline Experimental Setup & Results

Our main experiments focus on the training of a 124M parameter GPT2 [27] model. The model
has 12 transformer blocks with an embedding dimension of 768. Our base training is performed at
batch size 480 with a sequence length of 1024. We train for 5000 iterations which translates into
roughly 20 tokens per parameter, as suggested by Chinchila [10]. The baselines use AdamW [22]
(see algo. 1) with weight decay λ = 0.1, momentum coefficient β1 = 0.9, smoothing coefficient
β2 = 0.95, and ε = 10−8. The learning rate (lr) schedule consists of a linear warmup followed by
a constant phase and eventually linear cooldown spanning half of training (see examples in fig. 1).
This schedule keeps the peak lr and decay phase identical for different warmup lengths. The learning
rate and warmup length are optimized for various configurations. Our code builds on NanoGPT [14]
with utilities from Kosson et al. [17], adopting NanoGPT’s hyperparameters and base training setup.

Figure 1 shows the baseline performance for our setup. We observe that even short warmup can
significantly improve performance. Not using warmup results in faster initial progress for a given
learning rate, but eventually falls behind leaving a permanent gap. Warmup not only stabilizes higher
learning rates, but also prevents a lasting degradation in the model performance.

3. Measuring & Controlling the Update Size

We will focus our analysis on the dot products making up neurons, e.g.:
y = w⊤X = [y1, . . . , yB]

⊤ = [⟨w,x1⟩, . . . , ⟨w,xB⟩]⊤ (1)
where y ∈ RB is a batch of outputs, X ∈ RC×B is a batch of inputs and w ∈ RC is the weight
vector of the neuron. The weights are updated w 7→ w +∆w, which also causes an output change
∆y = ∆w⊤X , computed on the same inputs. We can quantify the size of the update in weight
space, i.e. in terms of ∆w, or in representation space with ∆y.

2

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

10 3 10 2

Learning Rate

3.1

3.2

3.3

3.4

3.5

Va
lid

at
io

n
Lo

ss
0%
2%
5%
10%
20%

0 0.05 0.50 1
Iteration (scale)

4

6

8

10

Tr
ai

ni
ng

 L
os

s

0 0.05 0.50 1
Iteration (scale)

0

1

2-u
pd

at
e

siz
e

/ m
ax

0 0.05 0.50 1
Iteration (scale)

0

1

Av
g

-u
pd

at
e

siz
e

/ m
ax

Figure 2: LionA (algo. 2) fails to significantly reduce the warmup advantage. Panel 1: Final
validation loss across various learning rates and warmup percentages shows a reduced but still
significant no-warmup penalty compared to AdamW (fig. 1). Panel 2: Training curves for 0% vs.
5% warmup at the highest stable learning rate for 0%, with warmup quickly overtaking no-warmup
as before. Panel 3: LionA successfully controls the ℓ2-update norm. Panel 4: Early angular updates
(see §3) are large without warmup and do not follow the learning rate schedule throughout training.

The ℓ2-update: ∥w∥2 may be the simplest measure of the update size. In fig. 1 we see that the
update magnitude of AdamW [22] varies significantly. We analyze this in appx. C, finding that
the momentum bias-correction plays a large role. To control the update norm exactly, we can use
normalization via the sign function as in Lion [3]. The hyperparameter configuration of Lion differs
significantly from AdamW, so in appx. A we propose a variant LionA that is more compatible.
Figure 2 shows that controlling the update size in this manner is not sufficient to eliminate warmup.

The angular update: ∠(w,w + ∆w) = arccos(⟨w,w + ∆w⟩/(∥w∥∥w + ∆w∥)) can be
viewed as an “effective learning rate” accounting for the weight magnitude (see appx. D). We can
approximately control the angular updates by fixing the weight magnitude via projections as proposed
by Kosson et al. [17]. Combining this with LionA results in a rotational variant, LionAR (see appx. A,
algo. 3 for exact formulation). This stabilizes training and significantly reduces the benefit of warmup
as shown in fig. 3, but does not completely eliminate it without higher momentum (see later).
Controlling the angular updates makes optimization invariant to certain aspects of the curvature
(appx. D). High initial curvature is thought to be a major reason warmup is needed (appx. B).

The Relative Representation Change (RRC): ∥∆y∥/∥y∥ is a similar measure as the angular
update, but for the outputs of the neuron instead of its weights. We conjecture a large RRC may cause
issues in the non-linearities, such as dead ReLUs or saturated sigmoids / softmax. Warmup could
benefit training by preventing large RRC values as observed in fig. 3. When different samples xb

result in similar gradients gb for w, the RRC for a given angular update will be larger than otherwise.
Defining the signal-to-noise ratio (SNR) of the gradient as φ = ∥E[gb]∥2/trace(Cov[gb]), we show
in appx. E that for normalized gradient descent with strong simplifying assumptions, we have:

E[∥∆y∥2]
E[∥y∥2]

=
η2C

B2∥w∥2
1

φ+ 1
B

(
(φ+1) +

B−1
C

+

(
(B−1)2φ
φ+ 1

(
φ+

1

C

)
+ 2(B−1)φ

))
(2)

If we treat the RRC as a trust region where the non-linearities are not strongly affected by a single
update, this suggests that the learning rate should be downscaled for higher SNR values depending on
the batch size. The first two panels of fig. 4 depict these scaling curves along with measurements of
the SNR, showing high initial values. Scaling the update size of LionAR in this manner is sufficient

3

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

10 3 10 2

Learning Rate

3.1

3.2

3.3

3.4

3.5
Va

lid
at

io
n

Lo
ss

0%
2%
5%
10%
20%

0 0.05 0.50 1
Iteration (scale)

4

6

8

10

Tr
ai

ni
ng

 L
os

s

0 0.05 0.50 1
Iteration (scale)

0

1

Av
g

-u
pd

at
e

siz
e

/ m
ax

0 0.05 0.50 1
Iteration (scale)

0

1

Av
g

Lo
ca

l R
RC

 /
m

ax

Figure 3: LionAR (algo. 3) reduces but does not fully eliminate the benefit of warmup. Panel 1:
LionAR is more stable across learning rates and shows a reduced but still significant performance
gap without warmup. Panel 2: Comparing the 0% and 5% warmup for learning rate ≈10−2 shows
the warmup run overtaking early in training. Panel 3: LionAR precisely controls the angular update
size throughout training. Panel 4: Despite fixed angular (and thus relative) updates in weight space,
the relative change of the internal representations (see §3) is large initially without warmup.

10 4 100

SNR

10 2

10 1

100

LR
 sc

al
in

g
fo

r c
on

st
 R

RC

B=100

B=102

B=104

0 0.05 0.50 1
Iteration (scale)

10 4

10 3

10 2

10 1

100

Si
gn

al
-to

-N
oi

se
 R

at
io 0%

5%

0 0.05 0.50 1
Iteration (scale)

1.0

0.5

0.0

0.5

1.0
Al

ig
nm

en
t c

os
(g

t,m
t

1)

0 0.05 0.50 1
Iteration (scale)

1.0

0.5

0.0

0.5

1.0

Ve
lo

cit
y-

Gr
ad

 C
an

ce
lla

tio
n

Figure 4: Equation (2) predicts that the learning rate needs to be downscaled for higher signal to
noise ratios (φ) to keep the relative representation change constant (see appx. G.6). Larger batch
sizes are affected more, with scaling becoming significant when φ > B−1. Panel 2: Measurements
of the SNR for the two highlighted runs in fig. 3. Note the SNR starts very high but is also remains
large in comparison to our B = 480 for almost all of training. Panel 3: The gradient is strongly
oppositely aligned with the momentum vector for most of training (shown for an example layer).
Panel 4: Projecting the momentum component of the updates onto the gradient component shows
that this results in the momentum vector “cancelling” roughly half the gradient on average.

to eliminate the benefit of warmup as shown in the first panel of fig. 5. This acts similar to an
automatic warmup, but also distorts the learning rate schedule which can lead to issues, see appx. E.
We believe directly controlling the RRC is promising but needs further development to be practical.

4. The Role of Momentum

Momentum is believed to be a key enabler of optimization with larger batch sizes [29, 30, 35].
Momentum spreads a gradient contribution out over multiple steps which tends to make each update
smaller, especially for a random walk (see appx. G.1), which is reflected in the update scaling
coefficients in our algorithms. The smaller updates are counteracted by an increased correlation in
their direction, which can result in similar “long term” changes from each gradient sample, especially

4

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

10 3 10 2

Learning Rate

3.1

3.2

3.3

3.4

3.5

Va
lid

at
io

n
Lo

ss

LionAR =0.9 +RRC comp
0%
5%
10%

10 3 10 2

Learning Rate

4.0

4.2

4.4

Va
lid

at
io

n
Lo

ss

LionAR =0
0%
5%
20%

10 3 10 2

Learning Rate

3.1

3.2

3.3

3.4

3.5

Va
lid

at
io

n
Lo

ss

LionAR =0.98 +N +MC
0%
2%
5%
10%
20%

10 3 10 2

Learning Rate

3.1

3.2

3.3

3.4

3.5

Va
lid

at
io

n
Lo

ss

LionA =0.98 +N +MC
0%
2%
5%
10%
20%

Figure 5: Panel 1: LionAR with a correction factor for the RRC based on eq. (2) does not
benefit from a warmup. Panel 2: LionAR training without momentum results in drastically lower
performance. Panel 3: In LionAR with higher momentum β = 0.98, Nesterov momentum and an
inverse bias correction for early momentum, no warmup performs best. Panel 4: The same does not
apply to LionA, suggesting these changes are insufficient without controlling the angular updates.

for simpler methods like SGD that don’t normalize the step size. In the last two panels of fig. 4
we observe that in our setup the gradient and momentum are negatively correlated, counteracting
each other. We find momentum crucial for performant training, panel 2 of fig. 5 shows significant
degradation without it.

We believe the smaller update sizes for momentum combined with the potential for later gradients
to counteract earlier gradients during their application over time, can help stabilize training. An
otherwise large relative representation change is spread out over multiple steps and counteracted
by later gradients. Higher values of momentum should amplify these effects. Looking at the
total contribution of each gradient also implies that with momentum early updates should be
smaller when measured in parameter space, otherwise the relative representation change for
those samples is too large. This is equivalent to removing the β1 bias correction in AdamW, or
introducing an inverse bias correction in Lion like algorithms (see appx. G.1 for details). Higher β
values should help amplify the stabilization effects of momentum. In fig. 5 we find that at higher
momentum values LionAR no longer benefits from warmup unlike LionA which still needs it.
These experiments use Nesterov momentum and the additional inverse bias correction, though these
adjustments offer only minor improvements compared to higher momentum.

5. Conclusion

In this work, we explored why learning rate warmup benefits GPT training from the perspective of
the update size. We demonstrated that measuring or controlling the update size in parameter space
does generally not explain or replicate the advantages of using warmup. However, quantifying the
update size in terms of the relative change in neural representations shows potential. This measure
is closely linked to the angular update size but accounts for changes in the signal characteristics
of the gradient, which can vary significantly throughout training. Effectively controlling neural
representation changes is a challenging task we leave for future work, but our initial attempts show
encouraging results in reducing the need for a manually configured warmup. We also highlighted
the importance of high momentum for warmup; when combined with angular update control and
an inverse bias correction, it may enable efficient warmup-free training. Overall, our work provides
new insights into the necessity of learning rate warmup with modern optimizers beyond SGD and
suggests potential directions for eliminating it in practice.

5

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[2] Jeremy Bernstein, Arash Vahdat, Yisong Yue, and Ming-Yu Liu. On the distance between
two neural networks and the stability of learning. Advances in Neural Information Processing
Systems, 33:21370–21381, 2020. arXiv:2002.03432.

[3] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xu-
anyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Symbolic discov-
ery of optimization algorithms. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.net/forum?id=ne6zeqLFCZ.
arXiv:2302.06675.

[4] Vitaliy Chiley, Ilya Sharapov, Atli Kosson, Urs Koster, Ryan Reece, Sofia Samaniego de la
Fuente, Vishal Subbiah, and Michael James. Online normalization for training neural networks.
Advances in Neural Information Processing Systems, 32, 2019. arXiv:1905.05894.

[5] Jingwen Fu, Bohan Wang, Huishuai Zhang, Zhizheng Zhang, Wei Chen, and Nanning
Zheng. When and why momentum accelerates sgd: An empirical study. arXiv preprint
arXiv:2306.09000, 2023.

[6] Justin Gilmer, Behrooz Ghorbani, Ankush Garg, Sneha Kudugunta, Behnam Neyshabur, David
Cardoze, George Edward Dahl, Zachary Nado, and Orhan Firat. A loss curvature perspective
on training instabilities of deep learning models. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=OcKMT-36vUs.
arXiv:2110.04369.

[7] Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look at
deep learning heuristics: Learning rate restarts, warmup and distillation. In International Con-
ference on Learning Representations, 2019. URL https://openreview.net/forum?
id=r14EOsCqKX. arXiv:1810.13243.

[8] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016. arXiv:1512.03385.

[10] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.
URL https://arxiv.org/abs/2203.15556.

[11] Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer
optimization through better initialization. In International Conference on Machine Learning,

6

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2002.03432
https://openreview.net/forum?id=ne6zeqLFCZ
https://arxiv.org/abs/2302.06675
https://arxiv.org/abs/1905.05894
https://arxiv.org/abs/2306.09000
https://openreview.net/forum?id=OcKMT-36vUs
https://arxiv.org/abs/2110.04369
https://openreview.net/forum?id=r14EOsCqKX
https://openreview.net/forum?id=r14EOsCqKX
https://arxiv.org/abs/1810.13243
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2203.15556

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

pages 4475–4483. PMLR, 2020. URL https://proceedings.mlr.press/v119/
huang20f.html.

[12] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance
normalization. In Proceedings of the IEEE international conference on computer vision, pages
1501–1510, 2017. arXiv:1703.06868.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. pmlr, 2015. arXiv:1502.03167.

[14] Andrej Karpathy. nanogpt. https://github.com/karpathy/nanoGPT/, 2023.

[15] Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli
Laine. Analyzing and improving the training dynamics of diffusion models. arXiv preprint
arXiv:2312.02696, 2023.

[16] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015. arXiv:1412.6980.

[17] Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational Equilibrium: How weight decay
balances learning across neural networks. arXiv preprint arXiv:2305.17212, 2023.

[18] Alex Krizhevsky. Learning multiple layers of features from tiny images. self-published, 2009.
URL https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.
pdf.

[19] Zhiyuan Li, Kaifeng Lyu, and Sanjeev Arora. Reconciling modern deep learning with traditional
optimization analyses: The intrinsic learning rate. Advances in Neural Information Processing
Systems, 33:14544–14555, 2020. arXiv:2010.02916.

[20] Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the validity of modeling SGD with
stochastic differential equations (SDEs). In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wort-
man Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=goEdyJ_nVQI. arXiv:2102.12470.

[21] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and
Jiawei Han. On the variance of the adaptive learning rate and beyond. In International Con-
ference on Learning Representations, 2020. URL https://openreview.net/forum?
id=rkgz2aEKDr. arXiv:1908.03265.

[22] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Con-
ference on Learning Representations, 2019. URL https://openreview.net/forum?
id=Bkg6RiCqY7. arXiv:1711.05101.

[23] Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of
normalization layers: Sharpness reduction. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=xp5VOBxTxZ. arXiv:2206.07085.

7

https://proceedings.mlr.press/v119/huang20f.html
https://proceedings.mlr.press/v119/huang20f.html
https://arxiv.org/abs/1703.06868
https://arxiv.org/abs/1502.03167
https://github.com/karpathy/nanoGPT/
https://arxiv.org/abs/2312.02696
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2305.17212
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/2010.02916
https://openreview.net/forum?id=goEdyJ_nVQI
https://arxiv.org/abs/2102.12470
https://openreview.net/forum?id=rkgz2aEKDr
https://openreview.net/forum?id=rkgz2aEKDr
https://arxiv.org/abs/1908.03265
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/1711.05101
https://openreview.net/forum?id=xp5VOBxTxZ
https://arxiv.org/abs/2206.07085

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

[24] Jerry Ma and Denis Yarats. On the adequacy of untuned warmup for adaptive optimization. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 8828–8836,
2021. arXiv:1910.04209.

[25] Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the SDEs and scal-
ing rules for adaptive gradient algorithms. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=F2mhzjHkQP. arXiv:2205.10287.

[26] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model
of large-batch training. arXiv preprint arXiv:1812.06162, 2018.

[27] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. self-published, 2019. URL
https://d4mucfpksywv.cloudfront.net/better-language-models/
language_models_are_unsupervised_multitask_learners.pdf.

[28] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. Advances in neural information processing systems,
29, 2016. arXiv:1602.07868.

[29] Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E Dahl. Measuring the effects of data parallelism on neural network training. Journal
of Machine Learning Research, 20(112):1–49, 2019. arXiv:1811.03600.

[30] Samuel Smith, Erich Elsen, and Soham De. On the generalization benefit of noise in stochastic
gradient descent. In International Conference on Machine Learning, pages 9058–9067. PMLR,
2020. arXiv:2006.15081.

[31] Sebastian Stich, Amirkeivan Mohtashami, and Martin Jaggi. Critical parameters for scalable
distributed learning with large batches and asynchronous updates. In International Conference
on Artificial Intelligence and Statistics, pages 4042–4050. PMLR, 2021. arXiv:2103.02351.

[32] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In International conference on machine learn-
ing, pages 1139–1147. PMLR, 2013. URL https://proceedings.mlr.press/v28/
sutskever13.html.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017. arXiv:1706.03762.

[34] Ruosi Wan, Zhanxing Zhu, Xiangyu Zhang, and Jian Sun. Spherical motion dynamics:
Learning dynamics of normalized neural network using sgd and weight decay. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34, pages 6380–6391. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
326a8c055c0d04f5b06544665d8bb3ea-Paper.pdf. arXiv:2006.08419.

8

https://arxiv.org/abs/1910.04209
https://openreview.net/forum?id=F2mhzjHkQP
https://arxiv.org/abs/2205.10287
https://arxiv.org/abs/1812.06162
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/1602.07868
https://arxiv.org/abs/1811.03600
https://arxiv.org/abs/2006.15081
https://arxiv.org/abs/2103.02351
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://arxiv.org/abs/1706.03762
https://proceedings.neurips.cc/paper/2021/file/326a8c055c0d04f5b06544665d8bb3ea-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/326a8c055c0d04f5b06544665d8bb3ea-Paper.pdf
https://arxiv.org/abs/2006.08419

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

[35] Runzhe Wang, Sadhika Malladi, Tianhao Wang, Kaifeng Lyu, and Zhiyuan Li. The marginal
value of momentum for small learning rate SGD. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=
3JjJezzVkT. arXiv:2307.15196.

[36] Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

[37] Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D
Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for
large-scale transformer training instabilities. arXiv preprint arXiv:2309.14322, 2023. URL
https://arxiv.org/abs/2309.14322.

[38] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference
on computer vision (ECCV), pages 3–19, 2018. arXiv:1803.08494.

[39] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai
Zhang, Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer
architecture. In International Conference on Machine Learning, pages 10524–10533. PMLR,
2020. arXiv:2002.04745.

[40] Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via
zero-shot hyperparameter transfer. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=Bx6qKuBM2AD. arXiv:2203.03466.

[41] Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning.
arXiv preprint arXiv:2310.17813, 2023.

[42] Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran,
and Peter Bartlett. Gradient diversity: a key ingredient for scalable distributed learning. In
International Conference on Artificial Intelligence and Statistics, pages 1998–2007. PMLR,
2018. arXiv:1706.05699.

[43] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.
arXiv preprint arXiv:1708.03888, 2017.

[44] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,
Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization
for deep learning: Training bert in 76 minutes. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=Syx4wnEtvH.
arXiv:1904.00962.

[45] Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl,
Chris Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes?
Insights from a noisy quadratic model. Advances in Neural Information Processing Systems,
32, 2019. arXiv:1907.04164.

9

https://openreview.net/forum?id=3JjJezzVkT
https://openreview.net/forum?id=3JjJezzVkT
https://arxiv.org/abs/2307.15196
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://arxiv.org/abs/2309.14322
https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/2002.04745
https://openreview.net/forum?id=Bx6qKuBM2AD
https://openreview.net/forum?id=Bx6qKuBM2AD
https://arxiv.org/abs/2203.03466
https://arxiv.org/abs/2310.17813
https://arxiv.org/abs/1706.05699
https://arxiv.org/abs/1708.03888
https://openreview.net/forum?id=Syx4wnEtvH
https://arxiv.org/abs/1904.00962
https://arxiv.org/abs/1907.04164

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

Appendix A. Algorithms

The baseline AdamW is shown in algo. 1. A Lion-style analog is shown in algo. 2. A further
rotational modification is made in algo. 3.

Algorithm 1 AdamW (PyTorch variant, differing from the original by Loshchilov and Hutter [22])
Require: Learning rate ηt, weight decay λ, momentum β1, magnitude smoothing β2, ε for numerical stability

1: Initialize: Time step t← 0, parameter vector θ0, momentum vector m0 ← 0, magnitude vector v0 ← 0
2: while stopping criteria not met :
3: t← t+ 1
4: gt ←Mini-batch gradient w.r.t. θt−1

5: mt ← β1mt−1 + (1− β1)gt
6: vt ← β2vt−1 + (1− β2)g

2
t

7: m̂t ←mt/(1− βt
1)

8: v̂t ← vt/(1− βt
2)

9: θt ← (1− ηtλ)θt−1 − ηtm̂t/(
√
v̂t + ε)

Algorithm 2 LionA: A modified version of the Lion [3] optimizer for greater compatibility with
AdamW (algo. 1). The sign operation replaces the magnitude smoothing, explicitly controlling the
ℓ2-norm of each update. Additional scaling keeps the hyperparameters comparable to AdamW.
Require: Learning rate ηt, weight decay λ, momentum β, Nesterov flag ν

1: Initialize: Time step t← 0, parameter vector θ0, momentum vector m0 ← 0
2: while stopping criteria not met :
3: t← t+ 1
4: gt ←Mini-batch gradient w.r.t. θt−1

5: mt ← βmt−1 + (1− β)gt
6: if Nesterov flag ν is set :
7: θt ← (1− ηtλ)θt−1 − ηt ·

√
(1− β2)2 + β4 1−β

1+β · sign(βmt + (1− β)gt)

8: else:
9: θt ← (1− ηtλ)θt−1 − ηt ·

√
1−β
1+β · sign(mt)

Appendix B. Related Work

The earliest use of learning rate warmup we are aware of was in ResNet [9], where a lower constant
learning rate was applied at the start of training. Earlier works may have employed similar concepts;
for example, Sutskever et al. [32] utilized a momentum schedule that could induce a similar effect in
the “effective learning rate” as defined by Fu et al. [5]. The practice of linear warmup, in its current
form, was popularized by Goyal et al. [8] and Vaswani et al. [33].

Warmup has been studied indirectly in various neural network optimizer works. A notable exam-
ple is RAdam [21], a modification of Adam [16] aimed at reducing the need for warmup. However,
Ma and Yarats [24] demonstrated that RAdam essentially incorporates a fixed warmup schedule
within the optimizer. Relative optimizers like LARS [43] and LAMB [44] are also considered to
reduce the necessity for warmup [19]. Bernstein et al. [2] propose a relative optimizer called Fromage
and analyze how relative weight changes relate to relative representation changes, but differ from
our approach in that they do not describe the effects of the gradient signal-to-noise ratio on this

10

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

Algorithm 3 LionAR: A rotational version of algo. 2 inspired by Kosson et al. [17]. The parameter
vector is divided into sub-vectors θ = [θ(1), . . . ,θ(P)], each corresponding to either the weight
vector of a neuron (e.g. a matrix row / a convolutional filter), or other parameters such as gains and
biases. The updates of neuronal weight vectors are scaled to be proportional to their magnitude
which is kept constant through projections that replace weight decay. Additional hyperparameter
adjustments are made for compatibility with AdamW. The weight decay hyperparameter remains,
fulfilling its primary role as a scaling factor for the relative updates of neurons [17].
Require: Learning rate ηt, weight decay λ, momentum β, Nesterov flag ν

1: Initialize: Time step t← 0, parameter vector θ0, momentum vector m0 ← 0
2: while stopping criteria not met :
3: t← t+ 1
4: [g

(1)
t , . . . , g

(P)
t]←Mini-batch gradient w.r.t. θt−1, divided into sub-vectors like θ

5: for p ∈ {1, . . . , P} :
6: m

(p)
t ← βm

(p)
t−1 + (1− β)g

(p)
t

7: if Nesterov flag ν is set :
8: u

(p)
t ← βm

(p)
t + (1− β)g

(p)
t

9: γ ←
√
(1− β2)2 + β4 1−β

1+β # Nesterov momentum scaling factor
10: else:
11: u

(p)
t ←m

(p)
t

12: γ ←
√

1−β
1+β # Heavy-ball momentum scaling factor

13: if θ(p) ∈ RC is a neuronal weight vector :
14: θ̂

(p)
t ← θ

(p)
t−1 −

ηt

maxτ (ητ)
·
√

2maxτ (ητ)λ · γ · (∥θ(p)
0 ∥/

√
C) · sign(u(p)

t)

15: θ
(p)
t ← θ̂

(p)
t · ∥θ(p)

0 ∥/∥θ̂
(p)
t ∥ # Reset the magnitude to the initial value

16: else:
17: θ

(p)
t ← θ

(p)
t−1 − ηt · γ · sign(u(p)

t)

relationship. We build upon the work of Kosson et al. [17] which showed that weight decay can make
standard optimizers function as approximate relative optimizers and proposed optimizer variants that
reduce the benefit of warmup without fully eliminating it.

The effect of warmup in transformers was empirically studied by Wortsman et al. [37]. Xiong
et al. [39] proposed the pre-LN normalization placement for transformers, showing it reduces the
need for warmup. Huang et al. [11] studied initialization in transformers showing a link to warmup.

Finally, warmup has been studied directly on its own. Gotmare et al. [7] studied the effect of
warmup, finding it helps avoid overly large updates to the weights of later layers which could be
frozen to achieve a similar benefit. Gilmer et al. [6] study the need for warmup from a curvature
perspective, showing it may help “push” the optimization trajectory towards flatter regions where
higher learning rates are stable. Smith et al. [30] arrive at a similar conclusion, there is a stable
learning rate that varies throughout training based on the curvature which limits the learning rate
early on, necessitating warmup. These works focus on SGD with momentum, but it is less clear how
curvature affects Adam-like or relative optimizers (see discussion on angular updates).

The relation between stochastic gradient noise and learning rate has been studied in several
works [20, 25, 26, 31, 42, 45]. They find that the update size can be increased roughly linearly with
the batch size up to a certain critical batch size that depends on ratio of the mean and variance of
the mini-batch gradient. We show how the signal-to-noise ratio (SNR) of the mini-batch gradient

11

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

amplifies changes to the neural representations of a network given a normalized update in weight
space. We observe that the SNR starts out high but decreases over time, which translates to large
early changes in the internal representations without warmup.

Appendix C. The Interaction of Momentum and the ℓ2-Update Norm in AdamW

Adam-like optimizers such as AdamW (algo. 1) differ from simpler methods like SGD with momen-
tum in that they normalize the update size with the gradient magnitude. This makes them invariant to
a rescaling of the loss function and helps counteract potential differences in the gradient magnitude
between layers. Optimizers that do not have this property might diverge to infinity if a high learning
rate is combined with large initial gradients or large curvature, as the update size is unbounded.
Warmup can help stabilize SGD as previous works have shown [6, 8].

Although AdamW normalizes the update size based on the gradient, its magnitude can still vary
throughout training as seen in fig. 1. This can be caused by changes in the gradient magnitude itself,
especially when using different values of β1 and β2. However, it can also be caused by momentum
and especially the bias correction (algo. 1, line 7). The magnitude of mt depends on the alignment
of subsequent gradients g1, . . . , gt whereas the normalization factor vt does not. For example, when
each gt is an independent zero-mean random vector with a fixed second moment E[g2

t] = σ2, we
have (see appx. G.1 for details):

E[m2
t] = (1− β2t

1)
1− β1
1 + β1

σ2, E[vt] = (1− βt
2)σ

2 (3)

In this case the bias correction for β1 is incorrect since it is derived for a constant gradient. With the
bias correction the size becomes E[∥m̂∥2] = 1+βt

1

1−βt
1

1−β1

1+β1
σ2, amplifying the norm of early updates

by
√
(1 + βt

1)/(1− βt
1). This factor is larger if the gradients are negatively correlated, which we

empirically observe often happens early in training.
AdamW does therefore not control the ℓ2-norm of the update very well, due to the initial bias

correction, changes in the alignment of the gradients throughout training and if the gradient norm is
rapidly changing. Lion [3] is a closely related optimizer that uses an element-wise sign operation to
normalize the update, giving +1 for positive values, −1 for negative values and 0 for zeros. Ignoring
the possibility of zeros, this gives a constant update norm. Lion is closely related to Adam, and can be
obtained by tracking the size of mt instead of gt in line 6 while setting β2 = 0. It also uses Nesterov
momentum instead of the traditional heavy-ball variant. Lion uses a slightly odd parameterization
that differs significantly from AdamW, to keep the similarity we propose LionA (algo. 2). We scale
the ℓ2 update size to match that of AdamW in the random-gradient scenario, see appx. G.1 for the
derivation of the scaling factors.

In fig. 2 we repeat the baseline sweep using LionA. Despite perfect control of the ℓ2 update
norm (as seen in panel 3), the benefit of warmup remains. This leads us to conclude that the
ℓ2 update size is not sufficient to quantify the “effectively” large updates that we conjecture
warmup mitigates. The final panel shows that the angular update size (see definition in the following
section), proposed to be a better measure of an effective step size by Wan et al. [34], still varies
throughout training with a spike at the start of training.

12

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

Appendix D. The Importance and Irregularity of the Angular Update Size

The effect of a weight vector wt ∈ RC used in a dot product with some vector x (e.g., in a neuron):

⟨wt,x⟩ = ∥wt∥∥x∥ cos (∠(wt,x)) (4)

can be understood in terms of its magnitude ∥wt∥ and direction wt/∥wt∥. The magnitude acts like a
gain, scaling the outputs, whereas the direction determines which input representations x the system
responds to. The angular update size [34] of an update wt 7→ wt+1 is defined as

∠(wt+1,wt) = arccos

(
⟨wt−1,wt+1⟩
∥wt∥∥wt∥

)
(5)

and measures how fast the direction of wt changes during training, and thus its “preference” for x.
With BatchNorm [13] and similar operations [1, 4, 12, 38], a network can become invariant to

the magnitude of weight vectors like wt, such that only the direction matters and the vector is said to
be scale-invariant. WeightNorm [28] provides a good example of this, changing the system to:

⟨wt/∥wt∥,x⟩ = ∥x∥ cos (∠(wt,x)) (6)

Note that although the system output is invariant to the magnitude ∥wt∥, traditional optimizers are
not. Scaling the value of a scale-invariant weight vector by a factor of c > 0, results in a gradient that
is scaled by c−1 and curvature that is scaled by c−2 (see appx. G.2). For SGD this scales the angular
update by c−2 and for Adam-like optimizers it is scaled by c−1. With weight decay the magnitude of
scale-invariant vectors trends towards a certain stable equilibrium value over time which also results
in a specific expected angular update size as described by Kosson et al. [17], Wan et al. [34].

This has several important implications. Changing the initialization magnitude of scale-invariant
weights will scale the angular updates over time for standard optimizers, resulting in effects similar
to modifying the learning rate schedule. For small initial weight magnitudes compared to the
equilibrium magnitude, the early angular updates will be large and these optimizers may benefit from
learning rate warmup to counteract this. These effects also make the notion of “curvature” somewhat
arbitrary as it can be scaled without changing the encoded function. Optimizers that specifically
account for the weight magnitude would be invariant to these effects which may reduce the need
for warmup from the traditional curvature perspective. Although standard transformers are not fully
scale-invariant, the angular update insights still approximately hold for un-normalized weights [17].

In light of this, we modify LionA to better control the angular update size by making the updates
to weight matrices proportional to their weight magnitude, resulting in algo. 3. We normalize the
angular update size to match the equilibrium value, replacing weight decay with projections similar
to Kosson et al. [17]. However, unlike their RVs, we make the angular updates proportional to the
learning rate schedule which we found was necessary for good performance in our case. We also
do not rely on additional exponential moving averages to control the angular update size, instead
utilizing the fixed update size from the LionA optimizer. This is similar to the Adam scheme used by
Karras et al. [15] with good results for diffusion models. No additional normalization operations or
scaling factors are introduced, which we still find to result in decent performance.

Figure 3 repeats the GPT2 training sweep with LionAR. Consistent with the findings of Kosson
et al. [17] we find that controlling the angular updates stabilizes training and decreases the
benefit from warmup, but does not eliminate it in this setting. Both the angular change and the

13

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

ℓ2-norm are simple measures of the update magnitude in parameter space that do not account for
the direction or other aspects of the update. In the next section we show how a fixed update size
in parameter space can result in large changes to the internal representations of the network (a.k.a.
features, activations etc), as shown in the final panel of fig. 3.

Appendix E. Early Gradient Alignment Results in Large Representation Changes

Measuring and controlling the update size in weight space failed to explain the need for warmup. As
an alternative to the parameters, we can analyze changes in the internal representations or activations
of the neural network. Although this is harder to analyze and control, it may ultimately be a better
measure of the true impact of an update. A parameter update can only affect the network output, and
hence the loss, by changing the representation of the network inputs at some layer. Large changes in
the representations could significantly affect the non-linearities, potentially causing lasting issues
such as dead ReLUs or vanishing gradients from saturated sigmoids. This could in turn explain the
lasting performance degradation observed without warmup.

A given parameter update will affect the representations of each distinct input sample differ-
ently. The gradients computed on these samples also generally differ, but can align to some extent.
For a higher gradient alignment, the impact of a parameter update of a given magnitude on the
representations will be larger than otherwise. We will analyze this for the dot product of a neuron:

y = w⊤X = [y1, . . . , yB]
⊤ = [⟨w,x1⟩, . . . , ⟨w,xB⟩]⊤ (7)

where X = [x1, . . . ,xB] ∈ RC×B are the C-dimensional representations of a random mini-batch of
B inputs that is fed into the neuron, w ∈ RC is the weight vector, and y ∈ RB is a batch of outputs.
For a weight update w 7→ w+∆w, we aim to quantify the size of the output change ∆y = ∆w⊤X
computed on the same inputs. We focus on the Relative Representation Change (RRC):

∥∆y∥
∥y∥

=
∥∆w⊤X∥
∥w⊤X∥

(8)

similar to the angular weight updates, as the sensitivity to the absolute change ∥∆y∥ can be unclear
due to normalization or other scaling operations. Note that this is a measure of a local change, not
accounting for changes in the inputs X from updates to preceding layers (global change).

Our analysis focuses on the relatively tractable case of normalized gradient descent with updates:

∆w = −η g√
E[∥g∥2]

, g =
1

B

B∑
b=1

gb (9)

where gb is the gradient of some loss w.r.t. w for the b-th element of the mini-batch. We will use the
following definitions, properties, lemmas and assumptions for this system (see appx. G.4 for details):

• D1: We define gb =: ḡ + g̃b where ḡ = E[g] and g̃b is the difference with E[g̃b] = 0.

• D2: We define φ := E[∥ḡ∥2]/E[∥g̃b∥2] as the Signal-to-Noise Ratio (SNR) of the gradient.

• P1: For a neuron, gb ∥ xb, and hence xb = sign(⟨xb, gb⟩) · (∥xb∥/∥gb∥) · (ḡ + g̃b).

14

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

• L1: Consider two independent random vectors a ∈ RC and b ∈ RC , whose elements are
independent and identically distributed (IID). If at least one of the vectors has a zero-mean
distribution, then the expected value of the squared inner product of a and b is given by
E[⟨a, b⟩2] = E[∥a∥2]E[∥b∥2]/C.

• A1: We assume the following vector pairs satisfy L1: (xi, g̃b) when i ̸= b, (ḡ, g̃b) and (w,xb).

This allows us to compute the expected square relative representation change (appx. G.4 for details):

E[(∆yb)
2]

E[y2b]
=

η2C

B2∥w∥2
1

E[∥g∥2]

(
E[∥gb∥2] +

B − 1

C
E[∥g̃i∥2]

+
(B−1)2

E[∥gb∥2]

(
∥ḡ∥4 + ∥ḡ∥

2E[∥g̃b∥2]
C

)
+ 2(B−1)∥ḡ∥2

)
(10)

=
η2C

B2∥w∥2
1

φ+ 1
B

(
(φ+1) +

B−1
C

+

(
(B−1)2φ
φ+ 1

(
φ+

1

C

)
+ 2(B−1)φ

))
(11)

The expected relative change in the output for a given sample can be broken down into three sources,
the contribution of the sample itself (first term), random interference from the “noise” g̃i of other
samples (second term), and finally amplification of the common mean component ḡ (third term).

The RRC expression provides many interesting insights. In the case of large input dimension
C →∞ and small SNR φ ≈ 0, keeping the RRC constant for different batch sizes involves scaling
the learning rate η ∝

√
B, as suggested by Malladi et al. [25] for Adam. When the SNR φ is some

finite and value and C is still large, this scaling rule instead starts to break down around B = 1/φ,
matching the predicted critical batch size of e.g. McCandlish et al. [26]. The role of the dimension
C in the expression is curious, suggesting that narrower layers experience larger changes due to
random inference from other samples in a given batch. The C in the leading factor also suggests
that the angular updates can be smaller for a larger input dimension, similar to what is proposed in
µ-parameterization [40, 41]. Most importantly, this expression shows that if the SNR changes
throughout training the learning rate needs to be adjusted to keep the RRC constant. In
particular, with large batch sizes, a high initial SNR results in large representation changes
which warmup can help prevent. The first panel of fig. 4 shows how eq. (11) predicts we should
downscale the learning rate for different batch sizes and SNRs, assuming we originally scaled the
learning rate η ∝

√
B and that C is large. The second panel confirms that the SNR indeed starts out

large, suggesting lower initial learning rates are needed, i.e. warmup.
In the first panel of fig. 5, we show the results of adding a term that scales the update size as

predicted by eq. (11). This acts similar to an automatic warmup based on online measurements
of the SNR, which we obtain from the gradient accumulation of micro-batches (appx. G.5).
Although this helps close the gap between warmup and no-warmup, the overall performance is
slightly worse. One potential issue is that our batch size of 480 is quite large compared to the
measured SNR, exceeding the critical batch size estimation throughout most of training. This results
in a scaling of the step size throughout training, which distorts the decay phase. It also requires
large learning rate values to counteract the scaling, which may destabilize the training of non-matrix
weights like gains. We increase the weight decay by a factor of 32× to try to increase the angular
updates relative to gains in order to compensate, but this value was not tuned and is unlikely to be

15

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

100 200 300 400 500 600 700 800
Epochs

86

88

90

92

Te
st

 A
cc

ur
ac

y
Epoch Sweep

1 Standard
8 Standard
128 Standard
1 Leaky ReLU (0.1)
8 Leaky ReLU (0.1)
128 Leaky ReLU (0.1)

Figure 6: The performance gap due to large updates at the start of training cannot be closed with
longer training for a standard ResNet-20. We suspect this is related to the non-linearities of the
network. The experiment indicates that training with Leaky ReLU exhibits a smaller performance
degradation from large initial updates.

optimal. We believe directly controlling the RRC is a promising direction but requires further work
to be practical.

Appendix F. The Detrimental Effects of Large Updates

To investigate the effects of large updates at the beginning of training, we conducted controlled
experiments on a ResNet-20 model on CIFAR-10 [18] due to resource constraints. We controlled
the expected angular update throughout training using the rotational optimizer variant of AdamW
proposed by Kosson et al. [17]. For the first 5 epochs, we applied either a standard learning rate of
0.05 or a notably increased learning rate by a factor of 8 or 128. For all experiments, we used a weight
decay of 0.01, β1 = 0.9, β2 = 0.999, 5 warmup epochs, and trained for 205 epochs unless specified
otherwise. The data was pre-processed by normalizing it with a mean of (0.4914, 0.4822, 0.4465) and
a standard deviation of (0.2023, 0.1994, 0.2010) and applying simple data augmentation techniques
as described by He et al. [9]. To run the experiment, we used the codebase from Wightman [36] and
extended the utilities from Kosson et al. [17].

As shown in fig. 6, the performance of standard training does not recover when large updates are
used at the beginning of training, even when the training time is extended to four times the normal
duration for ReLU networks. This effect is less pronounced when replacing ReLUs with leaky
ReLUs, suggesting that the non-linearities in the network might substantially impact the observed
performance degradation.

The observation that larger initial updates result in more dead ReLUs later in training, as seen in
the left figure of fig. 7, supports this hypothesis. This effect can be mitigated by freezing the biases at
the beginning of training, as shown in the table in fig. 7.

Interestingly, we did not find a connection to overfitting to a small number of samples at the
beginning of training. The performance of 92.1 can be recovered in this case. Additionally, we
explored stable rank measurements as a potential factor but did not find a notable connection, as
detailed in fig. 8.

16

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

Method Speed 1 Speed 8 Speed 128

Standard (S) 92.13±0.2 89.48±0.2 88.22±1.6

Standard frozen bias (S-fb) 92.30±0.3 92.08±0.3 92.30±0.2

Random (R) 92.05±0.3 91.74±0.2 89.54±0.3

Random frozen bias (R-fb) 92.27±0.2 92.12±0.4 92.20±0.1

Leaky Relu 0.1 92.16±0.3 91.48±0.3 91.82±0.4

Leaky ReLU 0.1 frozen bias 92.46±0.2 92.49±0.1 92.35±0.2

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

in
ac

tiv
e

ac
tiv

at
io

ns

steps
S-fb 1
S-fb 8
S-fb 128

R-fb 1
R-fb 8
R-fb 128

R 1
R 8
R 128

S 1
S 8
S 128

Figure 7: Comparison of different methods’ performance across varying large updates and ratio
of dead ReLUs. We observe a notable correspondence between larger ratio of dead ReLUs in the
ResNet-20 and performance degradation as seen in the Table on the left.

0 200 400 600 800 1000

0.02

0.04

0.06

m
ea

n
st

ab
le

 ra
nk

steps
1 S (fb)
8 S (fb)

128 S (fb)
1 R (fb)

8 R (fb)
128 R (fb)

1 R
8 R

128 R
1 S

8 S
128 S

Figure 8: Impact on stable rank of varying large updates at the beginning of training on a standard
ResNet-20. The stable rank seems to vary only minimally across different setups, except when using
extremly large updates (increasing the learning rate by a factor of 128) and biases are not frozen.

Appendix G. Additional Mathematical and Technical Details

G.1. The magnitude of the Momentum Vector

Let’s assume a scalar gradient gt (e.g. for some coordinate) that is a random variable that is indepen-
dent across time and has a zero mean distribution that does not change across time, i.e. E[gt] = 0
and E[g2t] = σ2. For standard heavyball-momentum mt, with m0 = 0 and coefficient β (equivalent
to β1 for Adam) we have:

E[m2
t] = E[(βmt−1 + (1− β)gt)

2] (12)

= E

((1− β)

t−1∑
i=0

βigt−i

)2
 (13)

= E

(1− β)2
t−1∑
i=0

β2ig2t−i + (1− β)2
t−1∑
j=0

t−1∑
k=0
k ̸=j

β2t−j−kgt−jgg−k

 (14)

17

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

= (1− β)2
t−1∑
i=0

β2iE[g2t−i] + (1− β)2
t−1∑
j=0

t−1∑
k=0
k ̸=j

β2t−j−kE[gt−j]E[gg−k] (15)

= (1− β)2
t−1∑
i=0

β2iσ2 + 0 (16)

= (1− β)2
1− β2t

1− β2
σ2 (17)

= (1− β)2
1− β2t

(1− β)(1 + β)
σ2 (18)

= (1− β2t)
1− β

1 + β
σ2 (19)

In the limit t → ∞ we have (1 − β2t) → 1. We can derive the size of the second-moment vt in
AdamW in an analogous way, obtaining E[vt] = (1− βt

2)σ
2. For a random walk, the update size of

Adam is scaled in a similar way. Since the update size of Lion is fixed and does not depend on β, we

scale the update size to match that of AdamW for a random walk in a steady state, i.e. by γ =
√

1−β
1+β

as seen in algo. 2.

Nesterov momentum: The update is modified to use

ut = βmt + (1− β)gt (20)

= β (βmt−1 + (1− β)gt) + (1− β)gt (21)

= β2mt−1 + (1− β)(1 + β)gt (22)

Note that mt−1 and gt are independent and zero-mean, allowing us to use the previous result for:

E[u2t] = E
[(
β2mt−1 + (1− β)(1 + β)gt

)2] (23)

= β4E[m2
t−1] + (1− β2)2E[g2t] (24)

= β4(1− β2t−2)
1− β

1 + β
σ2 + (1− β2)2σ2 (25)

In the limit t→∞ this gives the Nesterov scaling factor used in LionA (algo. 2) to ensure that the
update size corresponds to that of AdamW using an analogous Nesterov update.

Inverse bias correction for momentum: Adam uses a bias correction to attempt to fix the update
size over time. This scales early updates resulting in the contributions of the corresponding gradients
being amplified. The relative representation change for those samples is increased as a result, similar
to applying the same update multiple times. Removing the β1 bias correction from AdamW removes
this effect. LionA and LionAR similarly scale the update size, making it constant. We can counteract
this by changing our scaling factors to use the time varying expressions based on the derivations above.
Note however, that this assumed the gradients were uncorrelated so it only approximately undoes the
scaling effect for real values with arbitrary alignment of successive gradients. To summarize, the
inverse bias correction for momentum changes the momentum scaling factors (γ in algo. 3) to vary

18

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

over time:

Nesterov: γt =

√
(1− β2)2 + (1− β2t−2)β4

1− β

1 + β
(26)

Heavy-ball: γt =

√
(1− β2t)

1− β

1 + β
(27)

G.2. Properties of Scale Invariance

Derivations for the gradient magnitude and curvature can be found in existing works, for example
Lyu et al. [23]. When a scale invariant weight is scaled by a factor c > 0, the gradient is scaled by
c−1 which scales the ratio of the gradient norm and weight norm, and therefore the angular updates,
by c−2. For normalized optimizers like Adam and Lion, where the update norm is not affected by the
gradient magnitude, this factor is decreased to c−1.

G.3. The Angular Update Size in LionAR

The scaling factor for the angular update size in algo. 3 is adopted directly from the AdamW value
derived by Kosson et al. [17]. Since the Nesterov momentum does not change the total contribution
of each gradient it does not affect the equilibrium magnitude. The expected angular updates are
therefore scaled in the same way as the RMS update norm we derived in appx. G.1.

G.4. Relative Representation Change for Normalized Gradient Descent

Property (P1): For a dot product y = ⟨w,x⟩ and loss L (xb) that depends on y, we have:

∂L (xb)

∂w
=

∂L (xb)

∂y

∂y

∂w
=

∂L (xb)

∂y
xb (28)

where ∂L (xb)
∂y is a scalar, ensuring that gb :=

∂L (xb)
∂w ∥ xb, assuming the vectors are not zero.

Lemma (L1): Consider two independent random vectors a ∈ RC and b ∈ RC , whose elements
are independent and identically distributed (IID). If at least one of the vectors has a zero-mean
distribution, then the expected value of the squared inner product of a and b is given by:

E[⟨a, b⟩2] = E[∥a∥2]E[∥b∥2]
C

(29)

Proof: Let a = (a1, a2, . . . , aC) and b = (b1, b2, . . . , bC). The inner product ⟨a, b⟩ is given by:

⟨a, b⟩ =
C∑
i=1

aibi.

We need to find E[⟨a, b⟩2]. Expanding the square of the inner product:

⟨a, b⟩2 =

(
C∑
i=1

aibi

)2

=

C∑
i=1

C∑
j=1

aibiajbj .

19

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

Taking the expectation, we get:

E[⟨a, b⟩2] = E

 C∑
i=1

C∑
j=1

aibiajbj

 =
C∑
i=1

C∑
j=1

E[aibiajbj].

Since a and b are independent and their elements are IID, we have:

E[aibiajbj] = E[aiaj]E[bibj].

Consider two cases:
1. When i = j:

E[aibiaibi] = E[a2i]E[b2i].

2. When i ̸= j:
E[aibiajbj] = E[ai]E[bi]E[aj]E[bj].

Given that at least one of a or b has a zero-mean distribution, say a without loss of generality, we
have E[ai] = 0. Thus:

E[aibiajbj] = 0.

So, the expectation simplifies to:

E[⟨a, b⟩2] =
C∑
i=1

E[a2i]E[b2i].

Since ai and bi are IID, we have:

E[a2i] = E[a21] and E[b2i] = E[b21].

Therefore:
E[⟨a, b⟩2] = CE[a21]E[b21].

Recognizing that:

E[∥a∥2] = E

[
C∑
i=1

a2i

]
= CE[a21],

E[∥b∥2] = E

[
C∑
i=1

b2i

]
= CE[b21],

we have:

E[a21] =
E[∥a∥2]

C
and E[b21] =

E[∥b∥2]
C

.

Thus:

E[⟨a, b⟩2] = C

(
E[∥a∥2]

C

)(
E[∥b∥2]

C

)
=

E[∥a∥2]E[∥b∥2]
C

.

This completes the proof.

20

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

Assumption (A1): We assume the following vector pairs satisfy L1: (xi, g̃b) when i ̸= b, (ḡ, g̃b)
and (w,xb).

Vector pairs of the type (xi, g̃b) and (ḡ, g̃b) should be independent and g̃b has a zero mean
distribution. However, the elements of each vector are not necessarily IID. For (w,xb), this is an
even stronger assumption. Generally, neither w nor xb is guaranteed to be IID or zero mean, and
their independence later in training does not necessarily hold. Applying weight standardization to w
or batch normalization to x would suffice to make this hold. Overall, this assumption can be viewed
as a simplifying approximation to obtain reasonable predictions without additional information about
these vectors.

Deriving the Relative Representation Change: Applying L1 directly gives us the original ex-
pected square output :

E[y2b] = E[⟨w,xb⟩2] =
∥w∥2E[∥xb∥2]

C
(30)

For the expected square representation change we get:

E[(∆yb)
2] (31)

= E[⟨−ηg/
√

E[∥g∥2],xb⟩2] (32)

=
η2

B2

1

E[∥g∥2]
E

(B∑
i=1

⟨gi,xb⟩

)2
 (33)

=
η2

B2

1

E[∥g∥2]
E

sign(⟨xb, gb⟩)∥gb∥∥xb∥+
∑
i ̸=B

⟨gi,xb⟩

2 (34)

=
η2

B2

1

E[∥g∥2]
E

sign(⟨xb, gb⟩)∥gb∥∥xb∥+ (B − 1)⟨ḡ,xb⟩+
∑
i ̸=b

⟨g̃i,xb⟩

2 (35)

(36)

where we have used the definitions from eq. (9) and D1. Using property P1, we can write:

⟨ḡ,xb⟩ =

〈
ḡ, sign(⟨xb, gb⟩)

∥xb∥
∥gb∥

· (ḡ + g̃b)

〉
(37)

= sign(⟨xb, gb⟩)
∥xb∥
∥gb∥

(∥ḡ∥2 + ⟨ḡ, g̃b⟩) (38)

Plugging this into the previous expression yields E[(∆yb)
2]

=
η2

B2

1

E[∥g∥2]
E

sign(⟨xb, gb⟩)
(
∥gb∥∥xb∥+ (B − 1)

∥xb∥
∥gb∥

(∥ḡ∥2 + ⟨ḡ, g̃b⟩)
)
+
∑
i ̸=b

⟨g̃i,xb⟩

2
(39)

Squaring the expression results in various cross but all remaining dot products except the sign one are
zero in expectation (due to the noise g̃) and independent from each other. The cross terms involving

21

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

these thus all disappear under the expectation. We apply Lemma L1 to their squares and approximate
the expected norms of xb and gb as being independent. This gives E[(∆yb)

2]

=
η2

B2

E[∥xb∥2]
E[∥g∥2]

(
E[∥gb∥2] +

(B − 1)2∥ḡ∥2

E[∥g∥2]

(
∥ḡ∥2 + E[∥g̃b∥2]

C

)
(40)

+2(B − 1)∥ḡ∥2 + B − 1

C
E[∥g̃i∥2]

)
(41)

We can compute the expected magnitude of the batch gradient as:

E[∥g∥2] = E[∥ 1
B

B∑
i=1

(ḡ + g̃i)∥2] = E[∥(ḡ +
1

B

B∑
i=1

g̃i)∥2] = ∥ḡ∥2 +
1

B
E[∥gi∥2] (42)

and similarly E[∥gb∥2] = ∥ḡ∥2 + E[∥g̃b∥2]. Using these facts we can further write E[(∆yb)
2]

=
η2

B2

E[∥xb∥2]
E[∥ḡ∥2] + 1

BE[∥gi∥2]

(
∥ḡ∥2 + E[∥g̃b∥2] +

(B − 1)2∥ḡ∥2

∥ḡ∥2 + E[∥g̃b∥2]

(
∥ḡ∥2 + E[∥g̃b∥2]

C

)
+2(B − 1)∥ḡ∥2 + B − 1

C
E[∥g̃i∥2]

)
(43)

Combining this with the previous expression for E[y2b] and the definition (D2) of the signal-to-noise
ratio φ := E[∥ḡ∥2]/E[∥g̃b∥2] we obtain the expression in the appx. E:

E[(∆yb)
2]

E[y2b]
=

η2C

B2∥w∥2
1

E[∥g∥2]

(
E[∥gb∥2] +

B − 1

C
E[∥g̃i∥2]

+
(B−1)2

E[∥gb∥2]

(
∥ḡ∥4 + ∥ḡ∥

2E[∥g̃b∥2]
C

)
+ 2(B−1)∥ḡ∥2

)
(44)

=
η2C

B2∥w∥2
1

φ+ 1
B

(
(φ+1) +

B−1
C

+

(
(B−1)2φ
φ+ 1

(
φ+

1

C

)
+ 2(B−1)φ

))
(45)

G.5. Estimating the Signal-to-Noise Ratio

We use accumulation over the microbatches to estimate the SNR at a given time. Let’s assume we
have A microbatches of size M each, with the average gradient of a microbatch denoted gm and the
average gradient of the whole batch denoted g = 1

A

∑
m gm.

We estimate the variance of the norm of a single gradient example, i.e. the noise power as:

PN =
A

A− 1
·M · 1⊤

(
1

A

∑
m

g2
m − g2

)
(46)

The signal power is estimated as:

PS = 1⊤g2 − 1

AM
PN (47)

Our SNR estimate is then:
φ = PS/PN (48)

22

ANALYZING & ELIMINATING LEARNING RATE WARMUP IN GPT PRE-TRAINING

G.6. RRC Correction Factor

The RRC correction is done based on eq. (11) and the SNR estimation eq. (48). We assume the
learning rate was originally scaled with the square root of the batch size, which is derived for an SNR
of zero, and downscale the step size to compensate for the measured SNR and batch size. We define:

ρ =
1

B(1 + φ)

(
(φ+1) +

B−1
C

+

(
(B−1)2φ
φ+ 1

(
φ+

1

C

)
+ 2(B−1)φ

))
(49)

For numerical purposes, we clamp 1 ≤ ρ ≤ B which corresponds to φ = 0 and φ =∞ for a large
C → ∞. The update scaling factor is the square root of an EMA of the inverse of this quantity.
We use the same coefficient as for the momentum and compute this for the matrix of each linear
layer independently. This form for the scaling factor is somewhat arbitrary, complicated by the fact
that Lion-like algorithms fix the step size exactly, so scaling the gradient at each step size can not
change the magnitude of the update. For Adam or SGD like algorithms we could scale the gradient
contributions directly instead of scaling the update size.

G.7. Run-to-run Variance / Uncertainty Estimation

We do not quantify the uncertainty for every GPT2 configuration in our sweeps. This would require
significantly more compute and our estimates of the uncertainty for select points indicate that this
would not qualitatively change our results. For the baseline AdamW run the run-to-run differences in
the validation loss over different seeds are around 0.05. However, the relative ranking of different
runs remained the same.

G.8. Computational Requirements

Our experiments are performed on A100 GPUs with either 40GB or 80GB of RAM. One training run
for our GPT2 setup takes around 4h, running on a single GPU. Reproducing the GPT2 experiments
reported should take on the order of 1000 GPU hours. Including our preliminary experiments brings
this up to around 3x this amount.

Appendix H. Limitations

Our main experiments focus on a single network which may not be broad enough to generalize
to a wide range of networks. We believe we identify real factors that contribute to the need for
warmup, but these may not be the only ones across a broader range of networks. Similarly, the
promising results for reducing or eliminating the warmup with higher momentum values or the
relative representation correction would benefit from further validation across additional settings.

23

	Introduction
	Baseline Experimental Setup & Results
	Measuring & Controlling the Update Size
	The Role of Momentum
	Conclusion
	Algorithms
	Related Work
	The Interaction of Momentum and the L2-Update Norm in AdamW
	The Importance and Irregularity of the Angular Update Size
	Early Gradient Alignment Results in Large Representation Changes
	The Detrimental Effects of Large Updates
	Additional Mathematical and Technical Details
	The magnitude of the Momentum Vector
	Properties of Scale Invariance
	The Angular Update Size in LionAR
	Relative Representation Change for Normalized Gradient Descent
	Estimating the Signal-to-Noise Ratio
	RRC Correction Factor
	Run-to-run Variance / Uncertainty Estimation
	Computational Requirements

	Limitations

